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Cohen-Macaulayness in graded rings associated to ideals

By

Shiro GOTO, Yukio NAKAMURA a n d  K oji NISHIDA

1. Introduction

L et A  b e  a  Noetherian local ring w ith  maximal ideal m .  L e t  d = dim A
and assume the field A/ni is infinite. For a given ideal I  in A  (I  0  A) we define

R(I) = I"t" g  A N and G(I) = R(I)/ I R(I)

(here t  is a n  indeterminate over A) and respectively call R (I) a n d  G(I) th e  Rees
algebra a n d  th e  associated graded ring of I. T h e  purpose o f  th is paper is to
find any practical conditions under which the graded algebras R(I) and  G(I) are
Cohen-Macaulay a n d /o r  Gorenstein r in g s . A n d , because Cohen-Macaulayness
and Gorensteinness in  R(I) are now known to be fairly determined by the corre-
sponding ring-theoretic properties o f  G (I) (see, fo r  exam ples, [GS], [I], ETU,
EGNi], [V ], a n d  R 1 ), in  th is paper w e devote  our attention t o  th e  problem
how  to  check Cohen-Macaulayness o r  Gorensteinness in  th e  graded rings G(I).
W e shall develop our study along the notion, due to  [1-1H1], analytic deviation
ad (I) o f  I. Actually, fo r  th e  ideals I  having ad (I) < 2 Huckaba a n d  Huneke
[1-1H1] a n d  [HFI2] have already studied Cohen-Macaulayness in  graded rings
R(I) and  G(I) and  the  readers may consult [GNa 1] a n d  [GNa2] about Goren-
steinness in  th e m . This paper succeeds the researches [1-11-11], [HH2], EGNa
and  EGNa21. Here we shall generalize their results for ideals o f ad (I) > 3.

To state the results precisely, we set up  the following n o ta tio n . L e t I  ( 0  A)
be a n  ideal in  A  o f ht, I  = s  a n d  p u t ).(/) = dim A/m OA  G(I), tha t w e call the
analytic spread of I. We generally have

s / 1 ( I )  d — inf depth A ll"
n> 1

([13]). S o  th e  difference ad (I) = (I) —  s is  ca lled  th e  analytic  deviation. Let
J  be  ano ther idea l i n  A .  W e  sa y  th a t J  i s  a  reduction o f  J  i f  J ç  I  and
in+ 1 J In for a ll n »  O. A  reduction is called minimal if i t  is  minimal among
reductions. A s is well-known, a  reduction J  o f  I  i s  m in im a l if  a n d  if  J  is
genera ted  by  A (I) elements ([NR]). F o r  each  reduction  J  o f  I  l e t  ri (I) =
min In > O lin ' = J / " }  a n d  c a ll  i t  th e  reduction num ber o f  I  w ith  respect to
J. W e p u t r(I) = min r,(1) where J  runs over minimal reductions.

The au th o rs  are partia lly  supported  by  G rant-in-A id  for C o-operative Research.
C om m unicated  by  P rof. K. Ueno, A pril 21, 1994
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Assume that A  is  a Cohen-M acaulay ring and that our ideal I  is generi-
cally a  complete intersection in A , that is for any Q E Min, A /I the  ideal IQ  is
generated by an  AQ -regular sequence of length s. In  this situation, if ad (/) = 0,
I  is  a  complete intersection in A  ([CN ]) a n d  we certainly have R (I) a n d  G(I)
are Cohen-M acaulay rings. The study of the case ad (I) > 0  was started from
Huckaba a n d  Huneke [HH1], in  which they showed that when ad (I) = 1 and
r(I) 1  th e  graded r in g  G (I) i s  Cohen-M acaulay if and only i f  depth A /I >
d — s — 1. A ssum ing that A  is  a  Gorenstein ring, A /I is  Cohen-Macaulay, and
th at IQ  i s  a  complete intersection in  A Q  f o r  a l l  prim e ideals Q e V (I) with
ht.„/ , Q/I 1, Huckaba and  Huneke [HH2] proved also that R (I) and  G(I) are
Cohen-Macaulay rings if ad (I) = 2 and r(I) 1. Here we are going to generalize
these results for ideals I  of ad (I) > 3. But, of course, to get these generalizations,
we need m ore assumptions o n  I  than Huckaba a n d  Huneke d id  in  the case
ad (I) < 2. In  this paper we pu t on  I  two conditions appropriate to our study;
firstly, inspired by th e  assumptions in  [HH1] a n d  [HH2], we assum e as is  in
[A H ] that our ideal I  contains a  special reduction (see (2.1) below for the
definition of special reduction). As was proved in  [U ], this assumption is equiva-
lent to saying that the  ideal I  satisfies condition G (1 ) in  th e  sense of Artin and
Nagata [A N ], that is th e  ideal IQ  is generated by at m ost h  elements fo r  all
prim e ideals Q c V (I) with ht, Q = h < .1,(/). W e  n o te  here that even in  the
case ad (I) = 2  this assumption is somewhat weaker than that in  [HH2], where
Huckaba a n d  Huneke assumed I Q  i s  a  complete in tersection in  A Q  f o r  all
prime ideals Q e V (/) with htA l l  Q/I 1. Secondly, w e assume some estimation
on  depth (A /P)Q ,  the  depth of local rings (A /P) Q ,  for prim e ideals Q e V (I) and
integers n  with 1 < n < ad (/). This condition was first studied in  [N], where
the third author Nishida established criteria for the equality of symbolic powers
1( n ) a n d  ordinary powers P o f I  fo r a ll n > 1. W e need som e results in  [N]
which p lay  a  key role also in  th e  present research.

Now le t u s  state the  m ain  results of this paper.

Theorem (1.1). L e t  A  b e  a C ohen-M acaulay  ring of  dim A  = d . L e t  I
b e  an  ideal in  A  o f  h t A  I  =  s .  A ssume that I con tain s a  special reduction J
w ith r(I) ad (I) and  that I satisf ies the following inequalities; depth (A /M Q

min lad (I) — n, htA  Q — s — n} and depth Al In d  —  s  —  n  1  f o r all prime ideals
Q E V (I) and  f or all integers n w ith 1 n ad (I). Then

(1) G(I) is  a Cohen-M acaulay ring of  a(G(I)) = —  s.
(2) G(I) is  a Gorenstein ring if  A  is  a Gorenstein ring.

Here a(G(I)) denotes th e  a-invariant o f G(I) ([G W , (3.1.4)]). T he equality
a(G(I)) = — s i n  Theorem (1.1) (1) follows also from [A H , 5.10] a n d  [T, 2.5],
once we know the  ring G(I) is  Cohen-M acaulay. A nd, as an immediate conse-
quence of Theorem (1.1), by [TI, (1.1)] and  [I, (3.1)] we get the following result
o n  Cohen-Macaulayness and  Gorensteinness in  R(I).

Corollary (1.2). L et A  and I  b e  as  in  Theorem (1.1). Then
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(1) R (I )  is a Cohen-M acaulay  ring if  s > O.
(2) Suppose s > 2. Then R (I) is a Gorenstein ring i f  and  only i f  A  is a

Gorenstein ring and s = 2.

When A  is a Gorenstein ring, in assuming the ring A/I is Cohen-Macaulay,
w e can  w eaken  th e  assum ption on  the  e stim a tions o f depth (A//n)Q a n d  get
the following criterion o f the  ring  G(I) being Gorenstein in  term s o f reduction
numbers.

Theorem (1.3). L et A  be a Gorenstein ring of  dim A  = d . L e t  I be an  ideal
in A  with h t, I  = s and ad (I) > O. Suppose that A/I is a Cohen-Macaulay ring and
that I contains a  special reduction J. Then

(1) r(I)  ad (I) —  1 if  G(I) is a Gorenstein ring.
(2) A ssume that the  inequalities depth (A//n),2  >  min lad (I) — 1 — n, ht, Q —

s —  n}  and depth A/I" d — s — n hold f o r all prim e ideals Q E V (I) and
f o r all integers n  with 1 < n < ad (1) —  1 . Then G (I) is  a Gorenstein
ring if  and only if r( I )  ad (1) — 1.

A nd similarly a s  is  in (1.2) we get

Corollary (1.4). L et A  and  I be  as  in  (1.3) and assum e that I satisfies the
inequalities stated in (1.3) (2). Then R (I) is a Gorenstein ring if  s = 2 and r„(I)<
ad (I) — 1.

For a  G orenstein  ring A  and  its ideal I  w hich has a  special reduction J,
we assume tha t A/I is Cohen-Macaulay and that depth (A//"),2 m i n  lad (I) — n,
h t, Q — s — n1 for a ll prime ideals Q e V (I) and for all integers n with 1  n
ad (I). Then once we know the inequality r( I )  ad (I) — 1, to see whether G(I)
is a Gorenstein ring or not it suffices by Theorem (1.3) to check if the inequalities
depth A /P >d —s —n  hold for 1 < n <  ad (1) — 1. However, if we do have the
inequality r( I )  ad (I) only, without knowing whether r , ( I ) .  ad (I) — 1  or not,
then w e a re  n o t able to directly apply Theorem  (1.3). A nd to apply Theorem
(1.1), we need th e  stronger estimation depth A /P >d —s —n +  1 fo r 1  < n <
ad (I). Of course once w e get it , then  G(I) is  a  G orenstein ring and Theorem
(1.3) (1) yields th e  sharper estimation r 1 (I) < ad (I) — 1 o n  reduction numbers.
F or this reason it seem s to us that am ong the standard hypotheses in  Theorem
(1.1) the  assumption depth A /In>d —s —n + 1  is som ew hat superfluous. And,
as we will show in Theorems (1.5) and (1.6) below for the special case ad (I) < 3,
Theorem  (1.1) (1) m ight be true if  ho ld  th e  inequalities depth A /P >d —s —n
for 1 < n < ad (I) instead of those depth A /P > d — s — n  + 1, provided that A/I
is  a Cohen-Macaulay ring.

Theorem (1.5). L et I be an  ideal with h t, I  = s  and ad (I) = 2  in  a Cohen-
Macaulay rin g  A  o f  dim A  = d. A ssum e that A/I is Cohen-M acaulay  and that
I contains a  special reduction J  with r,(I) < 2. Then the following conditions are
equivalent.
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(1) G(I) is  a Cohen-Macaulay ring.
(2) depth A // 2  >  d — s — 2.

Hence R (I) is a Cohen-Macaulay ring if  s > 0  and depth A// 2  >  d — s — 2.

Theorem (1.6). Let I be an ideal with h t, /  =  s and ad (I) = 3 in a Gorenstein
ring A of dim A = d. Assume th at A ll is  Cohen-Macaulay and that I contains
a special reduction J w ith r(I) < 2. Then the following conditions are equivalent.

(1) G(I) is  a Cohen-Macaulay ring.
(2) depth A// 2 >_ d — s — 3.

H ere  w e  n o te  tha t T heorem  (1 .5 ) is  a lready  show n  by  [G N a3] on  the
additional assum ptions that A  i s  a  G orenste in  ring  and  th a t  th e  ideal IQ  i s
generated by an A Q -regular sequence for all prime ideals Q e V (I) with ht, /, Q/I <
1

As for Gorensteinness in G(I) when ad (I) = 3 and r 3 (I) 1 w e are  able  to
add  the  following criterion.

Theorem (1.7). Let I be an ideal w ith ht, I = s and ad (I) = 3 in a Gorenstein
ring A of dim A = d. Assume th at A /I  is  Cohen-Macaulay and that I contains
a special reduction J w ith r,(1) < I. T hen the following conditions are equivalent.

(1) G(I) is  a Gorenstein ring.
(2) depth A// 2 >  d — s — 2.

Suppose A is Gorenstein, A /I is Cohen-Macaulay, and I  has a  special reduc-
tion J. Then we have by (1.3) and (1.6) that rj (I) < 2 and depth A /I 2  > d — s — 3,
i f  ad (I) = 3  a n d  i f  G (I) i s  a  G o re n s te in  r in g . T h e  criterion o f  G (I) being
Gorenstein in the case ad (I) = 3 is settled by (1.3) and (1.7), if either depth A // 2  >
d — s — 2 or r( I )  < 1. However, when depth A /I 2  = d — s — 3 and r( I )  = 2, the
authors d o  not know any sim ilar practical criteria as in  (1 .3) and (1 .7). There
are, of course, examples in  th a t c a se . L e t  A = =  1, 2, 1 < j  <  5 ]] b e  a
formal power series ring in 10 variables over a n  infinite field k  and let I  be  the
idea l i n  A  generated  by th e  m axim al m inors o f  t h e  2  by 5 generic m atrix
X  = [X ,]. T h e n  I  is a  perfect ideal of height 4 and 2(I) = 7. H e n c e  ad (I) = 3.
A s A /I is  a n  isolated singularity, any minimal reduction J  o f  I  is special (cf.
(2.3)). We have rj (I) = 2, depth A /I 2  = 3  (=  d — s — 3), and G(I) is a Gorenstein
ring.

L e t u s  now  briefly explain how  to organize this p a p e r . In  S e c tio n  2  we
pick up from  [N ] som e results o n  special reductions o f  ideals, which we need
fo r  th e  re s t o f  th is  p a p e r .  W e prove Theorem (1.1) (resp. Theorem (1.3)) in
Section 3 (resp. Section 4). Section 5 is devoted to study the case where ad (I) <
3. A s  a  consequence, we prove Theorems (1.5), (1.6), and (1.7).

Throughout this paper (A, ni) is a Noetherian local ring and d = dim A .  We
always assume the residue class field A /m  is infinte. H i

m (*) (i E Z) stand for local
cohom ology functors. For each finitely generated A-module M, ,u,(M) denotes
the  number of elements in  a  m inim al system of generators for M.



Cohen-Macaulayness 233

2. Auxiliary results on special reductions

In  this section we shall summarize some auxiliary results o n  special reduc-
tions, w hich w e need this p a p e r . L e t  I  b e  a n  ideal in  A , s = h t, I ,  and let

=  4 1 ) .  Hence ad (/) = t — s. First of all let us recall the definition of special
reductions.

Definition (2.1) ([AH, 5 .1 ] ) .  L e t  J  b e  a m inim al reduction o f I. Then J
is  s a id  to  b e  a  special reduction o f  I ,  i f  I  contains a  system o f  generators
(11 , a 2 , ,  a, for J  which satisfy the equality IQ  =  (a i , a 2 , ,  a h )A Q  fo r all prime
ideals Q E V(I) w ith  ht, Q = h < e.

Lemma (2.2) [ ( U ) ] .  The following conditions are equivalent.
(1) I  h as  a  special reduction.
(2) For all prime ideals Q E V(I) with h t, Q = h < t  the  ideals IQ  is generated

by  at m ost h  elements.

P ro o f . See [U , 1 .4] or [N, (2.2)].

Corollary (2.3) ( [A H ]) . Suppose th at f o r any  prim e ideals Q e V (I) with
htA  Q < 1, the ideal IQ  is generated by  an  AQ -regular sequence o f  length s. Then
every minimal reduction o f  I is special.

P ro o f . See [AH, 6.4] or [N, (2.5)].

F o r  th e  rest o f  th is  section w e assume th a t  A  is  a Cohen-Macaulay ring
and tha t I  contains a  special reduction J. L et r =  rj (l). W e choose a  system
of generators a i , a 2 ,  . . . ,  a, for J  which satisfy the equality IQ  =  (a 1 , a 2 , ah )A Q

fo r a ll prim e ideals Q e  V (/) w ith  h t, Q = h <  t .  Let ./, =  (a 1 , a 2 , ai )A  for
0 < i  <  t .  Then we may further assume tha t the  system a i , a 2 , a i  satisfies
a ll the conditions stated in  th e  next lemma.

Lemma (2.4) ( [ N ] ) .  ( 1 )  T he element ai does not belong to Q f o r any  1 <

i t  an d  f o r any  prim e ideal Q E [ A SS A U ( U  Ass, A/Jri i ) 1 \V ( / ) .  I f  e > s,
m,)

then f o r all prim e ideals Q e Min, Afirl Supp, I  the  element as + , f o rm s part of
a m inim al system o f  generators f o r the  id e al I .

(2) a i , a 2 ,  . . . ,  a, f orm s an  A -regular sequence.
(3) [(0) : ai ]n i= ( o )  f o r all  1 i t.
(4) [J , a 5 + 1 ] f  =  i r s f  e >  s. H ence i f  e > s= 0 ,  th e n  (0) : a l  = (0) :1,

[(0) : I] fl I  = (0), and a ,  i s  A/[(0) : I]-regular.

P ro o f . See [N , Proof of (3.2), (3.3), (3.4), and (3.13)] for assertions (1), (2),
a n d  (3 ) . T o  get the assertion (4), let Q e Ass, A /Js . Then if I  g Q , by (2.1) we
have IQ  =  J  h t ,  Q  = s  < t . H ence U s as-Flif2 n  =  J .,Q , which does also
hold if I Q, because a5 + 1  Q  by (1). Thus w e get [J5 : a5 + 1 ] n i  = J .  S u p p o se

>  s = 0  and let x  e  (0) :  a 1 . T h e n  b e c a u s e  x /  [ ( 0 )  :  1 ] n i  a n d  because
[(0)  a l ] n I  = (0) by (3), we have x e (0) : I. Thus (0) : a i  = (0) : I  and [(0) : /] f i =
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(0). Let a i x e (0) : 1  with x e A .  Then we get a i x = 0 as a i x  e [(0): /] f i, whence
x e (0): a, = (0) : I. Thus a , is  A /[(0): /]-regular.

W e note one m ore result in  [N].

Lemma (2.5) ( [ N ] ) .  A ssum e the inequality depth (A/P)Q  m i n  le — s — k,
ht, Q — s — k }  holds f o r all prim e ideals Q e V (I) an d  f o r all integers k  with
1 < k  < t  —  s. L e t m , n , an d  i be integers such that m  > 1 , 0 < n < t  — s — 1,
and 0 < i  < n  + s . Then we have the following.

(1) [Jim a ] n JM
1 in  + 1

 = f i r n I .
(2) j

1

m_
1

in+1/ jim n+1 firW in+1 / Jim  In.

P roo f. See [N , Proof of (3.5)].

N ow  our goal of this section is  to  show that under the extra conditions on
I  cited in section 1  the  sequence a l t, a 2 t, a s t  is  G(/)-regular. So we begin
with the following lemma.

Proposition (2.6). Assume that r — s and that the inequality depth (A//n)Q

min {e —s— n, ht, Q — s — n} holds f o r all prime ideals Q  V ( I )  and for all inte-
gers n with 1 < n < e — s. Then .1i n rm+' = J i l i n  f o r  0  <  i <  e and all m > i — s.

P roo f. We will prove the assertion by descending induction on i. Let i = e.
Then a s  r < e —s<m, rn+i= J e I m  whence J  n = f 1 m  fo r  a ll  m > e —s.
Now le t i < t  and assum e J i ± i =  J i+ 1 Im  for any m > i + 1 —  s. We shall
show by induction on m tha t J i n r + i  =  J i lm  for all m > i — s. If i — s  >  0, then
by (2.5)(1) we get J i n [Ji : a 1 +1 ]  n = Hence J, n =
And f  n ii - s±i = J i l t '  if i < s. Thus we have the equality j f l /m± 1  =  J i lm  when-
ever m = i — s. Now assume m > i —  s + 1 and j

j m
=

 J j 1 .  Then the induc-
tive hypothesis o n  i  says J i + 1 =  J i + i lm. So w e have

n im+1 = n(.J 1 n rn+ i)

=  n J i + l rn

=  n ( f i r  + ai±i/m )

= J i rn +  n ai + i rm

=  J i r  +  ai+i ai+in  ri s+ 1 n /rn ] (note m > i — s  + 1) .

A s [./i ai+i] n g f i b y  (2.5)(1), we get J i n rm+1 g J i lm  + n /m). Then
the hypothesis o n  m guarantees f fl Im+ 1  f i r  + =  J i l i n  a s  required.

Corollary (2.7). Assume that r — s and that the inequality depth (A//n),2
min le — s — n, ht, Q — s — n} holds f o r all prime ideals Q e  V ( I )  a n d  fo r  all inte-
gers n  with 1 <  n < e — s. Then the sequence a i t, a 2 t, ast is G(I)-regular.

Proof. The assertion directly follows from [V V , 2 .7], because a 1 ,  a2, • • • ,
as  fo rm s by  (2.4)(2) a n  A-regular sequence and  because by (2.6) .1, n j m =  .15 1m

for a ll m > 0.
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Lemma (2.8). L e t  A  b e  a G orenstein ring. A ssum e that A ll is C ohen-
M acaulay  and that the inequality depth (A//n)Q  m i n  te — s —1 — n, htA  Q — s —
n}  holds f or all prime ideals Q e V (I) and for all integers n w ith 1 < n < t  — s —1.
T hen [,/, : a1 + 1 ] Fl / '  =  f or s < i < e.

P ro o f . It suffices to  show  [./1 : a1+ 1 ]Q (11Q- s g J1 1 f o r  a l l  Q  in AssA  A /
W e have nothing to prove if I Q ,  because a i + , 0 Q. Hence we may

assume I  g  Q .  Then htA  Q  < i  <t  by [N , (3.11)] applied to the case N  = a =
t — s — 1. Hence Ji Q  =  IQ  by (2.1) and  we have

E f i  a i+ J Q  n  /.12 - s  = [/Q  : a i + i ]  n

=  I (note i —  s > 0)

= .

Proposition (2.9). L e t A  be  a Gorenstein ring. A ssum e that A /I is Cohen-
Macaulay and that r —  s — 1. A ssume the inequality depth (A /P) Q  m i n  te —
s —1— n, htA  Q — s — n} holds f o r all prim e ideals Q e  V (I) and  f o r all integers
n w ith  1  < n  < e —  s — 1. L e t  i  b e  an  integer satisfy ing s < i < e. T hen Ji (1
P +1  =  Ji lm  f or s < i < e  and f or all m > i —  s —  1.

P ro o f . Let us prove the claim by descending induction on i. The assertion
is  tru e  if i = t  because I 11

+ 1  = .1 ( 1m fo r  all m  >  e — s — 1 ( >  r ) .  L e t i  b e  an
integer satisfying s  <  i  < t  and assume that Ji + , n  r + i  =  Ji + i lm for all m > i — s.
W e shall show, by  induction on m, th a t Ji n im + i =  Ji Im for m  > i — s — 1.

Firstly, suppose i > s + 1. Then by (2.8) we have Ji n rt- s : a1+1] (I I =
whence Ji n i i - s = L et m  >  i —  s and  assum e  Jin Jm =

T h e n  a s  Ji n  rn ± i g n r n + i  =  Ji + i lm , w e  h a v e  Ji n rn ± i = n (f i r' + a i + ,Im)
whence Ji n im + i =  Ji lt" + ai+1] n n im) (note m i — s). Thus by (2.8)
we get Ji n im +1 = Ji lm + a i + ,(Ji n F .)  and  the  hypothesis o n  m  yields Ji n =
Ji lm + = Ji lm.

Now consider the case i = s. We must show J, n r + i  =  J,Im for all m > —1.
W e m ay assum e m  > 1 and ./ s rl /m = Js r  - 1 . T hen a s  J, n r n + '  g  j s + ,  n r + i  =

we have J , n  im + 1  =  JJrn  +  as+I([Js a s + i ] n P ) . Hence a s  U s : as ± i ] n =
by (2.4)(4), we get [J, as+ i] n =  J5 fl Im = J5 Im- 1  s o  the  equality J., n im +i =

J,Im follows.

Corollary (2 .10). L e t A  be  a Gorenstein ring. A ssume that A /I is Cohen-
Macaulay and that r e — s— I. A ssume the inequality depth (A /P) Q  m i n  t e  —
s — 1 — n, htA Q — s — n} holds f o r all prim e ideals Q E  V (I) and  f o r all integers
n w ith 1 < n < e —  s — 1. Then a i t, a,t, a s t  f o r m s  a G(I)-regular sequence.

P ro o f . The assertion follows from [ITV, 2.7] a s  by (2.9) J, n  r + 1  =  J,I"  for
a ll n > O.
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3. Proof of Theorem (1.1)

Throughout this section we assume that A  is  a Cohen-Macaulay ring and
that I  is an ideal in A, which contains a  special reduction J  with rj (I) = r < e — s,
where htA  I = s  and A(/) = e. Then we can choose a  system o f generators a 1 ,
a2 , a j  for J  so that the conditions stated in (2.4) are all fulfilled. F urther
w e  assu m e  th e  inequalities depth (A /P) Q  >  min It — s — n, ht, Q — s — n 1  and
depth A /P >d — s — n + 1 hold for all prime ideals Q EV (I) and for all integers
n  with 1 n — s. Let G =  G(I) and R  =  R ( I ) .  Then by (2.7) the sequence
a i t, a 2 t, a s t  is G-regular.

The purpose of this section is to prove Theorem (1.1). We begin with the
following lemma, which enables us to reduce the problem to the case where s = O.

Lemma (3.1). Suppose s > 0 and let A = A /a,A , I  = IA, and .1 = J;;1- . Then
(1) :4 is a Cohen-Macaulay ring, ht7, Ï  = s —  1, and .1(I) = e — 1.
(2) J  is a special reduction of I  and r( I )  ad (/).
(3) The inequalities depth (A /I") > min {ad (I) — n, h t  Q — htA Ï — n} and

depth A/ i" > dim A — htA  Ï — n +  1  hold for all prime ideals Q G  V (I) and
for all integers n  with 1 n ad (I).

(4) G  is a Cohen-Macaulay (resp. Gorenstein) ring if and only if  G(1) is a
Cohen-Macaulay (resp. Gorenstein) ring. When this is the case, one has
the equality a(G) = a(G(i))—  I.

P roof. A  is a Cohen-Macaulay ring with ht;,- Ï =  s — 1, because a, is chosen
to be A-regular. As a i t is by (2.7) G-regular, we get by [VV, 1.1] an isomorphism
G(I) G / a  i tG  of A-algebras. Hence the assertion (4) follows (see [GW, (3.1.6)]
for the equality a(G)= a(G(I)) —  1). Further, because G(I)/mG(I) G /(m G  + a i tG)
and because a ,t  forms part o f a  linear system of parameters of the A/m-algebra
G/mG, we get the  equality 1(1) = e — 1. Hence ad (I) = e —s. Because / " '  =
J. I" if  P + 1  = JP , th e  ideal .7 is  a m inim al reduction of .T with ri(1) < r and

ad (i). Take Q E V ( /)  w ith h t, Q = h  and  assum e  th a t ht,ï < ) ( Ï )  =
e — 1 , where 0-  =  Q /a,A . Then a s  h = htT, Q + 1 < e, w e  g e t  b y  (2.1) IQ  =
(a1 , a2 , a h )A Q  whence k  = (a 2 , a h ) A u .  Thus .7 is  a  special reduction of
I. To see the assertion (3), let n  be an  integer with 1 < n < e —s. Then a i A
P = a 1 I" - 1  b y  (2.6). So  w e have a i A /(a,A  n I n ) = a 1 A/a 1 l" - 1  A / P - 1 . Hence
the exact sequence

0 —> A/I"' A/I" —> A/I" 0

follows. A s  depth A /P >d — s — n + 1 a n d  depth A /P - 1 >d — s — n + 2, it
follows from Depth Lemma that depth A / P >d — s — n +1 = dim ;4- — htA Ï —
n + 1. A nd the rest of the assertion (3) follows from the exact sequence above
via localization.

In  what follows, till(3.4) we maintain the assumption that s = 0  and ad (I) —
2(1) =
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Lemma (3.2). F o r  integers i and  n  satisfying 0  i n  <  e,

depth A lJi l"
d — i

— n + 1
i f  n = i ,
i f  n > i .

P ro o f . We shall prove the assertion by induction on i. W e m ay assume
that i >  0  a n d  that our assertion is  true  fo r  i —  1. Take a n  integer n  with
i <  n < e, then because i i n - t  b y  (2.5) (2), w e ge t the exact
sequence

(a) 0 —> A /Ji_iln A / J i ln  -+0

of A -m odules. We consider the  canonical exact sequence

(b) 0 —> /n/J /n - 1 A l J i _1 1"- 1  —> A ll" 0

a s  w e ll. Then if  n  >  i, the inductive hypothesis o n  i  says depth A/Ji _1 /n - 1  >
d — n + 2  a n d  depth A lJi _i l" >_ d —  n + 1 , while depth A IP > d —  n + 1 by our
standard assumption of this sec tio n . Hence thanks to Depth Lemma, by (b) we
have depth, In/Ji _1 ln - 1  >  d — n + 2. So by (a) we find depth A/Ji ln  >  d — n  + 1.
I f  n  = i, the  inductive  hypothesis o n  i  says depth A/Ji _I P - 1  >  d —  i + 1 and
depth > d —  i + 1. Hence t h e  inequality depth A lJi l l > d —  i similarly
follows from exact sequences (a) and (b) above.

W e p u t  Go =  Gl(a l t, a2 t, ,  a i t)G  fo r 0  <  i <  e. Let [ G ] E Z ) stand
for the homogeneous component of degree n in the graded G-module G ° .  Notice
that [ G ] P/(Ji r - 1  +  In + l ). Let U ( i ) = En>i-Fi [G ( ] n.

Lemma (3.3). Take a n  integer i satisfy ing 0 <  i <  e. Then
(1) [ U ( I i + 1 ( 0 ) .
(2) depth, [ 0 ° ] + 1  >  d — i — 1.
(3) ai + , t  is U°-regular.

Pro o f . Suppose [ 0 ] 1+1 = (0 ). Then I i+ 1  =  JV  + l i + 2  a n d  / i+ 1  =  J 1 11. Thus
by definition J = Ji . This is absurd because i < t  = A(I). Since depth Al Ji l l >
d — i by (3.2) and since depth A l l ' >  d — i by our standard assumption, we get
depth, P + 1 /Ji l i >  d  —  i thanks to Depth Lemma applied to th e  sequence 0 —>

A lJi l i A l l '  - 4  0. Similarly, as depth A lJi l i + 1  d  — i by (3.2) and as
depth A ll" ' > d — i — 1 by our standard assumption (note that / '  =  H e  and
depth A ll ' >_  d — e b y  (3.2)), we get depth, P+ 2 1Ji I '  d  —  i b y v irtu e  of
the exact sequence 0 —> P + 2 1Ji l"  A M P  — ■  A I  P + 2  —> 0. Now le t g:
[U ( i ]

i + , b e  th e  canonical epimorphism a n d  p u t  K  =  Ker g. Then K  P  + 2 1
n P+21Jili + 1 ,  because j n P + 2  =  j  J 1  by (2.6). So we have the exact

sequence 0 --> P + 2 IJi P '  P + 1 0 .  Thus depth, [0 ] 1 + 1 >  d —
i — 1, because depth, P + 2 1Ji P ' >  d —  i a n d  depth, > d —  i a s  w e have
shown above. F o r  th e  a s se r t io n  (3 ) , le t  x E / 1'  w ith  n  > i + 1  and assume
(ai + i t)(xt") 0 mod JR  + (a l t, ..., a i t ) R .  We will show x t"E 1R  + ,  a i t)R.
Firstly, recall that Ji + , n rn+ 2 = J1+1P+ 1  (see (2.6)). Then as a i .f i  x 

e ( J J
f l  + 1"+2)n
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w e  g e t  ai ± i x e + a , 1 P + 1 . Choose y e P + 1  s o  t h a t  ai , i (x — y) e
Then a s  x — y e [Ji : ai + i ] n ii+1 (note n + 1), b y  (2.5)(1) w e have x — yeJ.
H e n c e  b y  (2.6) x — y E  r l  = S o  x e jJfll + /" ± I , a n d  xt" e JR +
(a,t, ai t ) R .  Thus a,..„,t i s  U( i ) -regular.

Let G, =G  and let 9)1 = mG + G., stand for the graded maximal ideal
in  G . L et Him (*) (j e Z) denote local cohomology functors. F o r  each graded
G-module M  w e put Soc M = (0) 931 and  c a ll it  the  socle o f  M .  We denote
depthG .  M 9 j1  sim ply by depthG M  when M  is finitely generated. Then M  is  a
Cohen-Macaulay G-module if and only if dimG M = depth G M (cf. [GW, (1.1.3)]).

Proposition (3.4). Take an in teg er  i  sa tisfy in g 0 i < t. Then
(1) U m is a Cohen-M acaulay G-module of dimension d —
(2) Soc I ll i i (U( i ) )  is  con cen tra ted  in d e g r e e  i.

P r o o f .  Firstly, by descending induction on i we will show that depthG  U (1) >
d —  i fo r  a l l  0 < i < e. A s  r < t ,  um= (0). S o  w e  h av e  nothing to  prove
for i = e. Let i < t  and  assum e tha t depthG  U "  >  d — i — 1. W e p u t LP' ) =
U( ')/a0 .1 t0 i ) . Then a s  [ U l u =  [LI( i ' ]  fo r  a ll n > i + 2, w e get the exact se-
quence of graded G-modules

(a) 0 —> L P ' ) — >  W (1 ) —> O,

where W ( i )  is concentrated in  degree i + 1 and  [ W ( i ) ],,, =  [0 1 1+ 1 . Recall that
161(W °) =  [1- (W ( i ) )]1+ 1  =  Hi,„([0 i ] i + 1 ) for all j e Z (see [GH, 2.2]), and we get
depthG  W ( i ) > d — i — 1 b y  (3.3)(2). Hence a s  depthG  U ( ' ' ) >  d — i — 1, b y  the
sequence (a) depthG  U (1) >  d —  i —  1. S o  w e  h av e  depthG U ( ') >  d —  i, because

= Um /a,,tU ( i) and  because a , , t  is Um-regular by (3.3)(3). Thus depthG  U (1) >
d — i for all 0 < i < e . We particularly have.dimG  0 ° )  = depth G  U ( ' ) = d. Here
n o tic e  t h a t  dimG 0 1 + 1 ) < dim G  U ( i ) ( s e e  th e  e x a c t  sequence (a)). T h e n  as
dimG  U ( ') = dim G  U“) — 1 i f  0 < i < e, w e  g e t  dimG  U ( i + 1 )  <  dim , U( i ) — 1, and
dimG 0 1) <  d — i fo r a ll 0 < i < e. H ence Um is  a Cohen-Macaulay G-module
of dimension d —

Secondly, we will prove Soc n i (U" ) ) = [Soc TAW i (Uw)], for all 0 < i < e, by
descending induction on i. A s Uv ) = (0), this is obviously true fo r i = e. Let
i < e and assume Soc n i - 1 (U( i + 1 ) )  is concentrated in  degree i + 1. We apply
local cohomology functors Him (* )  to  th e  sequence (a). T hen  a s  depthG  W ( i ) >
d — i — 1, w e get the exact sequence

(b) u c i+ 1 ) ) H ty-i ( u(i))n i - i ( w (i))

As 1-1V - 1 - (W ( `) ) = [1--/V - 1 (W ( I i + i  b y  [GH, 2.2] and as Soc 1-11i' ( U ( i + 1 ) ) is con -
cen tra ted  in degree i + 1, by the sequence (b) Soc 1-/V - 1 (t1( 0 ) is also concentrated
in  degree i + 1. W e now  look  a t  the  exact sequence 0 —* U( l ) ( -1 )  — >
U( i ) —> 0 a n d  apply  local cohomology functors H im ( * )  t o  i t .  T hen  a s  Um i s  a
Cohen-Macaulay G-module of dimension d — i, we get the short exact sequence
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(c) 0 ( U")) (UM )] ( — 1) ‘ r i t > Hd9i i ( U " ) ) — + 0 .

A nd as ai , , t G  9J7, applying the  functor Hom G  (G/9N, *) to the  sequence (c), we
get the isomorphism Soc HIV - 1 ( U )  [Soc I-IV (U " ) )] (— 1) of graded G-modules.
Thus Soc n i (U( ') ) is concentrated in degree i, because Soc 1-11A

- 1 - 1 (U (1 ) ) is concen-
trated in  degree i + I.

F or the  next result we only assume s > 0.

Corollary (3.5). (1) G  is a Cohen-Macaulay ring.
(2) Soc 1111(G) = [Soc 111) ,(G)]_ s .
(3) a(G)= — s.

P ro o f. First we consider the case s = 0. If t = 0, then I  = J = (0) as r <
whence G = A  and we have nothing to prove. Suppose  t  >  0 .  Note that 0°) =
G , and we have depth G  G , = d  by (3.4)(1). L et us identify G /G , = A / I. Then
as depthG  G+ = d  and  depth A/I = d  (recall that the  inequality depth A /P > d —
n + 1 holds fo r  all integers n w ith 1 <  n < e, w hich is o n e  o f  our standard
assumptions of this section), we get depth G  = d by the exact sequence

(a) 0 —■ G+A / I  —■ 0 .

Hence G  is  a C ohen-M acaulay ring. Apply local cohomology functors Him (*)
to (a) and look a t the  resulting short exact sequence

(b) 0 —> 111,1(G,)—> 111)1 (G) H d
a n (A/1)—> 0

of local cohomology m odu les . Now recall 111) ,(A /I)= [14,(A /1)] 0  H ( A / I )  (see
[GH, 2.2]). Then as Soc HL(G + ) is by (3.4)(2) concentrated in  degree 0, we see
b y  th e  sequence (b) that Soc 14 1(G) is concentrated i n  degree 0 too. Thus
Soc 1-11m (G) = [Soc l i t i (G)] 0  a n d  a(G )= 0. L e t u s  now consider the case s >  0
a n d  p u t  A  = A la,A  a n d  I  = IA . Then passing to th e  r in g  G (I), thanks to
(3.1) the  assertion (1 ) readily follows by induction  on  s ,  while th e  exac t se-

,quence 0 1)G(— G —> G(Ï) —* 0 guarantees the  isomorphism Soc H d
9j 1 (G(I))

[Soc l i t i (G)]( — 1) o n  so c le s . Hence the  induction on s  works also to get the
assertion (2). The assertion (3) now follows from the assertion (2).

We are  now ready to prove Theorem (1.1).

Proof o f  Theorem (1.1). (1 ) See (3 .5 )(1).
(2) Let KG s ta n d  fo r  th e  graded canonical m odule of G .  Then as KG  is,

by (3.5)(2), generated by elements of degree s, we see by [HSV, 2.3] that K G is
a  cyclic G -m odule (notice that [H SV , 2 .3 ] is true w henever G  is Cohen-
M acaulay). Thus G  is  a  Gorenstein ring.

L et us close this section with a  proof of Corollary (1.2).

Proof o f  Corollary (1.2). ( 1 )  This follows from [T I , 1.1], because G  is by
(1.1) a Cohen-M acaulay ring of a(G)= — s.
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(2) This follows from [I, 3.1], because G  is by (1.1) a  Gorenstein ring of
a(G) = — s.

4. Proof of Theorem (1.3)

In  th is  section w e assume th a t  A  is  a  Gorenstein ring and th a t I  i s  an
ideal in A, which contains a special reduction J, with ht, I = s and 2(1) = e. We
also assume that A ll is a Cohen-Macaulay ring and that ad (I) = t —  s > 1. W e
choose a  system of generators a i , a 2 ,  . . . ,  a (  for J  so  tha t the conditions stated
in  (2.4) are fulfilled. W e  put G = G (I), R  = R (I), and WI = mG + G .

The purpose of th is  section is to  prove Theorem  (1.3). Take an  integer i
with s + 1 i < e. Then we have ht, (/ +  [Ji _i  : I])>  i , because ./i _,A Q  =  / Q  by
(2.1) for a ll prime ideals Q e V (I) w ith  h t, Q  < i .  W e can therefore choose a
system of generators x s , , ,  x t ,  x , , , ,  x , for the ring A ll so that x i E :  I
for all in tegers i  w ith  s + 1 I. W e put a =  (a i t, a2 t, as t)G + Ocs+1 +
as + i t, x s + 2  + a 5 + 2 t, x e  + a1 0G + (x ( 1 , x ( + 2 , , x d ) G .  Then w e have

Lemma (4.1) ([AH, 5.6]). (1 )  9 3 1  =
(2) G  is  a Cohen-M acaulay  ring if  and only  if  th e  sequence a i t, a 2 t,

a t ,  x s + , + a s + i t, x s + 2  + a 5 + 2 t, + a ( t, x ( + ,, X ( + 2 ,  . . . ,  x ,  i s  G -
regular.

The next lemma enables us to reduce the problem to the case where s = 0.

Lemma (4.2). A ssume that s > 1 and that a i t is G -regular. L et )71- = A /a,A ,
I = IA , and  J = JA . T h e n

(1) A  is a Gorenstein ring, ht,,Trt = s — 1, and 2(1) = t —  1. Hence ad (I) =
ad (I).

(2) .7 is  a  special reduction o f  I  and r(Ï) = r,(I).
(3) A ssume f u rth e r th at  th e  inequalities depth (A//n)Q  m in  fad (I) — n —

1, hty , Q — htA  I —  n}  and  depth All n d  —  h t A I —  n hold f o r all prime
ideals Q E  V (I) and f or all integers n w ith 1 n ad (I) —  1 . Then one
has the inequalities depth (71//n)Q- min lad (I) — n — 1, MA- Q — ht„Ï  I — n}
and depth Al I" > dim  -,Z1 — htyï  I — n f or all prime ideals Q  e V (I) and for
all integers n w ith 1 < n < ad (I) — 1.

(4) G  is  a Gorenstein ring if  and only  if  G (Ï) is a Gorenstein ring.

P ro o f .  Let n = ri(Ï). Then as P + 1  g_ ci,A , w e get /n+1  = + a i A
I 1 , while a i A n i n + '  =  a x  because a i t  is G-regular. Hence 1n + 1  =  J r .  So we
have rj(I) = r,(1). Consult Proof of Lemma (3.1) for the other assertions.

For the rest of th is  section we assume th a t s = 0. H e n c e  ad (I) = e. We
put B = A/[(0): I]. But B  i s  a Cohen-Macaulay ring of dim B  = d  (see [PS,
1.3]). Let KA I' and K B  respectively denote the canonical modules of A /I  and
B .  Then as A is a Gorenstein ring and as dim /1/1 = dim B  = d, by [HK, 5.20] we
have isomorphisms KA!! ( 0 ) :  I  and K  (0): [(0) : I]. Note that I = (0): [(0): I]
because (0):AKA IJ = I  by  [FIK, 6.7] (recall that A /I is Cohen-Macaulay) and we
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get K B  I ,  while I B  I  as [(0) : I] (II = (0) by (2.4)(4). Thus we have the asser-
tion (1) in the next lemma. See [HK, 6.13] for the proof of assertions (2) and (3).

Lemma (4 .3). (1) K B  I B.
(2) ht B  IB  = 1.
(3) B /IB  is  a Gorenstein ring.

P u t  T  = G(I B ). L et q) : G -+ T  be  the  canonical epimorphism and  le t K  =
Ker cp. Then K „ [I "  n ( (0)  :  I)]/U n+1 n ( (0)  :  I)] (n e Z). H ence K „ =  (0) if n 1,
because [(0) : I] ni = (0). Then w e have K = K o g  m G  and K o  ( 0 ) :  I K A I I
whence depth G  K  = d. W e note

Lemma (4 .4 ) . ( 1 )  .1(I B) = t and ad (I B ) = t-  1.
(2) JB  is a  special reduction of  IB  and rj B (IB) = ri (I).
(3) A ssume that the  inequalities depth ( A / P ) ,  min {ad ( I )  -  n  -  1, ht, P -

n} a n d  depth A /In > d - n  hold f o r all  prim e ideals P E V (I) and for
all in tegers n  w ith  1  < n  < ad (I) - 1. T h e n  o n e  h as  th e  inequalities
depth (B//"B)Q  m i n  {ad (I B) - n, ht, Q  -  ht, I B  - n}  and depth B /PB  >
dim B  -  ht, IB  - n  + 1  f or all prime ideals Q E V(I B) and for all integers
n w ith 1 < n < ad (IB).

Pro o f . A s K = K o g InG , the  m ap Alin OA  (19: A/fit OA G  A/M T  is  an
isom orphism . Thus A U  =  e, and JB  is  a minimal reduction of I B .  W e have
ad (IB) = t  -  1 b e c a u se  h t, I B  = 1 b y  (4 .3 )(2 ) . T a k e  a  p r im e  ideal Q e V(IB)
with ht B  Q  =- h <t  a n d  choose P E V(/ + [(0): I ])  so  th a t Q = P/[(0): I]. Then
htA  P = ht B  Q  (= h < t ) .  H e n c e  b y  (2 .1 )  w e  have IA ! , = (a l , a 2 , a„)ilp, and
/B Q  =  (a l , a2 , , a„)BQ . Thus JB  is a  special reduction of I B .  Let n = rj B (IB).
Then as I n - "  g J J  +  [ (0): I ] ,  we have I n + 1  = JP  + In+1 n [(o) : n. Hence I n + 1  =
JI n  because [(0) : I] n I  = (0) by (2.4)(4). Thus rj ,(IB ) = rj (I). To see the asser-
tion (3), take a n  integer n  w ith  1  <  n  <  (  -  1 . W e  look a t  the exact sequence

(a) -> (0) : I 24/In B / I " B  -  ,

which follows from the  facts that B /PB  = Al(I n  [ ( 0 )  :  I ])  and [(0) : I] ni  = (0).
Notice that depth A/I" d  -  n  a n d  that depth A  (0) : I  = d  (recall (0) : I = K A / 1 ).
Then by the  sequence (a) we find that depth B / P B  d  -  n  = dim B  -  ht,, IB  -
n  +  1. Thanks to  D epth L em m a, the rest of the inequalities follow similarly as
above via exact the sequence (a) after localization.

Assume now  that G  is Cohen-M acaulay ring. Let KG stand for the graded
canonical m odu le  o f G  a n d  p u t  E = E x t  (T, K G ). T a k e  the  K G -dual of the
sequence

(4.5) 0 ->K ->G 2 >T-+ 0

and w e get the exact sequence

(4.6) 0 —  K  —■ K G —■ HOMG (K, K G ) -  E  0
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of graded G-m odules. Because Hom e  (K A I I , K G ) A / I  by [HK, 6.1] and because
K  = K 0  K A I ',  we get Hom G  (K , K G ) A /I in  which A /I is considered to be a
graded G-module concentrated in  degree O. Hence from (4.6) we have the exact
sequence

(4.7) 0-> K T ->K G ->A /1 ->E -0 .

If G  is furthermore a G orenstein ring w ith a = a(G), identifying K G  = G(a), we
get by (4.7) the exact sequence

(4.8) 0 K T  G ( a ) -  / 1 / /  E  0

of graded G-m odules. Here we note the following

Proposition (4.9). Suppose that G  is a  Gorenstein ring. Then
(1) a(G) = O.
(2) T  is  a Cohen-M acaulay  ring of  a(T )= -1 .
(3) K T  G + .

P ro o f . Assume that a = a(G) < 0. Then considering the homogeneous com-
ponents of degree 0 in  the exact sequence (4.8), we find A /I E .  So (0): / g I
because [(0): l]E  = (0). Hence (0): / = (0) by (2.4)(4), which is impossible because
ht, I = s = 0. N o w  suppose th a t  a > 1. Then considering th e  homogeneous
components of degree - a  in (4.8), we find [K T ]_ a G ,  =  A / I .  Hence (0): / g /
because [(0): I]T  = (0). This also cannot h a p p e n . Thus a = 0  a n d  w e get the
exact sequence of graded G-modules.

(4.10) 0 -■ K T  G  A / 1  E .

W e have depth G  T  > d -  1 by (4.5) because depth G = depth G  K  = d. Hence to
see Cohen-Macaulayness in  T , it suffices to show 1-1 1 (T )= (0), or equivalently,
E = (0) (cf. [H K , 5 .1 2 ]) . Assume the contrary a n d  choose a  p rim e  ideal Q e
Supp, E  so  tha t d im , E = dim A /Q . Then a s  E  is  a  factor m odule of A /I  by
a single element (look a t  the homogeneous components of degree 0 in the exact
sequence (4.10)), we have dim, E > dim A /I -  1  = d -  1. H ence ht, Q < 1. As
(I + [(0): = (0), we get I  + [(0): I ] g  Q .  Thus ht, Q  = 1 (recall that ht, (/ +
[(0): 1]) > 1) and  QB  is  a  prim e ideal in  B  containing I B .  N ow  if (= 1, then
we have rj (I) = 0  by  [G N al, (2 .11)]. So  I  =  a ,A .  And if e > 2, we have IQ  =
a 1 A,2  b y  (2 .1 ) . H en ce  /B Q  =  a 1 .B0  i n  any  c a se . A s  h t, IB  = 1 by (4.3)(2), we
find dim BQ  =  1  and  a ,  is B Q -regu lar. T hus TQ  ( B (2 /a 1 BQ ) [t ] is  a polynomial
ring  in  one  va riab le  t over BQ /a 1 B,2 . H ence TQ  i s  a Cohen-M acaulay ring
with dim TQ  = dim  GQ  =  1 . S o  w e  have EQ  = Extk, (TQ , K G ) = (0) by [I-IK, 6.1].
This contradicts the choice of Q .  Thus T  is a Cohen-Macaulay ring and E = (0).
Hence by (4.10) we get the exact sequence of graded G-modules

(4.11) 0 -0 K T  G  -> A /I -> 0 .

Now look a t the homogeneous components 0 -÷ [IC —÷ Go 1 ■ A/I -> 0  of degree
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0  in  th e  e x a c t sequence (4.11). Then a s  Go  =  A ll, th e  m a p  e  h a s  to  b e  an
isom orphism . S o  w e  have [I( T ] o  =  (0 ). T hus by  (4 .11) w e  ge t K T  G +  a n d

1/12  0  (0). Hence a(T) = — 1.

I f  G  i s  a  G orenste in  ring , T  is by (4.9)(2) a  Cohen-Macaulay ring . A s
h t, IB  = 1  by (4.3)(2), we get a(T ) = max {r,B (IB) — 1 }  b y  [AH, 5.10]
a n d  [T , 2 .5 ] . Hence rj B (IB ) < 41B ) because a(T ) = — 1 by (4.9)(2). Hence by
(4.4) we get the  following

Corollary (4.12). Suppose th a t  G  i s  a Gorenstein ring. T h e n  ri (1) t  —  1 .

W e close th is section by proving Theorem (1.3).

P r o o f  o f  T h eo r em  (1.3). ( 1 )  If  s > 0 , by (4.1)(2) a i t  is G-regular. Hence
by (4.2) the  inequality r( I )  ad (I) — 1 readily follows from (4.12) by induction
on  s.

(2) By (2.10) the  sequence a i t, a 2 t, a s t  is G-regular. Hence passing to
the  ring  G(I/(a i , a2 , c t s )A) G / ( a i t ,  a 2 t, a s t)G , cf. [V V , 1 .1] and thanks
to (4.2), we may assume without loss of generality that s = 0. L et us maintain
the same notation as we have settled in  this sec tio n . Firstly, note that by (4.4)
th e  hypotheses in  Theorem (1.1) a re  all fulfilled fo r  th e  ideal I B  in  the  ring
B .  Hence by (3.5) T  is a Cohen-Macaulay ring and the graded canonical module
K T  o f  T  is generated by elem ents o f  degree  — I (recall tha t h t B /B  =  1  by
(4.3)(2)). T here fo re  by  [H S V , 2 .4 ] w e  ge t KT = gr„  (K B )( — 1) where gr„ (K B )
denotes th e  graded m odule associated to the filtra tion 

{ P K B } n > 0
 o f  K B .  As

K B  = IB  by (4.3)(1), we also get gr i ,  (K B )(— 1) = gr113(113)(— 
1 ) =  

T .  T h u s  K T  =
T . W e conside r the exact sequence (4.5). Recall that K  = K o . Then G, = T „,
whence KT = G .  F u r th e r ,  b y  the sequence (4.5) G  is  a Cohen-Macaulay ring,
because both K  = K A I J  a n d  T  are Cohen-Macaulay G-modules of dimension
d. N ow  take the K G -dual of the canonical exact sequence 0 —> G ,  G  A/1
0. Then because Hom G (G+ , K G ) = Hom G  (K T , K G ) = T  ([H K , 6.1]) and  because
Hom G (A/I, K G ) = KAII (here A ll is considered to be a  graded G-module concen-
trated in  degree 0), we get the exact sequence 0 —> KAII - +  KG - ÷  T  0. T h u s  KG
is generated by elements of deg ree  0 . O n the other hand, in the exact sequence
(4.7) we get E = (0) because T  is a Cohen-M acaulay ring. So we have the exact
sequence 0 - *KT - >KG - > A/I —> 0 of graded G -m odules. Hence because a(T) =
—1, we get [K G ] o =  A l l .  Thus KG is cyclic a n d  G  is  a Gorenstein ring.

5. The case where ad (/) 3

The purpose of this section is to prove Theorems (1.5), (1.6), and  (1 .7). We
assume th a t  I  is  a n  ideal in  a  C ohen-M acaulay ring A  o f  dim A = d , which
contains a  special reduction J,  with s = htA  I  an d  t =  2(1). W e also assume that
A ll is  a Cohen-M acaulay ring, ad (I) < 3 , and r( I )  <  2. W e choose a  system
of generators a i , a 2 , a t  for J  so that the conditions stated in (2.4) are fulfilled.
We pu t G = G(I) , R  = R (I), and 9)I = mG +  G .  H e re  w e  note that if ad (I) = 2
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(resp. ad (I) = 3), one naturally has the inequality depth (Al I n ).2 >  min lad (I) — n,
ht, Q — s — n1 for a ll prime ideals Q E V(/) and for all integers n  w ith 1 < n <
ad (/) (resp. depth (A/P) (2 > min lad (1) — n — 1, ht A  Q — s — n} for all prime ideals
Q c V (I) and  fo r all integers n  w ith  1 n  ad (I) — 1). Hence a s  rj (1) < 2  by
o u r  standard assumption o f  th is  section, the results obtained in  section 2  are
applicable . In  particu lar, the  sequence a l t.,  a2 t, a s t  is G -regular by (2.7)
(resp. (2.10)), if  ad (I) = 2 (resp. if ad (I) = 3  a n d  A  is  a  Gorenstein ring); thus
passing to the ring G(I l(a,, a2 , a,)A )  = G l(a i t, a2 t, a , t ) G  and thanks to (3.1)
(resp. (4.2)), in  order to prove Theorem (1.5) (resp. Theorems (1.6) and (1.7)) we
m ay assume without loss of generality that s = 0.

For the rest of this section we assume s = 0 and ad (I) =  e .  We begin with
the following lemma, in  which the first assertion is fairly well-known bu t le t us
no te  a  proof for completeness.

Lemma (5.1). (1) depth Al In d  — e for all n 1  if G is a Cohen-Macaulay
ring.

(2) Let d > 3, s = 0, and e = 2. Suppose depth A/I 2  1 .  Then depth A ll" >
1 for all n > 1.

Pro o f . (1) We have grade, m G  = inf,, depth A ll" ([B]), while grade, mG =
ht, mG = d — e a s  G is  a Cohen-M acaulay ring. Hence depth A II" > d — e for
a ll n > 1.

(2) W e m ay assume n > 3. Hence I" = jn -2 1 2  as n >  r( 1 ) .  By induction
on m we will show depth A/1m12 >  1 for a ll m  >  0 . As depth A//2  >  1, we may
assume m > 1 and depth AI f " - 1 12  > 1 . First, notice that I  = 4 11 and /2

because o f  th e  isomorphisms 4 1  = 4 - 1 I  a n d  41 2  = 4 - 1 12  ( k  > 1 ) given by
(2.5)(2). We consider the  following six exact sequences

(a) 0 —> I A  —> AII 0,

(b) 0 (recall I),

(c) 0 —> /2  —> A —> 0,

(d) 0_+ 12 —* A -4 A lar1 2  — 4  0 (recall ar1 2  = 1 2 ),

(e) 0 — > .1"1- 1 12 1arl— Alf"-112 —> 0 , and

(f) 0 — > .1"1- 1 12 1arl —> Ala',"12A l f " 112  —> 0,

where th e  la s t  o n e  follow s from  th e  isomorphism .1'1 2 14 1 2  f " - 1 12 14"1 in
(2.5)(2). Then as depth A ll = depth A = d, by the sequence (a) we get depth, I  =
d so that by (b) the inequality depth Afar I d — 1 > 2. Hence as depth A/Jm- 1 /2  >
1 by our hypothesis on  m, we get by the sequence (e) that depth, fm - 1 12 1arl 2
too. Similarly, by sequences (c) and (d) we find depth Alar 1 2  > 1. Thus by the
sequence (f) we conclude depth A/,/m12 >  1 , because depth, Jrn- 1 12 14"I > 2  and
depth Alar 1 2  > 1 as w e have shown above.
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For a m om ent assum e that depth A ll' > 1  for a ll n >  1. T hen  by  B urch 's
inequality ([13]) s 5_t • d—  inf„ ) ., depth A ll'', we get t  <  d. Let A = {42 e V(/)1
htA  Q = i and Q e SuppA  11.1„,}  for each 1 i t .  Then A  Min .  11(.1i _i  + 1 2 )
(see (2.1)). H e n c e  F  =  U  A  is  a  finite set and m 0 „9;" as t  <  d .  A s m  .t

1  _i. /'

U ASSA A ll" a n d  a s  th e  se t U  A ss A  A ll"  is also finite ([Br]), we m ay choose
n>1 n>1

an element x of m so that x ,t Q  for any Q E (  U A ssA  A ll"  U.97 . Let A  = A lxA ,
n>1

I =  IA , a n d  .1  = JA . Then a s  x  is A-regular, ;4- i s  a Cohen-M acaulay ring of
dim A = d — 1. W e  fu r th e rm o re  h a v e  th e  follow ing, w hich w e later need to
reduce the  problem  also to the case where d = t.

Lemma (5.2). (1) d e p th  A ll' = depth A ll" — 1 f o r all In particular
A ll is  a Cohen-M acaulay  ring.

(2) ht,i / =  0 and ,1.(1-) = /.
(3) J  is  a  special reduction o f  I w ith  r1(1). 2.
(4) G  is  a  Cohen-Macaulay (resp. Gorenstein) ring  if  and  only  i f  G(I) is  a

Cohen-Macaulay (resp. Gorenstein) ring.

Pro o f . The assertion (1) follows from the fact that x is A /P-regular for all
n  >  1. S ince dim  ATI =  d — 1 = dim ,71, w e have ht,i I  = 0. A s  x  is G-regular,
w e  ge t by  [V V , 1 .1 ] a n  isomorphism GlxG o f  A -algebras. H ence the
assertion (4) and the equality 4 1 ) = t fo llow . A s the ideal f  is  a  reduction of

with kt,T(:-/) <  t ,  J  i s  a  m in im al reduction of Ï  w i t h  rj(I):5_ 2. L e t 0  e  V(/)
with ht,,T <  t ,  and choose a prim e ideal Q e V(/ + xA ) so that QlxA  = 0 .  Let
i = htA  Q .  Then 1 < i 5 _ t  as h t A  Q =  h tA  +  1 .  A s  x eQ ,

 Q
 S u p p A  11Ji _1 s o

that we have IQ  =  J i _,A Q  whence T h u s  .7 is a special reduction of Ï.

N ow  le t u s  n o te  a  proof of Theorem (1.5).

Proo f  o f  Theorem  (1.5). T h e  la s t  assertion follow s from  [T I , 1.1], since
a(G)= — s by  [A H , 5 .10] and  [T , 2 .5]. To see the equivalence of assertions (1)
and (2) w e m ay assum e  s  =  0 . Hence t =  2.

(1) (2) This follows from (5.1)(1).
(2) (1) I f  d 3 ,  then by (5 .1)(2) w e get depth  A/In > 1  f o r  a ll n 1.

Hence by (5.2) we may furthermore assume d = 2. F irst o f  a ll, we choose an
element x E (0) : I  so that x is A //-regular (this choice is possible, since ht A  (I +
[(0):I]) 1 b y  (2 .1 )  a n d  since A ll  i s  a  C ohen-M acaulay ring of dim A  = 2).
Hence depth A l(xA  + I)= 1. W e now  reca ll dep th  Ala i I 1 (see Proof of (5.1)
(2)). A n d  we choose an element y e m so that y  is regular on both of A l(xA  + I)
and Ala i '.  In  what follows, we will show tha t the  sequence x + a i t, y + a 2 t  is
G -regular. Let f  = c + oc i t + • • • + an t" E R  with a, e / i and assum e (x + a i t)f  e
I R .  Then as x  E (0) : I ,  we get (x + a i t)f  = xcco + 0 mod I R .  As
xa o E  I ,  w e have ao e /  since x is regular o n  A l l .  F o r  i > 2 , w e have a i ai _,
a ,A =  a i l ' by (2.6). W e write a = a 1 w i t h  e  P .  Then as a 1 (a1_ 1 —
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= 0 , w e get a t_i  —  e [(0 ): a l ] fl I = (0) (see (2.4)(4)). Hence a 1_, e I i fo r  all
i > 2  and so  w e have f  e  I R .  Thus x + a i t  is G-regular.

Let us check y + a2 t  is regular on G/(x + a i t)G. Let L = (x + ai t)R  + IR.
Let g = 130  + 13,t + • • + 13„t" e R  with n > 2 and /31 e 1 and assume (y + a 2 t)g e L.
Choose f  = a 0 + a i t + • • + a„,tm  R  with a, e / ' and m > n so  that (y + a2 t)g
(x + a i t)f  mod I R .  T h e n  as (x  +  a l t)f  = xa o  + Ei „, a,cx ; _ i ti, w e  g e t  0 0  +

<i (a2A-1 +  YAW + a 2 itt n + 1  X a o  Ei >1 a ti mod I R .  Hence as a 2 fin =
a , ;  mod In+ 2 , we have a 2 /3„ — a1 ;  e ( a ,  a2 )n p + 2  =  (a1 , a2 ) I " ' by (2.6). Choose

e so  th a t a2 (13n  — ) e a i A .  Then as /3,, — [a,f1 : a 2 ] n p and as [ct i A :
a] fl / 2 g  a A  b y  (2.5)(1), w e  have b y  (2.6) that fin —  e  a i l'' ' .  W rite fi,,
ci,q mod /n± 1  w i th  ri e /" - 1 . T hen a s  [3„t" ( a 1 t)(qt" - 1 ) = (x + a 1 t)qt" - 1  mod  JR
(recall x E (0) : I), we get 13„t" e  L and (y + a 2 t)(g — 13t')e L .  Thus repeating this
procedure we find 13i t i E L for all 2 i n  and (y + a2 t)(130  + fl i t) e L. We then
have

(a) y13, xa o  mod I ,

(b) .Y131 + a2/3 0 — &loc o  mod J 2 ,a n d

(c)a 2  f3 a 1 a, mod J 3 .

A s  x , y  form s an A//-regular sequence, by (a ) w e m ay  w rite  f l o  x u  mod I
and a o  y u  m od I for som e u e A . Then a s  yfl, + a 2 x u  a i yu mod /2  b y  (b)
and as x/ = (0), w e find  yfl, — a,yu e 1 2 . On the otherhand b y  (c) and (2.6)
we have a 2 fi1 — e (a 1 , a2 ) n 13 = (a l , a2 )I 2 whence a2 ([31 — p) e a l A  for some
p e 1 2 .  T h u s  a 2 (y(fl 1 — p) — ya i u) e a l A .  Therefore  w e find y(fl i  — p — a i u)=
(y,e, — a l yu) — yp E [a,A  : a 2 ] n / 2  =  a i l  by (2.5)(1). A s y is  a  regular on
by its choice, w e get fl, — p — a i u e a1 I. Hence we have f l i  _= a i u mod /2 . As
)60 x u  mod I ,  w e get flo  + /31 t (x + a l t)u mod JR  so  th a t flo  + fli t e L . T h u s
the sequence x + a l t ,  y  + a 2 t  is G-regular whence depth G = 2  s o  th a t  G  is  a
Cohen-Macaulay ring. This completes the proof of (1.5).

To prove Theorem  (1.7) we need the following

Lemma (5.3). L et A  b e  a  homomorphic im a g e  o f  a  Gorenstein r in g .  L e t
d = 2, s = 0 , and  e' = 2. Assume r(J)  1 .  T hen  depthA  [K G]  > 1.

P r o o f .  L et B = : I ]  an d  T  = G(IB ). Then dim  T  = dim B = 2. The
ring G  is Cohen-M acaulay by virtue of (1.5). The element a ,  is  B-regular by
(2.4)(4) whence depth B > O. W e  b e g in  w ith  the following.

CLAIM 1. a l t  i s  T-regular.

P ro o f o f C la im  1 .  Let a e I" with n > 0 and assume (a i t)(at") - -  0 mod [(0):
I]  + I R .  T h e n  a s  a 1 a e a,A  n /n+2  =  a i l " '  b y  (2.6), le ttin g  a i a = a 1 w i t h

e  / " ', w e ge t a —  e (0) : a ,  = (0) : I  b y  (2.4)(4). Hence a G in + 1 [ ( 0 ) :  i ]  so
that w e have at" c [(CI): 1] + IR.
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Let C = B la,B  and S = G (IC ). Then dim C = 1 a s  a ,  i s  B-regular. We
get S  = T la i tT  by C laim  1. Let X  = (0) :s  a 2 t  and Y = Sla 2 tS. Then we have

CLAIM 2. X n = (0) a n d  Y „ = (0) f o r  all n  > 2.

Proof  o f  Claim  2. Let n > 2 be an integer. Then (/C) 2 =  a2 IC  as r( I )
1 whence S„ g a 2 t S  s o  th a t  Y„ = (0). L et a e I "  and assum e (a,t)(atn) 0
mod [(0): /] + JR  + a i t R .  T hen  a2 cx e P+ 2  +  a ,A .  A s  /n+ 2  =  (a,, a 2 )P +1 , we
have a2 cx e a l A  + a 2 1' .  Write a2 (cx - e  a i A  w it h  e P + 1 • T h e n  as a -  e
[a,A : a 2 ] (1P  = a i r '  b y  (2.5)(1) an d  (2.6), w e  g e t  a E /"+ 1 +  a 1 r - 1 . Thus
atn e [(0) : I] + JR  + a l t R .  Hence X , = (0).

CLAIM 3. a(S) < 0.

Proof  o f  Claim  3. Split the sequence 0 -> X  (- 1) S ( - 1 ) ` 2 > S Y  - >  0 into
the following two exact sequences 0  X (- 1) -0 S(- 1) -> a 2 tS 0  and O-+
a2 tS S  Y of graded S-modules and apply functors -1911,0  to them. Then
we get exact sequences [I-4 1(X)] ( -1) ---■ [I-4 (S )] ( - 1) 14 ( a 2 tS ) and 14(Y) ->
1-4 ( a 2 tS)-> .HL(S) of local cohomology modules. Let a = a(S ) and look a t the
homogeneous components of degree a + 1. Then we get the diagram

[I-4( Y)].+1

1P

[1-1L(s)]. 1 > [HL(a2ts)].+1

I t

[1-IL(Sn a +1

with exact row and c o lu m n . W e  have [14 ( S ) ].  0 (0) and [ 1 4(S)].+1 = ( 0 ) (recall
dim S = dim C = 1 ). Hence the map p  is  an epimorphism. Therefore, if a 0 0,
w e have (0) 0 [11 (

9
)
j? (Y11- , , a + 1  -  - 0 + 1  whence a 0  b y C la im  2. Assume a = 0.

Then as [1-4 1(S)],, 0 (0), we get [111,1(X )] a  0  (0) whence HM)C„) 0 (0) as [1-4,(X )]. =
H ( X a ) by [GH, 2.2]. Hence a 1 by Claim 2. Assume now a = 1  and choose
a prime ideal Q e SuppA  X i . T h e n  as X , g  Si and I S  = (0), we have I  g  Q .  If
ht, Q  1  ( <  = 2), then we get / Q  =  a,A Q  b y  (2.1) whence /C Q  = (0) so that
we have 5 1 ,2  = (0). This is  impossible as X  iQ  0  (0). Hence we have Q = in  as
dim A = 2. Thus dimA  X 1 0  and li rr

i ,(X i ) = (0). This contradicts the fact that
11(X  a ) 0  (0). Thus a 0.

CLAIM 4. a(T) < 0.

Proof  o f  Claim 4. By Claim 1 we have a i t  to be T-regular. Apply functors
Him (*) to the sequence 0 T (-1 ) a-1 T -> S 0. Then we get the exact sequence
1 (S) [ H ( T ) ]  ( -  1) ̀ L; H 1(T )  of local cohomology modules. Let a = a(T )
and look at the homogeneous components [1-/L(S)] a + , --> [I-IL(T)]„ [H L ( T ) ] a ± i

of degree a + 1. Then a s  [HL (T )]„.„ = (0 ) and as  [H ( T ) ]„  0 (0), we get
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[1-11,1(S)]„+ ,  0  (0). H ence a + 1 a(S ) s o  th a t  w e  have  a < O a s  a(S) 0  by
Claim 3.

N o w  let ço: G  T  b e  th e  canonical epimorphism a n d  K  = Ker ço. Then
K „  (I" fl [(0): f l  [ ( 0 )  :  I])  whence K „ = (0) if n 1  and K o  ( 0 ) :  I  (recall
[(0): I] n I = (0) by (2.4)(4)). We consider the exact sequence 0 —> K —> G —> T —> 0
and  take  th e  K G -dual of it. T hen  w e get the exact sequence 0 —> KT —> KG
HOMG (K, K G )  of graded G-m odules. A s [K A ° = (0) by Claim  4, we have the
embedding [K G ] o  g  H om G (K, K G )] 0 . N ow  recall that depth , K  = depth, [(0):
I] = 2 (use the exact sequence 0 —> (0): I —> A —> B —> 0 and the fact that depth B >
0  a s  w e ll) . C hoose a n  element x e l l l  s o  th a t  x  is  K - re g u la r  a n d  le t  K =
K /x K . T hen  a s  k  i s  a Cohen-M acaulay G-module of dim G  K  = 1 , w e  have
Hom G  (K, K G ) = (0) by [HK, 6.1] so that x is a nonzerodivisor on Hom G (K, K G ).
H ence x is a nonzerodivisor on [K G ] o  to o . T h u s  w e  g e t d e p th , [K G ] o  1  as
c la im ed. This complete the  proof of (5.3).

W e are  now closing this section by proving theorems (1.6) and (1.7).

Proof  o f  Theorem (1.6). ( 1 ) (2) See (5.1)(1).
(2) ( 1 )  W e may assume s = O. Let B  = A /[(0): I]. Then B  is  a  Cohen-

Macaulay ring  o f dim B  = d ([PS, 1.3]), w hile w e have by (4.3) and (4.4) that
h t, ./B  =  1 , 2(IB ) = 3 , B /IB  is  Cohen-Macaulay, and JB  is  a  special reduction
of IB  with r„(IB ) = r,(1) 2. H e n c e  the hypotheses in Theorem (1.5) are satisfied
for the  ideal IB  in  B .  Recall the exact sequences

(a) 0 —0 12  —0 A —> A// 2 —> 0 and

(b) —> /2 B — > B/1 2 B —> ,

in  which th e  la tte r  o n e  follows from th e  equality that [(0): I] n (0). T h e n  as
depth A // 2  >  d — 3 , b y  th e  sequence (a) w e have depth, / 2 >  d — 2  whence by
(b) we get depth B/1 2 B  d — 3. Thus by (1.5) T  = G(IB ) is  a Cohen-Macaulay
ring of dim T  = d. N ow  le t cp: G T  be  the canonical eqimorphism and look
a t the exact sequence 0 —01( —> G 2 > T —> 0 with K  = Ker cp. Then as depth G  K  =
d (recall K =- K o  = K411, cf. the remark just after (4.3)), we get depth G  = d . Thus
G  is  a Cohen-Macaulay ring.

Proof  o f  Theorem (1.7). ( 2 )  ( 1 )  This follows from (1.3)(2).
(1) ( 2 )  W e m ay a s s u m e  s  =  0  a n d  (=  3 . I f  d 4 , then by (5.1)(1) we

get depth A /I" > 1 for all n 1 .  Hence passing to the ring G(i), we may assume
by (5.2) that d  =  =  3. W e must show depth A// 2 >  1 .  F o r  this it is enough
to  see  depth , 0 2 1 .  Let B  = A /[(0): I], C = B /a,B , T  = G(IB ), and S = G(IC).
Then B  is  a Cohen-M acaulay ring of dim B  = 3 ([P S]). B y (4 .4) the ideal JB
is  a  special reduction o f  IB  w ith r„(IB ) 1  a n d  2(IB ) = 3. By (4.3) we have
ht, /B  =  1  a n d  B /IB  i s  a  C ohen-M acaulay ring of dim B /IB  = 2. A nd, C  is
a C ohen-M acaulay ring of dim C =  2  a s  a ,  is B -regular (cf. (2.4)(4)), whence
ht c  IC  = 0  (note dim C //C  = dim B / I B  2), so  tha t the  proof of (3.1) works to



Cohen-Macaulayness 249

get, passing to the above data on B , th a t 2(IC) = 2  and / C  contains JC  as a
special reduction with rj c (/C) <  1 . H e n c e  the hypotheses in  Lemma (5.3) are
satisfied for the ideal IC  in  C . Let us now notice by (4.9) T  is a Cohen-Macaulay
ring of a(T )= — 1 and  by (2.7) a , t  is  T -regu lar. H ence  K s  [ K i la i tK ,](1)
([GW, (2.2.10)] as S r a t tT  ([V V , 1.1]). We have [K ,], [K T ] ,  as [K T ] ,  =
(0) (recall a(T)= — 1), while G, [K T ] ,  by the sequence (4.11) and depth, [K s ] ,
1 by (5.3). Hence we get depth, I// 2  > 1, which completes the proof of Theorem
(1.7).
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