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Nonsymmetric Ornstein-Uhlenbeck semigroup
as second quantized operator

By

Anna Chojnowska-MicHALIK and Benjamin  G O L D Y S

O. Introduction

This work deals with properties of the sem igroup re la ted  to  th e  Ornstein-
Uhlenbeck operator

L O (x) =  Tr QD2 0(x) + <Ax, 1)0(x)> (1)

i n  a  real separable H ilbert space H .  W e  assum e th a t  A  i s  a  generator of
G-semigroup S(t), t > 0 , o f bounded operators o n  H , Q is bounded, selfadjoint
and nonnegative. By DO we denote the Fréchet derivative of a function oft: H  R.
Notice that LO(x) is well-defined for every x e H, at least for appropriately chosen
cylindrical functions (see [CG1] for details). In  this paper we require that

(Ala) tr S(u)QS*(u) du < oo.
Jo

If (Ala) is satisfied then we can define o n  H  th e  family o f  Gaussian measures
t > 0 , a n d  y  w ith the  mean zero and the covariance operators

Qt= fS(u)QS*(u) du
o

and

= I S (u)QS *(u) du
Jo

respectively. F o r simplicity o f presentation we assume that

(Alb) ker Qc o = 101.

Let

R,0(x) = 0(S(t)x + y)p,(dy).
H

Then the  family of operators R ,, t > 0, form s a  strongly continuous semigroup
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of contractions on LP(H, it)  for every p  >  1 .  Moreover, it can be shown [CG 1]
that L has a unique extension to  a  generator of Co -semigroup on LP(H, pi) (p  > 1)
which coincides with R 1 . The semigroup R , can be identified as the transition
semigroup corresponding to the Ornstein-Uhlenbeck process o n  H:

Zx(t) = S(t)x + S (t —  s)dW (s),
Jo

w here  W  is  a  W iener process o n  H  w ith  the covariance operator Q  tha t is
R10(x) = EO(Zx(t)) (see [D Z2] for details).

In  this paper we investigate hypercontractivity, compactness and  space-time
regularity of the sem igroup R , and  give necessary a n d  sufficient conditions for
each case . T he  results obtained are important for the investigation of uniqueness
and ergodic properties of the semigroups related to  m ore general operators of
the  form

L i4(x ) =  t r  QD 2 60(x) +  <Ax + F(x), DO(x)>.

The question of hypercontractivity of the Ornstein-Uhlenbeck semigroup goes
back to the seminal papers of Nelson [N] and Gross [G1] and has been investi-
gated mainly for symmetric semigroups or m ore generally for the  class of semi-
groups possessing Sobolev generators [G2]. Essentially, hypercontractivity in
infinite dimensions is know n in  the  symmetric c a s e . W e are  not aware though
of any such result for the general Ornstein-Uhlenbeck semigroup. The generator
L  of the nonsymmetric semigroup R , need not be a Sobolev generator, even in
finite dimensions, and hence the methods developed in  [G 1] a re  no t applicable.
However, we show  that hypercontraction property holds in  th is  case as well.
Hyperboundedness of the infinite dimensional nonsymmetric Ornstein-Uhlenbeck
semigroup in stronger norms has been obtained recently in  [C G 2 ] a n d  under
stronger conditions then ours in [F1].

T he  first results o n  compactness of the Ornstein-Uhlenbeck semigroup in
infinite dimensions have been obtained in  [D Z 3] and  extended in [C G !] under
th e  assum ption that all th e  measures ,u,*bs tox  a r e  equivalent. I n  both papers
the  m ain  to o l to  show  th is w as th e  smoothing property of the sem igroup R,
and compactness of the appropriate Sobolev imbedding. In  this paper we give
necessary a n d  sufficient conditions for compactness o f  R , a s  a  mapping from
LP(H, it) into OH, it) and moreover we use a completely different method. The
Hilbert-Schmidt property of the semigroup R , has been shown for the first time
in [F !]  u n d e r  more restrictive conditions and with more general assumptions in
[C G 2 ]. In  this paper we give necessary and sufficient condition for the Hilbert-
Schmidt property with a  simpler proof.

Necessary a n d  sufficient cond itions fo r the  sem igroup  R , to transform
bounded measurable function into Fréchet differentiable C  functions were given
in  [D Z 1 ]. In  th e  present setup this property does not h o ld .  However, defining
Sobolev spaces as in the Malliavin calculus we show that R, transforms elements
o f  arbitrary negative Sobolev space into infinitely smooth functions. W e give
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also explicit estimates o n  th e  directional derivatives o f  th e  function R ,O . The
same estimates a re  show n to  hold  for the adjoint sem igroup R;1`  also. Finally
we obtain necessary and  sufficient conditions for the semigroup R, to be differ-
en tiab le . This result is optim al in some se n se . Namely, it can be shown [F2]
tha t the semigroup R, is not analytic in  general, even in  finite dimensions.

Let H =  0 , 2 (H) be the Reproducing Kernel Hilbert Space of the measure it.
If (A l) holds then Ho endow ed w ith the  norm lx110 1 Q 0 o--1/2x11 is continuously
and  densely imbedded into H .  In  Section  3  w e show  th a t  if  (Al) is satisfied
then the  space H , is  invariant for the semigroup S(t):

SW(H 0 ) c 110

for every t >  O . This property is equivalent to the boundedness of the operator

So (t) = 12 112 S(t)Q

I f  th e  controllability condition im  S(t) i m  12 2  in tro d u c e d  b y  D a P ra to  and
Zabczyk [D Z1] holds fo r t >  0  then the semigroup S 0 (t) is  of Hilbert-Schmidt
type and the following condition holds:

(A2)
 im  Q t1/2 QV

which we will need also in  m any cases.
In  order to analyze the Ornstein-Uhlenbeck semigroup we show that R, can

be represented a s  th e  so-called second quantization o f  th e  operator St, (0 , the
property well known for the case A = — I. T o  the best of our knowledge such
a  representation for the nonsymmetric case has not been presented before even
in the finite dimensional case. The second quantization operator via the Mehler
formula has been discussed recently i n  [F P ] w ith in  th e  framework o f  locally
c o n v e x  sp a c e s . I t  h a s  b e e n  a p p lie d  to  sh o w  tightness o f  capacities related
to  the  symmetric Ornstein-Uhlenbeck semigroup. In o u r  paper, motivated by
applications to stochastic evolution equations, we restrict ourselves to the hilber-
tian case only and  provide m ore detailed result about the nonsymmetric semi-
group R .  First, we investigate th e  suitable properties o f  th e  abstract second
quantization operator. Som e o f them  are  new a n d  also o f in te rest. T hen  the
properties of R, are obtained as rather simple consequences of the representation
of R, as the second quantization of S ( t) .

In  S ec tion  1  below  w e recall basic properties o f the  second  quantization
operator a n d  prove a  version  o f the  M eh le r fo rm ula . Compactness, Hilbert-
Schmidt property and  smoothing properties of the second quantization operator
are proved in  S ec tion  2 . T he  m ain  results a re  presented in Section 3.

I. T h e  operator of second quantization: basic properties

Let ,u be a  Gaussian measure on H  with covariance operator C .  The Repro-
ducing Kernel Hilbert Space of the measure i  w ill be denoted by Ho = 012(H).
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If h e Ho then w e can define a  linear function

Oh(x) =  <C -1 1 2 1 1 , x>.

If  h  Ho then  there  ex ists a  sequence h„ e Ho converg ing  to  h a n d  we denote
by  oh a  u n iq u e  lim it in  OH, it) of the sequence 0 .  N ote that

f On(x)Ok(x)Ii(dx) = <h, k>. (2)

Let ,Y(  denote the closed subspace of OH, p) spanned by all products On , ...
o f  order m  < n  o f  th e  functions q 1 , . . . , 0„  a n d  le t  Yin b e  the orthogonal
complement of ,Ye,„_, in  Yt< n . Then the  Ito-Wiener decomposition says that

L2 (H, /2) = C)
n=0

where Yt°0  i s  the  space generated by constan ts . D enoting by In the orthogonal
projection of L 2 (H, /2) onto  ,Yf„ one can easily show that (see for example [S])

<1 .(4, • • • Oh), 1.(4 1 ...95k,,)> = I , k(,>... <h,„

where the sum is taken over all permutations of the set 11, , nl. I n  particular

H  I.(01; ; • • • 0;)(4 2 12 (dx) = k 1 ! ... kn ! 1111 1112 k  I1 1 11.112 k " (3)

for m  = E;=,k ;  a n d  every collection of orthogonal vectors h1 , h„. L e t  d
denote the set of all infinite sequences of nonnegative integers a  =  (cx„) such that

co

= E OE„ < 00.
n=1

F o r  a n  arbitrary complete orthonormal system (CONS) {e k : k > II in  H  and
x  e  s i we define the vector

cc

fO E   (0P).
"J•

Then from (2) and (3) the system {fŒ : a e  d } is an orthonormal system in OH, /.2)
and  because the  space o f polynomials (see Section 2 for definition) is dense
in  L 2 (H, /2) this system is complete. Moreover, { fŒ: a c d , =  n }  is a  complete
orthonormal system in  ,Ytn . Note that for a fixed unit vector e e H f 0 ,  n  >  0,
are  usual Hermite polynomials.

Let Fn : lf„ —> Yt b e  a  sequence of bounded operators. Then the equality

FO  = F I ( q )
n=0

defines the  possibly unbounded operator in  L 2 (H , pt). F o r  bounded operators
T, a n d  T 2  o n  H  we define the  operator
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0 71 ( n  1 )
 n (O h  • • • Oh n ) in(Orth OT2h2 ' • • OT 2 h ) ±  •  •  •  4 " n(OT " O T2h r ,- I OT

ac ting  in  Yen . Finally, i f  T  i s  a  bounded operator o n  H  then w e define an
operator I (T ):  f f„  , l e „  for n > 1  by the formula

r n ( T )  n ( O h  • • • O h) —  n(OTh • • • OTh n )•

For n 0  we put To (T )I  =  1 . T h e  following simple lemma will be useful in the
sequel.

L em m a 1. a) The operator F  defined above is bounded on L 2 (H, g) if and
only  if

sup 11 F  < OC)
n > 1

and in that case

11 =  sup IT n 11 •
n>1

b) The operator T, o TP" - ' ) i s  bounded on 'en and

I1T1 ° "II n117 '111117 '211' 1 .

c) T(T )11 = 111'11".
We are going to recall now the definition and basic properties of the so-called

second quantization operator. For more detailed discussion see for example [S].
L e t  T :  H  H  b e  a  c o n tra c tio n  a n d  le t u s  define th e  opera tor F (T ) on the
algebraic sum Y;°- 0 -San by  the formula

F(T)0 = T n ( T ) 4 ( 0 ) .
n=0

Then by Lemma 1 T IT ) has a unique extension to  the contraction on L 2 (H, /./).
I f  T  is  a  bounded linear operator o n  H  then  th e  operator C i /2 TC - 1 /2 i s

bounded o n  th e  space im (C I12 )  a n d  therefore it can be extended in  a  unique
w ay to  a si-measurable linear transformation Tc  o n  H  such that

5H IITcx112 /1 (dx) = tr (C 2 TT*C 1/2 ).

Therefore if additionally T  is  a contraction and 0  is  a  bounded Borel function
o n  H  then the formula

M T (x) = 0((T * 0  +  ( \ /1 — T * T)c.011(dY) for ft-a.a. x,
H

which is sometimes called th e  generalized Mehler formula, defines a  bounded
measurable function o n  H.
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Proposition 1. For arbitrary  contraction T on H and every p > 1 the operator
M T  is a contraction on LP(H, a). M oreov er M T  =  F (T ) on L 2 (H, 1.1).

P ro o f . Note that

M T (X) = 0((T*) c x + z)v i (dz),
H

where 1/, is  a  centered Gaussian measure on H  w ith  the covariance operator
C1/2 (1 — T*T)C 1/2 and hence M T 0(x) is well defined for 0 e  LP(H, it) and p-a.a. x.
As a consequence we find that

L 1.0((T*) c x + (.0  —  T *T ) c y)a(dy) it(dx) <
H  leli(z)rvi * v2 (dz)

= 10(z)ru(dz),
H

w h e re  y ,  i s  a  cen te red  G au ssian  m easu re  w ith  the covariance operator
C 112 T*TC 2 . This shows that M T  i s  a contraction on LP(H, a). To prove the
last statement of the proposition let

Eh(x) = e 4(x)-1/2 ph2
.

Then the set {Eh : h e im (0/2 ) }  is linearly dense in L 2 (H, it) and for h e im (C 112 )

M T E h(X)

= f exp
1

— hM2 + <C - 1 1 2 h, ( T *) c x  +  (0 — T*T)c.Y>)11(dY)
H

1
= eXp (— —

2
11h1 2 +  <C- 1 1 2 h, (T * ) X>) f eXP (<C - 1 / 2 h, (.0 — T * T)cY>)1-1(dY)

H

= exp(— , 1117112 +  <C- 1 / 2 h, (T*)cx>) exp (
_  T*T)h, h>) = E T h (x).

On the other hand, taking into account that (see [S])
co 1

Eh  =  E
n=0 n!

we obtain
.0

F(T)E h =  F (T ) E  —In (0,7) =
n=0 n! E  — /  o— E Th

n = 0  n! n
to

and that concludes the proof.

In Lemma 2 below we collect some basic properties of the operator F.

Lemma 2  ([S ], ch ap ter 1). A ssume th at  T , T ,, T2 are contractions on H.
T hen the operator TIT): L 2 (H, it) —■ L2 (H, a) enjoy s the following properties:
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a) r ( /H ) -4,2(H,lo•
b) F (  T2 )  r(T2)F(Ti).
c) T N T ) = F(T*).
d) F(T)1 = 1.
e) The operator F ( T )  is positiv ity  preserv ing: i f  0 0  it-a.s. then

F(T )0(x ). 0 y-a.s.
f) The operator F(T ) has an extension (restriction) to a positive contraction

on every LP(H, y) for p > 1.
g )  For every p > 1 and

p 1
q0 = 1 + 11 T IP

we have

T)11L,—Lgo = 1

and i f  g > go then

111 1T)11LP—ifl = Go.

Pro o f . The properties a)—d) are obvious, e) and f) follow easily from Propo-
sition 1 and the proof of g) can be found in chapter 1 of [S].

2. The operator of second quantization: compactness and smoothing properties

Let T  b e  a  selfadjoint contraction w ith  a  complete orthonormal set of
eigenvectors {14: k > 1} and the corresponding sequence of eigenvalues 1 t,
t2 > > 0 (multiplicities taken into account). Then the operator F(T ) is also
selfadjoint with the complete orthogonal set of eigenvectors

{

121 IOE.(e ) :  E
j = 1 "

and the corresponding set of eigenvalues

t„ = t p :  e (5)

Proposition 2. (a) Let p, g > 1  and T  O. The operator F(T): LP(H, y)—>
O H , y) is  compact if and only  i f  T  is  a compact strict contraction and g < go ,
where g o is g iv en by  (4).

(b) The operator F(T ) is  of Hilbert-Schmidt type on L 2 (H, y) if and only  if
T  is  a strict contraction of Hilbert-Schmidt type and in that case

1

(4)

CO

IIF(T)I1Hs = 
, A l e t  ( /  —  T * T )

P ro o f . a) By Lemma 2 the operator F(T): LP(H, y) L go(H , y) is bounded.
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F irs t w e  sh a ll show  compactness fo r  p = q = 2. L e t  T  b e  a com pact strict
contraction w ith  th e  polar decomposition T = U IT 1 . T hen  th e  same property
holds for T  and therefore by b) of Lemma 2 we can assume tha t T  is selfadjoint
and nonnegative. Then all eignvalues of T  are nonnegative and less than 1 and
hence for any given s >  0  there  is on ly  a  finite number o f products (5) greater
than s. Therefore zero can  be  the only accumulation point of the spectrum of
F ( T ) .  If we fix the eigenvalue tOE. < 1, say, then by th e  similar argument there
c a n  b e  a t  m o s t th e  finite num ber of eigenvalues t  t o,.. M oreover, w e  a lso
ob ta in  from  (5) tha t 1  is  an eigenvalue of R T ) of multiplicity one (for a = 0
only). Then compactness o f F(T): p )  p )  follows.

Therefore, because F(T): LP(H, 1, ) —* LP(H, p) is bounded for every p 1, we
find by interpolation [T] tha t F(T): LP(H, p)—> LP(H, p) is compact for all p > 2.
Repeating this argument for F(T *) we obtain compactness for a ll p >  1.

Finally, to prove compactness of F(T): LP(H, It) —> p) note that

T IT ) = 1 (U) 1 (I T1')F ( IT I ') , (6)

F(U): LP(H, p) L P(H , p )

T1 1-E): Lp(H ,  go(c)

P 1 
10 0  =  I  ±  

II 
7 '

 II 2 ( 1 — e )

and  the  operator

1(1 Tr): LP(H, p)—> LP (H,

com pac t. Because

li M  q0(E) = q0
e—.0+

it follow s that F(T ) is  compact from L P to  L " for every q < q () .
To prove necessity le t  F(T): LP(H, p)—■ L l (H, p )  b e  com pac t. Then every

sequence o f the  elements o f  th e  se t {1 (T)0,,: 0111 }  c o n t a i n s  a convergent in
(H, p) subsequence 1 (T )0 „, s a y .  It follows that

l i M  11-1T )(0h, Oh,)111
n,M — ■ 00

-2: lim  11T (h — = 0
it n , .

and hence T  is  compact and s o  is  T .  I f  1  is  an eigenvalue of T i then by (5)
there is a non-zero eigenvalue of 1(171) of infinite multiplicity. But, by Lemma
2b), T 1 )  i s  compact and we have a contradiction. Therefore  T  < 1. F inally ,
assume that F(T): LP(H, p)—> Lq"(H, p) is compact, where T  0 and p > I . T h e n

w ith the  operator

bounded, the  operator

bounded for



Ornstein-Uhlenbeck semigroup 489

from the previous reasoning T  is  compact and it is enough to  consider T  self-
adjoint and nonnegative. Let h be a norm one eigenvector such that Th = 11T h
and define

fn(x) = exp (0 „—  E2  n2 ) = exp (
1
 2

 P  n2 )E„n (x).

Ilf.11,= 1 for every n > 1 and b y  Proposition 1

F(T )fn(x )= exp (
1  —  p

 n 2 )  E„II T  lih(X)
2

which implies

Then

IlF1T/f„11,0 = exp (1
2  

P 112 )  exp ( 11°l   n2  11T 112 )  =  1.
2 (7)

If g 0  0  and 109(x)1 < oo then

firn Eng (x )= O.
n  o c

Therefore this convergence holds for ii-a.a. x but in view of (7) it is a contradiction
with compactness of F ( T ) .  The proof of (a) is finished.

b) A s in  a) it is  enough  to  p rove  b) for T  selfadjoint and positive. If T
is  of Hilbert-Schmidt type then

E Ilralf.11 2 = E 11 tlai= E E 1 - 1 tcrj

ne d j = 1 n=0 lal=n j=1

00 CO CO 1= tj2' = f l  j2
j=1 n=0 j= 1  1 —

provided 1171 < 1 and  the first part of (b) follows. Conversely, if  T (T ) i s  a
Hilbert-Schmidt opera to r then  the sam e property  holds fo r F (M )  hence for

a s  w e ll. W e find that

1111(ITI)vi ll2
2t •  <

j=1 j=1

and in view of (a) 11 < I.

R em ark 1. Note th a t  F(0) is  the expectation and hence F(0): L l (H, #)—>
123 (H, f t )  i s  com pact. If T 0  th en , b y  Proposition 2(a) F(T): OH,
L l (H, i t )  is  n o t  compact.

We shall discuss now smoothing properties of the operator F .  To this end
w e need to define the scale of Sobolev spaces 1V'P(H) for arbitrary integer n
and p  > 1. Let 111 , h 2 ,  . . .  be a  sequence of vectors in H , and let Y  denote the
space of polynomials on H  of the form

0(x)- P(Oh, (x ) , • • • , 0 h , , ,(x )),
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where m > 0 is arbitrary  a n d  P  is  a n y  polynomial of m variab les. Then we
define the  first Sobolev norm  of 0 e g  by

110111Lp = 1101I P + 110 / 2 D0IIP

and for n > 2

11011„,„=110g-i+11(c'D)"011°,
where th e  norm  o f  th e  operator (C 1 1 2 D)" i s  the Hilbert-Schmidt norm  in the
space H®". L e t  Lm d e n o te  an Ornstein-Uhlenbeck opera to r (1) w ith  A  =
—1 1  a n d  Q  =  C  considered in  LP(H, p). T hen fo r  every a  >  0  th e  space
dom (/ — 404 2  can be endow ed w ith the norm

1012,p = — Lm) 2 01lp

and by the Meyer inequalities (see p. 28 of [W ]) the norms Il n ,p  a n d  1.1,,p are
equivalent for a ll n > 1 and p >  1 .  Therefore, we can define the  space WP(H)
as the  closure of gi in  LP(H, a)  with respect to  the  norm M o r e o v e r ,  for
any a > 0 we denote by Wj'P(H) the space dom (I — Lm ) 2 w ith  the norm
F or a  < 0  w e define  Wj'P(H) as the  completion o f LP(H, p) w ith respect to  the
norm  HOE,p a n d  then Wc- Œ.q(H) can be identified with the dual o f 147j'P(H), where

q 
— l

. F o r  p  =  2

aD

OE, 2  = (k 1)Œllik(0)112

k=0
(8)

and  in  particular for a  = 1 w e have II 0111,2 =  1 0 1 ,2 *  In  th e  sequel we consider
the space W j'P(H) w ith the  norm  H .  I n  t h e  next lem m a by H®" we denote
th e  n-fold tensor product o f  H  equipped with the H ilbert-Schm idt norm . By
F(T )C) T  we denote the  tensor of F(T ) a n d  T  acting in  the space LP(H, p; H).
This operator is well defined because F(T ) is  positive.

Lemma 3 . F or 0 e 1V 'P(H), n 1 ,  p >  1 , w e have

( c 112D r r u k b _ F (T )  0  T on( 0/2 D ro .

For e dom ((C 1/2D)")* Lq(H, H )

( ( c 2 •-■)n)*F(T)C) THO = F(T)((C 1I2 D)")*0

an d  fo r  0 c dom (L i u )

LMT(T) 0 =

Pro o f . N ote first that by lim iting argument

Cii2 D/„,(0,;") = m/„,_,(0,71 - 1 )h

for every h e H .  Using polarization and the density of polynomials in  147 •P(H)
we can reduce the proof of (9) to  the case when 0 = /,,,(0r) with m > n. In  that
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case

(C 1/2D)nr (T )Im lO n (x ) (0 /2Drini(egh )(x)

= m(m — 1)... (m — n + 1 )1„,—J954-nn n )(x)(Th)® n

= m(m — 1). . . (m — n + 1)F (T ) T o n ( I ._ „ ( 7 — ) h o n ) ( x )

= F(T) 0 T ®"(C 112I „,( 7 ` ) ( x ) .

To prove (10) note first that by (9)

D _  R T * )  0  r i , c 1 1 2  D .

Hence
,*(C 112 D)* F(T) 0 T = (['(T*) T *0 2 D )* =  (0 2 D R T *) =(T*) 0 ) r (T ) (0 1 2

and (10) follows for n = 1. For n >  1 the proof is sim ilar. T he last identity
(11) follows from (9), (10) and the fact that L , =  - -

1 ( c 2 D ) * ' " 1 / 2
u  D .  Note that

(11) follows easily from the fact that ea m = F(e - 1̀21).

Proposition 3. L e t 11T11 1. Then the following holds.
a) For all p, q > 1 and a e R the operator TIT) has a unique extension (restriction)

to a  norm one contraction F (T ): W • (H )- W ( H )  prov ided g go , where g o

is given by  (4).
b) A ssume th at T  is  a strict contraction, a, ,8 E R and p, q >  1 .  I f  a  <f3 and

< go , w here g o is  g iv en  by  (4) then the operator T'(T): Wj'P(H)-> WP(H)
is bounded. M oreover, i f  T is compact then F(T):147j'P(H) W ( H )  is also
com pact for g < go .

c )  A ssume p = q = 2. T hen the  operator F(T): W ' 2 (H )  W ' 2 (H ) is bounded
for all a, fi e R if  and only if  T is a strict contraction and in that case for a < fi

11F(T)11 w ..2- w fi.2 < c ( T ) 12 1 

T111 - c M

with

fl — c(T ) -
1

2 log
111 1

provided 11T11 > I f  11T < e 2 th e n  11F(T)11.- = 1.

Pro o f . The part a) is  an  immediate consequence of (11).
b )  For any contraction T  we have

F(T ) = O F  
11)

and by a) the operator
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F (

1711
) :  1 / 1 / J . P ( H ) 1 / 1 / j• P (H )

is  b o u n d e d . W e  show  f ir s t  th a t  th e  operator TIM T  W ( I I )  V • 4 (H )  is
b o u n d ed . If  t  is  the solution to  the equation

MT M =

then

TO T 11) =

Since the  semigroup e t"  is  ana ly tic  in  Lq(H, for q >  1  we find that

1111111'1 )11 WP,q = —  A d f l  -O E )1 2 TOT 0111,g

=  1 (/  — Lm)(fl-2 ) / 2 e t L m i i <  

"L 4  L q 0 3 - 0 0

for certain  a > 0  a n d  th e  boundedness fo llow s. In  th e  nex t s tep  w e  use the
representation

F(T ) = r(T IE)r(T 1 )F(U),

where U is a  unitary operator on H .  By the first part of the proof the operator

T O T ): W ( H )

is bounded and by Lemma 2 and the definition of Sobolev spaces the operator

Wc2'4 (1 1 )

is bounded for q  <  q , b y  the  same argum ent as in  the proof of Proposition 2.
Moreover, i f  T  is  compact then  once m ore invoking Proposition 2  we obtain
the  compactness o f F(T ) for g < go .

c) W e shall consider now the case p = g = 2. N ote th a t for E Wc3 '2

111 17 )011Œ-, fl = — LA/P - 2 ) / 2 /17" W  — Lmr/2011.

Taking into account the  definition o f F(T ) we obtain

(I — 1,,,,,,)(" )/2 F(T) = (I — L m )(13 - ' )12 Fk (T)Ik (t11)

and  now Lemma 1 and  properties of L M  yield

II F1 T/MŒ- fl = sup 11(/ — Lm )3" 2 Fk (T)/k 11 sup ((k + 1) (11 - ' )/2 11Fk (T)11).
k>1

Hence

r(7111. = su p  11k + 1P- 2 ) 1 2  d

a

k>1
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To conclude th e  proof o f  boundedness it  is  e n o u g h  to  notice th a t  th e  above
estimate is finite if  and  only if  117'11 < 1 a n d  in  th a t case

sup (k + l)P_" T 11 2kc ( T ) "  117 -1 2(1-c(T))

sup (k + 1)13'1171 2 k

Remark 2. It follow s from  Proposition 2.2 in  [DZ3] th a t  th e  imbedding
of W" 2 (H ) in to  L2 (H , tt) is  n o t  com pac t. T he  following example shows that
this property holds f o r  a n  arbitrary p a ir  o f  Sobolev spaces discussed in  this
sec tion . It is enough to consider the imbedding o f  Wc "P(H ) in to  O H , it). The
general argum ent i s  th e  s a m e . L e t  {ek :  k  >  1 } b e  a  C O N S  in  H .  Then

1/2D  ,ek =  ek a n d  110e,111,p = c , ,  for every k  >  I .  I f  t h e  family o f functions
k  > 1}  is relatively com pact in Lq(H, tt) then there exists a  subsequence ki

such that Oe k , are convergent a n d  therefore convergent in L2 (H, /..t) but this
is impossible.

3. The Ornstein-Uhlenbeck semigroup as the second quantized operator

W e start w ith the  following lemma.

Lemma 4. I f  (A l) holds then S (t)H o c  H o f o r  all t 0 , and S o (t)
Q -091/2s ( t ) Q 1/2, t >  0 ,  i s  a  strongly  continuous sem igroup of  contractions on H.
Moreover 1lS0 (t)1 < 1 i f  and only  if  im _  im

P ro o f . W e show first that S(t)H , H ,  for every t > O. N ote first that for
a  fixed t > 0 the operator T  = s * ( t ) Q v i 2  is well defined and  bounded on  H0

and for h e Ho

S(t)x  + (0Q  v /20 =R h(x) = < 1), T:01120111NY ) = <x, S * 0 1 4 , 1 4
H

Hence for h c H, a n d  k G H  we obtain

<Ri k  Ok> - <OTh , -  <Th, k>.

Therefore

I<Th, ic>1 = 001 111/1111k11

and it follows from this inequality that the  operator T  has a unique extension
to  a contraction on H  which is denoted by St, (t). L et S0 ( t )  denote its adjoint
o n  H .  Then

1
k

provided 1171 > e- ( fl- a)/2 . Otherwise

<h, So (t)k> = <Th, k> = <Q -
00

112 h, S(t)QV k>

a n d  a s  a  consequence w e find that S(t)Q V k E Ho f o r  every k  e  H .  Hence
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S(t)Ho  c  Ho and  So (t) =  Q 1I2 S (t )Q T . Clearly, So enjoys the semigroup property.
Taking into account that

Q00 = Q, + S(t)Q,,,S*(t)

we obtain

<Q,x, x> = <(1 — so(t)st(t)) V x , x>. (12)

It follows from this equation and  (Al b) that the  operator I  — So (t)St(t) is non-
negative . If x e H  and  y e Ho then

lim <S0 (t)x, y> = <x, y>

and because So (t) is uniformly bounded the standard argument shows th a t So is
weakly continuous at zero  and hence a C o -semigroup (see Theorem 1.4 in  [P]).
The last pa rt o f the  lemma follows easily from (12).

T he  next theorem establishes connection between the second quantization
operator discussed in Section 1 and the O rnstein-U hlenbeck sem igroup. In a
different framework

Theorem 1. If

R ( x )

and

R70(x) =

Proof. T h e  theorem
Lemma 4.

it has been noticed also in  [FP].

(A l) holds then R , =  F (S (t)) and  R7 = F(So (t)). Moreover,

(13)

(14)

1 and

= f0(S(t)x + Q!,!, 2 0 —  S 0 (t)St,(t)QVI2 y),u(dy)
H

th(Q 2 St,(t)QVI2 x + 42!„!2 . — SN)S 0 (t)Q -2 12y)p(dy).
H

follows straightforwardly from Proposition

R em ark  2 . I f  0  is bounded then  (13) holds f o r  a l  x e H .  I f  moreover,
S(t)(im (Q co )) im (Q 0c )  then (14) also holds for all x e H.

It fo llow s from  Theorem  1 and th e  definition o f  th e  operator I '  th a t  the
space Yen i s  invariant for R .  L et R," denote the semigroup R, restricted to Jif„
and L „ be  its  genera to r. T hen  the set

= • • • k ): h 1 , h„ E dom (A )}  c  dom (L„)

is a  core for the sem igroup R`; and on Q ,

Oh„) E 1 .(0h, -*,  A u h, • • • Oh „ ) .
i =1

(15)

Similarly the noncompleted direct sum
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= 9 „  c  dom (L)
n=1

is  a  core for the  semigroup R,.
T h e  following hypercontraction r e s u l t  is  a n  im m ediate consequence of

Lemmas 1 and 4 and  Theorem  1.

Theorem 2. Let (A l)  and (A2) hold. Then f o r p, g 1 and t > 0

II R i l l i y - L g
1

if  and only  if

11S0(011.g — 1

I f  this condition is not satisf ied then 11R,II =  0 0
-

Remark 3. I n  general Theorem  2 d o e s  n o t im p ly  th a t th e  generator L
of the  semigroup R, is  a  Sobolev generator in  th e  terminology o f  G ross [G].
However, i f  II Sat) <e _a l for certain a > 0 then L  is  a  Sobolev generator.

In Theorem 3a) below we give a  complete answer to the question of compact-
ness o f  R, o n  th e  scale o f  LP(H, ki) spaces a n d  generalize some results from
[DZ3] a n d  [CG 1]. N ote  th a t fo r the  limiting exponent qo g iv e n  in  Theorem
2, R, is still bounded but it is not com pact. In particular, R,: L l (H, it) L l (H, m)
is  no t compact, unless S(t) = O.

Theorem 3. L et (A l) hold.
a) For p, g 1 and t  0 the operator R,: LP(H, — > it) is compact if  and

only  if  (A2) holds, So (t) is  compact and

P — 1  
g < 1 +

114(011 2 .

b) The operator R, is Hilbert-Schmidt on L 2 (H, II) if  and only  if  So (t) is Hilbert-
Schmidt on  H  and  (A2) h o ld s . In  th at case

1

, /
,

d e t  (/  —  S o ( t ) S p ) )

Pro o f . The proof follows immediately from Lemma 4 and Proposition 2.

The next theorem shows that the semigroups R, and R',1` have some smoothing
properties which are  described by the estimates (16) and (17) below. These esti-
mates are m ore precise than the  analogous ones obtained in  [CG2] by  the use
of Cameron-Martin formula.

Theorem 4. a) I f  (A1) holds then R, a n d  .I?` define strongly continuous
semigroups o f  contractions in  all spaces W P (H ) for p >  1 and a  e R.
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b) I f  additionally (A2) holds then R, and R` are bounded operators from WS!(H)
to W ( H )  f o r all a, fl e R and g < g0 , where g , is giv en by  (4). Moreover,
i f  So (t) is  com pact then R, and are com pact f rom  1476y to W ( H )  for
all a, fi e R and g < g 0 .

c) L e t  (A l)  hold. T hen the  follow ing properties hold i f  an d  only  i f  (A2) is
satisfied. T he operators R, a n d  R7 are  bounded from  W ' 2 (H) t o  W8' 2 (H)
f o r all a, 13 E R . M oreov er, f o r fi > a

w6,2_,ws.2 < c fi — 60/2
11 So 

(tyl 1 ce

11R; 11 W ..2 2 < (13-02 1  
114(0111— c,

fi — ce
cl —

1
2 log 

11,501011

provided IlS0 (t)11 e—(fl—œ)/2. Otherwise MR,11,13 = R7 ,fl = I. I f  So (t) is com-
pact then the operators R1: W ' 2 (H )  W ' 2 (H) a re  also compact.

P ro o f . Follows from Proposition 3 and  Theorem 1.

Corollary 1 . A ssum e (A l)  an d  11S0 (t)11 e- "1. T hen f o r an y  T > 0 there
ex ists C > 0 such that f o r t < T

IIQ 2 DR,I12 + II Q12 1) R711 2 •

P ro o f . This corollary follows from the  equality 11. M1,2 =  H 1 , 2 ,  Theorem 4
and  the  estimate c, (2at) - 1 .

Theorem 5 . L et (A l) and (A2) hold. Then the semigroup R, is differentiable
on L 2 (H, p) if  and  only  i f  S0 (t) is differentiable.

P ro o f . Assume that S (t ) is differentiable. Then by [1)]

—
d

SNt) = At,SNO
dt

in  th e  uniform  operator topology. W e need to  show  th a t  R, is
for t > 0 and  the  operator

—
d

R = LR,
dt

differentiable

and

where

(16)

(17)

is  b o u n d e d . T o  th is  e n d  it is  en o u g h  to  show  th a t th e  operator LR, extends
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to  a bounded operator on L 2  (H , p). Note also  that for 0 e g

= IlLnR74(0)112

Hence we need to show th a t for t > 0

sup IlL„R71 <oc.
n >1

Theorem 1 and (15) yield that

L„R ;Vn h, • • • Oh ) = n( k ( t ) h  •  •  •  k W h  104S :E ,(t)hi k ( t ) h ,  •  •  •  O S , :( t ) h „) .
1=1

Because A S ( t )  is bounded Lem m a 1 yields

111 , ,,R;111 < nlie St,(t)1111 ,3
 ( 0 1 1 n - 1

and because

sup nlISt, (t) < co
n > 1

differentiability of R i follows. To prove necessity notice that if R is differentiable
then  so  is l q  and so  is  4 (4
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