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§  1 . Introduction

Let X= {Xk} k be an IID, let Y =  { Y k } k  be an independent random
sequence defined on a probability space (Q, P ) ,  and assume that X and
Y are independent. Denote by ,ux, ItlY and ,ux+y the probability measures on
RN (the space of all real sequences), induced by X, Y and X  +Y= { X k+ Y k} k ,

respectively. Since X and X +Y are independent random sequences, fi x and
dux+y are product measures

= 1-1,uxk a n d  fix +1' = k+Ye

where jux k and ,ux k +yk are marginal distributions.
When ,ux i is absolutely continuous with respect to  the Lebesgue

d,ux
measure d x ,  define f  ( x )  =

d x

' ( x ) .I f  f  is  an absolutely continuous

function, f '  denotes the derivative of f  in the distribution sense, and if f  is
an absolutely continuous function, f "  denotes the derivative of f '  in the
same sense. In these cases, define

= f  (x ) 2j - - ( x y
 d x

 .  

f  >0 a.e../1 ( X )
f  ( x )  d x  

a n d  1 2 ( X )  =

f  ( x )

Sato and Watari [8, Theorem 1] proved the relation 11 (X ) 4 ,// 2 (X), so that
12 (X ) < 00 implies 11 (X) < co.

Several authors have investigated the conditions for satisfying
gx (mutually absolutely continuous) in terms of the distribution of Y, but
necessary and sufficient conditions are not yet known in general (see Sato
[71). In the present paper we concentrate on the case in which Y  is a
similar random sequence, that is, Y = a 0 =  fake k}  k, where 0=  tekl, are
independent copies of a random variable 0, and a= {a k} k is a real sequence.
In the following with the exception of Section 2, we fix the above notation
and assume P (0  0 ) > 0 . The following results are known.
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Theorem A  (Shepp [91). Assume O —=1 a. s.. Then we have
(1) ,uxi-aê 1.1x implies Ekai< oo.
(2) Assume I1 (X )<  00 . Then Eka< 00 implies tlx+ae'- `11x.

(3 )  I f  L a i< 00 implies f1x+.6"--gx, then I 1 (X ) <  co holds.

Theorem B (Okazaki and Sato [6], Sato and W atari [8], and Okazaki
[51 ). Let 0 =  teklk be the Rademacher sequence, that is, P (0 =1) =P (0 = —

1) 
1

Then we have :

(1) ILX+ne — g x  im p lie s  L a< 00.
(2) Assume I 2 (X ) < 0 0 . T hen Ekal< 00 implies 1x+.9—gx.
( 3 )  I f  Ekal< Do implies then I 2 (X ) <  co holds.

Theorem C  (K akutani [3 1). Let X = {Xk} k be a standard Gaussian
sequence and e  be a standard Gaussian random  variable. Then gx+.0--gx
holds if and only if  E k al< 0 0.

In this paper we first prove, without assumption of the similarity of Y,
a variation of Theorem 3 of Sato and W ata ri [8 ], and then prove the
following theorems fo r  similar Y=a19. We begin with necessary
conditions for the relation ,ux+.0----11x.

Theorem 1. ( l) i1x+.0- --,ux im plies L a< co.
(2) I f  lim E [ e  :  I I I > 0 , then iix+.0---gx im p lie s  L ai

<co.
(3) If  lim inf_coxPP( I e  I >x)>0 for some p> 0, then gx+.0----gx implies

E k  a k  I 2P <  00 .

The following corollary is an immediate consequence of Theorem 1 (2).

Corollary 1. I f  0  is integrable and E [e lo ,  then ,ux+.0--gx implies
Ekdk< 00.

Then sufficient conditions are

Theorem 2. ( 1 )  Assume I i (X) < 00 and E [e 21 < oe . T hen Ekak<
implies ilX+03 - - ux .

(2 )  Assume I2(X) < 00, EC I e  I P1<00 fo r som e p an d  E[0] —0.
Then E k  a k  P M < C° implies where p A 4=min( P, 4).

Combining Theorems 1 and 2, we obtain necessary and sufficient
conditions for several cases, extending (1) and (2) of both Theorems A
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and B, and Theorem C.

Theorem 3. ( 1 )  Assume I i (X ) < co, E [02] < 00, and E [o] oo. Then
itx+.0—gx holds if and only if  EkaR 00.

( 2 )  Assume 12(X) < co, E[e 4] <00, and E[O] = 0. Then i1x+.8-1Ux holds
if and only if  Ekal< 00.

W e now  refine certain sufficient conditions. I n  t h e  following
Proposition 1, we weaken the assumption E[ e °]<  o c to sup>ox' P(iel
>x)<..

Proposition 1. Assume I 2 (X) < 00 and sup, o f  P (  e >x)<oo for
some p >O . I f  one o f  the f ollow ing (1 )— (4 ) holds, then E k  a k  " 4 < cc
implies jux+.0—gx

(1) 0<p_2.
(2) 2<p < 4 and E[O]=0.
(3) P=4, E[0] =0, and there exists E >0 such that

s u p  (e  —  z  ) 2f z)2 dx< co, w h e r e  f ( x )   (x ).
I z  I <6 -c° f ( x ) dx

(4) p > 4  and E[O] =O.

On the other hand, we have the following.

Theorem 4. ( 1 )  If  Eka 2
k < co implies ,ux+.0-11x, then we have lim sup--

E[e : e <—.
(2 )  If  L a <  0 0  implies ,1x+ .9 ---,1x , then we have E [02] <00 and E [e] =

0.
If 101 0 a. s., then lim supx - -  E r e  :  e I < 00 in  Theorem 4 (1)
implies E[e] <00, so that we have the following.

Corollary 2. Assume e_>_o a. s.. I f  Ekcd< co implies ,ax,„9—ax, then we
have ELeI< œ .

Example 1. Let X = {Xa k be an IID such that i i (X) < 00, and let Y=
{Yak be an independent random sequence, independent of X, such that
each Yk is exponentially distributed. Then the following (1) -- (4) are
equivalent

(1)
(2) E k  E rY  <  °O.

(3) E k  E [ < 00.
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(4) E k  ' <  ° °  a. s..

In fact, g y  is expressed as g y =ga e , where e is exponentially distributed,
E[O] =1, and ak =E [Yk], k EN. Then by Theorem 3 ( 1 )  , , i - a f r * * 1 1 X  is
equivalent to E k ai< 00. They are also equivalent to Ek E[Y] <00 because
E [Y2k] =aE [021 =2a2k. Moreover, we have by Kolmogorov's three series
theorem, Ekrk< 00 a. s. if and only if E k a < 0 0 •

Example 2. Let X = {Xk} k be an IID such that 12 (X) <00, and let Y=
{ Y k} k be an independent random sequence, which is independent of X, such
that each Y k  is a symmetric a-stable random variable, where 0 < a < 2. Let

E [eitYk] = where ck> 0, kEN.-e

Then g y  is expressed as = H ,  where E [e t ] = e -  l a and ch=c),`" , k E N . In
addition, we have by Blumenthal and Getoor [1, Theorem 2. 11,

0 < lim  in f xa P ( 0  >x) _sup P(  e  > x ) <  0 0 .
X >0

Hence by Proposition 1, E k  a k  ' < 00 implies ,ux+y—gx, and by Theorem 1
(3), gx+y---gx implies Ek ak <

§ 2 . G en era l Case

In this section we do not assume that Y  is similar. We first give
preliminaries and then prove a variation of Theorem 3 of Sato and Watari
[81. A general characterization of fiX+Y - - - g x  has been given by Kitada and
Sato [4, Theorem 2] as follows.

Lemma 1 (Kitada and Sato [41 ).  Assume ux,+y k. — ux h for every k E N ,
and define

ClItX +Y
Z k (X )  = k k  ( x )  — 1,k  E N.

dux k

Then gx+y---gx holds if and only if the following hold :

Ek E [Z k (X k ) : Z k k )  1 1  <

Ek E [Z k(X k) 2 : I Z ( X )  < 11 < 00.

This is a necessary and sufficient condition, but Z k (x )  depends on the
distribution of X 1 and is not always easily estimated. Starting from
Lemma 1, Hino [2, Theorem 1 . 8] proved certain conditions for the relation
gx+y---gx  as follows. His conditions are described in terms only of the
distribution of Y, but they are necessary or sufficient conditions.
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Lemma 2 (Hino [21). ( 1 )  If Iix+y — gx, then we have for every e>0 ,

P (  I Yk I >e) 2 + E E[Yk : I Yk e1 2 + E  E[11 : Yk _E12 <00.

(2) A ssume I 2 (X ) < 00• If there exists e >0  such that

E P( I Yk I > e )+ E  E [Y k  : Yk E12-E E[17 / : Yk el < C I C ) ,

then we have t1X+Y'- '12X.

(3) If there exists E > 0 such that

SU P (e —  z  ) 2
f" (x + z)2

f (x ) d x <
<e

and

E  PC I Yk I > E )+ E  ECK, : Y k  < E 1 2 + E  E [ r x  : Yk El2<00,

then we havegX+Y '- *ILX•

Applying Lemma 2, we have the following theorem.

Theorem 5 .  If I 2 (X ) < C°, E[Yk] =0, supk E[rk] < œ and EkỲkl< 00 a. s.,
then we have lix+y—gx.

P ro o f  Since EkYl< œ a. s., we have by Kolmogorov's three series
theorem,

E  P (  Yk >1 )<C >3 and E  E [rk  : Yk < C°.

Since E[Yk] =0, we have

E [Yk : Yk — E [Y k  :  Y k  > 1 1

and thus, by the Schwarz inequality,

E ErYk : I Yk I 112 =E E[Yk : I Yk >1] 2 E E[rk] P( I Yk I >1)

<(s u p  EDIJ) E P( I Y k  I >ID< C°.

Hence by Lemma 2 (2), we have 12 X±Y'I sliX•

Corollary 3. /2(X) <03, Ek E [re l < C °  an d  E[Y kl =0 together im ply
Itx+y^-11x.
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Sato and Watari [8, Theorem 3] proved that gx+y—ax  holds if /2(X )<
00, EkIl< œ a. s. and each Yk is symmetric. We assume ELY,,) =0 and sup,,
E [Y ] < 00 instead of assuming the symmetry of Yk. Then the case p = 4 of
Theorem 2 (2) is a special case of Theorem 5. In fact, E [04] < 00 and  Ekal
<00 together imply Ek E[602j] < 00, so that we have Ekalet< 00 a. s. and
sup,, E [a2k02k] <

§ 3. Proofs

Proof of Theorem 1. ( 1 )  Since P(e ()) >0, there exists K>0 such
that

P(o< I e  I -.K)>() and PC I e ,K-)>0.
Then by Lemma 2 (1), we have

œ > L P ( I 0  >
czk O

\  2) > L  P (  e  I >ak I K >1
1 

th  I

E P (  0  I K ) 2,
I (1,, K > 1

so that ak K > 1  holds for finitely many k EN. Hence there exists koEN
such that

a k  K  1 f o r  k>k o.

We therefore have, by Lemma 2 (1),

>  E : Yk1 ] 2
k> k 0

= k k o
a

l. 
E

[
e 2

k ek

so that Ekal< 00.
1(2 )  Let m =4lim  in f,„ E ce : e  I >0. In the case that I e  I

1M  a. s. for some M > 0, we have I E [O ]  , so that by Lemma 2 (1),

we have

00 > E E[Yk : Yk 2 =  E E[Yk] 2 = Ea 2k E[0] 2 =4m2Ea2k.

In the case that ID( e >x)>0 for all x >0, there exists L >0 such that

I E[() : e xII _>_m f o r  x> L.

By Lemma 2 (I), w e have

<  1 12 >  E  E  [ e 2 e  < K 1 2,
ak k>ko
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0 0 > E  P (  Yk 1 >1) 2 =  E  P (  e  >  1  ) 2

ak *0 I a1, I
1 )2

>  E  P O "  la1,1 1.„EIL>1 1 )( e  I > 1 ")2'I c 4  L>1

Then since P (  0  >L) > 0 ,  I ak L >1 holds for finitely many kEN, so
that there exists noEN such that I a k  L for k  .no.  We thus have

IE [e  : kI e I _ 722 f o r  k n o w i t h  ak 0.

Therefore by Lemma 2 (1), we have
12co >E E[Yk : Yk E 1E [ek  : ek I <

k > n ol a k 1 - 1
a 0

>m 2 E a .

( 3 )  Let r= ilim  in ff P ( I e I >x) >0. Then there exists L > 0 such that2

x P  p ( e  > x )r  f o r  x>L.

Since P (  0  I >L) >0, as in the proof of (1 ), we know there exists noEN
such that

a k  L  1 fo r  k> n o.

Hence by Lemma 2 (1), we have

c°> P (  Yk > 1 ) 2 E
k > n ok > n o

cik 0
so that E k  ak I <  o e •

Proof of Theorem 2. ( 1 )  Since E [Ekaie2k] = E [02] Ekai< 00, we have
Eka2VA< co a. s., that is,,a.8(12) =1, and since X and aEll are independent, we
therefore have ,ux+.0=gx *go). It follows that

f ix + .e (A )  = 5 t tx ,y (A )0 .0 (y )

for every Borel set A in RN. On the other hand, since 11(X) < co, we have by
Theorem A, jux+, - -V x  for every YE/2. I f  , i+ ,0 (A )  =0, then , i+ (A )= 0  for
some yE/ 2, so that iix (A ) =O. Conversely, if ,ax(A) = 0, then ,a + ( A ) =  0 for
all yE/2, so that Ltx+.0(A) =0. We therefore have gx+.8---I2x.
( 2 )  Since E[ I e I P] <  , we have M =su p  Ix IP  P ( ie i >x)< 00. Then
for every k E N ,

1 )< MP (  Yk I >1)=P( I e I > ak P,I ak

p (  e  >  
1  )2

>r 2 E  a k  21',ak —  k n o
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1 E[Yk : I Yk I __112 =a2kE[e : I e 1 ] 2 =aM [e  I e I >I ak ak

(2E[02]P( I e I > I al  k
[021aiE [021 =alEce21 2

and E : Yk I 1] E [  Y k  P A 4  :  Y k

=lakIPA 4 E[101" 4 :1e1
I a k  " E [  I e I " 41.

1 
ak J

Hence by Lemma 2 (2), Ek I ak < co implies iix+.0—,ux.

Proof of  Theorem 3. ( 1 )  By Corollary 1, ,axi-aw---,ax im plies La<  00
and by Theorem 2 (1) , L a <  œ implies ,ux+.9--,ax.
( 2 )  By Theorem 1 (1) and Theorem 2 (2), we have ,ux+„e—gx if and only
if L a<  °° .

Proof  of  Proposition 1. Let M=sup„ox' P( I 0  >x) < 00 • Then we
have for 0<p<4,

PC Y k  > 1 )  =ID( e  > ) < / f f  I ak
ak —

and E LY :  Yk 1] =a1E[0 4 : I la-k. I 1—
 — x4dP( 0 1  >x)

_ 4(211 a k  I x31) ( I 0  I > x )d x  4 M a l  l a k  X 3 - P dX
0 0

4M 
= 4 — p  a k

Therefore in  (1) and (2 ), it is sufficient by Lemma 2 (2) to prove that
E k  ak <  œ  implies E k E [Yk : Yk 112<°°.

Assume Ek ak I 2A4< 00•

ak

We thus have for k ko,

Then there exists koEN

for k ko.

such that

ECYk I Yk I I I ak E [  I 01 01 I al  k I ]
11 < le l ak 1 1

I ak + Iak l j a k iP ( 0 >x)dx

ah I  + M  a h  I
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( 1 )  If O<P<1, then for k>ko,
1 

E[Y k :  Yk ah ± M  a k  j X-PdX

M \1  p 1 ah +  I

m

p 1 a k  P.

1

E[Y k Yk 11 I I ak I + M  a k 1 dx
=  a k  (1 + M  I log I ak I  I ) .

Therefore Ek I ah <  co implies Ek E[Y k : Yk 1]2<°°.
If 1<p.-2, then for k ko,

ErYk : Yk I I ak I + M  I ak I x - P d x <
M + 1

ak— P - 1
Therefore Ek I ah  P < C O  implies Ek E [Yk Yk1 12<
(2) Since

E [o H o l <  1  1 =  E [ e N e t >
-  I ah I al ', 1]  

a n d  E [09 < co,

the following holds

E[Yk : Yk 172=a2kE[e:tel lc
1
ikl]2-aM[e :  I e I >  I ak 1 -1

1 12

a2kE[e 2]13 (  I e I > I (14  I )
.aE[021a2kE[02]---ctlE1e212,

so that Ek a h  I < co implies Ek E[Yk : I Yk 112< œ  •

(3) We have

P (  Y k  > E ) = P (  I e I > I ah
and since

E [e  H e l>   E a n d  Ere 2]< 00,ah
if follows that

E [Y k:I Yk E12=.64E[cl : iel Ee  I >I ah  al1 1
2

__62

=aiELO

2kE[0 21P( I e I >
E k )

< [e2] —a/
2'2 E  [09 E  r e22]2

and E[Yi : I Yk I E 1 2 =a1 E [0 ;, :  lek I < E 1 2 <alE[09 2.
— I ah

Therefore Ek I ak I ' <co implies Ek E [Yk : Y k .112<CC).
If p=1, then for k ko,



326 Hitoshi M izum achi and Hiroshi Sato

Hence by Lemma 2 (3), L a <  00 implies gx+.8--1Lx.
( 4 )  If p >4, then we have E[01 < 0 0 . This case is proved in Theorem 2(2).

Proof of Theorem 4. ( 1 )  Assume lim sup— I E [e : e =co.

T hen fo r  T (x )= E [e :1 6 1 1 . 1 ] 2, w e  have lirn sup_oT(x)= 00, so that

there exists, by Shepp [9, Lemma 41,  a sequence a =  fa k Ik such that

a < 00 a n d  E  LYk  : Yk 112= a2
k 

ak () ak
Therefore by Lemma 2 (1), we have ,ax+.894 gx.
( 2 )  W e first prove E [02] < 00. I f  E [02] =00, it follows that lim , 0E[e :

e 1_1
2 

C°. Hence by ShepP [9, Lemma 4], there exists a sequence

a =  {a k such that

E a l< c o  a n d  z  E [Y 2k : Yk E al E[i%  : e k < 12=...
12 0 Va2k

Therefore by Lemma 2 (1), we have ,ax+0.874 gx.
Next we prove E[e] =0. If E [e ] 0 , then lim ,  E  :  e =

I E[e] I >0. Hence by Theorem 1 (2), f ix +.€ ,- - g x  implies E  k a i <  .  Then
Ekal< 00 implies ,ux+.0 -̂,ux, and gx+.0---,ux implies Eka 2k< 0o, so that Ekal< 00
implies La i<  00 . This is a contradiction.

It is therefore shown that E[0 21 œ  and E [e l =0.
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