J. Math. Kyoto Univ. (JMKYAZ)
36-3 (1996) 481-498

Nonsymmetric Ornstein-Uhlenbeck semigroup
as second quantized operator
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0. Introduction

This work deals with properties of the semigroup related to the Ornstein-
Uhlenbeck operator

L¢(x) = 5 Tr QD?¢(x) + {Ax, Dé(x)} (1)

in a real separable Hilbert space H. We assume that A is a generator of
C,-semigroup S(t), t > 0, of bounded operators on H, Q is bounded, selfadjoint
and nonnegative. By D¢ we denote the Fréchet derivative of a function ¢: H - R.
Notice that L¢(x) is well-defined for every x € H, at least for appropriately chosen
cylindrical functions (see [CG1] for details). In this paper we require that

(Ala) Jm tr S(u)QS*(u) du < oo.

0

If (Ala) is satisfied then we can define on H the family of Gaussian measures
U, £ >0, and pu with the mean zero and the covariance operators

0= J S QS*(u) du
0
and
0. - f " S)QS*(u) du

0

respectively. For simplicity of presentation we assume that
(Alb) ker Q,, = {0}.
Let

R,¢(x) = L $(S(0)x + y)u(dy).

Then the family of operators R,, t > 0, forms a strongly continuous semigroup
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of contractions on LP(H, ) for every p > 1. Moreover, it can be shown [CG1]
that L has a unique extension to a generator of C,-semigroup on LP(H, p) (p > 1)
which coincides with R,. The semigroup R, can be identified as the transition
semigroup corresponding to the Ornstein-Uhlenbeck process on H:

t
Z*(t) = S(t)x + f S(t — s)dW(s),
0
where W is a Wiener process on H with the covariance operator Q that is
R,¢(x) = E¢(Z*(t)) (see [DZ2] for details).

In this paper we investigate hypercontractivity, compactness and space-time
regularity of the semigroup R, and give necessary and sufficient conditions for
each case. The results obtained are important for the investigation of uniqueness
and ergodic properties of the semigroups related to more general operators of
the form

Lg(x) = 3 tr @QD*¢(x) + (Ax + F(x), Dg(x)).

The question of hypercontractivity of the Ornstein-Uhlenbeck semigroup goes
back to the seminal papers of Nelson [N] and Gross [G1] and has been investi-
gated mainly for symmetric semigroups or more generally for the class of semi-
groups possessing Sobolev generators [G2]. Essentially, hypercontractivity in
infinite dimensions is known in the symmetric case. We are not aware though
of any such result for the general Ornstein-Uhlenbeck semigroup. The generator
L of the nonsymmetric semigroup R, need not be a Sobolev generator, even in
finite dimensions, and hence the methods developed in [G1] are not applicable.
However, we show that hypercontraction property holds in this case as well
Hyperboundedness of the infinite dimensional nonsymmetric Ornstein-Uhlenbeck
semigroup in stronger norms has been obtained recently in [CG2] and under
stronger conditions then ours in [F1].

The first results on compactness of the Ornstein-Uhlenbeck semigroup in
infinite dimensions have been obtained in [DZ3] and extended in [CG1] under
the assumption that all the measures p, *Jg,, are equivalent. In both papers
the main tool to show this was the smoothing property of the semigroup R,
and compactness of the appropriate Sobolev imbedding. In this paper we give
necessary and sufficient conditions for compactness of R, as a mapping from
LP(H, u) into L9(H, p) and moreover we use a completely different method. The
Hilbert-Schmidt property of the semigroup R, has been shown for the first time
in [F1] under more restrictive conditions and with more general assumptions in
[CG2]. In this paper we give necessary and sufficient condition for the Hilbert-
Schmidt property with a simpler proof.

Necessary and sufficient conditions for the semigroup R, to transform
bounded measurable function into Fréchet differentiable C® functions were given
in [DZ1]. In the present setup this property does not hold. However, defining
Sobolev spaces as in the Malliavin calculus we show that R, transforms elements
of arbitrary negative Sobolev space into infinitely smooth functions. We give
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also explicit estimates on the directional derivatives of the function R,¢. The
same estimates are shown to hold for the adjoint semigroup R} also. Finally
we obtain necessary and sufficient conditions for the semigroup R, to be differ-
entiable. This result is optimal in some sense. Namely, it can be shown [F2]
that the semigroup R, is not analytic in general, even in finite dimensions.

Let H, = QY2(H) be the Reproducing Kernel Hilbert Space of the measure pu.
If (A1) holds then H, endowed with the norm ||x|o = [|Q."*x| is continuously
and densely imbedded into H. In Section 3 we show that if (Al) is satisfied
then the space H, is invariant for the semigroup S(t):

S(t)(Ho) = Ho
for every t > 0. This property is equivalent to the boundedness of the operator
So(t) = QS0

If the controllability condition im S(t) = im Q;” introduced by DaPrato and
Zabczyk [DZ1] holds for t > 0 then the semigroup Sy(¢) is of Hilbert-Schmidt
type and the following condition holds:

(A2) im Q% = im Q2

which we will need also in many cases.

In order to analyze the Ornstein-Uhlenbeck semigroup we show that R, can
be represented as the so-called second quantization of the operator Sg(t), the
property well known for the case A = —I. To the best of our knowledge such
a representation for the nonsymmetric case has not been presented before even
in the finite dimensional case. The second quantization operator via the Mehler
formula has been discussed recently in [FP] within the framework of locally
convex spaces. It has been applied to show tightness of capacities related
to the symmetric Ornstein-Uhlenbeck semigroup. In our paper, motivated by
applications to stochastic evolution equations, we restrict ourselves to the hilber-
tian case only and provide more detailed result about the nonsymmetric semi-
group R,. First, we investigate the suitable properties of the abstract second
quantization operator. Some of them are new and also of interest. Then the
properties of R, are obtained as rather simple consequences of the representation
of R, as the second quantization of Sg(t).

In Section 1 below we recall basic properties of the second quantization
operator and prove a version of the Mehler formula. Compactness, Hilbert-
Schmidt property and smoothing properties of the second quantization operator
are proved in Section 2. The main results are presented in Section 3.

1. The operator of second quantization: basic properties

Let u be a Gaussian measure on H with covariance operator C. The Repro-
ducing Kernel Hilbert Space of the measure p will be denoted by H, = C'?(H).
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If he H, then we can define a linear function
$u(x) = <C™"h, x).

If h¢ H, then there exists a sequence h, e H, converging to h and we denote
by ¢, a unique limit in L?(H, p) of the sequence #,. Note that

J (X) A (x)p(dx) = <{h, k. )
H

Let #, denote the closed subspace of L*(H, u) spanned by all products Gn, - O,
of order m<n of the functions ¢, , ..., ¢, and let #, be the orthogonal
complement of #_,_, in #_,. Then the Ito-Wiener decomposition says that

L*H,p) = @ #,
n=0

where #; is the space generated by constants. Denoting by I, the orthogonal
projection of L?(H, u) onto #, one can easily show that (see for example [S])

<In(¢hl ce ¢h,,)’ In(¢k, e ¢k,,)> = Z <h1 J ka(1)> e <hn’ ka’(n)>’
where the sum is taken over all permutations of the set {1,...,n}. In particular

j (@ - ) )12 pldx) = koL kg 25 Ry 1 A3)
H

for m=3"_,k; and every collection of orthogonal vectors h,, ... h,. Let .o
denote the set of all infinite sequences of nonnegative integers o = (a,) such that

Q0
la| = 21 a, < 00.
=

For an arbitrary complete orthonormal system (CONS) {e,:k > 1} in H and
x € o/ we define the vector

—s

fi=

1
—=1, (¢29).
Lot Y

Then from (2) and (3) the system { f,: « € &/} is an orthonormal system in L?(H, p)
and because the space of polynomials £ (see Section 2 for definition) is dense
in L?(H, p) this system is complete. Moreover, {f,: a € o, |a| = n} is a complete
orthonormal system in J#,. Note that for a fixed unit vector ee H f, , ., n=0,
are usual Hermite polynomials.

Let F,: 5, - #, be a sequence of bounded operators. Then the equality

F= 3 L)

defines the possibly unbounded operator in L2?(H, ). For bounded operators
T, and T, on H we define the operator



Ornstein-Uhlenbeck semigroup 485

T; o T;(n_l)ln(¢h,'“¢h,,) = In(¢T,h,¢T2h2"'¢Tzh,,) + + In(¢T2h|"'¢T2hnA,¢T,h,,)

acting in s, Finally, if T is a bounded operator on H then we define an
operator I,(T): #,— #, for n > 1 by the formula

Ey(T)]n(¢h, .. ~¢h,,) = In(¢Thl ce ¢Th,,)~

For n =0 we put I(T)1 = 1. The following simple lemma will be useful in the
sequel.

Lemma 1. a) The operator F defined above is bounded on L*(H, ) if and
only if

sup [[F,| < o

n>1

and in that case

IFIl = sup IEIl-

b) The operator T, o Ts"~" is bounded on X, and
ITy o TV < n|| Ty | T,11"
o [IL(MDI=ITI|"

We are going to recall now the definition and basic properties of the so-called
second quantization operator. For more detailed discussion see for example [S].
Let T:H - H be a contraction and let us define the operator I'(T) on the
algebraic sum ) 2, #, by the formula

(1) = 3, L)@
Then by Lemma 1 I'(T) has a unique extension to the contraction on L*(H, p).
If T is a bounded linear operator on H then the operator C**TC™'? is

bounded on the space im (C'?) and therefore it can be extended in a unique
way to a p-measurable linear transformation T, on H such that

J | Tex||?u(dx) = tr (C*APTT*C'?).
H

Therefore if additionally T is a contraction and ¢ is a bounded Borel function
on H then the formula

Mzé(x) = J $(T*)ex + (V1 — T*T)cy)u(dy)  for p-aa. x,
H

which is sometimes called the generalized Mehler formula, defines a bounded
measurable function on H.
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Proposition 1. For arbitrary contraction T on H and every p > 1 the operator
My is a contraction on LP(H, p). Moreover My = I'(T) on L*(H, p).

Proof. Note that

M7é(x) = j $((T*)cx + 2)v,(d2),
H

where v, is a centered Gaussian measure on H with the covariance operator
C' (I — T*T)C"* and hence M ¢(x) is well defined for ¢ € LP(H, y) and p-a.a. x.
As a consequence we find that

,

L P(TH)ex + (V1 — T*T)cy)u(dy)‘p#(dX) < J |$(2)[Pvy * v, (dz)
H

= J |9(2)|Pu(dz),
H
where v, is a centered Gaussian measure with the covariance operator

C'>T*TC'. This shows that My is a contraction on LP(H, u). To prove the
last statement of the proposition let

E,(x) = e —121kI%
Then the set {E,: heim (C*?)} is linearly dense in L*(H, u) and for he im (C*?)
MpE,(x)

1
= L exp (—5 IR + <CT2h, (T*)ex + (/1 — T*T)cy>>u(dy)
1
= exp (—5 il + {C™2h, (T*)cx>> L exp (C™'2h, (/1 — T*T)cy))u(dy)

= exp(— A+ <Ch (T ) exp (3.1 = T*TIh B ) = Eryo

On the other hand, taking into account that (see [S])

Sl.—.

we obtain

1
n_ (¢’;“h) = ETh

[(T)E, = I(T) z 1(¢h -3
and that concludes the proof.
In Lemma 2 below we collect some basic properties of the operator I

Lemma 2 ([S], chapter 1). Assume that T, T,, T, are contractions on H.
Then the operator I'(T): L*(H, p) - L*(H, u) enjoys the following properties:
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a) I'(ly) = I 2m, -

b) I(T,T,) = I'(L)I(Ty).

c) I™(T)=I(T*).

d I(mi1=1.

e) The operator I'(T) is positivity preserving: if ¢ > 0 p-as. then
I'(Te¢(x) =0 p-as.

f) The operator I'(T) has an extension (restriction) to a positive contraction
on every LP(H, p) for p>1.

g) For every p>1 and

p—1

I @

go=1+

we have

(T Lo pao = 1
and if q > qo then

I7(T) Lo~ pa = 0.

Proof. The properties a)—d) are obvious, e) and f) follow easily from Propo-
sition 1 and the proof of g) can be found in chapter 1 of [S].

2. The operator of second quantization: compactness and smoothing properties

Let T be a selfadjoint contraction with a complete orthonormal set of
eigenvectors {v,: k > 1} and the corresponding sequence of eigenvalues 1>t, >
t, > -+ >0 (multiplicities taken into account). Then the operator I'(T) is also
selfadjoint with the complete orthogonal set of eigenvectors

{ f[ I,j(qﬁ,‘j‘;’): o E d}

and the corresponding set of eigenvalues

{tazﬁtﬁ:aed}. )
j=1

Proposition 2. (a) Let p, q=>1 and T #0. The operator I'(T): LP(H, ) —
L%H, p) is compact if and only if T is a compact strict contraction and q < g,
where qq is given by (4).

(b) The operator I'(T) is of Hilbert-Schmidt type on L*(H, p) if and only if
T is a strict contraction of Hilbert-Schmidt type and in that case

1

1 (T)us = \/a—(l——-T*AT)'

Proof. a) By Lemma 2 the operator I'(T): LP(H, u) — L%(H, p) is bounded.
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First we shall show compactness for p=g=2. Let T be a compact strict
contraction with the polar decomposition T= U|T|. Then the same property
holds for |T| and therefore by b) of Lemma 2 we can assume that T is selfadjoint
and nonnegative. Then all eignvalues of T are nonnegative and less than 1 and
hence for any given s> 0 there is only a finite number of products (5) greater
than s. Therefore zero can be the only accumulation point of the spectrum of
I'(T). If we fix the eigenvalue t, < 1, say, then by the similar argument there
can be at most the finite number of eigenvalues t, =t,. Moreover, we also
obtain from (5) that 1 is an eigenvalue of I'(T) of multiplicity one (for « =0
only). Then compactness of I'(T): L*(H, u) - L?(H, p) follows.

Therefore, because I'(T): LP(H, u) - L”(H, i) is bounded for every p > 1, we
find by interpolation [T] that I'(T): L?(H, p) —» LP(H, p) is compact for all p > 2.
Repeating this argument for 7' (T*) we obtain compactness for all p > 1.

Finally, to prove compactness of I'(T): L°(H, u) » L(H, ) note that

N(T)=TrW)Ir(T*)rqTe), (6)
with the operator
I'(U): L*(H, p) - L"(H, p)
bounded, the operator
T(TI'™): LP(H. p) = Lo
bounded for

p—1
‘10(8)=1+W:;,

and the operator
(| TF): LP(H, p) > L*(H, p)
compact. Because

lim go(e) = g0
e—=0+
it follows that I'(T) is compact from L? to L? for every q < q,.
To prove necessity let I°(T): LP(H, u) - L'(H, u) be compact. Then every
sequence of the elements of the set {I'(T)¢,: |h| < 1} contains a convergent in
L'(H, p) subsequence I'(T)¢, , say. It follows that

n,m- o n,m— o

2
lim ([ I(T) (4, — ¢, )1 = \/; lim |T(h, — h,)| =0

and hence T is compact and so is |T|. If 1 is an eigenvalue of |T| then by (5)
there is a non-zero eigenvalue of I'(|T|) of infinite multiplicity. But, by Lemma
2b), I'(|T]) is compact and we have a contradiction. Therefore || T| < 1. Finally,
assume that I'(T): LP(H, p) — L9(H, u) is compact, where T # 0 and p > 1. Then
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from the previous reasoning T is compact and it is enough to consider T self-
adjoint and nonnegative. Let h be a norm one eigenvector such that Th = || T|h

and define
1 —
() = exp (n¢h = §n2> = exp( = n2> E ().

Then | f,ll, =1 for every n>1 and by Proposition 1

1 —
L(T)f,(x) = exP( P n2> E, (%)

which implies

1 — —1
11°(T) £yl = €xp (—Z—Eﬁ) exp <q°Tn2 ||T||2> =1. (7)

If g #0 and |¢,(x)| < co then
lim E, (x) = 0

Therefore this convergence holds for u-a.a. x but in view of (7) it is a contradiction
with compactness of I'(T). The proof of (a) is finished.

b) As in a) it is enough to prove b) for T selfadjoint and positive. If T
is of Hilbert-Schmidt type then

Y ML = Z

ae o

00 00
=2 X [lg

n=0 |a|=n j=1

=rro=li—p

- - J

provided |T| <1 and the first part of (b) follows. Conversely, if I'(T) is a
Hilbert-Schmidt operator then the same property holds for I'(|T|) hence for
I(|T)) as well. We find that

u:lg

n[\/]s

S IRy = § ¢ <o

and in view of (a) ||T|| < 1.

Remark 1. Note that I'(0) is the expectation and hence I(0): L'(H, u) —
L®(H, ) is compact. If T # 0 then, by Proposition 2(a) I'(T): L'(H,n) —
L'(H, p) is not compact.

We shall discuss now smoothing properties of the operator I. To this end
we need to define the scale of Sobolev spaces W2 P(H) for arbitrary integer n
and p > 1. Let hy, h,, ... be a sequence of vectors in H, and let 2 denote the
space of polynomials on H of the form

¢(X) = P(¢hl(x)’ AR ¢hm(x))a
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where m > 0 is arbitrary and P is any polynomial of m variables. Then we
define the first Sobolev norm of ¢ € 2 by

I¢l%., = 1411” + |C2Dg|?

and for n>2

Il%., = 1412-1 + (C*Dy'4|”,

where the norm of the operator (C'?D)" is the Hilbert-Schmidt norm in the
space H®". Let L, denote an Ornstein-Uhlenbeck operator (1) with A4 =
—3I and Q = C considered in L°(H,pu). Then for every « > 0 the space
dom (I — L,,)*? can be endowed with the norm

1o, = I — La)*4l,

and by the Meyer inequalities (see p. 28 of [W]) the norms ||, , and |-|, , are
equivalent for all n>1 and p > 1. Therefore, we can define the space WP(H)
as the closure of 2 in LP(H, u) with respect to the norm |-|, ,. Moreover, for
any o >0 we denote by W&?(H) the space dom (I — L,,)** with the norm ||, ,.
For a <0 we define W&P(H) as the completion of LP(H, u) with respect to the
norm ||, , and then W *%(H) can be identified with the dual of W P(H), where

- _ Forp=2
9=y Forp

#22= 3 G+ 17 1L@)° ®

and in particular for « =1 we have |¢], , =|¢l; ,. In the sequel we consider
the space W& ?(H) with the norm ||, ,. In the next lemma by H®" we denote
the n-fold tensor product of H equipped with the Hilbert-Schmidt norm. By
I'(T)® T we denote the tensor of I'(T) and T acting in the space LP(H, u; H).
This operator is well defined because I'(T) is positive.

Lemma 3. For ¢ € WiP(H), n>1, p> 1, we have
(C'2Dy'I(T)¢ = I'(T) ® T®"(C'Dy'¢. )
For & e dom ((CY*D)")* < Li(H, u; H®")
(C?*DYy*I(T)® T"® = I(T)((C'*D)")*® (10)
and for ¢ € dom (L)
Ly I'(T)p = I'(T)L 9. (11)
Proof. Note first that by limiting argument
C'2DIL,(4") = mlp_, (" ')A

for every he H. Using polarization and the density of polynomials in WP(H)
we can reduce the proof of (9) to the case when ¢ = I,(¢") with m > n. In that
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case
(C2DY I(T)1(¢") (x) = (CY2D)L,,(413) (x)

=m(m —1)...(m — n + DI,_,(¢5,") (x)(Th)®"
=mm—1)...(m — n + DI(T)® TO"(L_,(#" ")h®")(x)
= I'(T) ® T®"(C2D)"L,,(¢")(x).

To prove (10) note first that by (9)
C2DI(T*) = I'(T*) ® T*C"D.

Hence

(C*D*I(T)® T = (I'(T*) ® T*C'2D)* = (C'2DI(T*))* = I'(T)(C**D)*

and (10) follows for n=1. For n> 1 the proof is similar. The last identity
(11) follows from (9), (10) and the fact that L, = —3(C**D)*C'?D. Note that
(11) follows easily from the fact that e’ = I'(e”"?I).

Proposition 3. Let |T|| < 1. Then the following holds.

a) For all p, g > 1 and a« € R the operator I'(T) has a unique extension (restriction)
to a norm one contraction I'(T): W& P(H) - W2 9(H) provided q < q,, where q,
is given by (4).

b) Assume that T is a strict contraction, o, feR and p, ¢q>1. If a <f and
q < qo, where qq is given by (4) then the operator I'(T): W&"(H) - W (H)
is bounded. Moreover, if T is compact then I'(T): W&?(H) - W£9(H) is also
compact for q < q,.

c) Assume p=gq=2. Then the operator I'(T): W&*(H)— W£2(H) is bounded
for all o, Be R if and only if T is a strict contraction and in that case for a < f§

1
p—a)/2
[ T(T)lwazews2 < C(T)( 4 W
with
o= L2
2log ——
BT

provided |T| >e ®~2 If |T| <e ¥ 2 then |I(T)| -, =1

Proof. The part a) is an immediate consequence of (11).
b) For any contraction T we have

T
F(T)—F(IITII)F(m>

and by a) the operator
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T
r(uTu) e = e

is bounded. We show first that the operator I'(||T|): W&9(H) —» WEI(H) is
bounded. If ¢ is the solution to the equation

IT| =e™?
then
Ty =
Since the semigroup e'™ is analytic in LI(H, u) for ¢ > 1 we find that

1T D weaswsa = I = Ly 2L T Lo 0

~ a
= (I — Lp)® ™™ || o pa < (=22

for certain a >0 and the boundedness follows. In the next step we use the
representation

I(T) = L(TH (T I),
where U is a unitary operator on H. By the first part of the proof the operator
I(|TI): We4(H) - W 9(H)
is bounded and by Lemma 2 and the definition of Sobolev spaces the operator
F(TI'70): WEP(H) - WE9(H)

is bounded for g < g, by the same argument as in the proof of Proposition 2.
Moreover, if T is compact then once more invoking Proposition 2 we obtain
the compactness of I'(T) for g < q,.

c) We shall consider now the case p=q =2. Note that for ¢ € W2

ITN(T)Pllgep = I — Lp)?~@2I(T)(I — Ly )|l

Taking into account the definition of I'(T) we obtain
(I = Ly)*= 2 I(T) = Z (I — Ly)? ™2 L(T) L ()
and now Lemma 1 and properties of L,, yield
1Tl p = sup I — Lp)? 2L = sup ((k + D=2 L(T)).
Hence

I (T)lmp = sup ((k + DE=2|T*).
=1
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To conclude the proof of boundedness it is enough to notice that the above
estimate is finite if and only if ||T|| <1 and in that case

1

sup (k + 1| T|* < C(T)”_“mwc(—r»

k>0
provided ||T| >e ¥ ®72  Otherwise

sup (k + 1)f7* T||% = 1.
k>0

Remark 2. It follows from Proposition 2.2 in [DZ3] that the imbedding
of W2%(H) into L*(H, p) is not compact. The following example shows that
this property holds for an arbitrary pair of Sobolev spaces discussed in this
section. It is enough to consider the imbedding of W/ ?(H) into LY(H, p). The
general argument is the same. Let {ei;k > 1} be a CONS in H. Then

C'2D¢, = e and |¢, |, = c, for every k > 1. If the family of functions

{#: k > 1} is relatively compact in L%(H, u) then there exists a subsequence k;
such that ¢ekj are convergent u-a.s. and therefore convergent in L?(H, p) but this
is impossible.

3. The Ornstein-Uhlenbeck semigroup as the second quantized operator

We start with the following lemma.

Lemma 4. If (Al) holds then S(t)YH, = Hy for all t > 0, and Sy(t)

0.2S(t)QY2, t >0, is a strongly continuous semigroup of contractions on H.
Moreover |So(t)| < 1 if and only if im Q}* =im Q'

Proof. We show first that S(t)H, = H, for every t > 0. Note first that for
a fixed t > 0 the operator T = QY25*(1)Q,'? is well defined and bounded on H,
and for he H,

R, ¢y(x) = j (S()x + y, Q) p(dy) = {x, S*(1)Q P h) = ¢ry(x).
H
Hence for he Hy, and ke H we obtain

<Rt¢h’ ¢k> = <¢Ths ¢k> = (Th, k>'
Therefore
[<Th, k>| = |<R, @y &>l < ||l IK]

and it follows from this inequality that the operator T has a unique extension
to a contraction on H which is denoted by S¥(1). Let S,(t) denote its adjoint
on H. Then

<hy So()kd = <Th, k) = <Q”h, S1)Q.2k)

and as a consequence we find that S(t)QY’k € H, for every k € H. Hence
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S(t)Hy = H, and Sy (t) = Q2S(t)QL?. Clearly, S, enjoys the semigroup property.
Taking into account that

0w =0, + S(HQ,S*()
we obtain
Qux, x> = (I — So(t)SF(1)QY2x, QL2 x>. (12)

It follows from this equation and (A1b) that the operator I — Sy(t)S¥(t) is non-
negative. If xe H and y e H, then

El_r.g <S0([)X, y> = <X, Y>

and because S,(t) is uniformly bounded the standard argument shows that S, is
weakly continuous at zero and hence a C,-semigroup (see Theorem 1.4 in [P]).
The last part of the lemma follows easily from (12).

The next theorem establishes connection between the second quantization
operator discussed in Section 1 and the Ornstein-Uhlenbeck semigroup. In a
different framework it has been noticed also in [FP].

Theorem 1. If (A1) holds then R, = I'(S¢(t)) and R} = I'(Sy(t)). Moreover,

R,¢(x) = J PSOx + QLT = So(1)SFO QL y)u(dy) (13)
H

and

RF¢(x) = L HQLSEDQZx + QY2 /T — SF(DSe())Q2y)(dy) (14)

Proof. The theorem follows straightforwardly from Proposition 1 and
Lemma 4.

Remark 2. If ¢ is bounded then (13) holds for al xe H. If moreover,
S(t)(im (Q,)) = im (Q) then (14) also holds for all x e H.

It follows from Theorem | and the definition of the operator I" that the
space 4, is invariant for R,. Let R} denote the semigroup R, restricted to .,
and L, be its generator. Then the set

D= {1y, # ) hy, ..., h,edom (4F)} = dom (L,)
is a core for the semigroup R} and on 9,

LuLh ) = 3 L, b ) (15)

Similarly the noncompleted direct sum
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9= 9,cdom(L)
n=1

is a core for the semigroup R,.
The following hypercontraction result is an immediate consequence of
Lemmas 1 and 4 and Theorem 1.

Theorem 2. Let (A1) and (A2) hold. Then for p, q>1 and t >0

||R,|le_.Lq =1

-1
=12 15000

If this condition is not satisfied then ||R,||Lp-pa = 0.

if and only if

Remark 3. In general Theorem 2 does not imply that the generator L
of the semigroup R, is a Sobolev generator in the terminology of Gross [G].
However, if [|Sy(t)]| < e™* for certain a >0 then L is a Sobolev generator.

In Theorem 3a) below we give a complete answer to the question of compact-
ness of R, on the scale of LP(H, u) spaces and generalize some results from
[DZ3] and [CG1]. Note that for the limiting exponent g, given in Theorem
2, R, is still bounded but it is not compact. In particular, R,: L'(H, u) - L*(H, p)
is not compact, unless S(t) = 0.

Theorem 3. Let (Al) hold.
a) For p,q=1 and t >0 the operator R,: L°(H, u) — L% H, u) is compact if and
only if (A2) holds, Sy(t) is compact and

p—1

<l+-——.
1 1So (0112

b) The operator R, is Hilbert-Schmidt on L*(H, u) if and only if So(t) is Hilbert-
Schmidt on H and (A2) holds. In that case
1
Jdet (I — So(0)S¥(1)

Proof. The proof follows immediately from Lemma 4 and Proposition 2.

IR\ us =

The next theorem shows that the semigroups R, and R¥ have some smoothing
properties which are described by the estimates (16) and (17) below. These esti-
mates are more precise than the analogous ones obtained in [CG2] by the use
of Cameron-Martin formula.

Theorem 4. a) If (Al) holds then R, and R} define strongly continuous
semigroups of contractions in all spaces W3'P(H) for p>1 and aeR.
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b) If additionally (A2) holds then R, and R} are bounded operators from Wg:P(H)
to WQ”;"(H) for all a, feR and q < q,, where q, is given by (4). Moreover,
if So(t) is compact then R, and R¥ are compact from Wg:P to W&"(H) for
all @, feR and q < q,.

c) Let (Al) hold. Then the following properties hold if and only if (A2) is
satisfied. The operators R, and R} are bounded from W§*(H) to WS *(H)
for all o, BeR. Moreover, for > a

1

Ll .
[[So ()l ™~

IR w2 g2 < (16)

and

1

IR¥ w2 wwgz < P~
N EOTRS

(17)

where

p—a

1
2log ———
STNG]

provided || Sy(t)l| > e"#~2. Otherwise ||R,|l, 5= IR, =1. If So(t) is com-
pact then the operators R;: W3 *(H) - W§:2(H) are also compact.

Proof. Follows from Proposition 3 and Theorem 1.

Corollary 1. Assume (Al) and ||So(t)| <e ™. Then for any T >0 there
exists C > 0 such that for t < T

C

IQLZDR,II; + 1QWDRY |, < 7;

Proof. This corollary follows from the equality |-|l, , =||;,,, Theorem 4
and the estimate ¢, < (2at)™'.

Theorem 5. Let (Al) and (A2) hold. Then the semigroup R, is differentiable
on L?(H, p) if and only if So(t) is differentiable.
Proof. Assume that S&(t) is differentiable. Then by [P]

d
530 = 4355()

in the uniform operator topology. We need to show that R, is differentiable
for t > 0 and the operator
d

i Ri=LR,

is bounded. To this end it is enough to show that the operator LR, extends
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to a bounded operator on L*(H, u). Note also that for ¢ € 2

ILR,¢|? = Z; IL,RYL (@) -

Hence we need to show that for t >0

sup || L,R?|| < oo.

nx1

Theorem 1 and (15) yield that

n
LnR:'In(¢h| -~-¢h,,) = 21 In(¢sg(1)h,-'-¢Sg(r)h,-_1¢A3$5(1)h,~¢58(:)h,»+,”'¢S$(t)h,,)~
i=

Because A¥S¥(t) is bounded Lemma 1 yields

IL,RYI < nl AZSEOI SO

and because

sup n[|SF(0)"" < oo

n>1

differentiability of R, follows. To prove necessity notice that if R, is differentiable
then so is R! and so is S¥(r).
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