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Cohen-Macaulayness in graded rings associated to ideals
By

Shiro Goto, Yukio NAKAMURA and Koji NISHIDA

1. [Introduction

Let A be a Noetherian local ring with maximal ideal m. Let d = dim A4

and assume the field A/m is infinite. For a given ideal I in A (I # A) we define
R()= ) It"< A[1] and G(I) = R(I)/IR(I)
n>0

(here t is an indeterminate over A) and respectively call R(I) and G(I) the Rees
algebra and the associated graded ring of I. The purpose of this paper is to
find any practical conditions under which the graded algebras R(I) and G(I) are
Cohen-Macaulay and/or Gorenstein rings. And, because Cohen-Macaulayness
and Gorensteinness in R(I) are now known to be fairly determined by the corre-
sponding ring-theoretic properties of G(I) (see, for examples, [GS], [I], [TI],
[GNi], [V], and [L]), in this paper we devote our attention to the problem
how to check Cohen-Macaulayness or Gorensteinness in the graded rings G(I).
We shall develop our study along the notion, due to [HH1], analytic deviation
ad (I) of I. Actually, for the ideals I having ad (I) <2 Huckaba and Huneke
[HHI1] and [HH2] have already studied Cohen-Macaulayness in graded rings
R(I) and G(I) and the readers may consult [GNal] and [GNa2] about Goren-
steinness in them. This paper succeeds the researches [HH1], [HH2], [GNal],
and [GNa2]. Here we shall generalize their results for ideals of ad (I) > 3.

To state the results precisely, we set up the following notation. Let I (# A)
be an ideal in 4 of ht, I =s and put A([) = dim A/m ®, G(I), that we call the
analytic spread of I. We generally have

s < A(I) <d — inf depth A/I"
nx1

([B]). So the difference ad (I) = A(I) — s is called the analytic deviation. Let
J be another ideal in 4. We say that J is a reduction of J if J<= I and
I"*' = JI" for all n>» 0. A reduction is called minimal if it is minimal among
reductions. As is well-known, a reduction J of I is minimal if and if J is
generated by A(I) elements ([NR]). For each reduction J of I let r ()=
min {n > 0[I"*' = JI"} and call it the reduction number of I with respect to
J. We put r(I) = min r,(I) where J runs over minimal reductions.
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Assume that 4 is a Cohen-Macaulay ring and that our ideal I is generi-
cally a complete intersection in A, that is for any Q € Min, A/I the ideal I, is
generated by an A,-regular sequence of length s. In this situation, if ad (I) =0,
I is a complete intersection in 4 ([CN]) and we certainly have R(I) and G(I)
are Cohen-Macaulay rings. The study of the case ad (I) > 0 was started from
Huckaba and Huneke [HH1], in which they showed that when ad (I)=1 and
r(I) <1 the graded ring G(I) is Cohen-Macaulay if and only if depth A/I >
d —s— 1. Assuming that 4 is a Gorenstein ring, 4/l is Cohen-Macaulay, and
that I, is a complete intersection in A, for all prime ideals Qe V(I) with
ht,,; Q/I <1, Huckaba and Huneke [HH2] proved also that R(I) and G(I) are
Cohen-Macaulay rings if ad (/) = 2 and r(I) < 1. Here we are going to generalize
these results for ideals I of ad (I) > 3. But, of course, to get these generalizations,
we need more assumptions on I than Huckaba and Huneke did in the case
ad (I) < 2. In this paper we put on I two conditions appropriate to our study;
firstly, inspired by the assumptions in [HH1] and [HH2], we assume as is in
[AH] that our ideal I contains a special reduction (see (2.1) below for the
definition of special reduction). As was proved in [U], this assumption is equiva-
lent to saying that the ideal I satisfies condition G, in the sense of Artin and
Nagata [AN], that is the ideal I, is generated by at most h elements for all
prime ideals Qe V(I) with ht, Q =h < A(I). We note here that even in the
case ad (I) = 2 this assumption is somewhat weaker than that in [HH2], where
Huckaba and Huneke assumed I, is a complete intersection in A4, for all
prime ideals Q € V(I) with ht,,; Q/ <1. Secondly, we assume some estimation
on depth (4/I"),, the depth of local rings (4/I"),, for prime ideals Q € V(I) and
integers n with 1 <n <ad(l). This condition was first studied in [N], where
the third author Nishida established criteria for the equality of symbolic powers
I™ and ordinary powers I" of I for all n>1. We need some results in [N]
which play a key role also in the present research.

Now let us state the main results of this paper.

Theorem (1.1). Let A be a Cohen-Macaulay ring of dimA=d. Let I
be an ideal in A of ht I =s. Assume that I contains a special reduction J
with ry(I) < ad (I) and that I satisfies the following inequalities; depth (4/1")y >
min {ad (I) — n,ht, Q — s — n} and depth A/I">d — s —n+ 1 for all prime ideals
Qe V(I) and for all integers n with 1 <n <ad(l). Then

(1) G() is a Cohen-Macaulay ring of a(G(I)) = —s.

(2) G() is a Gorenstein ring if A is a Gorenstein ring.

Here a(G(I)) denotes the a-invariant of G(I) ([GW, (3.1.4)]). The equality
a(G(I)) = —s in Theorem (1.1) (1) follows also from [AH, 5.10] and [T, 2.5],
once we know the ring G(I) is Cohen-Macaulay. And, as an immediate conse-
quence of Theorem (1.1), by [TL, (1.1)] and [I, (3.1)] we get the following result
on Cohen-Macaulayness and Gorensteinness in R([).

Corollary (1.2). Let A and I be as in Theorem (1.1). Then
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(1) R(I) is a Cohen-Macaulay ring if s> 0.
(2) Suppose s > 2. Then R(I) is a Gorenstein ring if and only if A is a
Gorenstein ring and s = 2.

When A4 is a Gorenstein ring, in assuming the ring A/l is Cohen-Macaulay,
we can weaken the assumption on the estimations of depth (4/I"), and get
the following criterion of the ring G(I) being Gorenstein in terms of reduction
numbers.

Theorem (1.3). Let A be a Gorenstein ring of dim A =d. Let I be an ideal
in A with ht, I = s and ad (I) > 0. Suppose that A/l is a Cohen-Macaulay ring and
that I contains a special reduction J. Then

(1) r,()y<ad({)—1if G() is a Gorenstein ring.

(2) Assume that the inequalities depth (A/I"), > min {ad (/) — 1 —n,ht, Q —

s — n} and depth A/I" >d — s — n hold for all prime ideals Q € V(I) and
for all integers n with 1 <n<ad(I)— 1. Then G(I) is a Gorenstein
ring if and only if r,(I) <ad(l)— I

And similarly as is in (1.2) we get

Corollary (1.4). Let A and I be as in (1.3) and assume that I satisfies the
inequalities stated in (1.3) (2). Then R(I) is a Gorenstein ring if s =2 and r,(I) <
ad (I) — 1.

For a Gorenstein ring A and its ideal I which has a special reduction J,
we assume that A/I is Cohen-Macaulay and that depth (4/I"), > min {ad (I) — n,
ht, Q — s — n} for all prime ideals Q € V(I) and for all integers n with 1 <n <
ad (I). Then once we know the inequality r,(I) < ad (I) — 1, to see whether G(I)
is a Gorenstein ring or not it suffices by Theorem (1.3) to check if the inequalities
depth A4/I" >d — s —n hold for 1 <n <ad(l)— 1. However, if we do have the
inequality r;(I) < ad (I) only, without knowing whether r,(I}) < ad(I) — 1 or not,
then we are not able to directly apply Theorem (1.3). And to apply Theorem
(1.1), we need the stronger estimation depth A/I">d—s—n+1 for 1 <n<
ad (I). Of course once we get it, then G(I) is a Gorenstein ring and Theorem
(1.3) (1) yields the sharper estimation r;(I) <ad () — 1 on reduction numbers.
For this reason it seems to us that among the standard hypotheses in Theorem
(1.1) the assumption depth A/I">d —s —n+ 1 is somewhat superfluous. And,
as we will show in Theorems (1.5) and (1.6) below for the special case ad (I) < 3,
Theorem (1.1) (1) might be true if hold the inequalities depth A/[">d —s —n
for 1 <n < ad(l) instead of those depth A/I">d —s — n + 1, provided that A/I
is a Cohen-Macaulay ring.

Theorem (1.5). Let I be an ideal with ht, I = s and ad (I) =2 in a Cohen-
Macaulay ring A of dim A =d. Assume that A/l is Cohen-Macaulay and that
I contains a special reduction J with r;(I) <2. Then the following conditions are
equivalent.
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(1) G{) is a Cohen-Macaulay ring.
(2) depth A/I* >d — s — 2.
Hence R(I) is a Cohen-Macaulay ring if s >0 and depth A4/I> >d — s — 2.

Theorem (1.6). Let I be an ideal with ht, I = s and ad (I) = 3 in a Gorenstein
ring A of dim A =d. Assume that A/l is Cohen-Macaulay and that I contains
a special reduction J with r)(I) < 2. Then the following conditions are equivalent.

(1) G() is a Cohen-Macaulay ring.

(2) depth A/I* >d —s — 3.

Here we note that Theorem (1.5) is already shown by [GNa3] on the
additional assumptions that A is a Gorenstein ring and that the ideal I, is
generated by an A,-regular sequence for all prime ideals Q € V(I) with ht,, Q/I <
1.

As for Gorensteinness in G(I) when ad (I) =3 and r;(I) <1 we are able to
add the following criterion.

Theorem (1.7). Let I be an ideal with ht, I = s and ad (I) = 3 in a Gorenstein
ring A of dim A =d. Assume that A/l is Cohen-Macaulay and that I contains
a special reduction J with r;(I) < 1. Then the following conditions are equivalent.

(1) G(I) is a Gorenstein ring.

(2) depth A/I*?>d —s — 2.

Suppose A4 is Gorenstein, A/I is Cohen-Macaulay, and I has a special reduc-
tion J. Then we have by (1.3) and (1.6) that r,(I) < 2 and depth 4/I> >d — s — 3,
if ad(I)=3 and if G(I) is a Gorenstein ring. The criterion of G(I) being
Gorenstein in the case ad (I) = 3 is settled by (1.3) and (1.7), if either depth A4/ >
d—s—2orr(l)<1. However, when depth A/I* =d — s — 3 and r,(I) = 2, the
authors do not know any similar practical criteria as in (1.3) and (1.7). There
are, of course, examples in that case. Let A =k[[X;li=1,2,1<j<5]] be a
formal power series ring in 10 variables over an infinite field k and let I be the
ideal in A generated by the maximal minors of the 2 by 5 generic matrix
X =[X;]. Then I is a perfect ideal of height 4 and A(I) = 7. Hence ad (I) = 3.
As A/I is an isolated singularity, any minimal reduction J of I is special (cf.
(2.3)). We have r,(I) = 2, depth A/I*> =3 (=d — s — 3), and G(I) is a Gorenstein
ring.

Let us now briefly explain how to organize this paper. In Section 2 we
pick up from [N] some results on special reductions of ideals, which we need
for the rest of this paper. We prove Theorem (1.1) (resp. Theorem (1.3)) in
Section 3 (resp. Section 4). Section 5 is devoted to study the case where ad (I) <
3. As a consequence, we prove Theorems (1.5), (1.6), and (1.7).

Throughout this paper (4, m) is a Noetherian local ring and d = dim 4. We
always assume the residue class field A/m is infinte. H: () (i € Z) stand for local
cohomology functors. For each finitely generated 4-module M, u,(M) denotes
the number of elements in a minimal system of generators for M.
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2. Auxiliary results on special reductions

In this section we shall summarize some auxiliary results on special reduc-
tions, which we need this paper. Let I be an ideal in A, s =ht, I, and let
£ =A(I). Hence ad (I) =¢ —s. First of all let us recall the definition of special
reductions.

Definition (2.1) ([AH, 5.1]). Let J be a minimal reduction of I. Then J
is said to be a special reduction of I, if I contains a system of generators
ay, dy, ..., a, for J which satisfy the equality I, = (a,, a,. ..., a,) 4, for all prime
ideals Q € V(I) with ht,Q =h < /.

Lemma (2.2) [(U)]. The following conditions are equivalent.

(1) I has a special reduction.

(2) For all prime ideals Q € V(I) with ht, Q = h < the ideals 1, is generated
by at most h elements.

Proof. See [U, 1.4] or [N, (2.2)].

Corollary (2.3) ([AH]). Suppose that for any prime ideals Qe V(I) with
ht, Q </, the ideal 1, is generated by an Agy-regular sequence of length s. Then
every minimal reduction of 1 is special.

Proof. See [AH, 6.4] or [N, (2.5)].

For the rest of this section we assume that A is a Cohen-Macaulay ring
and that I contains a special reduction J. Let r =r,(I). We choose a system
of generators a,, a,, ..., a, for J which satisfy the equality I, = (a,, a,, ..., a,) A4,
for all prime ideals Q € V(I) with ht,Q =h<¢. Let J; = (a,,a,,...,a,)A for
0<i<?¢ Then we may further assume that the system a,, a,, ..., a, satisfies
all the conditions stated in the next lemma.

Lemma (24) ([N]). (1) The element a; does not belong to Q for any 1<
i<( and for any prime ideal Qe|:Ass AU( J Ass, A/Ji'£1>:|\V(I). If £>s5,

m>1
then for all prime ideals Q € Min, A/INSupp, I the element a,,, forms part of
a minimal system of generators for the ideal I,.
@) ay, a,, ..., a, forms an A-regular sequence.
3) [©:a]NI=(0) for all 1 <i</.
@) [:aeq NI =J if ¢>s Hence if {>s=0, then (0):a, =(0):1,
[(0):11N1 =(0), and a, is A/[(0): I]-regular.

Proof. See [N, Proof of (3.2), (3.3), (3.4), and (3.13)] for assertions (1), (2),
and (3). To get the assertion (4), let Q € Ass, A/J,. Then if I = Q, by (2.1) we
have I, =J, as ht,Q =s< /. Hence [J;: as411oN 1y = Jyp, which does also
hold if I & Q, because a,,, ¢ Q by (1). Thus we get [J,:a,,,;]NI =J,. Suppose
£>s5s=0 and let xe(0):a,. Then because xI < [(0):a,]NI and because
[(0):a,1NT = (0) by (3), we have x €(0):I. Thus (0):a, = (0):1 and [(0):I]N] =
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(0). Leta;xe(0):1 with xe 4. Then we get a;x =0 as a,x € [(0): []N I, whence
x€(@©):a, =():1. Thus a, is A/[(0): I]-regular.

We note one more result in [N].

Lemma (2.5) ([N]). Assume the inequality depth (4/1*), > min {¢ —s — k,
ht, Q — s — k} holds for all prime ideals Q€ V(I) and for all integers k with
1<k<?¢—s. Let m, n, and i be integers such that m>1, 0<n</{—s—1,
and 0 <i<n+s. Then we have the following.

() e INJatrt =Jer.

Q) It = e,

Proof. See [N, Proof of (3.5)].

Now our goal of this section is to show that under the extra conditions on
I cited in section 1 the sequence a,t, a,t, ..., ait is G(I)-regular. So we begin
with the following lemma.

Proposition (2.6). Assume that r < ¢ — s and that the inequality depth (4/I")y >
min {£ —s — n, ht, Q — s — n} holds for all prime ideals Q € V(I) and for all inte-
gersnwithl <n<¢—s. Then JONI™' =JI" for0<i<{andallm>i-—s.

Proof. We will prove the assertion by descending induction on i. Let i=~/¢.
Then as r<¢ —s<m, I™"' =J,I™ whence J,NI"" = J,I™ for all m>/¢ —s.
Now let i < ¢ and assume J,,, NI™"! = J,,,I™ for any m>i+ 1 —s. We shall
show by induction on m that J;N ™" = JI™ for al m>i—s. If i —s>0, then
by (2.5)(1) we get JNI* < [J;ia; JNI7 = JI'™S. Hence J;N """ = JI™s.
And J,NI7s* = JI'"s if i <s. Thus we have the equality J,NI™*! = J,I™ when-
everm=i—s5s Nowassume m>i—s+ 1and J;NI™=JJI"'. Then the induc-
tive hypothesis on i says J;,, NI™*' = J,,,I™. So we have

LOI™ = L0y, NI
— N 0"
= LN + a;yI7)
= J I+ JNag 0"
=JI"+ a;. ([Ji:ai JN T NI™] (note m>i—s+ 1),

As [Ji:a,, 1N < J; by (2.5)(1), we get J,NI™ < JI™ + a4, (J;NI™). Then
the hypothesis on m guarantees J;NI™*' < J,I™ + a;,,J;}I™! = J,I" as required.

Corollary (2.7). Assume that r < ¢ — s and that the inequality depth (4/1"), >
min {£ — s — n,ht, Q — s — n} holds for all prime ideals Q € V(I) and for all inte-
gers n with 1 <n<¢ —s. Then the sequence ait, a,t, ..., agt is G(I)-regular.

Proof. The assertion directly follows from [VV, 2.7], because a,, a,, ...,
a, forms by (2.4)(2) an A-regular sequence and because by (2.6) Jnrmtt = Jgm
for all m>0.
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Lemma (2.8). Let A be a Gorenstein ring. Assume that A/l is Cohen-
Macaulay and that the inequality depth (4/I")g > min{f —s—1—nht,Q —s —
n} holds for all prime ideals Q € V(I) and for all integers n with | <n<¢ —s— 1.
Then [J;:a;,,JNI7S = J I for s<i< /.

Proof. 1t suffices to show [J;:a;]oNIG* < JiI5*"" for all Q in Ass, A/
J.I'"*7',  We have nothing to prove if I & Q, because g;,, ¢ Q. Hence we may
assume I < Q. Then ht, Q <i< /¢ by [N, (3.11)] applied to the case N =a =
£ —s— 1. Hence Jy = I; by (2.1) and we have

[Jizais JoN Ié_s =[lg:a;4,1N Iéz_s
=15° (note i —s>0)
=JI5 .

Proposition (2.9). Let A be a Gorenstein ring. Assume that A/l is Cohen-
Macaulay and that r < ¢ — s — 1. Assume the inequality depth (4/I"), > min {¢/ —
s—1—nht,Q —s—n} holds for all prime ideals Q € V(I) and for all integers
n with 1<n<¢—s—1. Let i be an integer satisfying s <i<¢. Then J;N
™t =JI™ for s<i<{¢ and for all m>i—s— 1.

Proof. Let us prove the claim by descending induction on i. The assertion
is true if i =¢ because I"*!' =J,I™ for all m>¢—s—1 (>r). Let i be an
integer satisfying s <i < ¢ and assume that J,,, NI™*" = J,  I"™ for all m>i —s.
We shall show, by induction on m, that J,NI™"*! = JI™ for m>i—s — 1.

Firstly, suppose i > s + 1. Then by (2.8) we have J;NI" < [J;:a,,, 1N =
JI'*™' whence JNI"*=JI'"*"'. Let m>i—s and assume J,NI"=JI" ',
Then as JNI™' < J, NI = J I™ we have JNI™ = JNJI™+ ag, I™)
whence J;NI™* = JI™ + a; ([J;: ;5. JN TSN I™) (note m > i —s). Thus by (2.8)
we get J,NI™! = JI™ + a;,(J;NI™) and the hypothesis on m yields J,N["*! =
JI™ + agy I = JIm,

Now consider the case i =s. We must show J,NI"*! = J I™ for all m > —1.
We may assume m >1 and JNI"=JJI™'. Then as JNI™"' < J  NI" =
Jor I, we have JNI™ = JI™ + ag, ([J;:a,.,]NI™). Hence as [J,:a,,]NI =
J; by (2.4)(4), we get [J:a JNI" =JNI" = JJI™! so the equality J,NI™"! =
JI™ follows.

Corollary (2.10). Let A be a Gorenstein ring. Assume that A/l is Cohen-
Macaulay and that r < ¢ — s — 1. Assume the inequality depth (A4/I")y > min {¢ —
s—1—nht, Q —s— n} holds for all prime ideals Q € V(I) and for all integers
nwith 1<n<¢—s—1. Then ajt,ast, ..., ait forms a G(I)-regular sequence.

Proof. The assertion follows from [VV, 2.7] as by (2.9) JNI"*! = JI" for
all n>0.
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3. Proof of Theorem (1.1)

Throughout this section we assume that 4 is a Cohen-Macaulay ring and
that I is an ideal in A4, which contains a special reduction J with r;(I) =r < ¢ —s,
where ht, I =s and A(J/) =7. Then we can choose a system of generators a,,
a,, ..., a, for J so that the conditions stated in (2.4) are all fulfilled. Further
we assume the inequalities depth (4/I")y > min {f —s —n,ht,Q —s—n} and
depth A/I" >d — s — n+ 1 hold for all prime ideals Q € V(I) and for all integers
nwith 1<n<?¢—s Let G=G() and R = R(I). Then by (2.7) the sequence
agt, at, ..., agt is G-regular.

The purpose of this section is to prove Theorem (1.1). We begin with the
following lemma, which enables us to reduce the problem to the case where s = 0.

Lemma (3.1). Suppose s >0 and let A = Aja,A, 1 =1A4,and J =JA. Then

(1) A is a Cohen-Macaulay ring, htz1 =s— 1, and A(I)=¢ — 1.

(2) J is a special reduction of I and r3(I) < ad (I).

(3) The inequalities depth (4/I")g > min {ad (I) — n,ht; Q —htz I — n} and
depth A/I" > dim A — ht; I — n'+ 1 hold for all prime ideals Q € V(I) and
for all integers n with 1 <n < ad (I).

(4) G is a Cohen-Macaulay (resp. Gorenstein) ring if and only if G(I) is a
Cohen-Macaulay (resp. Gorenstein) ring. When this is the case, one has
the equality a(G) = a(G(I)) — 1.

Proof. A is a Cohen-Macaulay ring with htz I = s — 1, because a, is chosen
to be A-regular. As a,t is by (2.7) G-regular, we get by [VV, 1.1] an isomorphism
G(I) = G/a,tG of A-algebras. Hence the assertion (4) follows (see [GW, (3.1.6)]
for the equality a(G) = a(G(I)) — 1). Further, because G(I)/mG(I) = G/(mG + a,tG)
and because a;t forms part of a linear system of parameters of the A/m-algebra
G/mG, we get the equality A(I) =7 — 1. Hence ad (I) = ¢ —s. Because I"*! =
J-TI" if I"*Y = JI", the ideal J is a minimal reduction of I with rj(I) <r and
r;(I) < ad (I). Take Qe V(I) with ht,Q =h and assume that ht;Q < A(I) =
¢ —1, where Q =Q/a;A. Then as h=htzQ+1<¢, we get by (2.1) I,=
(@, ay, ..., a,)A, whence I =(a,,....a,)Ag. Thus J is a special reduction of
I. To see the assertion (3), let n be an integer with | <n </ —s. Then a;AN
I"=a,JI"" by (26). So we have a;A/(a,ANI") = a;A/a,I""' =~ A/I""". Hence
the exact sequence :

0— A/I"™ > A/I" > A/I" >0

follows. As depth A/I">d —s—n+1 and depthA/I"'>d—s—n+2, it
follows from Depth Lemma that depth A/I">d —s—n+1=dimA4 —htz] —
n+ 1. And the rest of the assertion (3) follows from the exact sequence above
via localization.

In what follows, till(3.4) we maintain the assumption that s =0 and ad (I) =
M) =¢.
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Lemma (3.2). For integers i and n satisfying 0 <i<n</,

d—i if n=1i,
depth A/J, 1" >
epth A4/J _{d—n+l if n>i.

Proof. We shall prove the assertion by induction on i. We may assume
that i >0 and that our assertion is true for i — 1. Take an integer n with
i<n</{ then because JI"/J_ I"=1I"/J_ I""' by (2.5 (2), we get the exact
sequence

(a) 0 I"J,_I" ' > A)J;_ 1" — A/J,I" - 0
of A-modules. We consider the canonical exact sequence
(b) 0= I"J,_ 1" ' 5 AJ_ 1" ' > A/I" 50

as well. Then if n>i, the inductive hypothesis on i says depth A/J,_,I""' >
d—n+2 and depth A/J;_,I">d —n + 1, while depth 4/[">d —n+ 1 by our
standard assumption of this section. Hence thanks to Depth Lemma, by (b) we
have depth, I"/J;,_\I""' >d —n+ 2. So by (a) we find depth A/J,I">d —n + 1.
If n=i, the inductive hypothesis on i says depth A/J_,I'''!>d—i+ 1 and
depth A/J;_;I' >d — i+ 1. Hence the inequality depth A/JI'>d — i similarly
follows from exact sequences (a) and (b) above.

We put G” = G/(a,t, a,t,...,at)G for 0<i<?/. Let [GP], (neZ) stand
for the homogeneous component of degree n in the graded G-module G?”. Notice
that [G?], = I"/(JI"™" + I"*"). Let U? =Y ..y, [GP],.

Lemma (3.3). Take an integer i satisfying 0 <i<¢. Then
(1) [UDTi41 #(0).

(2) depth, [U?]);,;, =>d—i— 1.

() a;qt is UP-regular.

Proof. Suppose [U?”];;; =(0). Then I'** = JI' + I'*2 and I'*! = J,I' Thus
by definition J =J;. This is absurd because i </ = A(I). Since depth A/JI' >
d — i by (3.2) and since depth A/I'*' > d — i by our standard assumption, we get
depth, I'*'/J;I' > d — i thanks to Depth Lemma applied to the sequence 0 —
I*YJ1 > AJJ I > A/ - 0. Similarly, as depth A/J,I'*! > d — i by (3.2) and as
depth A/I'** >d — i — 1 by our standard assumption (note that I‘*! = JI‘ and
depth 4/’ >d — ¢ by (3.2)), we get depth, I'*2/JI'*' >d —i by virtue of
the exact sequence 0 — I'*2/J, """ —» A/JI'*" — A/I'*2 5 0. Now let & I'''/J.I' >
[U?];4; be the canonical epimorphism and put K = Kere. Then K =~ [*2/
(PN T2y >~ 7211 because J;NI*2 = JI'*! by (2.6). So we have the exact
sequence 0 — ['*2/J 1" > [ /) I' 5 [UY];,, - 0. Thus depth, [U?],,, >d —
i — 1, because depth, I'*?/J,I'*' >d — i and depth, I'*'/J,]' >d — i as we have
shown above. For the assertion (3), let xeI" with n>i+ 1 and assume
(@;1)(xt") = 0mod IR + (ayt, ..., a;t)R. We will show xt"e IR + (a;t, ..., a;t)R.
Firstly, recall that J;,, NI"*2 = J ., I"** (see (2.6)). Then as a;,,x € (J;I" + I"*?)N
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Jiv1, we get a; x € J "+ a; I"*'. Choose ye "™ so that a;,,(x —y)e JI"
Then as x — ye [Jiia;,JNI*" (note n>i+ 1), by (2.5(1) we have x — ye J.
Hence by (26) x—yeJNI"=JI"'. So xeJI"'+ I and xt"elIR +
(ait,...,a;t)R. Thus a; .t is UY-regular.

Let G, =) ,5, G, and let M = mG + G, stand for the graded maximal ideal
in G. Let Hiy(+) (j e Z) denote local cohomology functors. For each graded
G-module M we put Soc M = (0):,, M and call it the socle of M. We denote
depthg, Mg, simply by depthg M when M is finitely generated. Then M is a
Cohen-Macaulay G-module if and only if dimg M = depthg M (cf. [GW, (1.1.3)]).

Proposition (3.4). Take an integer i satisfying 0 <i <. Then ,
(1) UY is a Cohen-Macaulay G-module of dimension d — i.
(2) Soc Hi/(UDY is concentrated in degree i.

Proof. Firstly, by descending induction on i we will show that depth; U >
d—ifor all 0<i</. As r<¢, U =(0. So we have nothing to prove
for i=¢. Let i<¢ and assume that depth; UV >d —i—1. We put U? =
UDa;,,tUD. Then as [U®], = [U"*V], for all n>i+ 2, we get the exact se-
quence of graded G-modules

(a) 0> UMY S UDY S5 wh S0,

where W% is concentrated in degree i + 1 and [W"¥],,, = [U?],,,. Recall that
Hiy(W9) = [Hi,(W)],,, = H) ([U];,,) for all j e Z (see [GH, 2.2]), and we get
depthy W9 >d —i—1 by (3.3)(2). Hence as depthy U*" >d —i — 1, by the
sequence (a) depth; U?>d —i— 1. So we have depthy U? >d — i, because
U® = U9/q,, tU"” and because a;,,t is U-regular by (3.3)(3). Thus depth; U? >
d—ifor all 0 <i< /¢ We particularly have.dimg U = depth; U® =d. Here
notice that dimg; UV < dim; U® (see the exact sequence (a)). Then as
dimg U? = dimg; UP — 1 if 0<i</, we get dimg U < dimg U? — 1, and
dimg; U9 <d —i for all 0<i< /. Hence U? is a Cohen-Macaulay G-module
of dimension d — i.

Secondly, we will prove Soc H%'(U?) = [Soc H4;'(UY)];, for all 0 <i < 7, by
descending induction on i. As U'” = (0), this is obviously true for i =¢. Let
i <¢ and assume Soc H% "'(U%*Y) is concentrated in degree i + 1. We apply
local cohomology functors Hiy(*) to the sequence (a). Then as depthg W® >
d—i—1, we get the exact sequence

(b) 0~ Hiy ™ (UHD) » HY 71 (U9) » H (W),

As Hiri=' (W) = [H4 = (WD],,, by [GH, 2.2] and as Soc Hi;i~'(U*Y) is con-
centrated in degree i + 1, by the sequence (b) Soc Hi;'"'(U®) is also concentrated
in degree i+ 1. We now look at the exact sequence 0— U®(—1)Z5 yo
U® -0 and apply local cohomology functors Hiy(*) to it. Then as U is a

Cohen-Macaulay G-module of dimension d — i, we get the short exact sequence
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(c) 0 — Hy'™ (U) — [HG (U] (= 1) =5 HE(UD) - 0.

And as a;,,tG = M, applying the functor Homg;(G/IM, *) to the sequence (c), we
get the isomorphism Soc H4;' ' (U?) = [Soc H4/(UP)](—1) of graded G-modules.
Thus Soc Hé;{(U®) is concentrated in degree i, because Soc H4;*"*(U") is concen-
trated in degree i+ 1.

For the next result we only assume s > 0.

Corollary (3.5). (1) G is a Cohen-Macaulay ring.
(2) Soc Hi(G) = [Soc Hiy(G)]-,.
3) a(G) = —s.

Proof. First we consider the case s=0. If £=0,then I=J=(0) asr </,
whence G = A and we have nothing to prove. Suppose # > 0. Note that U® =
G, and we have depthg G, =d by (3.4)(1). Let us identify G/G, = A/I. Then
as depthg G, = d and depth 4/I =d (recall that the inequality depth A/I" > d —
n+ 1 holds for all integers n with 1 <n </, which is one of our standard
assumptions of this section), we get depth G = d by the exact sequence

(a) 0-G, >G> A/l ->0.

Hence G is a Cohen-Macaulay ring. Apply local cohomology functors Hiy(x)
to (a) and look at the resulting short exact sequence

(b) 0 — HYu(G+) = Hy(G) » Hy(A/) - 0

of local cohomology modules. Now recall H4,(A4/I) = [H(A/D)]o = HL(A/I) (see
[GH, 2.2]). Then as Soc H%(G,) is by (3.4)(2) concentrated in degree 0, we see
by the sequence (b) that Soc H%(G) is concentrated in degree O too. Thus
Soc H4(G) = [Soc H%(G)], and a(G) =0. Let us now consider the case s >0
and put A= A/a,A and I =1A. Then passing to the ring G(I), thanks to
(3.1) the assertion (1) readily follows by induction on s, while the exact se-
quence 0 — G(—1)™8 G > G(I) > 0 guarantees the isomorphism Soc Hé'(G(I)) =
[Soc H4(G)](—1) on socles. Hence the induction on s works also to get the

assertion (2). The assertion (3) now follows from the assertion (2).
We are now ready to prove Theorem (1.1).

Proof of Theorem (1.1). (1) See (3.5)(1).

(2) Let K stand for the graded canonical module of G. Then as K is,
by (3.5)(2), generated by elements of degree s, we see by [HSV, 2.3] that K is
a cyclic G-module (notice that [HSV, 2.3] is true whenever G is Cohen-
Macaulay). Thus G is a Gorenstein ring.

Let us close this section with a proof of Corollary (1.2).

Proof of Corollary (1.2). (1) This follows from [TI, 1.1], because G is by
(1.1) a Cohen-Macaulay ring of a(G) = —s.
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(2) This follows from [I, 3.1], because G is by (1.1) a Gorenstein ring of
a(G) = —s.

4. Proof of Theorem (1.3)

In this section we assume that A is a Gorenstein ring and that I is an
ideal in A4, which contains a special reduction J, with ht, I =s and A(I) =¢. We
also assume that A/I is a Cohen-Macaulay ring and that ad (I)=¢ —s>1. We
choose a system of generators a,, 4a,, ..., a, for J so that the conditions stated
in (2.4) are fulfilled. We put G = G(I), R = R(I), and MM = mG + G,.

The purpose of this section is to prove Theorem (1.3). Take an integer i
with s + 1 <i</. Then we have ht,(I + [J,_,:I]) > i, because J;,_;A, = I, by
(2.1) for all prime ideals Q € V(I) with ht, Q <i. We can therefore choose a

system of generators X, ..., Xy, X4, -.., Xq4 for the ring A/I so that x;e J;_,: I
for all integers i with s+ 1 <i</ We put a=(at, ayt,...,a,t)G + (x;4; +
Agiily Xgpo + Agyoty ... X+ at)G + (Xy4qs Xp42, .-+, X4)G. Then we have

Lemma (4.1) ([AH, 5.6]). (1) M=/a

(2) G is a Cohen-Macaulay ring if and only if the sequence ait, a,t, ...,
A, Xgpq + Agpil, Xgpo + Aialy ooy Xp+ aApt, Xppqy Xpgzy -ovn Xg IS G-
regular.

The next lemma enables us to reduce the problem to the case where s = 0.

Lemma (4.2). Assume that s > 1 and that at is G-regular. Let A = Aja,A,
I=1A4, and J =JA. Then

(1) A is a Gorenstein ring, htz;1 =s — 1, and A(I)=¢ — 1. Hence ad (I) =
ad (I).

(2) J is a special reduction of I and rj(I) = r,(I).

(3) Assume further that the inequalities depth (4/I"), > min {ad (I)—n —
I,ht,Q —ht, I —n} and depth A/I">d —ht, I —n hold for all prime
ideals Q € V(I) and for all integers n with 1 <n <ad(I) — 1. Then one
has the inequalities depth (/—1/1_")5 > min {ad () —n — 1, ht Q — htz I — n}
and depth A/I" > dim A — htz I — n for all prime ideals Q € V(I) and for
all integers n with 1 <n<ad(l)— 1.

(4) G is a Gorenstein ring if and only if G(I) is a Gorenstein ring.

Proof. Let n=rs(I). Then as I"*' < JI" + a, A, we get I"*' = JI" + a, AN
"' while a,ANI""! = a,I" because a,t is G-regular. Hence I"*! = JI". So we
have rj(I) = r,(I). Consult Proof of Lemma (3.1) for the other assertions.

For the rest of this section we assume that s =0. Hence ad (I) =¢. We
put B= A/[(0):I]. But B is a Cohen-Macaulay ring of dim B =d (see [PS,
1.3]). Let K4, and K, respectively denote the canonical modules of A4/I and
B. Then as A4 is a Gorenstein ring and as dim 4/l = dim B = d, by [HK, 5.20] we
have isomorphisms K, =~ (0): I and Ky = (0): [(0): I]. Note that I = (0): [(0): 1]
because (0):4 K4, = I by [HK, 6.7] (recall that A/I is Cohen-Macaulay) and we
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get Kg =1, while IB=~1 as [(0):I]NI = (0) by (2.4)(4). Thus we have the asser-
tion (1) in the next lemma. See [HK, 6.13] for the proof of assertions (2) and (3).

Lemma (4.3). (1) Kg=IB.
(2) htgIB=1.
(3) B/IB is a Gorenstein ring.

Put T =G(B). Let ¢:G— T be the canonical epimorphism and let K =
Ker ¢. Then K, = [I"N((0): DJ/[I"*'N((0): )] (ne Z). Hence K,=(0)if n>1,
because [(0):I1NI = (0). Then we have K = K, € mG and K, = (0):1 = K,,
whence depthg; K =d. We note

Lemma (4.4). (1) AUB)=¢ and ad (IBy=¢ — 1.

(2) JB is a special reduction of IB and r;z(IB) = r,(I).

(3) Assume that the inequalities depth (4/1")p > min {ad (I) —n — 1, ht, P —
n} and depth A/I" >d —n hold for all prime ideals Pe V(I) and for
all integers n with 1 <n<ad()— 1. Then one has the inequalities
depth (B/I"B)y > min {ad (IB) — n, htg Q — htz IB — n} and depth B/I"B >
dim B — htg IB — n + 1 for all prime ideals Q € V(IB) and for all integers
n with 1 <n < ad(IB).

Proof. As K=K, < mG, the map A/m®, ¢: A/m®, G- A/m®, T is an
isomorphism. Thus A(IB) =/, and JB is a minimal reduction of IB. We have
ad (IB)=¢ — 1 because htgIB=1 by (4.3)(2). Take a prime ideal Q e V(IB)
with ht; Q@ = h < ¢ and choose Pe V(I + [(0):I]) so that Q = P/[(0):1I]. Then
hty P=htz Q (=h </¢). Hence by (2.1) we have I4, =(a,,a,,...,a,)Ap, and
IBy = (a;, ay, ..., a,)By. Thus JB is a special reduction of IB. Let n = r;g(IB).
Then as I"*' < JI" + [(0): I], we have I"*! = JI" + I"*'N[(0): I]. Hence I"*! =
JI" because [(0):IJNI = (0) by (2.4)(4). Thus r,;z(IB) = r,(I). To see the asser-
tion (3), take an integer n with 1 <n<# —1. We look at the exact sequence

(@) 0—(0): 1> A/I"> B/I'B—0,

which follows from the facts that B/I"B = A/(I" + [(0):I]) and [(0):I]NI = (0).
Notice that depth A/I">d —n and that depth, (0):1 =d (recall (0):1= K,;).
Then by the sequence (a) we find that depth B/I"B>d — n=dim B — htz IB —
n+ 1. Thanks to Depth Lemma, the rest of the inequalities follow similarly as
above via exact the sequence (a) after localization.

Assume now that G is Cohen-Macaulay ring. Let K stand for the graded
canonical module of G and put E = Ext (T, K;). Take the Kg;-dual of the
sequence

(4.5) 0-K-G35T-0
and we get the exact sequence

(4.6) 0—- Kr— Kg;—>Homg(K,Kg)=»E—-0
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of graded G-modules. Because Homg (K4, Kg) = A/I by [HK, 6.1] and because
K =Ky, = K,;, we get Homg (K, K¢) = A/I in which A/I is considered to be a
graded G-module concentrated in degree 0. Hence from (4.6) we have the exact
sequence

4.7) 0-Ky—>K;—> A/l - E->Q.

If G is furthermore a Gorenstein ring with a = a(G), identifying Kg; = G(a), we
get by (4.7) the exact sequence

(4.8) 0->K;—>Gl@- A/l »E-Q
of graded G-modules. Here we note the following

Proposition (4.9). Suppose that G is a Gorenstein ring. Then
() a(G)=0.

(2) T is a Cohen-Macaulay ring of a(T)= —1.

3) Kr=G,.

Proof. Assume that a = a(G) < 0. Then considering the homogeneous com-
ponents of degree 0O in the exact sequence (4.8), we find A/l ~E. So (0):1 <1
because [(0): ITE = (0). Hence (0): I = (0) by (2.4)(4), which is impossible because
ht, I =s=0. Now suppose that a> 1. Then considering the homogeneous
components of degree —a in (4.8), we find [K;]_, =~ G, = A/I. Hence (0):1 <1
because [(0): I]T = (0). This also cannot happen. Thus a =0 and we get the
exact sequence of graded G-modules.

(4.10) 0K G- A/l -E->O0.

We have depthy T>d — 1 by (4.5) because depth G = depth; K =d. Hence to
see Cohen-Macaulayness in T, it suffices to show H&(T) = (0), or equivalently,
E =(0) (cf. [HK, 5.12]). Assume the contrary and choose a prime ideal Q e
Supp, E so that dim, E = dim A/Q. Then as E is a factor module of A/l by
a single element (look at the homogeneous components of degree 0 in the exact
sequence (4.10)), we have dim, E >dim A/l —1=d —1. Hence ht, 0 <1. As
(I +[(0):11)E =(0), we get I + [(0):I] = Q. Thus ht, Q =1 (recall that ht, (I +
[(0):1])> 1) and QB is a prime ideal in B containing IB. Now if ¢ =1, then
we have r;(I) =0 by [GNal, (2.11)]. So I =a,;A. And if £ > 2, we have I, =
a;Ag by (2.1). Hence IBy, = a,By in any case. As htgIB=1 by (4.3)(2), we
find dim B, = 1 and a, is By-regular. Thus T, = (By/a,By)[t] is a polynomial
ring in one variable t over By/a;B,. Hence T, is a Cohen-Macaulay ring
with dim T, = dim G, = 1. So we have E, = ExtéQ(Tq, Kg,) = (0) by [HK, 6.1].
This contradicts the choice of Q. Thus T is a Cohen-Macaulay ring and E = (0).
Hence by (4.10) we get the exact sequence of graded G-modules

4.11) 05 Kp—> G- A/l >0.

Now look at the homogeneous components 0 — [K;], = G, > A/I - 0 of degree
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0 in the exact sequence (4.11). Then as G, = A/I, the map ¢ has to be an
isomorphism. So we have [K;]o =(0). Thus by (4.11) we get K; =~ G, and
(K], = I/I*> #(0). Hence a(T)= —1.

If G is a Gorenstein ring, T is by (4.9)(2) a Cohen-Macaulay ring. As
hty IB =1 by (4.3)(2), we get a(T) = max {r,z(IB) — A(IB), —1} by [AH, 5.10]
and [T, 2.5]. Hence r,p(IB) < A(IB) because a(T) = —1 by (4.9)(2). Hence by
(4.4) we get the following

Corollary (4.12). Suppose that G is a Gorenstein ring. Then r;(I)<¢ — 1.
We close this section by proving Theorem (1.3).

Proof of Theorem (1.3). (1) 1If s >0, by (4.1)(2) a,t is G-regular. Hence
by (4.2) the inequality r,(I) < ad (I) — 1 readily follows from (4.12) by induction
on s.

(2) By (2.10) the sequence ayt, a,t, ..., ast is G-regular. Hence passing to
the ring G(I/(a,, a,,...,a,)A) (= Gl(a;t, a,t, ..., at)G, cf. [VV, 1.1] and thanks
to (4.2), we may assume without loss of generality that s =0. Let us maintain
the same notation as we have settled in this section. Firstly, note that by (4.4)
the hypotheses in Theorem (1.1) are all fulfilled for the ideal IB in the ring
B. Hence by (3.5) T is a Cohen-Macaulay ring and the graded canonical module
K; of T is generated by elements of degree —1 (recall that htzIB=1 by
(4.3)(2)). Therefore by [HSV, 2.4] we get Ky = gr;z(Kg)(—1) where gr;z(Kpg)
denotes the graded module associated to the filtration {I"Kg},., of K. As
K = IB by (4.3)(1), we also get gr;z(Kp)(—1) =gr;p(IB)(—1)=T,. Thus K; =
T,.. We consider the exact sequence (4.5). Recall that K = K,. Then G, = T,
whence K = G,. Further, by the sequence (4.5) G is a Cohen-Macaulay ring,
because both K = K,, and T are Cohen-Macaulay G-modules of dimension
d. Now take the Kj-dual of the canonical exact sequence 0 > G, > G - A/l —»
0. Then because Homg (G, , K5) = Homg (K, Kg) = T ([HK, 6.1]) and because
Homg (4/1, Kg) = K, (here A/I is considered to be a graded G-module concen-
trated in degree 0), we get the exact sequence 0 —» K ;; - Kz = T —0. Thus K
is generated by elements of degree 0. On the other hand, in the exact sequence
(4.7) we get E = (0) because T is a Cohen-Macaulay ring. So we have the exact
sequence 0 > K; - K; —» A/l - 0 of graded G-modules. Hence because a(T) =
—1, we get [Kg]o = A/I. Thus K, is cyclic and G is a Gorenstein ring.

5. The case where ad (/) <3

The purpose of this section is to prove Theorems (1.5), (1.6), and (1.7). We
assume that I is an ideal in a Cohen-Macaulay ring 4 of dim A =d, which
contains a special reduction J, with s = ht, I and # = A(I). We also assume that
A/l is a Cohen-Macaulay ring, ad (I) <3, and r,(I) <2. We choose a system
of generators a,, da,, ..., a, for J so that the conditions stated in (2.4) are fulfilled.
We put G = G(I), R = R(I), and I = mG + G,. Here we note that if ad (I) = 2
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(resp. ad (I) = 3), one naturally has the inequality depth (4/I"), > min {ad (I) — n,
ht, Q — s — n} for all prime ideals Q € V(I) and for all integers n with 1 <n <
ad (I) (resp. depth (4/I"), > min {ad (I) — n — 1, ht, Q — s — n} for all prime ideals
Qe V() and for all integers n with 1 <n <ad(l)—1). Hence as r,(I) <2 by
our standard assumption of this section, the results obtained in section 2 are
applicable. In particular, the sequence a;t, a,t, ..., agt is G-regular by (2.7)
(resp. (2.10)), if ad (I) = 2 (resp. if ad (I) =3 and A4 is a Gorenstein ring); thus
passing to the ring G(I/(a,, a,. ..., a))A) = G/(a,t, a,t, ..., a,;t)G and thanks to (3.1)
(resp. (4.2)), in order to prove Theorem (1.5) (resp. Theorems (1.6) and (1.7)) we
may assume without loss of generality that s =0.

For the rest of this section we assume s =0 and ad (/) =¢. We begin with
the following lemma, in which the first assertion is fairly well-known but let us
note a proof for completeness.

Lemma (5.1). (1) depth A/I">d — ¢ for all n > 1 if G is a Cohen-Macaulay
ring.
(2) Letd>3,5s=0,and ¢ =2. Suppose depth A/I*> > 1. Then depth A/I" >
1 for all n> 1.

Proof. (1) We have grade; mG = inf,,, depth A/I" ([B]), while grade; mG =
hte mG =d — ¢ as G is a Cohen-Macaulay ring. Hence depth 4/I">d — ¢ for
all n> 1.

(2) We may assume n > 3. Hence I" = J" 2I* as n > r,(I). By induction
on m we will show depth A/I"I> > 1 for all m>0. As depth A/I*> > 1, we may
assume m > 1 and depth A/J™ 'I?> > 1. First, notice that I = a}'I and I*> =~ a}'I*
because of the isomorphisms a¥I ~ a*"'I and a*I> @ a* 'I*> (k>1) given by
(2.5)(2). We consider the following six exact sequences

@ O0—1—A— A0,

b) 0-I->A—> A/aTl—>0 (recall al'l = 1),

© 0—I>—A— A/I> >0,

d 0-I>->A->A/arl* -0  (recall aTI*> = I?),
© 0—J"'I2/a™ — Aja™] - A/J" 1> >0, and
() 0-J"'12/am ] — AJall? > AJJ"I? >0,

where the last one follows from the isomorphism J™I%/a?I* =~ J™ 'I?*/a}I in
(2.5)(2). Then as depth 4/I = depth A4 = d, by the sequence (a) we get depth, I =
d so that by (b) the inequality depth A/al'l >d — 1 > 2. Hence as depth 4/J"'1 2>
1 by our hypothesis on m, we get by the sequence (e) that depth, J"'I*/al'] > 2
too. Similarly, by sequences (c) and (d) we find depth A/aT'I*> > 1. Thus by the
sequence (f) we conclude depth A/J™I? > 1, because depth, J" 'I?/a7'] > 2 and
depth A/a?"I*> > 1 as we have shown above.
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For a moment assume that depth A/I" > 1 for all n > 1. Then by Burch’s
inequality ([B]) s < ¢ < d — inf,,, depth A/I", we get £ <d. Let & = {Qe V()]
ht, Q =i and Q € Supp, I/J;_,} for each 1 <i<¢. Then & < Min, I/(J;_; + I?)
(see (2.1)). Hence ¥ = U &, is a finite set and m¢ F as £ <d. As m¢

1<i<t
(J Ass, A/I" and as the set \J Ass, A/I" is also finite ([Br]), we may choose
n>1 n>1
an element x of m so that x ¢ Q for any Q € < (J Ass, A/I">U97. Let A = A/xA,
n>1

I=1IA4, and J =JA. Then as x is A-regular, 4 is a Cohen-Macaulay ring of
dim A =d — 1. We furthermore have the following, which we later need to
reduce the problem also to the case where d = /.

Lemma (5.2). (1) depth A/I" = depth A/I" — 1 for all n> 1. In particular
A/l is a Cohen-Macaulay ring.
(2) htzI =0 and A()="¢.
(3) J is a special reduction of I with ri(I) < 2.
(4) G is a Cohen-Macaulay (resp. Gorenstein) ring if and only if G(I) is a
Cohen-Macaulay (resp. Gorenstein) ring.

Proof. The assertion (1) follows from the fact that x is A/I"-regular for all
n>1. Since dim A/l =d — 1 = dim A, we have ht;1 =0. As x is G-regular,
we get by [VV, 1.1] an isomorphism G(I) = G/xG of A-algebras. Hence the
assertion (4) and the equality A(I) = # follow. As the ideal J is a reduction of
I with pz(J)<¢, J is a minimal reduction of I with ry(I) <2. Let Qe V(I)
with ht; O < ¢, and choose a prime ideal Q € V(I + xA) so that Q/xA = Q. Let
i=ht,Q. Then 1 <i</ as ht,Q=htzQ+ 1. As xeQ, Q¢ Supp, I/J;_, so
that we have I, = J;_; Ay whence Ig = J,_;Ag. Thus J is a special reduction of I.

Now let us note a proof of Theorem (1.5).

Proof of Theorem (1.5). The last assertion follows from [TI, 1.1], since
a(G) = —s by [AH, 5.10] and [T, 2.5]. To see the equivalence of assertions (1)
and (2) we may assume s =0. Hence £ = 2.

(1)=(2) This follows from (5.1)(1).

2)=(1) If d>3, then by (5.1)(2) we get depth A/[">1 for all n>1.
Hence by (5.2) we may furthermore assume d = 2. First of all, we choose an
element x e (0): I so that x is A/I-regular (this choice is possible, since ht, (I +
[(0):1])>1 by (2.1) and since A4/l is a Cohen-Macaulay ring of dim A = 2).
Hence depth 4/(xA + I) = 1. We now recall depth A/a,I > 1 (see Proof of (5.1)
(2)). And we choose an element y € m so that y is regular on both of A/(xA4 + I)
and A/a;I. In what follows, we will show that the sequence x + a,t, y + a,t is
G-regular. Let f=a, + a;t + - + a,t"e R with a; €I’ and assume (x + a,t)f €
IR. Then as x €(0): 1, we get (x + ajt)f = xog + Y 5y a,0;_1t' =0mod IR. As
xao € I, we have ag el since x is regular on A/I. For i > 2, we have a,a;_, €
a,ANI*Y = a,I' by (2.6). We write a,o;_; = a,& with ¢eI'. Then as a,(¢;_; —
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£) =0, we get a;_, — e [(0):a,]NI = (0) (see (2.4)(4)). Hence «;_, e I' for all
i>2 and so we have felIR. Thus x + a;t is G-regular.

Let us check y + a,t is regular on G/(x + a,;t)G. Let L =(x + a,t)R + IR.
Let g =By + Bit + -+ B,t"€ R with n> 2 and B; e I' and assume (y + a,t)g € L.
Choose f =ag + ot + - + a,t™ e R with o; € I' and m > n so that (y + a,t)g =
(x + ayt)f mod IR. Then as (x+a;t)f =xa+ Y 50,011, we get yf,+
Y icien@Biy + YR + ayBt" = xag + Y i5y a0t  mod IR. Hence as a,f, =
a,a, mod I"*2, we have a,f, — a,a, € (a;, a,)NI"*? = (a,, a,)I"** by (2.6). Choose
EeI"™! so that ay(B, — é)ea,A. Then as B, —Ee[a;A:a,]NI" and as [a,A:
a,]NI* = a;A by (2.5)(1), we have by (2.6) that §, — éea,I"'. Write B, =
a;nmod I"*! with neI""!. Then as B,t" = (a,)(nt" ") = (x + a,;)nt"* mod IR
(recall x € (0):1I), we get §,t" € L and (y + a,t)(g — B,t") € L. Thus repeating this
procedure we find Bit'e L for all 2 <i<n and (y + a,t)(B, + Bit)e L. We then
have

(a) yBo = x0to mod I ,
(b) yB, + a,Po = a,ao mod I,  and
() a,B, = a,a, mod I3 .

As x, y forms an A/I-regular sequence, by (a) we may write f, = xu mod I
and oo = yumod I for some ue A. Then as yp, + a,xu = a,yumod I* by (b)
and as xI =(0), we find yB, —a,yueI®>. On the otherhand by (c) and (2.6)
we have a,B, — a,a, € (a,,a,)NI* = (a,, a,)I* whence a,(B, — p) € a;A for some
pelI? Thus a,(y(B, — p) — ya,u)ea,A. Therefore we find y(B;, —p — a,u) =
(yB, —a,yu) —ypela,A:a,]NI* =a,l by (2.5)(1). As y is a regular on A/a;l
by its choice, we get B, — p — a,uca,l. Hence we have B, = a;umod I>. As
Bo = xumod I, we get f, + ffit = (x + a,t)umod IR so that B, + f;te L. Thus
the sequence x + a;t, y + a,t is G-regular whence depth G =2 so that G is a
Cohen-Macaulay ring. This completes the proof of (1.5).

To prove Theorem (1.7) we need the following

Lemma (5.3). Let A be a homomorphic image of a Gorenstein ring. Let
d=25s=0,and £ =2. Assume r)(I) < 1. Then depth, [Ks] > 1.

Proof. Let B= A/[0:1] and T = G(IB). Then dim T'=dim B=2. The
ring G is Cohen-Macaulay by virtue of (1.5). The element a, is B-regular by
(2.4)(4) whence depth B> 0. We begin with the following.

CrLamm 1. ayt is T-regular.

Proof of Claim 1. Let a e I" with n > 0 and assume (a,t)(at") = 0 mod [(0):
IT+IR. Then as a,xaea,ANI""?*=qa """ by (2.6), letting a0 =a,¢ with
Eel"™, we get a —Ee(0):a, =(0):1 by (24)(4). Hence ae "' + [(0):I] so
that we have at" € [(0): 1] + IR.
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Let C=B/a;B and S = G(IC). Then dimC =1 as a, is B-regular. We
get S = T/a,;tT by Claim 1. Let X =(0):ga,t and Y = S/a,tS. Then we have

Cramm 2. X,=(0) and Y, =(0) for all n > 2.

Proof of Claim 2. Let n>2 be an integer. Then (IC)? = a,IC as r,(I) <
1 whence S, < a,tS so that Y, =(0). Let ael” and assume (a,t)(at")=0
mod [(0):I] + IR + a,;tR. Then a,aelI"™? +a,A. As I"? =(a,, a,))["**, we
have a,a e a,A + a,I"*'. Write a,(x — £)e a,A with Ee "™, Then as a — ¢ €
[a,A:a,]NI"=a, "' by (2.5(1) and (2.6), we get ael"*' + a,I"'. Thus
at" € [(0): IT+ IR + a,tR. Hence X, = (0).

Cramm 3. a(S) <0.

Proof of Claim 3. Split the sequence 0 » X(—1)> S(—1)3 S - Y -0 into
the following two exact sequences 0— X(—1)—> S(—1)—a,tS—-0 and 0—
a,tS - S - Y - 0 of graded S-modules and apply functors H(*) to them. Then
we get exact sequences [Hy,(X)](—1) = [HR(S)](—1)— Hi(a,tS) and HY(Y) -
Hiy(a,tS) - HY(S) of local cohomology modules. Let a = a(S) and look at the
homogeneous components of degree a + 1. Then we get the diagram

[H%(Y)]a+s
I
[Hu(X)1, = [Hu(9 1, > [Hin(a;18) 1,41
lf
[H5(S)]a+1

with exact row and column. We have [Hiy(S)], # (0) and [HY(S)],+;1 = (0) (recall
dim S =dim C =1). Hence the map p is an epimorphism. Therefore, if ¢ # 0,
we have (0) # [H}(Y)],4; S Y,,, whence a <0 by Claim 2. Assume o =0.
Then as [Hy(S)], # (0), we get [Hy(X)], # (0) whence H (X,) # (0) as [Hi(X)], =
H!(X,) by [GH, 2.2]. Hence a <1 by Claim 2. Assume now a = 1 and choose
a prime ideal Q € Supp, X;. Then as X, = S, and IS, = (0), we have I= Q. If
ht, 0 <1 (<7 =2), then we get I, =a;A, by (2.1) whence IC, = (0) so that
we have §,, = (0). This is impossible as X, # (0). Hence we have Q = m as
dim A = 2. Thus dim, X, =0 and H}(X,) = (0). This contradicts the fact that
H!(X,) # (0). Thus a <0.

CrLamm 4. a(T) <O.

Proof of Claim 4. By Claim 1 we have a,t to be T-regular. Apply functors
Hiy(*) to the sequence 0 —» T(—1)% TS —0. Then we get the exact sequence
HY(S) - [HE(T)1(— 1) ™5 H3(T) of local cohomology modules. Let a = a(T)
and look at the homogeneous components [Hy(S)],+1 = [HE(T)], = [H3(T)],41
of degree a+ 1. Then as [H3(T)],+; =(0) and as [H%(T)], # (0), we get
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[Hy(S)],+1 #(0). Hence a+ 1 <a(S) so that we have a <0 as a(S)<0 by
Claim 3.

Now let ¢: G- T be the canonical epimorphism and K = Ker ¢. Then
K, = {"N[0): 17)/I™ " N[(0): I]) whence K, =(0) if n> 1 and K, = (0): I (recall
[(0): 11N = (0) by (2.4)(4)). We consider the exact sequence 0 > K -G —->T -0
and take the Kg-dual of it. Then we get the exact sequence 0 - K; — K —
Homg (K, Kg) of graded G-modules. As [K;], = (0) by Claim 4, we have the
embedding [K;], = Homg (K, Kg)],- Now recall that depth, K = depth, [(0):
I = 2 (use the exact sequence 0 — (0): I - A - B — 0 and the fact that depth B >
0 as well). Choose an element xem so that x is K-regular and let K =
K/xK. Then as K is a Cohen-Macaulay G-module of dimz; K =1, we have
Homg (K, Kg) = (0) by [HK, 6.1] so that x is a nonzerodivisor on Homg (K, K).
Hence x is a nonzerodivisor on [Kg], too. Thus we get depth, [Kg], > 1 as
claimed. This complete the proof of (5.3).

We are now closing this section by proving theorems (1.6) and (1.7).

Proof of Theorem (1.6). (1)=(2) See (5.1)(1).

(2)=(1) We may assume s=0. Let B= A/[(0):I]. Then B is a Cohen-
Macaulay ring of dim B =d ([PS, 1.3]), while we have by (4.3) and (4.4) that
htg IB =1, A(IB) =3, B/IB is Cohen-Macaulay, and JB is a special reduction
of IB with r;5(IB) = r;(I) < 2. Hence the hypotheses in Theorem (1.5) are satisfied
for the ideal IB in B. Recall the exact sequences

(a) 012> A— A/I*> >0 and
(b) 0—-1>->B—B/I’B-0,

in which the latter one follows from the equality that [(0):I]1N(0). Then as
depth A/I*> > d — 3, by the sequence (a) we have depth, I> >d — 2 whence by
(b) we get depth B/I?’B>d — 3. Thus by (1.5) T = G(IB) is a Cohen-Macaulay
ring of dim T=d. Now let ¢: G —> T be the canonical eqimorphism and look
at the exact sequence 0 » K - G 5 T — 0 with K = Ker ¢. Then as depth; K =
d (recall K = Ky = K 4, cf. the remark just after (4.3)), we get depth G =d. Thus
G is a Cohen-Macaulay ring.

Proof of Theorem (1.7). (2)=-(1) This follows from (1.3)(2).

(1)=(2) We may assume s=0 and /#=3. If d >4, then by (51)(1) we
get depth A/I" > 1 for all n > 1. Hence passing to the ring G(I), we may assume
by (5.2) that d =/ = 3. We must show depth A/I*> > 1. For this it is enough
to see depth, I/I> > 1. Let B= A/[(0):I], C = B/a,B, T = G(IB), and S = G(IC).
Then B is a Cohen-Macaulay ring of dim B =3 ([PS]). By (4.4) the ideal JB
is a special reduction of IB with r,z(IB) <1 and A(IB)=3. By (4.3) we have
htg IB=1 and B/IB is a Cohen-Macaulay ring of dim B/IB=2. And, C is
a Cohen-Macaulay ring of dim C =2 as a, is B-regular (cf. (2.4)(4)), whence
hte IC = 0 (note dimC/IC = dim B/IB = 2), so that the proof of (3.1) works to
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get, passing to the above data on B, that A(IC) =2 and IC contains JC as a
special reduction with r,(IC) < 1. Hence the hypotheses in Lemma (5.3) are
satisfied for the ideal IC in C. Let us now notice by (4.9) T is a Cohen-Macaulay
ring of a(T)= —1 and by (2.7) a,t is T-regular. Hence Kg=~[K;/a;tK;](1)
([GW, (2.2.10)] as S =~ T/a;tT ([VV, 1.1]). We have [Ks], =~ [Kr], as [K;]o =
(0) (recall a(T) = —1), while G, = [K;]; by the sequence (4.11) and depth, [Ks], =
1 by (5.3). Hence we get depth, I/I* > 1, which completes the proof of Theorem
(1.7).
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