
J . Math. Kyoto Univ. (JMKYAZ) 343
37-2 (1997) 343 - 365

An initial-boundary value problem for
the pseudo-hyperbolic equation of

gravity-gyroscopic waves

By

Pavel A. KRUTITSKII

O. Introduction

The equation of gravity-gyroscopic waves (1 .1 ) is  a linear evolu-
tionary partial differential equation of 4-th order and composite type.
Similar equations yield both elliptic and hyperbolic characteristics and
therefore they share properties of both elliptic and hyperbolic equations.
Such equations are also called pseudo-hyperbolic. The equation (1 . 1)
governs non-stationary internal waves in an ideal stratified and rotational
inviscid incompressible fluid.

In L1] — [61 exact solutions of non-stationary boundary value problems
for small oscillations of plates in an unbounded stratified rotational fluid
were obtained. In doing so pressure or normal velocities were specified on
both sides of the plate. This led to the first or second boundary value
problem.

The problem of non-stationary internal waves in a two layer stratified
fluid excited by sm all vibrations of a plate placed at the boundary of
separation  betw een layers w as stud ied  in  [7]. Impulsively started
vibrations of a sphere were discussed in [30], [31].

In [8] — [9] initial boundary value problems for sm all oscillations of
plates in a bounded layer of a stratified fluid were considered.

Both classical and weak solvability of initial boundary value prob-
lems for the equation of gravity-gyroscopic waves in arbitrary simply
connected regions was analysed in [5 ] . Problems in arbitrary multiply
connected domains were studied in [33- 36].

Solvability of the problem on non-stationary oscillations of an open
arc in a stratified and rotational fluid was studied in [51, 1161— [181.

The problems of generation of stationary internal gravity waves by
oscillations of a sphere and diffraction of in ternal w aves from  an
oscillating cylinder w ere stud ied  in  [1 9 1 , [20 ], [2 8 1 , [2 91  (see also
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references in these articles). Diffraction problems with other geometries
were studied in [211 — [271. It is essential to note that diffraction problems
for internal gravity waves lead to unusual boundary value problems for
the hyperbolic equation, where propagation of singularities from the
singular points on the boundary along the characteristics of the hyper-
bolic equation takes place.

In the present paper the explicit solution of the initial boundary value
problem on vibrations of several double sided plates in a stratified and
rotational fluid is obtained. In doing so dynamic pressure is specified on
one side of each plate and normal velocities are specified on the other side.
This is a mixed boundary condition.

Hence, the present paper is the attempt to consider excitation of
nonsteady internal waves by vibrations of several bodies and to solve the
pseudo-hyperbolic boundary value problem in  a  multiply connected
domain with the mixed Dirichlet-Neumann boundary condition. All the
previous papers mentioned above dealt with either Dirichlet or Neumann
boundary condition.

The basic method for the analysis of the classical solvability of initial
boundary value problems for the equation of gravity-gyroscopic waves is
the potential theory, which has been constructed in [41, [5]. The potential
theory for the pseudo-hyperbolic gravity-gyroscopic wave equation is
similar to the potential theory for the parabolic equations. With the help
of the potential theory, initial boundary value problems for the gravity-
gyroscopic wave equation can be reduced to the time-dependent integral
equations on a boundary of a region. The existence of solutions of the
integral equations in the case of an arbitrary smooth boundary was
studied in  [5], and these solutions can be computed. Sometimes the
solutions can be found in an explicit form.

The scheme of the present paper is as follows. The rigorous mathe-
matical formulation of the initial mixed boundary value problem is given
in Section 1 together with the uniqueness theorem. The reduction of the
problem to the integral equations on the boundary by the method of
dynamic potentials is presented in Section 2. The solution of the integral
equations is found in Section 2 in an explicit form with an accuracy up to
unknown functions depending on time only. These unknown functions
are found from the linear algebraic systems o f equations derived in
Section 3. Thus, in Section 3 the construction of the explicit solution is
completed and the theorem on the solvability of the problem is for-
mulated.
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1. Formulation of the problem

In Cartesian coordinates x= (x 1, x3) ER' let us consider an ideal fluid
which is exponentially stratified along the Ox3 axis and uniformly rotates
around it. The dynamics of small two dimensional motions of such a fluid
in the Boussinesq approximation are described by the equation of gravity-
gyroscopic waves [5, 6, 10, 26, 321

52 52
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where the Vasala-Brunt frequency co l and twice the angular velocity of
rotation co2 are constants and col, o h  0. The potential function 45(t, x) was
introduced in [10]. It is related to the dynamic pressure p(t, x) and the
velocity vector IT = (y 1 , y3) by
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where p0 is the average stationary density of the fluid.
We note that (1.1) is a fourth order equation of complex type. This

equation yields both elliptic and hyperbolic characteristics. S u c h
equations are called pseudo-hyperbolic and were not studied in classical
mathematical physics.

We denote by Os the coordinate axis obtained from the Ox i axis by
rotation through an angle 0 around the origin.

Let two sets of plates (cuts) F 1 and T 2 be placed in the fluid along the
Os axis. The first set T 1 involves N1 0  cuts and the second set F 2 involves

0 cuts :

U F ,  F =  {x: x i =s c o s ° ,  x3=s sin 0, sE (64, bp }, n = 1 ,  ,  N1;
n =1

2
r  2 _  Û F , E n 2 — Xi 

= S COS 0, X3 
= S sin 0, sE (a, , n = 1 , , N 2.

The notations a'„ and t, '„ (n =1, , N ,; j =1, 2) will be used for the
points (ce„ cos 0, a'„ sin 0) and (17'„ cos 0, tin sin 0) in the plane (x1, x3) to make
formulae shorter. The totality o f cuts is denoted by r :  F = F '  u  r2 .
Suppose that the closures of all cuts are disjoint.

Let n be a normal vector to F. The direction of 77 is chosen so that it
will coincide with the direction of the Os axis if 77 is rotated clock wise
through an angle of 7r/2.

W e orient each cut F 4  (n=1, N ,; j=1 , 2 ) by distinguishing
between the sides (n)+ and W O where (T )+  is that side of the cut F4
which is on the left when the parameter s increases. The opposite side of
F„ will be called (F ).

Similarly the side of the contour F ', which is on the left when the

(1.1)
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parameter s  increases, will be called (TO+ and the opposite side will be
called ( P ) -  (1=1, 2).

Definition. A function W(t, x) belongs to the smoothness class G  if
(k  =0, 1,2):

1) MwEC ° ( Ea CXD ) X R2V );
2) ATivE0([0, 00)xR 2\r\x), where D =  a

a
ti , X  is the set of end-

points of the plates, that is X = Ice”, n =1 , j=1, 21;
3 )  in the vicinity of any point dEx we have

I MI7 W I . Ak(t) x—d , x - ->d (1.2)
for some Ak(t)E0[0, co) and (5> —L

Assuming that N 1 +N 2 > 0  we formulate the initial mixed boundary
value problem K(Ni, N2).

Problem C N ,  N 2) .  To find a function 0 (t, x) of the class G which sat-
isfies the equation (1.1) on (0, co) X (R V ) in a classical sense, the initial
conditions 0(0, x)=0t(0, x) =0, x E R V , the boundary conditions on F':

01.(0.(F1)+=f1(t, s),
Nt, A  x(s)E ( r i )  =f2(t, s),

the boundary conditions on r2:

N,, x(1)1 .(0E(T2)+ —  f2(t, s),
(s)e(12)- ( t ,  s),

and the regularity conditions at infinity

MO _Bk(t), k =0 , 1 , 2;
I M17 0 I k =0, 1, 2;

(1.3a)
(1.3b)

(1.3c)
(1.3d)

(1.4)
(1.5)

where Bk (t), Ak(t)EC° [0, co ), e >0 and x  =  (xi +xi) 1/2 —

All conditions of the problem must be satisfied in a classical sense.
In the formulation of the problem the following operator on F  was

denoted by N,

8 2  a
Nt, x0 — 0 +coi cos (OD +w cos (0) oat2

n2 a2u u= cos ( (n x i)  
Ot2
+  ( 0 0  0„ + cos (77x3) ( + (00 oat2

where cos(7R) is the cosine of the angle between the vector 77 and the
direction of the Ox, axis (1=1, 3).
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From the definition of the class G it follows that
1) the boundary conditions (1.3a), (1.3d) must hold at the ends of

the cuts F ' and F 2 ;
2) the validity of the boundary conditions (1 .3b), (1.3c) at the ends

of the cuts F ' and F 2 is not required.
T h e  problem K(ATI , N 2) describes non-stationary wave motions

excited by small vibrations of the plates F  starting at the moment t =0
(before this moment the system was at rest). In  doing so pressure is
specified at the side (F9+ of the plates 1'1 and at the side (F 2) -  of the plates
F 2 and this yields the first boundary condition.

Normal velocities are specified at the side (F 2)+ of the plates F 2 and at
the side (F0 -  of the plates F 1 and this produces the analog of the second
boundary condition with time derivatives.

Let us note that the conditions (1.2) at the ends of the cuts and the
regularity conditions at infinity (1.4), (1.5) ensure an absence of point
sources at the ends of vibrating plates and at infinity.

It follows from [6, 101 that the statement holds:

Theorem 1. There is not more than one solution of the problem K(N1, N2).

The proof of the theorem is based on the method of energy equalities
for the equation (1.1).

2 . Time-dependent integral equations on  th e  boundary and their
solution

Let
s )E C K [O , .0 ) ;C 1 '(F)) ,

f 2(t, s)E C ([0, co) ; ( r ) ) ,
where the Holder index 2. E (0, 11.

W e denote by C ([0 , 0 0 ) 1 3 )  the class o f abstract functions w (t)
having k  continuous derivatives with respect to t. For every t a function
w (t) belongs to the Banach space B in a spatial variable. We denote by
C6([0, 0 0 ) 1 3 ) the class o f abstract functions w (t)E C ([O , 0 0 ) ; B )  which
satisfy the initial conditions: w(0) = •-• = w( k - 1 ) (0) = O.

W e denote by the closure of F.
We can replace the boundary conditions (1.3a) on (F')+ and on (F 2) -

by the following equivalent conditions

(2. 1)

ao
as
60
as

„( s )E 0 ) ,-= :s fi(t, s)=ff(t, s),

s) =f (t, s),

(2.2a)

(2 . 2b)
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0(t, a0=f1(t, a), n=1, , N„ j= 1 ,  2. (2.2c)

The conditions (2.2a), (2 . 2b) must hold at all points of (F 1)+ and (P 2) -

except their ends.
We will seek a solution of the problem K(N1, N2) in the following form

(t, x)= V [g] (t, x)+ T[v](t, x)+c(t),  (2.3)

where c(t) is an unknown function of time, so that c(t) E  [ 0 ,  0 0 ) = {c(t)E
C2 [0, 0 0 ) ,  c(0) =c,(0) =0} an d  ITLaRt, x ) ,  T [v ] (t, x ) are  th e  dynamic
potentials for the equation (1.1) which were studied in  [4, 5, 12]. The
potentials are defined by formulae

V[g] (t, x)= f ,u(t, s)log x —y(s) Ids

s)1 (1  cos (z -1
11  3:),((s2)

1
1
0))dsdz-,

r

TD)1(t, x)= f v(t, s)(x, s)ds— f t f v(t—r, s)U((x, s), z-)dsdr,
o

where

y(s)— (s cos°, s sin 0) Er,
= (Xi +xi) 1/2,

Ix = (cIAX1+6AXi) 1/2,
ow)

U(0(x, s), t)= e ()s in  (te ( ) ) a

= (6o2
i sinT+ciA cos2 ) 1/2.

A function 0(x , s) is determined (up to indeterminacy 27rm, m= ±1,
±2, ...) by the formulae

co s  ( x ,  s ) =
x

1
—s cos 0 

lx — Y(s)I

sin 0(x, s) = 
x3— s s i n  

( s )  •

More precisely, we fix a point xOET and choose an arbitrary fixed
branch 0(x , s) of this function which varies continuously with s along
each cut P„ (n =1, ,  N„ 1=1, 2 ). Under this definition of 0(x, s), the
potential T[v] (t, x) is a many-valued function. In order that the potential
TD.d(t, x) be a single-valued function it is necessary to require the validity
of the following (N 1-I-N2) additional conditions for the function 2)(4 s) (see
[4] 451 [12]—[13]):

s )d s=0 , t.0 , n=1 , 1=1, 2. (2.4)



Initial-boundary value problem 349

The functions g(t, s), v (t, s) and c(t) are unknown and must be found
in the process of solving the problem.

We will seek functions 11(4 s), v (t, s) in the following smoothness
class:

kt(t, s), v (t, s)ECK [0, 'Do) ;C ,(F)),

where 2L0 E (0, 1], icoE [0, 1). We denote by c ( r )  a  Banach space of
functions An defined on F and such that

N,

H ( — a )H f (Œ)ECo(F),
"= 1 n  1

f (E) M Co(r)=
N,

H (E—a ) b p  II ( —a, ) ( — b!)
n = 1 n  1

o
f ( )

If the conditions (2.4) hold and the functions 12(4 s), 1)(4 s) belong to the
required class of smoothness, then it can be verified directly using the
properties of potentials from [4] - 151 that the function 0(t, x ) from (2.3)
belongs to the class G  and satisfies the equation (1 .1 ) and the initial
conditions of the problem K(Ni, N2).

In order for the function 0(t, x) to satisfy the regularity conditions at
infinity (1 .4 ), (1.5) i t  is necessary to require the following additional
condition

fr g ( t ,  s ) d s =0 , t ( ) .  (2.5)

We arrive at the theorem.

Theorem 2. If  ,u(t, s), s ) E 0 ( [ 0 ,  0 0 ) ; C „ ( n )  where 2.0E (0, 11 tCDE

[0, 1) and the conditions (2.4), (2.5) hold, then the function (2.3) satisf ies all
conditions of the problem K N2) except the boundary conditions.

The theorem follows from [4, 5, 12], where dynamic potentials were
studied. Besides, the theorem can be checked directly on the basis of the
explicit formulae for the dynamic potentials introduced and discussed
above.

By using the limiting formulae for the values of potentials on the
boundary (see [4, 5,11, 12]) and by satisfying the boundary conditions of
the problem K (N 1, N 2)  on r (the conditions on (F9+ and (T 2 ) -  are taken
in the form (2 .2 )) we obtain the following system of singular integral
equations on F 1, F 2 for unknown functions ,u(t, s), v (t, s):

r 11(4  49 -)  

J r  U - 5
—7r1'1*J 2, * v(t, s)

'
s), (2.6a)
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r a2 
r C  — s at2 (7)ag 1 

* S
2 *' at2 ‘ t ,

r  1  a2 ( t u)du+n-S „ *S  * u(t, s)Jr u— s at2 1 '2 -

sEri=f2(t, 5), (2.6b)

sEr 2 — f 2  (4  .0 , (2.7a)

r g(t, a) du+n-L 1 *L 2 *  (t, s)
J r  g —s s E r 2 =g t ,  5), (2.7b)

where the equations (2.6a), (2.6b) result from the boundary conditions
(2.2a), (1.3b) and the equations (2.7a), (2.7b) result from the boundary
conditions (1.3c), (2.2b).

We define the convolution operators 1 *  and S . ,*  ( 1 =1 , 2) by

* Q (t) = Q (t) — (1), 1011(6),(t — r))Q (r) dz-,

S .  Q (t) = Q (t) — u), f S (o),(t — r)) Q (r)dz -,

where Ji (t) is a first-order Bessel function and

'S(to)t)= d— f  'L(a)  o .

It is essential to note that the operators J *  and sn *  are self-inverse,
that is J ,*  S *  =S .,* =E, 1=1, 2. where E is the identity operator.

We get the following assertion.

Theorem 3 .  If the assum ptions of the theorem 2  hold, g(t, s), v (t, s)
satisfy  the equations (2.6), (2.7) and the function (2.3) satisf ies the condi-
tions (2.2c), then the function (2.3) is a solution of the problem K(Ni, N2).

Let us construct the solution of the system (2.6), (2.7).
By taking into account the assumptions introduced relative tog(t, s),

v(t, s) and inverting the operators of convolution with respect to time we
rewrite the equations (2.6) and (2.7) in the following form:

1 c 11(4 a) 
 c la + 2 2 ( t ,  s )Ir J r  c—s

LI(t, s )+ 1 r  1)u  Go  du
7C J r  0 5

,a ( t, s)_15  D(t, du
71- J r  U — S

C 11(4 a) 
 c l a + 1 )_ ( t ,  s )A- Jr o s

(2.8a)

(2.8b)

f
ser2

1 7
7z.  J ftt, s),( 2 . 8 0

,Er2=;7gt, s), (2.8d)

— 17 -7  f f (t, s),

sErl 72 (t,
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where

i)(t, s)=L i *L 2 *v(t, s), (2.9a)
AU, s>=L i * L 2 *  f TV 2(r, s)dr. (2.9b)

In order for the function v(t, s )  to belong to the class 0([0, cc);C (F)),
where A0E (0, a  icoE [0, 1), we have to seek the function ii( t , s )  from the
same class.

We note that the equations (2.8) contain the time t  as a parameter
( t- . 0).

Let us formulate the assertion.

Proposition 1. A  solution of the system (2.6), (2.7) is transformed by
the substitution (2.9a) into a solution of the system (2.8); conversely, any
solution of the latter system yields one of the former.

We introduce the functions

p+(t, s)+V (t, s),
p_(t, s)=,u(t, s)—  fi(t, s).

By adding and subtracting relationships (2.8a) and (2.8b), we arrive at
the following equations for the new unknown functions p+(t, s), p_(t, s):

p+ (t, s)
r  p + u ,  a)  d

7 tJ r

p ( t, s) r c o  d o

JrJr C  —  s

„ i d = .3) 12(t, s)), (2.10a)

s „ 1 = s) 12(4 s)). (2 .10b)

By adding and subtracting relationships (2.8c) and (2.8d), we get the
following equations for p+ (t, s )  and p_(t, s) on r2:

1P±(t, f  p+(t, s) du  , E ,2 = Ji( t ,  s )+1 2 ( t ,  s ) ) , (2.10c)71. r  a  — s 77

0_ (t, s)+ if 09- ( t, Go 
7C r u — s  d o

Equations (2.10a), (2.10c)

.5E7' 2 = s)-72(t, s)) . (2.10d)

can be written in the form of a singular
integral equation for the function p +(t, s ) . This new equation has to be
valid on whole contour F  and is

p + ( t ,  s )+
R+(s)  r p+(t, 

71. J r  o s—

sEr=R +(s)§9-F(t, s), (2.11)

where
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(P-F(t, s)= —

1 
 (fat, 5)+12(4  s ) ) , sE T , (2.12a)

R +(s)=I L
 1 ,

 s
s  :

1
;

1
2( 2 . 1 2 b )

In a similar manner by combining the equations (2.10b), (2.10d) we
get a singular integral equation on the whole contour F for the function
p_(t, s):

where

R_(s) p r p_(t, _(t, s)+ do
J r  —

,=R _(s)ço_(t, 5), (2.13)

yo_(t, s) =1 0 '2(4 s)— f (t, s )), sEr, (2.14a)7r
R _ (s )=1 -1 , s E F 1

11, sET 2 (2.14b)

Thus the original system of singular integral equations with respect
to the functions g ( t ,  s ) ,  v ( t ,  s )  is reduced to the pair of independent
singular integral equations (2.11), (2.13) for the new unknown functions
p + ( t, s )  and p_(t, s) respectively. The equations (2.11), (2.13) must be
solved for every t -0 . In order for the functions ,u(t, s), v (t, s) to belong to
the class 0([0 , co);C„(F)), AIDE (0, 11 tcoE [0, 1), the functions p f (t, s) and
p_(t, s) have to belong to the same class.

We arrive at the following assertion.

Proposition 2 .  A  solution of  the system (2.8) is transformed by the
substitution

1 1 (4  s ) - -
1

(p+(t, s)+p_(t, s)),2
I;(t, s)= -

1
(p+(t, s)— p_(t, s))2

into a solution of the system (2.11), (2.13); conversely any solution of the
latter system yields one of the former.

To solve equations (2.11), (2.13) we use the following Lemma.

Lemma 1. Let L+ and L - be two sets of segments on a coordinate axis:

N . N-
= U  (a:, b:), = U brT)n=1 n-i
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such that no two of the segments have any common points (including ends).
Let us denote L=L+ UL -  and consider the singular integral equation

h (s )± r ( s )  f  h ( a )  da=H0(s )=H (s )r(s ), sEL, (2.15)
71.  L  a — s

where

r(s) = 11, sEL+
t- 1, s  E L -

and H(s) is an arbitrary Holder function on the closed segments L.
Then there exists a solution h(s) of the equation (2.15) such that h(s) E

c ( r) ,  A E  (0, 11, KoE [0, 1), and the general form of this solution is

h (s ) =  H o(s)— r(s)( 2 7 rc j
i
 ( s )  f  Q ° ( ( 7

0
) 1 1; ( 6 ) d o  P N + + N _ - 1 ( S )

(20(s) )

Or

h (s )= 4 r (s )H (s )  2n.Q
1

( s )   f  ( c ia )H (a)  d d +  P N —1(5)
(s)

where
N.

Qa(s) = 11 I s— at I a' 4  • I s — b, I 1 / 4 sign (s — a:)
n=1

X  H  s— c2 I "  • 1'4 sign (s — 1);)
n=1

=Q(s)r(s),
N .

1"  •  Is —  b: 1 1/4 sign (s — a,1-)
n=1

N-

X  H  s— a, s 1314 sign (s
n=1

P N I + N  — 1(S) is an arbitrary polynomial of degree (N+ +N_ —1).

The valid ity of the Lemma follows from the results of the mono-
graphs [141, [151.

Let us return to the consideration of the equation (2.11). We set

b = b ,  n = 1 , ..., N I= N + , ri = L+ ;
a=cc;, b = b ,  n = 1 ,  ,  N2 = N _ ,  r 2=L - ,
R+(s)=r(s).

We suppose that the time t is fixed and put p+ (t, s)=h(s), go+(t, s)=H(s).
This change of notations transforms the equation (2.11) into the equation
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(2.15). Hence according to Lemma 1 the solution of the equation (2.11) is

1 1 f   (0±(
0 + (4 0 )   d a + Pk i +N2-1(t, s)

P+(t, s)= R+(s)S0+(t, s) 2 Q +(s) a —s Q+ (s)
(2.16a)

where

Q+(s) =1-1 j s — a "  •  I s — N  1/4 sign (s — a)
n =1

x H  s— s_k2 13/4 sign (s — a )I 1/4
n =1

(2 . 16 b)

and

PivE1 +N2- 1 ( t ,  s ) — ak i +Nr i( t)e i+N 2 - 1 + • • • + a i  (t)s +a  (t) (2.16c)
is a polynomial of degree (N1 +N 2 — 1) in s whose coefficients are arbitrary
functions o f t  o f class CHO, 00). If the last requirement holds then
proceeding from the explicit formula (2.16a) and properties of singular
integrals presented in [14] one can show that

P+(t, s)E 0([0 , 0 0 );C 0 ( r ) ) ,  AIDE  (0,11, KoE

We solve the equation (2.13) in a similar way. The substitutions

a!, = a,; , b =b ,7 , n =1 , , F '=L - ;
lin=h„F, n = 1 ,  . . . ,  N 2 =N +, F 2 = L+,

R _ (s)=r(s ) , p _ ( t, s )=h (s) , _(t, s) = H (s)

(for t fixed) transform the equation (2.13) into (2.15). By using Lemma
1 we obtain the solution of the equation (2.13)

p _ ( t ,  s ) =-
2

R_(s)go (t, s) 27rQ1 (s) f Q-(a) "  
(7)PN i-FN 2-1 (t, s)

d o +c—s Q_(s)
(2.17a)

where

and

Q —(3 ) = s — a 1„- 1 " •  s sign(s a in )
n  1

x
N:

s —a 2 3 / 4 s  b2n  V 4I sign (s —>,
n =1

(2.17b)

i +Nr i ( t ,  s ) = 1(0 sNi 2- 1 + • • • +a 1 ( t) s  + a6 - ( t) (2.17c)
is a polynomial of degree (N I +N2 — 1) in s whose coefficients are arbitrary
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functions o f t  o f class CHO, 00 ). If th e  last requirement holds then
proceeding from the explicit formula (2.17a) and properties of singular
integrals presented in  [14] it follows that

P-(t, s)ECK [0, 0 0 );C,À4 (r)), A0E  (0 ,11  KoE [0, 1).

Now the solution of the system (2.8) can be easily found, namely

g ( t ,  s ) = -
1

(p ,( t , s )+p _ ( t , s ) )2

= 2
1
7 r 2(t, s) 

1 C   Q_(a)go_(t, d o )
412r (Q+1(s) frQ+(cja)9+s(4

a )  da

  a—s
1  (Pk 1+N2-1(t, s )  + PN i+Nr i(t, s) ),
2 Q±(s) Q_(s)

1)(4  s)=4(p+(t, s))

= 2
1
7 c R  _(s)f f (t, s )  4

1
.7 ( Q +

1
( s )   f  

Q +(a )± (t, 
a—s

Q_(s)Jr
f( a)o ço_s(t, a)  d o)

1 f -13i,Fic FN2 _1(t, s) 13.
1+,2_1 ( t ,  s )

+ 
2 Q + ( s ) Q (s) }'

(2.18)

du
(2.19)

where S E T ',  t (); the functions f a t ,  s ) , f 2 ( t , s )  are defined in  (2.2a, b),
(2.9b), th e  functions 9+(t, s), s ) ,  R _ ( s )  are  defined in  (2.12a),
(2.14a, b), the functions p+ (t, s ) , Q+ (s), R 1+N2-1(t, s) are defined in  (2.16)
and the functions p_(t, s), Q _(s), P- Ni +Nr i (4 s )  are defined in  (2.17).

We have proved the Lemma.

Lemma 2 .  If  f i ( t ,  s ) E 0 ( [0 ,  c o ) ;c " ( n ) ;  f2 ( t ,  s )E ca o ,  0 0 ) :0 ( t ) )
and A E (0 , 1] then the general solution f ro m  the class g (t, s ) , 1 7 (t, s )E
0([0, œ ) A0E CO, 11 KoE [0, 1) f o r the system  of singular integral
equations (2.8) is given by the form ulae (2.18), (2.19) where the coefficients
a ( t ) ,  a , ; ( t )  (n=0, , N i+ N 2 - 1) of the polynomials Pk i +N2- i ( t ,  s )  and
PN1+N2-1(t, s) are arbitrary  functions of  t  of class 010 , co). B esides, for the
general solution Ao = min {A, 1/41, Ko = 3/4.

The last statement of the Lemma follows from the explicit form of
,u(t, s), 1)(4 s) and properties of singular integrals from [14].

By using the formula (2.9a) and inverting convolution operators we
obtain from (2.19) the expression for ii(t, s):
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(t, s) =  1
27r 

R_(s)ff(t, s)

41-a. Q +  1 ( s )   f  ( u ) + ( t ,  a)o CPs  d u

Q(s) f Q - (a) u Go do
± 

2 

( P k i + QN 2 - ( 1 s ( )

Q -  (s)
t ,  s ) i+N 2-1(4  s)

) '

where

f at ,  s )= & 1 *.S 2 *  (t, s),

+(t, s) = —1  (I t(r— (-7, s)dr+fi(t, s )),
7 1" 0

- (t,  s )  = (I ( t 2(Z; s)dz- - s ) ) ,7Z-0

15n 2 -1 (t, s) = div 1 +1v2 -1 ( t)s N i+ N r i  + • • • + ã j  (t) s (t) ,

Pn71 +N2 -1 ( t, s )  = elk i+Ar2-1(t) e l + N r i + • • • + (Os (t),
Ce:(t) =& I * & 2 * n =0, N 1+1\7.2- 1,

(t) =S„, *S 2 * a,7 (t), n = 0 , , Ni+ N2 - 1,

(2.20)

(2.21a)
(2.21b)

a ( t )  and ( t )  are coefficients of the polynomials PZ,1+N2-1(t, s )  and
PN1 -FN2 -1(t, s) from (2.16c), (2.17c) ; all other notations are the same as in
(2.19).

It follows from (2.21) that if a>; (t), a, (t) belong to 0[0,00) then at (t),
(t ) belong to the same class (n=0, ... N i+ N 2 -1 ). It now follows from

(2.20) that v(t, s) belongs to the required class of smoothness.
Thus the functions ,u(t, s), v(t, s) from (2.18) and (2.20) are solutions

of the original system of singular integral equations (2.6), (2.7). The
lemma holds.

Lemma 3 . I f  fi (t, s) EOM), c o ) ;C " (P ) ) ;  A ( t ,  s)Ec°([0, 0 0 );0 (1 '))
and L  E (0, 1] then the general solution f rom  the class ,u (t, s ), v (t, s )
CR [0,00) ;c,.(r)), A0E (0, a  KoE [0, 1) f o r the system  of singular integral
equations (2.6), (2.7) is given by the form ulae (2.18), (2.20), w here a: (t),
a,7(t) (n=0, , +N2— 1) are arbitrary  functions of  t of  class 0 [0, co).
Moreover the indexes ?. 0 ,  'co f o r the general solution are 0 = min {A, 1/4},
,c,=3/4.

If we substitute the functions g(t, s), v(t, s) which were found in (2.3),
th en  (t, x) depends on 2 (NI +N2) +1 arbitrary functions of time ig,;- (t) .....
a AF, i+N 2 _1 ( t ) ; a rï ( t) , ,  i +Nr i ( t ) ,  c ( t ) .  On the other hand the function 0(4 x)
must satisfy 2(Ni +N2) +1 additional conditions (2.2c), (2.4), (2.5).
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Thus the functions ci:(t), ( t )  (n=0, , +N2— 1), which are
coefficients of the polynomials Pv- 1-FN2-1(t, s), P_ N i+N2 -1 (4  s), and the function
c(t) from (2.3) have to be chosen to satisfy the conditions (2.2c), (2.4),
(2.5).

3 .  The linear algebraic system of equations and the solution of the
problem K (N I , N2)

Now we show how to satisfy the conditions (2.2c), (2.4), (2.5). We
first consider the conditions (2 .4). By inverting the convolution operator
L i * L 2 * we write conditions (2.4) in the form

s ) d s = 0 ,  t .0 ,  n = 1 , , N ,, 1 =1 , 2, (3.1)

where i)( t, s )  is defined in  (2 .9a), (2.19). By substituting here the
expression for 13(4 s) from (2.19) we get (N1+N2) linear algebraic
equations in unknowns ce;t(t), ce (t) (n=0, 1):

ATH-Ne 1

E  04+ a; (t) +A  a ; (t)) = q;,1 ) (t), (3.2a)

where n=1, ,  N ), j=1, 2 and

A;,;,;± = + f du,2 r4 Q±(0) (3.2b)

1

1  r   Q+(00 (t d u47r (s) Gr—s
q;,2)(0=  (  9 +   

1
Q_(s) I  _ ( o )  ( t ,  d a ) d s  f  R _(s)f f (t, s)ds,cr—s h

M = 0, , N i+  N2 — 1, n=1, , N ,, 1=1, 2.
Next we consider the conditions (2.2c). First we note that (up to an

indeterminacy 27z-m , m =  1, + 2, ...)

0(a1„, s)—{°'
s<a'n

7z- +0, s>ce,

consequently for all n= 1, , N ,,  j  1, 2 the function (,b(a„ s) is constant on
each segment of f ' .  In view of (2.4) we have T[v] (t, a )= 0 , n=1, , N„
j 1, 2. Hence conditions (2.2c) become

V [ i] (t, a) + c (t) (t, a"), n=1, , N„ j 1 ,  2. (3.3)
The potential V [g] (t, x )  on the line Os (where x =x (s)= (s cos 0,

s sin 0)) is

(3.2c)
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V LIA (t, x(s))= f  it(t, a)log s d a + f t f  ( z , a)d al( t— r)d r
o r

= (t, a)log s —al do;

where

1(t) 1 [1 — cos (ti0A cos'e +to? sin 20)]

and the condition (2.5) is used.
Using (3.4) the conditions (3.3) can be transformed into

(t, o.)log 1(4 —  I du + c (t) = f 1(4 ai.), n  = 1 , N 1 ,  j=1 ,  2. (3.5)

Substituting the expression for 11(4  s) from (2.18) into (3 .5) we
obtain (N1 -EN2)  linear algebraic equations in  unknowns a6 (t),

1+N2 -1(t) ; at■ (t), , i +N2 -1(t), c(t)

E  (z4 +a: (t) + (t)) +c(t) = 4" (t),
>n=0

. 6a)

where n 1 . . . . . N1, 1=1 , 2 and

=  f log ai„— a I da,2 Q±(0.)

z p ( o 1   C( 1  ( '  Q,-(0)sp,-(t ' do=
4 7 r  r  (0+ ( s )  r a — s

±  1Q  (s)
(cr)g ( t ' da) log s  d s_ r

2

1
7 r j r

r
R_(s)12(t, s)log —s ds + f 1(4 ain),

(3.6b)

(3. 6c)

m=0, Ni+N2 - 1, n = 1 ,  . . . ,  N „ 1=1, 2.
Before substituting the expression for ,u(t, c )  in (2.5) we compute

some integrals which are easily derived with the help of the theory of
complex analytic functions (see [141, [15]). Let a- be a real variable, then
we put (I3E (0, 1))

Q  ( 0 )  =
—  1„910.— k"-0 s ig n  (0 -

n=1

P72
X IT a2„ " — MI' sign (a—c4),

(3.4)

n=1
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A I
1'1 1 (0 )—  H (a — aDs  —  b D " X H (a —  a)" (a — bDs

n =1 n = 1

Q 13 (a ) 7

{
actl"

— —exp(—i70).(2 0 (a), a E ri
exp (i70)S2,3 (a), 0E1'2

Note that 6 ( o )  can be extended analytically from the real axis to the
whole complex plane. Using analytical properties of the function 6 (0 )
and setting s a real variable we deduce

r  0
m da 

Jr  Qs (a) u — s

TCSm  

Qs (S) sin 7r/3'
7rs'n cos 70 

‘20 (s)sin 70 '
7ISm  cos 7 0  

Qfl (s)sin 70'

sErT, m=0, ..., Ni+N2-1,

sET 1, m=0, ..., Ni+N2

s E P ,  m = 0, ,  + N 2  — 1,

  

C  0m 0, = 0, • • • N 1 +  N 2 —  2,
M  =  N1 + N2J r  Q s  (a ) du= {  7 1 "  

sin 7;8'

Q
f   h (u) Qs (a)J r  c o s  70 

i3 ( s )  r  u  s  d a d s =  
s i n  7 0  

(fr. zh (a)da— f h(a)do),
r i

where h (a ) is a Holder function on P .  By substituting the expression for
At(t, s) from (2 .18) into (2.5) and by applying the formulae for integrals
we reduce (2.5) to the equation

cepr,1+N2-1(t) +ak 1l-N2-1(t) =0.( 3 . 7 )
It follows from (3.1) that

i;(t, a)da =0.

If we substitute f)(t, u ) from (2.19) and apply the above integral
formulae, we obtain

ak 1+N2-1(t) — - 1  ( t )  =0.

This, with (3.7) gives

akF 1+N2-1(t)=0, -1(0 =0,

but we will not use this fact below.
Thus the conditions (2 .4 ), (2.2c), (2.5) for the functions v(t, s), /1(4 s)

are equivalent to the system of equations (3.2a), (3.6a), (3.7). The sys-
tem consists of 2(N1+N2) +1 linear algebraic equations for 2(N1-FN2) +1
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unknown functions aô (t), , a)v i +Nr i (t ) ; (t), 1+N2-1(t), c(t). The
coefficients of the system do not depend on time t and t is included in the
system as a parameter. The system (3.2a), (3.6a), (3.7) can be rewritten
in the matrix form

Ma (t) = F (t), (3.8a)

where

a (t) = (c4f (t), . . . , i +N 2-1(0 ; ce (t), , N2-1(t), c (t)) T  , (3.8b)
F (t) = (q" ) (t), q" ) (t), z" ) (t), z ( 2 ) (t), 0) T ( 3 . 8 c )
q (" (t) = (qi 2 ) (t), , N2 ( t ) ) ,  1 =1 , 2,
. e ( t ) =  (zP) (t), , zT, FN2 ( 0 ) ,  j

=  1, 2,

the functions 0 ) (t), .4 11 (t), (n = 1 , j= 1 ,  2) are defined in (3.2c),
(3 .6c) and M  is a square matrix of size (2 (NI +N2) +1) x (2 (Ari +N2) + D,
which consists of the coefficients of the equations (3 .2a), (3.6a), (3.7).
An exact expression for M  can be easily written out by comparing (3.8a)
with (3.2a), (3.6a), (3.7). We observe that matrix M  does not depend on
t.

Consider the following homogeneous system of linear algebraic equa-
tions

Mt/=O, (3.9)

where d  (d ô , , ; , dN-
i +N2-1, 6) 7. is an unknown vector, which

does not depend on any variables. Below we will use the scalar form of
(3.9), namely

E
m=0

E ( z a + z a) + e = 0,
m =0

CLk-

 1
+N

2
-1 + aN

1
+N

2
-1

=  0,

(3.10a)

(3.10b)

(3.10c)

where n = 1 , ,  N„ j=1, 2.
Let us prove that the matrix M  is invertible. According to the

Fredholm alternative, the matrix M  is invertible if (3.10) has only the
trivial solution. We will give a proof by a contradiction. Assume that el is
a non-trivial solution of the system (3.10), and this solution converts the
equations (3.10) into identities.

We introduce the functions

1 (PZ, i +N2-1(s) PN,+N2_1(s)\
tto(s)— 

2 Q + ( s ) Q_(s)



Initial-boundary value problem 361

1 ( -N i +Nr i ( s ) PN1+N2_1(s)
2 Q + (s) Q _ (s )  ) '

Pk 1+N2_1(s)—ak,+N 2_isN 1 + N 2 - 1 + ••• d -d i± s + 0 ,

where Q±(s) are defined in (2.16b), (2.17b).
By using formulae (3.2b), (3.6b), we write the identities (3.10) in

terms of the functions go(s), vo(s):

n-1, ••• 1,

go(s)1ogia1„—slds+6=0,n 1 . .... N,

f ga(s)ds=0.

2,

j=1, 2,

(3.11a)

(3.11b)

(3.11c)

We introduce the function (POW  =  V0 [t0] ( X )  T 0 [ 0 ]  (X) +6, where

Vo Luoi (x) = f /-to(s)loglx —y(s)Ids

is a logarithmic harmonic potential and

T0[01 (X) =  f  (S ) 0 (X , s)ds

is an angular harmonic potential studied in [13]. The kernel (P(x, s) of the
angular potential was determined in Section 2. It follows from the
identities (3.11a) that the function 00(x ) is a  single-valued harmonic
function.

By using properties of the angular harmonic potential from [13] and
by taking into account the identities (3.11) one can show that the
function 00(x ) satisfies all conditions of the following homogeneous
mixed boundary value problem for the Laplace equation (we will call it
problem L ):

00 (x) E C° ( R V ) ,  170o (X) E co (R2\r\x),
400(x)=0, xER2\t,

00(a) =0, n=1, , (3.12a)

aoon oo 
x(s)E(ri,-- x (s )E  cr2)± =

00 0  

Os

000 
Os (s)E  (r 2)- 00(a) =0, n=1, N2, (3 . 12b)

V o (x ) I , x — al„ — >0, n = 1 , , NJ , j=1, 2,
I 1700(x)A  x—  1,, I -3/4 , I x — bl„ I — >0, n=1, ••• NJ ,  1=1, 2,

I 00(x) I 17 00(x) I B/Ix1 2 , x



600 600 

677

a00 (300 
Os .( s )E r+ as

= 2 go (x)

= —2vo(x)=- 0,

(3.13a)

(3.13b)
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W hen verifying validity of the boundary conditions for 0 0 (x ), the
integral relationships listed above (see a derivation o f (3 .7)) can be
applied.

Due to equivalence of the boundary conditions (3.12) to the following
conditions

O o  . ( s ) e  0) -1- — 0, 0 0  1 . ( s ) e ( r 2)-  — 0,

it can be shown w ith the help of the energy equality for the Laplace
equation that the only solution of the problem L  is 0 0 (x) 0 . H en ce

where the limiting formulae for derivatives of harmonic potentials from
[13] were applied.

By adding and subtracting formulae (3.13a) and (3 .13b) we obtain
1 ±„,2 _ , ( s )  0 and therefore Ce6f =•••=c^a 1, 2_1 =0, Ply 1 +N2 _1(s) 0  and conse-

quently c?(Ï=••• —âNi +Nr i —0. Now from (3.11b) we obtain 6=0.
Thus we get a contradiction to the assumption that d  is a non-trivial

solution of the homogeneous system (3 .1 0 ) . Hence (3 .10) has only the
trivial solution, so the matrix M  is invertible. This proves the following

Lemma 4 . There exists an inverse matrix M - 1  for the matrix M  of the
system of  linear algebraic equations (3 .2 a) , (3 .6 a) , (3 .7 )  (or the system
(3 .8a) in a vector form).

By inverting the matrix M  we write the solution of the system (3.8a)
in the form

a (t) = 111 - 1 F (t), (3.14)

where M - 1  i s  inverse to M , and the vectors a ( t ) ,  F ( t )  were defined in
(3.8b, c).

It follows from (3 .14) that the functions a :( t )  (n=0, , Ni+N2 - 1)
and c ( t )  belong to the class CEO, c o ) . The functions cTe, (t) (n = 0 . . . . .
N1 +N2 - 1 )  determined in (2.21) belong to 0 [0 , co) as well.

Thus we have found the functions ,u(t, s), v (t, s) and it follows from
their expressions that I/ ( t, s ) , v(t, s)EC K  [0, c o );C ,(F)) , 2.0=minI1/4, AI,
K0 =3/4, where A is the Holder index in the definition of the functions
fi(t, s), f2(t, s), that is in (2 .1 ). These functions ,u(t, s), v (t, s) satisfy all the
conditions introduced for them in the beginning of Section 2.

From the properties of time-dependent dynamic potentials presented
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in  [4], [5] it fo llow s that the function 0(4 x ) from (2.3) belongs to the
class G and satisfies all conditions of the problem K(Ni, N2).

In particular the function 0 (t, x ) satisfies conditions (1.2) near the
ends off' w ith the index 6= —3/4, and the regularity conditions at infinity
(1.4), (1.5) hold, where inequality (1.5) is valid with the index e=1. This
statement can be verified directly with the help of the explicit expression
for 0(t, x).

We have thus proved

Theorem 4. Let fi(t, s) E  (  [ 0 ,  00 ) ; C1'  (r)), f2(t, s) E C ° ( [0, cx) ) ; (T )),
where 2. E  (0 , 1], then a solution of the problem K(Ni, N 2) exists and is given
by the formula (2.3) with the densities ,u(t, s), v(t, s) defined in (2.18),
(2.20), where the functions a (t), a7(t) (n=0, , Ni+ N2 - 1), c(t) making
up the vector a(t) from (3.8b) are given by the formulae (3.14) and functions

(t), a, (t) (n=0 , N1+N2- 1) are determined with the help of the
functions ( t ) ,  a ,7 (t )  (n =0, ,  ±N2 — 1 ) in (2.21).
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