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Absolute continuity of similar translations

Dedicated to Professor Shinzo Watanabe on his sixtieth birthday
By
Hitoshi MizumacH! and Hiroshi SaTo

§ 1. Introduction

Let X={X.}. be an IID, let Y={Y.}, be an independent random
sequence defined on a probability space (@, #, P), and assume that X and
Y are independent. Denote by ux, 4y and ux+y the probability measures on
R"(the space of all real sequences), induced by X, Y and X+ Y= {X:+ Y.}.,
respectively. Since X and X+Y are independent random sequences, ¢x and
Ux+y are product measures :

,llle_[;ﬂtx,c and ﬂx+Y=Hﬂxk+Yk,
k k

where ux, and ux,+y, are marginal distributions.

When ux, is absolutely continuous with respect to the Lebesgue
du
d:l (x). If f is an absolutely continuous
function, f” denotes the derivative of fin the distribution sense, and if f” is
an absolutely continuous function, f” denotes the derivative of f’ in the
same sense. In these cases, define

measure dx, define f(x)=

ERPIIGRY o £ N\2
noo= [ L8 g ana noo- [T L8 ax it >0
Sato and Watari [§8, Theorem 1] proved the relation I;(X) S%\/IZ(X), so that
L,(X) < oo implies [,(X) < oo,

Several authors have investigated the conditions for satisfying ux+y~
ux (mutually absolutely continuous) in terms of the distribution of Y, but
necessary and sufficient conditions are not yet known in general (see Sato
[71). In the present paper we concentrate on the case in which Y is a
similar random sequence, that is, Y=a0®= {a.0,},, where ©={0,}, are
independent copies of a random variable ©, and a= {a.}. is a real sequence.
In the following with the exception of Section 2, we fix the above notation
and assume P(@+#() >(. The following results are known.
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Theorem A (Shepp [9]). Assume ©=1a.s.. Then we have :
(1) Uxsao~ux implies Z,al< .

(2) Assume I(X) <. Then L,ai< oo implies tx+we~ILx.

(3) If Tiak< oo implies x+e~Ux, then I;,(X) < oo holds.

Theorem B (Okazaki and Sato [6], Sato and Watari [§], and Okazaki
[5]). Let ®={6.}, be the Rademacher sequence, that is, P(O=1)=P(O= —

1 =%. Then we have .

(1) Uxiwo~Ux implies T.ah< oo,
() Assume I,(X)< oo, Then T.ai< o implies [ix+we™~Ux.
(3) If Zrai< oo implies tx+.e~Lx, then [,(X) < oo holds.

Theorem C (Kakutani [3]). Let X={X.}. be a standard Gaussian
sequence and © be a standard Gaussian random variable. Then Ux+.e™~Ux
holds if and only if T.ar< co.

In this paper we first prove, without assumption of the similarity of Y,
a variation of Theorem 3 of Sato and Watari [8], and then prove the
following theorems for similar Y=a®. We begin with necessary
conditions for the relation tx+.e~x.

Theorem 1. (1) fx+.e~ux implies T.at< oo,

() If liminf.e | E[@: | O] <x] | >0, then ux+.e~ux implies >.ai
< oo,

(3) Ifliminf..x’P(| @ | >x) >0 for some p >0, then ttx+.e~Lx implies
I | A | ? L oo,

The following corollary is an immediate consequence of Theorem 1 (2).

Corollary 1. If © is integrable and E[O]#(, then pxiwe~ix implies
Zka£< o0,

Then sufficient conditions are :

Theorem 2. (1) Assume [,(X)< and E[@*]<oo. Then X,ai<
implies lx+ae™~Ux.

() Assume L(X)<o, E[| O |*]<> for some p=>2, and E[O]=.
Then 3, | a. | *M< oo implies tx+.e~Ux, where pA4d=min(p, 4).

Combining Theorems 1 and 2, we obtain necessary and sufficient
conditions for several cases, extending (1) and (2) of both Theorems A
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and B, and Theorem C.

Theorem 3. (1) Assume I,(X)<oo, E[@*] <o, and E[O] #(. Then
Ux+a0~Ux holds if and only if T,at< oo,

(2) Assume L(X)< oo, E[@*]< >, and E[O] =(. Then ttx+.e~ux holds
if and only if X.ai< oo,

We now refine certain sufficient conditions. In the following
Proposition 1, we weaken the assumption E[ | © | ?] < oo tosup:»ex*P( | © |
>x) < oo,

Proposition 1. Assume L(X) < and sup.=x” P(| O | >x)< oo for
some p>(. If one of the following (1)~(4) holds, then 3, | a. | "< o
implies Ux+a0™Ux .

1 0<p<2

(2) 2<p<4and E[O]=0.

(3) p=4, E[O)=0, and there exists € >( such that
dﬂxl

: [T S x+2) _
|§1l1p<6(e—|z|) f; W dx< oo, where f(x)= P

(x).
4) p>4and E[O]=0.
On the other hand, we have the following.

Theorem 4. (1) If T.al< oo implies tix+.e~Ux then we have lim sUP;.
[E[@: 0] <x] | <oo.
(2) If Zrai< oo implies fix+wo~Ix, then we have E[6?] < o0 and E[O] =
0.

If ©>0 a.s., then lim sup,~. | E[@ : | ® | <x] | <o in Theorem 4 (1)
implies E[@] < o, so that we have the following.

Corollary 2. Assume ©@>(a.s.. If L.ai< o implies tx+.0~Lx, then we
have E[@] < oo,

Example 1. Let X={X,}, be an IID such that /;(X) <, and let Y=
(Y.}, be an independent random sequence, independent of X, such that
each Y, is exponentially distributed. Then the following (1)~ (4) are
equivalent :

(1) MLx+y™~[Ux.

(2) ZiE[Y:]*< 0.

(3) ZLE[Yi<co,
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() Z.Yi<oo as.

In fact, uy is expressed as ¢y =(.e, Where @ is exponentially distributed,
E[®]=1, and a.=E[Y.], REN. Then by Theorem 3 (1), fx+e~lx iS
equivalent to X.al< . They are also equivalent to X2, E[Y?] < o because
E[Y?]=aiE[0%] =2a.. Moreover, we have by Kolmogorov’s three series
theorem, X, Yi< o a.s. if and only if Z,ai< o,

Example 2. Let X= {X,}. be an IID such that I,(X) <o, and let Y=
{Y.}. be an independent random sequence, which is independent of X, such
that each Y, is a symmetric a—stable random variable, where (<a<2. Let

E[ei’yk]:e_p"ltlrl, where ¢.>0, kEN.

1
Then uy is expressed as gy ={t.e, Wwhere E[e”®]=e """ and a,=cy, kREN. In
addition, we have by Blumenthal and Getoor [1, Theorem 2.1],
0<lim infx* P(| O | >x)£sx§% xP(] O] >x)< oo,
x

X—> 00

Hence by Proposition 1, 2. | a. | *< o implies gx+y~tx, and by Theorem 1
(3), wx+y~ux implies X, | ax | #< oo,

§ 2. General Case

In this section we do not assume that Y is similar. We first give
preliminaries and then prove a variation of Theorem 3 of Sato and Watari
[8]. A general characterization of gx.y~ux has been given by Kitada and
Sato [4, Theorem 2] as follows.

Lemma 1 (Kitada and Sato [4]). Assume fx,+v,~x, for every REN,
and define
dﬂxkn'k
d/.lxk

Zy(x)= x)—1, kEN.

Then ux+y~ux holds if and only if the following hold :

L EZ.(X) 1 Zu(X) = 1] < oo,
SHEZ (XD | Zu(X) | <1]< o0,

This is a necessary and sufficient condition, but Z.(x) depends on the
distribution of X, and is not always easily estimated. Starting from
Lemma 1, Hino [2, Theorem 1.8] proved certain conditions for the relation
Ux+y~ux as follows. His conditions are described in terms only of the
distribution of Y, but they are necessary or sufficient conditions.
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Lemma 2 (Hino [2]). (1) If ux+y~ux, then we have for every e >(,
% P(|Y.| >e)2+§ E[Y.: | Y] ££]2+}E E[Yi:|Y.] <e]’<oo,

(2) Assume I,(X)<oo. If there exists € >() such that
% P(| Y. | >e)+§ E[Y.:|Y.] se]2+§ E[Yi: | V.| <e]<oo,

then we have [tx+y~Ix.

(3) If there exists € >() such that

e f(x+2)*

oS dx <

sup (e— |z])?
|z | <e
and
; P(| Y| >e)+§ E[Y.:| Y. <e]2+§ E[Yi:|Y.| <e]’<oo,
then we have ftx+vy~x.

Applying Lemma 2, we have the following theorem.

Theorem 5. If ,(X) < oo, E[Y,] =0, sup. E[Y?] < and 3,Yi<>a.s.,
then we have fLx+y~Ux.

Proof. Since X.Yi<co a.s, we have by Kolmogorov’s three series
theorem,

by P(| Y| >1)<o0  and z ELYi:|Y.]| <1]<oo
Since E[Y.] =0, we have
E[Y,:| Y| <1]=-E[Y.: | Y. ]| >1],
and thus, by the Schwarz inequality,
b E[Y.:| V.| s1]2=§ E[Y.: ]| Y.| >1]2§§ E[YZ] P(l Y. | >1)

S(Slép E[Yi]) % P(lYe| >1)<oo
Hence by Lemma 2 (2), we have x«y~x.

Corollary 3. L(X)<oo, X, E[YZ]<o and E[Y.]=0 together imply

Kx+y ™~ [Ux.
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Sato and Watari [8, Theorem 3] proved that gx+y~ux holds if [;(X) <
oo, 3, Yi< o a.s. and each Y, is symmetric. We assume E[Y,] =0 and sup.
E[Y?] < = instead of assuming the symmetry of Y.. Then the case p=4 of
Theorem 2 (2) is a special case of Theorem 5. In fact, E[@*] << and ¥.a}
< oo together imply X E[ai®i] <, so that we have Z,ai@i< = a.s. and
sup: E[a}6}] < 0.

§ 3. Proofs

Proof of Theorem 1. (1) Since P(@#() >0 there exists K>( such
that

PO< | & | <K)>0 and P(|©| =2K)>0.

Then by Lemma 2 (1), we have

1 2 1 2
oo>a§&0P el> |ak|>ZIa,¢IZK>1P(|@|> |dk|>

> ¥ P(lo]|=>K)

T la TK>1

so that | a. | K>1 holds for finitely many 2EN. Hence there exists k&N
such that

la, | K<1 for k>k,.
We therefore have, by Lemma 2 (1),
o> 3 E[Yi:|Y.| <1])?
A

> 2 . L 2 4 2 - 2
_ZaBlet: 16 < |"> T alEl6': |6 | <K

a#0 @
so that X.ai< .
(2) Let m=%lim infew | E[@ | © ] <x] | >0. In the case that | O | <
M a.s. for some M >(), we have mZ% | E[(@] |, so that by Lemma 2 (1),
we have
°°>§ E[Y,:|Y,] SM]Z=§ E[Yk]2=§a§ E[@]2=4m2§ai.
In the case that P( | ® | >x) >0 for all x>0, there exists L >( such that
|E[O@: 10| <x] | >m for x>L.

By Lemma 2 (1), we have



Similar translations 323

w>TP(| Y. >D= % P(10] >%)2
k a#0 |ak|

1

| @ |

P(|@|>

> 3 Y= = P(16]>L)
|E»lL>1 |alc|L>1

Then since P(| ® | >L) >0, | a.| L>1 holds for finitely many REN, so
that there exists n,&N such that | a. | L<1 for k>n,. We thus have
‘ E[@Z | @ | Sl—alT} ‘ >m for k>n, with a.#0.
k
Therefore by Lemma 2 (1), we have

> E[Y,: | V.| <1]°> ZaiE[@k:Ithg 1 ]2
% P | a |
ar#0

>m? ¥ al.

ano

(3) Let rZ%lim infx* P(| ® | >x)>0. Then there exists L >() such that
x—>00
x*P(|O©]| >x)>r for x>L.

Since P( | ® | >L) >0, as in the proof of (1), we know there exists n)&N
such that

la, | L<1 for k>n,.
Hence by Lemma 2 (1), we have

w>3 P(I Y>> % p(16] >——1—>22r2 S lal?
k>n, k>ng |(l~ | k>n,

a.#0
so that X | ax | ¥< oo,

Proof of Theorem 2. (1) Since E[X.a}@?] =E[6?] Z,ai< =, we have
Yeal@i< o a. s, that is, e ({;) =1, and since X and a® are independent, we
therefore have fx+.e =Ux * tLae. It follows that

fxraa(A) = f fxry (A)diten(¥)

for every Borel set A in R™. On the other hand, since I,(X) < o, we have by
Theorem A, ux+,~ux for every yEl,. If txi.(A4) =0, then ux.,(4)=0 for
some yE I, so that ux(4) =0. Conversely, if ux(A4) =0, then ux+,(4) =0 for
all yEl, so that px+.6(A)=0. We therefore have txr.e~x.

() SinceE[| O |?]< o, we have M=sup, | x | ? P(| ® | >x)<oo. Then
for every REN,

p(1 v >D=P( 16| >aT)<MIal’
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. 1 2 1 9
2 9 . — 2 .
E[Y.: | Y, | <1)'=diE[0: 0] < lak|] aE[e: 101> |a,,|]

<at[67P( 16 | >t

<aiE[6%]aiE[6"] =aiE[6Y]
and E[(Yi:| Y| <1I<E[| Y. |"™:| Y. | <1]

= lal™E[ 10116 < 1]

| a |

<la |™E[] 6],

Hence by Lemma 2 (2), .| a. | **< o implies tx+e~lx.
Proof of Theorem 3. (1) By Corollary 1, tx+e~tx implies 2.ai< o,

and by Theorem 2 (1), X:ai< oo implies Ux+.e~Ux.

(2) By Theorem 1 (1) and Theorem 2 (2), we have tx+.e~x if and only
if Zka}t< 0,

Proof of Proposition 1. Let M=sup,»x” P(| @ | >x)<o. Then we
have for 0<p <4,

P(1 vl >D=P(10| > 2 )<M lal”

1
and E[Y!: | Y. | <1]=aiE[6': | 0| s~|1—]=—a}i [ ap(l 01 >x)

akl

1 1
<dal [ *'xP(| O] >x)dx£4Ma;§’ 1ok 3oy
0 0
:44TMP la |

Therefore in (1) and (2), it is sufficient by Lemma 2 (2) to prove that
Zk | a | p<°o implieS Zk E[Yk . | Yk | £1]2<°°.
Assume Y, | @i | ?*< 0. Then there exists k&N such that

|a. | <1 for k=>k,.
We thus have for k >k,

: : 1
|Evi: |Vl <l <lalE[16]:]6] <]

<lal+lalEl6] :1<|@|gﬁ]

1
<lal+lal '™ P(1O] >x)dx
1

1
Tap |
< lal +M | a | * x*dx.
1
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(1) If0<p<l1, then for k>k,, 1
|E[Ye: | Yol <11 <lal +M|al xdx

=<1‘%> a | +1{4p Lol

Therefore X, | @, | *< oo implies 2, E[Y,: | Y | <1]*< o0,
If p=1, then for k>k,,

1

|E[Ye: | Yl <1] I <lanl +M]al %dx
lae | A+M | log lae ] |).

Therefore ¥, | a. | <o implies T, E[Y,: | Vi | <1]*< o0,

If 1<p<2, then for k> k,,
M+1
p—1
Therefore 2, | ar | ?< oo implies Z, E[Y, ! | Y. | <1]?< o0,
(2) Since

E[@: X Sﬁ]z—E[@: KX >—lail—] and E[6Y< oo,

1
|E[Y,: | Vil <] <lal+M|al l'“"'x"’dxs lae .

the following holds :
1

|ak|

LY. | Y| 31]2=a£E[@: 6] < }z:agE[@: X >#]2

|alz|

1

2 2

SakE[@]P<I 61> )
<alE[0%]a?E[0%] =a!E[6%]?

so that 3, | ax | < o implies T, E[Y.: | Y. | <1]*< oo,

(3) We have
P(| Y, | >5)=P<|@l >|;—k|>s%a2,
and since
. E — . L 9
E[@. 101 <o } E[@. 16> Iakl] and E[07]< o,
if follows that
. 2 2 . _ € 2_ . _E e
E[Y.: | Y. | <é¢] akE[@. (61 <7a ] a,,E[@. (01> ]
Sa%E[@2]P< 10 | >|—;|—)
k
2 272
<diE[6% E[67=at EOT,

and E[Y2: | Y, | Se]2=azE[@z D16, | sﬁ}zsam[@ﬂ%
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Hence by Lemma 2 (3), 2Z:at< oo implies x+so~Lx.
(4) Ifp>4,then we have E[©'] <. This caseis proved in Theorem 2 (2).

Proof of Theorem 4. (1) Assume lim sup,~. | E[@ : | & | <x] | =oo.
Then for T(x)ZE[@Z | O | S%] ? we have lim sup,—T'(x) =0, so that
there exists, by Shepp (9, Lemma 4], a sequence a= {a.}. such that

2ai<oo and X E[Y.:|Y.| <1)*= X aiE[@i el < 1 ]2200
% k a.#(0 |akl

Therefore by Lemma 2 (1), we have tx+.e7lx.
(2) We first prove E[@*] < oo, If E[0*] =0, it follows that limx-.wE[@ :

| O | SL ’— o0, Hence by Shepp [9, Lemma 4], there exists a sequence
5

a= {a.}. such that

Yai<oo and Y E[Y::|Y.| <1)’= % azE[@,%: 16, <
k k a.#O

=00,

L]Z
Jal
Therefore by Lemma 2 (1), we have fx+.e7Ux.

Next we prove E[@] =(. If E[@] #0(, then lim.~. | E[®: | O | <x] | =
| E[@] | >0. Hence by Theorem 1 (2), tx+se~tx implies 2,ai< . Then
Yeai< oo implies x+ae~Ux, aNd Lx+ee~Ux iMPplies X,al< 0, so that X,ai< o
implies X,ai<oo. This is a contradiction.

It is therefore shown that E[6*] <~ and E[@]=(.
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