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On maps from BS 1 to classifying
spaces of certain gauge groups

By

SH U IC H I TSUKUDA

1. Introduction

Let G be a compact connected Lie group, 71- : P—>X a principal G bundle
over a compact connected manifold X , and its gauge group. is
identified with r(A d P) , all continuous sections of the adjoint bundle of P,
and we give the compact open topology on it.

Assume that the structure group of P reduces to Z(S 1) ,  the centralizer
of a closed subgroup S ' of G, then

A dP=Px A dG=P- vs1) X AdG,

therefore naturally contains S 1. Conversely if contains S 1 as a
subgroup, one can show that the structure group of P reduces to Z(S 1)  (see
Appendix). We can show similar results in the level of classifying spaces
in some cases. The homotopy theory of classifying spaces of compact Lie
groups has been developed since 80's ( [9] is a good survey) and using the
results of [8 ], [6 ] we have following results.

Theorem 1.1 . Let P be a principal SU (m ) or Sp (m) bundle over an n
dimensional sphere S. Then the following three conditions are equivalent.

1. There exists a homotopically non trivial map from BS' to B.
2. There exists a non trivial homomorphism from S ' to W.
3. There exists a non trivial homomorphism p : S '— >G(G=SU(m),

Sp (m )) and the structure group of P reduces to Z (p(S 1)).

Theorem 1.2. Let P be a principal SU (2) bundle over a smooth simply
connected spin 4 manifold X  or CP. Then the following three conditions are
equivalent.

1. There exists a homotopically non trivial map from B,S1 to BW.
2. There exists a non trivial homomorphism from S1 to W.
3. The structure group of P reduces to S i .
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In the case of X =C P 2, we can show a similar result in  classical way
using the ring structure of the cohomology of B .  In section 3 we prove
the following result. See section 3 for details.

Proposition 1.3 (weaker version of 1.2). If A li, cp2= M-k 2,cp2, then there
exists an integer m and 1= -m 2.

The author is grateful to Akira Kono for valuable discussions.

2 .  Proof of Theorem 1.1,1.2

By [2], we have a homotopy equivalence

=Mapp(X , BG),

where Mapp(X, B G ) denotes th e  connected component of Map(X, B C )
containing the map inducing P and a fibration

Map; (X , BG)->Mapp(X , BC) ->BG,

where Map; (X , BC) is the space of based maps. Consider a map f  : B S '-*
M app(S ", B C). The following holds.

Lemma 2.1. A ssu m e  that n is even or TCi ( G )  Q = 0 f or j>n. If  ev  o f  is
homotopically trivial then so is f

Pro o f . If ev o f  is homotopically trivial then we have a lifting! :BSI—,

M ap(S ", B C )=Q - 1 G .  B y [6 ], if  Y  is a  finite dimensional connected
complex and 71", (17 )  is finitely generated for each i > 1, for j 1

(MaP * (BG, Y)) = (BG ; 74+1( Y) 0 2 /Z ) ,

where Z= HZ is the product over all p-adic integers.
Thus we have

[BS 1, SP - 1 G ]=[E " - I BS 1, G] = 1(MaP* (BS 1, G))

=  H  Ilk - +I (BS 1, 74+1(G)02/Z )=0,
k>  -1

where [ ]  denotes based homotopy classes. Therefore f = *  and so is f .

We can prove a similar result in the case of principal SU(2) bundles
over simply connected 4 m an ifo ld s . L e t X  be a  simply connected 4
manifold with 2nd betti number b . Then we have a cofibering
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V  S 2 ± > X > S 4

b

and obtain a fibering

Q3S 3—*Map; (X, BSU(2))—> IIQS 3. (1)
b

Note that principal SU (2) bundles over X  are classified by their 2nd Chern
classes and Mapk (X , BSU(2)) denotes the component corresponds to the
bundle Ph with c2 (Ph) =k.

Lemma 2 .2 .  Consider a map f: B .S 1--->Map h (X , B SU  (2)). If  ev 0 f  is
homotopically  triv ial, then so is f

Pro o f . If ev o f  is homotopically trivial, we have a lifting f : BS—
Map: (X , B S U (2 )) . Since

[BS', ITS2S9= H [B,S 1, S2S9 = n [EBsi, s3]
b b b

0971(MaP* (BS', S 3))"=' II I l k - 1 (BS 1 ; zh-Fi(S 3) 0 2 /Z )=0 ,
b k>1

b

0 o f  is trivial and f lifts to Q3S 3 .

[BS', S23S 9 =-- II 1/ 3 (BS 1 ; 7rk+i(S 3)  0 2 /Z )  = 0
k>3

hence f  is homotopically trivial.

Note that this lemma also holds if X  is a finite complex with only even
cells.

We recall some results from [8] . Let p : S 1—>G be a homomorphism.
D enote by Z ( p )  th e  centralizer o f  th is  homomorphism and  by
Map,(BS 1, B G) the component which contains the map B p . The obvious
homomorphism

induces a map

which has as adjoint

Z(p) ><S 1—>G

BZ (p) xBS 1—>BG,

ad„ : BZ(p)—>Mapp(BS', BG).

Denote by Rep (S', G) the set of conjugation classes of homomorphisms.

Theorem 2.3 ([8]). The map
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Rep(S1, G )-[B S ',  BG]

is a bijection.

Theorem 2.4 ([81). ad, induces a n  isomorphism in  th e  mod p
homology.

Moreover one can describe the homotopy fiber X, of ad,. Suppose that
X  is a space with an action of a topological group H .  We define XH=
MapH (pt, X ) to be the fixed point set and X'=MapH(EH, X ) to be the
homotopy fixed point set where MapH( , ) denote the space o f  all
equivariant m aps. X' „  denote the p-adic completion in the sense of
Bousfield and Kan and it= 11g, is the product over all p-adic completions.
Let ..S1 act on G via p and conjugation. By choosing a fixed point as base
point of ( )

6, hS1
, S 1 acts on the homotopy fiber F  of G-->G- .  This induces a

homotopy fibration (see [8] for details)
F hS1

and one can compute the homotopy groups 7 ( F ) .

Proposition 2.5 ([81).
(F h s  1 ) H I -P - 1  (BS 1 ;  71'H- (G) ®2/Z).

One can also compute the homotopy groups of the homotopy fiber F
of G ' -->Ô.

Proposition 2.6 ([81).
7; (F ), )  n -,, i (Gs l ) 0 2/Z - 1-12 (BS I ; 7, + 1 (Gs1) ®2/Z)

and  th e  map 7,(Ff ,,,)->71-,(Fhs1)  is given by the  canonical homomor-phism
between the coefficients of the homology groups.

Note that [8] contains more general results.

Proof of Theorem 1 .1 . We must show that 1 implies 3 . We consider
the case of G = SU (m )

Let p. : S 1->SU (m ) be a homomorphism given by

p .(z )=
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then Z (AO = SU (m) n x  u (m  -1 )) . If n  2 m -1, since 7rn_1 (SU(m) (1 (S 1

x U (m - 1.))) - >gn-  (SU ( m ) )  is  surjective, the structure group o f  any
principal SU(m) bundle over Sn reduces to Z(p.,) hence 1, 2 and 3 always
hold.

Assume that n .2 m .  Suppose there exists a non trivial map f: BS 1->
Mapp(S', BG). By 2.1, ev o f  is homotopically nontrivial and by 2.3 there
exists a non trivial homomorphism p : S'-)-G such that ev of B,, hence
taking adjoint of f  we obtain a map g

BZ(p)

S"-!-->Mapp(BS 1, BG)
-

BG.

Note that ev 0g induces P and ev o  ad,, is homotopic to the map induced by
the inclusion Z(p)r->G.

By [8] there is a fibration

Since 71-
)  (G )  Q =0 for j> 2 m  -1  and n-,(G s1 ) = 0 for j >2m - 2, 7r,(P s1 )=  0

for j> 2 m  -2  and K,(Ff „) = 0  for j> 2 m  - 3 hence by the hom otopy exact
sequence for the libration w e  have 71 (Xp) = 0  for j> 2 m  - 2 .  Therefore
(ad,,) : (BZ (p))->TC,, ( MaP p  (BS 1, BG)) is surjective hence we have a lift of
g, g  : S'->BZ(p) and the structure group of P reduces to Z(p).

The proof in the case of Sp(m ) is similar.

Proof of  Theorem 1 . 2 . As above, if there exists a non trivial map f
BS1->Mapp(X, BSU(2)) we obtain a map

g  : X->Map„(BS 1, BSU(2)),

where p : -> S U  (2 ) is a non trivial hom om orphism . Note that Z (p) =
and ev 0 adp=Bi : BS'->BSU (2) where i  : 5 1->SU (2) is an inclusion. Bi . c2 =

where c2 E.FP(BSU(2) ; Z )  is the universal 2nd Chern class and ciE
H 2 (BS 1 ; Z ) is the universal 1st Chern class. By 2.4 there exists an element
a E H 2 (Mapp(BS 1, BSU(2)) ; Z /P) and ad:a = c i. We have

c2 (P)=g* ev* c 2 =g . =  -  ( g *  (a) ) 2 E H 4 (X  ; z / p ) .

If X is a spin manifold with the 2nd betti number b2 = 0, we have c2(P)
=- 0(mod p) for any prime p hence c2(P)= O.

Note that the intersection form Q  o f a  simply connected spin 4
manifold is even. If X  is smooth, by a result o f Donaldson [4 ] , Q  is
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indefinite hence of the form Q=mHC)nE 8 where

H —
( 0

0)
and m, nEZ, 0.  By [5] if n >0, m therefore if b z >0, Q has at least one H
part hence the structure group of P  reduces to S' if and only if c2 (P ) is
even. Since we have an element vEH 2 (X  ; Z/2) such that c2(P)= —v2 =0 E
H4 (X ; Z/2), the result follows.

If X is CP 2, we have an integer m„ for each prime p such that c2(P) —
n'4(mod p) therefore c2(P)= —m2 for some integer m.

Remark 2. 7. T h e  proof above breaks for general simply connected 4
manifolds because of algebraic reason. For example, in the case of X =
CP 2#CP2,  w e have integers m„, n, for each prime p such that —c2 (P)
m + n(m od p) but this does not imply that —c2 (P ) is  a  sum of square

numbers. In fact 6=6+0=2+4=3+3 and ( 6 ) 4 1
) ( )  w h ere  ()  is  the

P P P
Legendre's symbol.

3. Cohomology of Map(CP 2, BSU ( 2 ))

In this section we determine the cohomology of Map (CP 2, BSU(2)) in
lo w  d egree . Of course the calculation is based on the Serre spectral
sequences for the fibrations

>evkMap; (CP 2, BSU (2)) — — B SU (2),.Map, (CP 2, BSU (2)) (2)

Q S'-M ap ; (CP 2, BSU (2) ) AQS2. (3)

Denote Map,(X, BSU(2)) (resp. Map; (X, BSU (2))) by  M k , X  (resP.
It is  w e ll kn o w n  th at M ap ; (C P 2, B SU (2))— 'Q S' is a  rational

equivalence.

Proposition 3.1.

H* (Map: (CP 2, BSU(2)) ; Q)"=- Q Ex],

where deg x=2.

Let p be a prime. Note that for * <2p

H* (QS' ; 2 .0)) u2i/ (741' — Pu2)

as algebras where deg /41=2, deg u2 = 2P,
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Hi(QS 3 ; Z/p )=
{ o if j  is odd
Z/p if j  is even,

if 3 the p component of the h o m o to p y  groups of S 3 is given by

k (S 3)  =
{0 0<k<2p -a 2p-3<k<4p-6

71?H Z/p k=2P — 3
and

1 - P ( Q S 3  ;  z / p ) =
{0 0<j< 2p -3, 2p-2<j<4p -6

Z/p j =  2p -3, 2p - 2.

From the h o m o to p y  exact sequence for the f ib ra tio n s  (2), (3), using
results of E10, chvl we have 71-1(./W.cp 2) =7ri(Mk,cp 2) = 0  and

2

7r2 (M; CP 2) - >  7r2 (QS 3)

71.2(M k, CP 2)

hence H 2 (M ;cp2 =:H2(MP, CP2 ; Z. L e t  i  b e  a  generator of
H 2 (Mk,cp 2 ;  Z )  and a its image in H 2 (M :. cp2 ; Z ) .  Note that we can choose
u i to satisfy i * ( u 1) = a E I - 1 2 (M ):: cp2 ; Z(p)).

We show the following results.

Theorem 3 .2 .  Let p be an odd prim e . For * 2p- 2

H*(MCP 2 ; Z(p)) -=' ,Z(p) [a, b]/(aP -1 —pb)

as rings where deg a= 2, deg b=2P — 2.
{ Z/p 2p 4p — 7, odd(M;, CP2 ; Z/P) z / p 0 z / p  2p- j .  4p -8, even

as vector spaces.

Corollary 3 .3 .  Fo r * —2

H* (M k  cp2 ;  Z / p )---=- H* ( lf ; cp2 ; Z/p)OH* (B S U (2) ; Z/p)

as vector spaces and d P0  mod (el); c2) EH2P- 2 (M k CP 2 ; z/ p ).

Theorem 3 .4 .  Fo r *  <4

H* (M; cp2 ; Z) Z [a, b]/ (a2 —6b)
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as algebras where deg a =2, deg b=4.

Proof of Theorem 3 . 2 .  W e give some remarks on the fibration

SAS3—>Mapi, (S 4, BSU (2)) - - - >

Consider the transgression z-k : H 2P- 3 (Q3S 3 ; z/p) , H2P- 2(Bsu(2) ; z/p). It
is easy to see that rk=kz-

i .

Lemma 3 .5 .  e -i 0 P

Pro o f . If p  5, this is deduced from Lemma 2.2, 2.3, 2.4 of a l l  For
P=3, see [7].

The first possibly nontrivial differential for the z/p coefficient Serre
spectral sequence for the principal fibration (3) in total d e g r e e  2p — 3 is

d25 _2 E10 2-1 3  = H 2 P - 3 (SAS 3 ; Z/P) --)11 2P- 2 (S2S3 ; z/p)=Eri°.

Lemma 3 .6 .  I f 3, d2p-2 0.

Pro o f . Note that the fibration (3) is independent of k .  Consider the
following commutative diagram

Q3S ' , cp 2 - >  QS 3

1 1 1  s 4M  c p 2

BSU (2)  BSU(2)

Assume that 4-2 =  0 then for a generator xEIPP - 3 (Q3S 3 ; z/p), there exists
an element yEH 2P- 3 (M4,cp 2 ; Z /p) and q* (y) =x. Then z- (x) =z-q* (y) = z- (y)
=0. T h ere  ex is ts  a  m ap  f :  BS 1—>M cp 2 s u c h  t h a t  (ev  f )* =0
H 2P- 2 (BSU (2) ; Z/P)--->H2P- 2 (BS 1 ; Z/P) therefore

0= (el) o
f )
 *T (..v)— f* (ev* r(y))= 0,

which is a contradiction.

By proposition 3.1 H 2P- 2 (M:, cp2 ; Z )  has a free part hence d 2 =0 : .0 2P- 2

2 P - 3  therefore H 2 2 - 2 (M17,cp2 ;  z/p) - -z/ p . Consider the Z ( k ) coefficient
Serre spectral sequence for the fib ration  (3 ). Since .E't= 0 for 0< t< 2P —2,

evk BSU (2).
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we have an exact sequence
Evp-2 H2p-2(M,p2 ; z (p ) ) E22).-2. 0

Z(p) Z/p.

This sequence does not split because H 2P- 2 (Mcp2 ;  Z/p) therefore
UP - 1  = i * (Ur) =pb where b is a generator of H 2P- 2 (M cp2 ; Z u,)) - - -=4„) and we
complete the proof of the first part of theorem 3.2.

Again we consider the Z/p coefficient spectral sequence. Since d2= 0
2P- 2 —>Ei 2 3, we have d 2 =  :  E 2P- 2 —.E . 2P- 3  for any s.

Lemma 3.7. If 0 < s 2 p - 2,

d2p_2=0 : E,P2± 3 — >EV,-2 P2- 2 .

Proof. We may assume s is even. Note that A-122Z' =  2"  =  °  E Z  2"
and if 2p -2 , the cup product

1-1)(Q.S3 ; Z / p )oH 2P- 2 (QS 3 ; Z/p)-112+2P- 2 (QS 3 ; Z/p)

is zero. Let y be a generator of 112P- 3 (S4S3 ;  Z/p )=Z/p . Then d ( u r O y ) =
u r  •  d (v )=0 .

Therefore we have

E  E V  =
1.E'2;, P2-1- a 2 P  - 3  = Z/p 2p — i_ j  4p — 7, odd

s+i=, El2- 2P + a 2P - 2 C W -2  =  Z /P O Z /P  2 P  .j_ 4p — 8, even
as vector spaces which completes the proof.

Proof of Corollary 3. 3. Consider the Z/p coefficient Serre spectral
sequence fo r th e  f ib ra tio n  (2 ) . By theorem  3 .2  E V , t 2p - 2  are
concentrated in even dimensions. Therefore

H .  (Mk, CP2 ;  Z / P ) H *C P  2 ;  Z/P) OH* (BSU (2) ; Z/P)

as vector spaces for *  2p — 2.
Since eiP- 1  is in the kernel of 112 P - 2 (Mk, cp2 ; Z  P) — >H 2P (11174 CP 2 ; Z /P ) , we

have eiP - 1 —  0 mod (ey:c2).

At this stage we can prove proposition 1.3.

Proof of Proposition 1. 3, Note that we have a canonical map f: BS 1—>
M_ k2 c p2 (see the proof of the following lemma).
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Lemma 3.8.

f* = Ekc ,EH2 (BS' ; ,

where e =1 or — 1.

P roo f. The map f  decomposes as follows.

BS 1—>Mapo(CP 2, B S ') >Mapk (CP 2, BS9 22)-' Map_k2(CP 2, BSU(2)),

where j : BS'—>BSU(2) is an inclusion. Consider the following commuta-
tive diagram

Z — n- 2 (Map (S 2, BSU(2))) 71.2 ( M- k 2. CP2)

e , ) . ( i0

•

7r2(Mapk(S2, B S ')) < - 7(2(Mapk(CP 2, BS 1) )

•

7r2(Mapo(S 2, BS 1) )  • - - - zz(MaPo(CP 2, RS'))

Z — 7 c 2 ( B S 1 ) 7r2(BS1)

From the homotopy exact sequence for fibrations (2), (3)

(e ) =  2 x : 7r2 (M-k2. cp2) =Z—>Z= n-2 (Map (S 2, BSU (2) ) ).

Let k : 52—>S2 be a map of degree k then we have a commutative diagram

Z—z2(Mapk (S 2, BS')) " 1 -2 (Map (S 2, BSU(2))) — Z

(k ').

  

7 c 2 ( M a P 1 ( 5 2, BS 1) ) "' 7r2(Map(S 2, BSU(2))) Z.

A generator of 71-2 (M aP (S 2, B S U  (2 )))  is given by the adjoint of the degree
1 map S2 A5 2 =S 4—>BSU(2) and that of 7c2 (Map 1 (S 2, BS 1) )  is given by the
adjoint of the map h : S2 x S2 —>B,S1 which represents the line bundle with c1

= a 0 1 + 1 0 a . Then we have a commutative diagram

S2 xS 2B . S 1

S4B S U ( 2 ) .
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This shows that

7r2(MaPi(S 2, BS 1)) ( i ''' 7 r2(M ap(S 2, BSU(2)))

2xZ Z.

Thus we have

f . =k  x  : 7/2 (BS I) =- Z —"Z =
 7/2 (M - k 2, CP 2)  .

Recall that 7ri(BS 1) =7ri (A/ k2, cP 2)  = 0  hence

f* = k x : H 2 (M k2, cp2 ; Z)—>H 2 (BS I ; Z) .

Let g : M_k2 cp 2--,M 1 cP 2 be a homotopy equivalence,p prime to k. By the
above lemma we have (g o f)* ((a 0 1 ) P - 1 ) O E H 2P- 2 (BS 1 ;  Z /P )  hence by
3.3 (eviogof)*c2*0.

Lemma 3.9. For any continuous map f : B.S 1—>BSU (2), f* c2 =2m 2ciE
I-P(B.S 1 ;  Z ) where m is an integer.

P roo f. Put u= —c 2. Let f*  u = lc i. We must show that 1 is a square
number. We have

40 V* u) =10 (c)= 21cr,

on the other hand

f* Y i (u)=f* (2u 5 1 1 2 ) = 21 v2 W I

therefore if (1, PO =1, 1P' -=  1(m odp) and by Euler's criterion, ( 
/
 )=1 hence

P1 is a square number.

By this lemma we can put (ev, 0g 0 f)* (c2)= —m 2c .  Taking the adjoint
of g 0 f : BS 1 - - - M4cp 2, we obtain a map 0  : BSix CP 2 -->BSU (2) and we have

0* (u) = m 2c10 1 + nc i Ocl — a Oci.

Let p  be a prime satisfying (1, p )= ( m, p) = 1  and consider the mod p
cohomology.

.40 '(0 *u )=  Y i (m 2ci01+nc 1Oc 1 -110ci)
=2m2c1+101+nclOc1.

On the other hand

0*Y i(u) = 2 0 * ( u " v 2)
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=2mP+1c1+'01+ (p+1)m'inciOc1
r+i74 (p+1) 1)m37/ 2 — + 1) /m Plcr O ci

hence we have

11m2 =-71-(P +1)(P — 1)n2 =  ( P +
2

1  n ) 2 (m od  p),

therefore

 (-12n2 

)

= 1

and —1 is a square number.

Proof of  Theorem 3.4. For p = 2, since we cannot use 3.5, we consider
the Postonikov decomposition of Map* (CP 2, B S U (2 )). For a space Y and
a non negative integer q, let Y<q > =YU e "  U ••• be a space obtained from
Y by killing the homotopy groups in dimension From the homotopy
exact sequence of the fibering (3), using results of [10, ChV] we have

Mo*, cp 2 < 4 > =M 0*, cp 2 <  >

and a fibration

K (Z/6, 3) - ->M0*. cp2 < 4 >±>K (Z, 2) =BS'. (4)

Let kE1-14 (BS 1 ; Z/6) be the Postnikov invariant.
If 2k=0, the fibration (4) localized at 3 is trivial hence 1/3 (Mo*cp2 ; Z/3)

-- - 1/ 3 (Mo'cp2 < 4 > ; Z/3) 0 0 which contradicts to theorem 3 .2 . Therefore 2
k  0.

Lemma 3.10. 3 k + 0 .

Proof. If 3k=0, there is a map s : BS 1—>Mo* cp2< 4> such that

o s). =3 x : 7c2 (BS') —>n-
2 (BS 1).

Restricting to CP 2 ŒBS 1, we obtain a lift : CP 2—>M0*,cp2 and its adjoint 0
CP 2 x CP 2—>BSU(2). Then we obtain a principal SU (2) bundle over CP 2 x
CP 2 with 2nd Chern class is 6a OaEl-P(CP 2 x CP2 ; Z ) where aEH 2 (CP 2)  is
a generator. Note that K (B SU(2)) - Z [u], K (C P 2 x CP 2) b]/(d, b 3)

1 1and ch(u) =c2- -
1 2  

ch(a) =a 01+ —
2

a 2c h ( b )  = 1 0 a  + -
2

(10a 2). Put

0 * (0 =  6ab + i a2b +Azab 2 +A3a 2b2 where A ,E Z .
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0* ch(u)=0*(c 2 1
1
2 c0

—6a0a —3a2 0 a 2.

On the other hand

ch(0* (u)) = ch(6ab + 24 db + 2.2ab2 + A3a2b2)

=6a0a+ (3-FAI)a 2 0Da+ (3+2. 2)a 0 a 2 ±
3

+ -
1

(. 1 +A 2)+A 3}a20 a 2

2 2
and we have equations

3+A 1 =0
3+A2=0

—
3

+1(Ai-EA2)+A3= _a
which is a contradiction. 2 2

Thus kEl-P(BS I ; Z/6) is a generator. Therefore

d4 : EV=1/ 3 (K(Z/6, 3) ; Z/6)-4-14 (BS 1 ; Z /6 )=E r

is an isomorphism in the Z/6 coefficient Serre spectral sequence for the
fibration (4). Then we can prove theorem 3.4 quite similarly to theorem
3.2.

It is known that all differentials in the Z/2 coefficient Serre spectral
sequence for the fibration (1) vanishes if X is spin (MD.

Appendix

In this appendix we study compact subgroups of gauge groups. Fix a
base point p oE P and 7r(p0) =x0. Then we can naturally identify Ac113

0, the
fiber over xo of AdP, with G by G pg H [Po, g] EAdl o. In this appendix we
always identify Ad.P 0 w ith G by this identification.

Define an evaluation map

ev : X x —>AdP

by ev(x, u)—u(x), and a restriction map

no :  4—>AdP 0—G

b y  N(u)=ev(x o, u ) . Note th a t  th e  eva luatio n  m ap  is  a fiberwise
homomorphism and the restriction map is a group homomorphism. Then
we will show the following.
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Theorem . For any compact subgroup AP o f  g ,  the evaluation map
restricted to XXX'

ev  : X x  — ,..AdP

is injective. In particular, no : 1 - ->G is injective.

Compact subgroups of a gauge group is related to the reduction of the
bundle.

Let H be a closed subgroup of G. A sub H bundle of P is a subset PH c
P  which is a principal H  bundle over X  with respect to the natural H
action. Note that if P contains a sub H bundle, the structure group of P
naturally reduces to H.

Assume that the structure group of P reduces to Z (K ), the centralizer
of a closed subgroup K  of G, then

A dP=Px A dG=P_ zuoxAdG,

therefore g naturally contains K . If K is a tori then any compact subgroup
of 5' such that r 0 ( f )  = If is obtained in this way. More precisely, we have
the following.

Theorem . Let K  be a closed torus subgroup of G. Then there exists a
natural one to one correspondence,

C g  compact subgroup of g  such that r 0 (1 ) = K }

1 to 1

{Z(K) sub bundles of P which contains po} .

Let g f c g  denotes all the elements of finite order of g, G f ŒG all the
elements of finite order of G. Note that for any u E g f , ev (x , u) is of finite

order for all xEX, hence uET(PxA d( g y, gn o (u)g - 1 )). Since there is an

isomorphism

P/Z (r
x0

(u))-2-Px Ad(U gr„0 (u)g - 1 )
gEG

sending [p] to [p, rxo(u )], we can consider u as a section of P/Z (n o (u)).
Let p : P—>P/Z(r„o (u )) be the natural projection. We define a subspace of
P, P(,): =P - 1 (u (X )) , then P(„) is a sub Z(n o (u)) bundle of P and PoEP().

Proposition. For any gE G f ,  P ( )  gives a one to one correspondence,

{u E g f n o (u )= g }
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1 to 1

{sub Z (g) bundles of P which contains Po}.

Proof. We construct the inverse to Po. Let a sub Z (g) bundle PoEPz
Cis' be given. The inclusion P i-4 )  induces an element of WI-

u : X  =Pz/Z(g)-÷P/Z(g);:--_Px  Ad (U hgh -1),

where the last isomorphism is given by sending [p] to [p, g l  and N(u)—
g . In a sense this u is a constant section i. e.

u : glEPzxAdG.

It can be easily shown that this construction gives the inverse to P o .

Proof of the first Theorem. Note that for any uEW*.t- of order n, ev(x, u)
is of order n for all xE X  . Since Ar is compact, ker [ev(x, • ) : .V .-->G] should
contain elements of finite order, hence ev(x, • ) I ,r is injective.

Let Inj
°
(K , G ) denote the component o f a ll the injective homo-

morphisms from K  to G including the natural inclusion K--->G.

Corollary. For any compact subgroup K  of G, there is a natural one to
one correspondence,

litf cW  I compact subgroup of such that r4 i( ) =K I

1 to 1

{sET(PX AdInj °(K, G )) I s(xo) = [Po, ,

where i : is the natural inclusion.

Proof. For .V C ,  taking the adjoint of

X X K X X .)r PXAdG,
ev

we obtain a section of P X A d Inj
°
(K, G ) .  This gives the desired correspon-

dence.

If K is a tori, G acts on Inj°(K, G) transitively, we have Inj
°
(K, G)=- G/

Z (K ) and

hEG

P X AdInj
°
(K, G)=- PX GG/Z(K)=-:P/Z(K).

Then define a sub Z(K ) bundle Po r, for each compact subgroup ,Y ( c  such
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that r
'o

( i( )  =X as before. Then just as the proposition before, Po  gives a
desired one to one correspondence of the second theorem.

R e m a rk . In fact Poo : = ” 2 ,P (0 .  Since G and i r  are compact, any u E

Af is a  section of P X Ad( g yG gn o (u)g - 1 ) ,  hence Poo can be defined and P o o =

We can similarly describe conjugacy classes of subgroups.
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