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Relations between unitary representations of
diffeomorphism groups and those of the
infinite symmetric group or of
related permutation groups

By

Takeshi Hira1 and Hiroaki SHIMOMURA

Introduction

In this paper, we study interrelations between unitary representations
of two kinds of groups. The one is the group G=Diff,(M) of diffeomor-
phisms with compact supports on a manifold of class C®, 1<n<oo, and
the others are certain permutation groups S contained in &. of all
permutations on the set N of natural numbers. In certain typical cases, the
latter are equal to the infinite symmetric group &. of all finite
permutations or its standard subgroups.

Let us expain in more detail. The representations treated here are
principally infinite tensor products of natural representations T35, s;&ER, of
G on L%spaces #,=L*(X;, %;, u;), with X;=M, B,=#(M) the o-algebra of
Borel subsets of M, and y; locally finite measures on M which are locally
equivalent to Lebesques measures with respect to local coordinates. (The
set of all such measures on M is denoted by £%.# (M). Here T;iis given as

T () ~(LLE LY (g ) (€6, fE#, pEM, i=/=D.

To have an infinite tensor product, we should fix a reference vector x
= (x,);ex consisting of unit vectors x,E ;. As we seein § 1, it is enough for
us to treat the cases where y;’s are of the form x,= |l xs, I ¥, x5, with xs the
characteristic function of E;&#(M). Put u=(u);ex, E=1IlenE; and X=
IM;en Xj, and assume two conditions (MU1) and (MU2) on (g, E). Then we
see as in § 2 that the infinite tensor product space ®%*y3#; with respect to
x=(xpjen can be realized as an L%space for a measure given as infinite
direct product of measures ¢; with respect to E;’s constructed as in [4, § 1]
or in [h]. This realization of tensor product representations by means of
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product measures gives, together with the actions of the infinite
symmetric group &. on the infinite tensor product space, a background of
our method of constructing irreducible unitary representations (=IURs)
of the diffeomorphism group G in [4].

On the other hand, we ask if a permutation cE&.. can work on the
infinite tensor product space ®%x3#; by permuting the components as an
intertwining operator of the tensor product representation T=T,z.=
®*xTii. More neatly, put s=(s)jey and &.(s) ={0E8..; s.;,=5;,GEN)}.
Then we ask, for an element 0=&..(s), if the following formula defines a
bounded operator R (0) on ®%xH#;: for a decomposable element f= ®enf;,
with f,€#;, fi=x;,(;>N), put R(0)f= ®,exh; with

hi(x;) = % e forip () @EX).

If R (o) is well defined, it gives an intertwining operator for T, that is,
R(0)ET(G)". The set of all such ¢’s is denoted by S, ¢ ..

The structure of this important subgroup of the permutation group
S.. is studied in 84. The group &, :, contains €.(s) and is properly
contained in €..(s). In an interesting case where the gz-unital subset ECX
is p-cofinal with another one E’'=I1,enE; such that each E;’'s are mutually
disjoint, the group S,z , is exactly equal to the subgroup &.(s) of the
infinite symmetry group S..

In the above case, we have Theorem 5. 1, one of our main results in this
paper, which says that, under the infinite tensor product representation 7,
the diffeomorphism group G and the standard subgroup S.(s) of the
symmetric group &. form a so-called dual pair, that is,

T(G)'=R(&.(s))", T(G)"=R(&-(s))".

This case corresponds to the case of our previous work [4]. Further,
the above result on dual pair expains well the meaning of our method of
constructing IURs of G employed in [4] and [5], in connection to an
irreducible decomposition of T through the action R of the so-called
symmetry group S.(s) of T (cf. §5.1).

Another interesting case is also studied in 88 5.7-5.8 and we get
Theorem 5. 9, where the g-unital subset E is assumed to satisfy a weaker
disjointness condition (wDIS) (see 8 5. 7). These results on dual pairs for
G=Diff;(M) and certain permutation groups are, in a sense, analogous to
Weyl's reciprocity law between k-times tensor product of the natural
representation of GL,(C) and the k-th symmetry group S..

Now take a measure wEZLFMH(M) and consider the subgroup
Diff,(M ; ) of Diff,(M) consisting of g which preserve the measure w.
Then, in the case where w has densities of class C™ with respect to local
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coordinates, the group Diffy(M ; w) is sufficiently big and contains many
elements as is seen in Theorem 6. 5. In such a case, similar results as for the
whole group Diff,(M) can be given. Some of them are given as Theorems
6.7 and 6. 9.

We omit historical comments here, but cite simply [9] and [10], along
with the classical work [18], among the studies on irreducible unitary
representations of diffeomorphism groups.

Let us now explain the organization of this paper.

In 81, we discuss infinite tensor product of Hilbert spaces, and
especially pay attention on a normalization of reference vectors in case of
L%spaces.

In §2, first we discuss a product measure v, r on X=[l;ex X;, X;,=M, of
measures #; on X;(FEN) with respect to a subset E=I[1,eyE;C X satisfying
the condition (MU1) (such an E is called g-unital). Next we discuss a
realization of infinite tensor product of s#;,=L*(X;, %;, ;) with a reference
vector x=(x)sex of the form x,= |l xs |, x5 as L*space L*(X, 4 (y, E),
v, ¢) for the product measure. Then we introduce infinite tensor product
®%nT; of representations 7; on #; of a group of measurable transforma-
tions on M.

In § 3, we concentrate ourselves to the case of diffeomorphism group
G=Diff,(M). At this stage, to get an infinite tensor product T = ®%T;i of
representations, we should ask that (u, E) satisfies one more condition
(MU2) in 83.2. We study the G-quasi-invariance of the product measure
v, =. Then we see that, to have such a quasi-invariance in a general setting,
it is necessary to choose an appropriate g-unital subset E’, u-cofinal with E,
and to restrict the o-ring of measurable subsets to much smaller one, and
thus we come to a product measure v, » to replace v,  (for details, see 88
3.2-3. ).

In §4, we study the subgroup S, . of &. consisting of elements o
which give canonically intertwining operators for the representation T of
G. We give some general properties, some interesting examples and
propose open problems.

In 85, we establish a dual pair relation between the diffeomorphism
group G and a permutaion group &.(s) C&.. through representaions T
and R, in case where all E;’s are mutually disjoint or in case where E=
I1,enE; satisfies a weaker disjointness condition (wDIS).

In 86, we study the group of measure preserving diffeomorphisms
Diffy(M ; w) and its representations. We obtain some results parallel to the
case of the whole group G.

At last, in Appendix, we give, only for completeness, proofs of several

facts in the case of finite tensor products of natural representations of G on
L*(M)’s.
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§ 1. Infinite tensor products of L?-spaces

1.1. Infinite tensor product of Hilbert spaces. Let (&#).x be a
countable system of separable Hilbert spaces. We define an infinite tensor
product of these Hilbert spaces according to von Neumann [12], and
understand it through the interpretation by Guichardet [1]. For this, we
take a unit vector ¢, 4#; for each iEN. Then we form the infinite tensor
product #*= Q% #; of Hibert spaces #; with a reference vector ¢ = (@.)ien
as the limit of the inductive system of Hilbert spaces:

Rl HDw > wR¢,ERLHH: (n=1 2 ...

A complete orthonormal base (=CONB), called standard with respect to ¢,
is defined as follows. Take a CONB ¢, ;(jEN) containing ¢; as ¢, ,=¢, for
each s, and then form a set of vectors ®.n¢:;, where the sequences
(j)ien of natural numbers run over such ones that j;=1 for almost all (or
except a finite number of) {EN.

A vector u=Q®eyu; with w5, for which IT.ex | % || is unconditio-
nally convergent, belongs to the space ®% 4 if and only if

Pien | 1—<u, ¢i>xi| <+ oo,

where <.,.>, denotes the inner product in #. The above relation is
written as u~¢, and this kind of vectors u are called decomposable. Note
that a product Ienci, ¢.EC, is called unconditionally convergent if ¢;#0(GE
N) and Zien | ¢i—1 | <oo,

For two such decomposable vectors u=®.exu; and v=Q®env;, their
inner product is given by

<u, v>=Ilien<u;, v: >xi-

Note that if v;=a,u; with a;=C for i€N, then v~u means that product a=
I1.ena: is unconditionally convergent and ®envi=a - ®ienii.

Note further that if ¢ = (¢ ien, G:EH, | ¢ || =1, satisfies ¢~¢, then the
Hilbert spaces ®%y#; and ®%y#: are naturally isomorphic, since, for a
vector u= ®enu;, the relation u~¢ is equivalent to u~¢. We denote by 7, ,
the natural isomorphism from the former to the latter.

1.2. Case of L*-spaces. Now let us discuss the case where each space
#: is an L%space. Let (X;, %:. i), iEN, be measure spaces, where %,
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denotes a o-ring of subsets of a space X; on which a measure y; is defined.
According to Halmos, % is a o-ring if A,E%:(REN), then U,exA:E%;, and
if A, BE#., then A\BE%.. Put #,=L*(X,, %., u), the Hilbert space of
L%functions on X;.. We assume in this paper that these L%spaces are all
separable.

For the infinite tensor products of L%-spaces, we have several natural
isomorphisms in addition to I, ,. Firstly put for ¢.€#.=L*(X,, %., 1),

¢:(0)/ | ¢:(p) | for pEsupp’ (¢,

Ei( )=[ ’
P for p&supp’ (¢,

where supp’(f)={pEX;| f(p)#(0} for a measurable function f on X.
Further put 7.= | ¢: | and

, (p) for pEE,
ni(p) = { "
1 for p&E,
with E;=supp’(¢). Denote by x;=xz the indicator function of the set E..
Then,

¢=E-m, n=n-x; GEN).

Put £=(E)iex, 1= @)ien, and x=(x)iex, then we can write the above
relations symbolically as ¢=& -5, 7=7""x.

Let M. be the operator of multiplication by & on the space #H:=L*X,,
A, 1;). Then it sends 7; to ¢, and therefore we have a natural unitary
operator M*:= ®.ex M, from the Hilbert space ®ley #’; onto ®%w #:, which
sends a decomposable vector ®eyu; to ®:en(E: - uy).

To give another natural isomorphism between the tensored Hilbert
spaces, let us define a new set of measures (¢/).en as

dui(p) =ni(p)?-du(p)  (PEXD.

Then, the multiplication operator M,, sends the vector y: in Hi=L (X, A,
i) to n:in #;=L*(X., ®. u.), and they give naturally a unitary operator
M': = ®en My, from @yt onto leni#:.
Note that x;=xs, with #{(E)=1. Then, for the tensored Hilbert space
*_\J#!, we can give a realization of it as an L%space, with respect to an
infinite product of measures £/ on X;(iEN) which is defined with reference
to the system of sets (E)).ex. This is done in the next section.

1.3. Tensor products of linear operators. Let 7 be a bounded linear
operator on #; for each iEN. We ask under what condition a tensor
product ®.exT: can be defined as a bounded linear operator on the tensored
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space ®f%yi#:, where ¢ = (¢,):en is the reference vector. To give a useful
sufficient condition, we introduce the following definition.

Definition 1. 1. A sequence (u.).ex of vectors u.E3#; (EN) is said to be
cofinal with the reference vector ¢ if the product Il | %: | is uncondi-
tionally convergent and

2ien | 1_<ui, ¢i>xi| < + o0,

Lemma 1.1. Let T: be a bounded linear operator on #; GEN). Assume
that Tiso | T; | is unconditionally convergent, and that (T;¢.):ex is cofinal with
the reference vector ¢. Then a tensor product T= Q.enT: is well defined on
®fen: in such a way that

U= Qentt; = Tu= ®x‘EN(Tiui)
for any decomposable vector u= @ exu; in Q..

Proof. Let T™ be a linear operator of the subspace ®-,5#; to the whole
space ®%&n#; given as

QL Dw = (QLTHWR (®is,(Tih)) E Rfent.

Then, the system of (T),ex is consistent with the inductive system
(®}-1#:).en and further

| T | <Tien | T3 |l < oo,

This means that the inductive system (T),ey defines a linear operator T
and | Tl <TLien | T 1.

§ 2. Infinite products of measures and their L*-spaces

2.1. Definition of infinite products. Let (X, %, u.), iEN, be
measure spaces as in §81.2. To define an infinite product of measures
(i)iex on the product space X =1Il.enX;, we first fix a system (E;)en of
mesurable sets E;&4%;, with reference to which the infinite product is
defined. We put ¢=(u:):en and introduce some definitions.

Definition 2. 1. A direct product subset E=1II;exE: of X with E.E %, is
called p-unital if the product ITiesu:(E:) is unconditionally convergent.

According to the definition, E=1Il.exE: is p-unital if the following
condition holds:

(MUD { 0<w(E)<+oo, (Vi)

2lien | ].—ﬂi(Ei) | < oo,
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Definition 2. 2. Two unital subsets E=[I;exE; and F=[1,exF; of X are
said to be p-cofinal (Notation : EXF) if Sieniti(EOF) < + 0. They are
strongly cofinal (Notation Ex<F) if E;=F,; for i>>( (i. e., for sufficiently large
0).

Let #,(E) (resp. #(u, E)) be the o-ring of subsets of X which is
generated by the family &,(E) (resp. &(u, E)) of unital subsets F such that
F=FE (resp. FiE). We define a product measure vy, (resp. v,z) by
patching together the standard product measure IT;ex(u:| Fi) on each F=

[LienFi in &,(E) (resp. in &(u, E)), where u;|F; denotes the restriction of
on F;. Then we have

J/{(ﬂ, E):U u ./”O(F), Uuu,EzlJMEluﬂo(E).

F~E

Furtheremore it may be considered that the mesure v, s on 4 (u, E) is
a kind of completion of the one vy, on A,(E). In fact, any F=Il.enF; in
&(u, E) can be approximated, with respect to v, r, by a series of elements
in A,(E) as shown below. Put, for NEN, F®=(II~,F,) X (I;>yE.), then
F¥e My(E), and FONF®=(IT%,F) X (I1;>yF:NE), and therefore

v sFOF™) <(11uE) ) { T F.UE) - T FiNED)
(T )11 =0

Concerning the relationship between two direct product mesures such as
Wy e, #(u, E)), we have the following

Lemma 2. 1. Suppose that two unital subsets E and E’ are not u-cofinal.
Then, for any subset A in M (u, E)N 4 (u, E),

v e(A) =y, r(A)=0.

2.2. Relation to infinite tensor products of L’spaces. Let us
consider an infinite tensor product of L%spaces #:=L*(X,, %. u.) and
study a relation to an infinite product of measures ;.

Take a unital subset E=ITienE; of X=TliexX:. Then x.;= |l xz, | ¥, 2z, is
a unit vector of #;,. So we get a tensor product ®%ys#; of Hilbert spaces,
with reference vector x = (x:):en.

On the other hand, we have product measures (X, #,(E), v, ) and
X, #(u, E), v, r) for £ = (u)iex with respect to the unital subset E. Hence
we obtain two L%spaces L*(X, #,(E), v ,.z) and L*(X, # (u, E), v, ), which
are naturally isomorphic, because the latter measure is a ‘completion’ of
the former one. However the expression L*(X, #,(E), vy, ) is the most
intimately related one to the tensor product ®%yi#:= %nLi(X;, &:, 1L).
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In fact, a natural isomorphism from the latter to the former can be
given as follows. Arbitrary element of a standard basis of ®%y#; is of the
form f=(®Y,f)® (®isyx) with fiEH =L (X,, B, 1). Since x: = | xz, 1,
Xz, and the product ILisw [l x5, ¥, =cv (put) is convergent, the vector f can
be interpreted as a function on X according to the expression

(TIELfi(p)) X (en - TLiswxe,(p))  for x=(p)ienEX.

Denote this function on X by Uf, then Uf is clearly measurable with
respect to #,(E) and belongs to the L%space L*(X, #,(E), v . r). Let #(E)
denote the linear span of vectors in ®%y#; of the form (®Y,£) ® (®:snx:)
with f;€4,. Then this is a dense subspace containing the CONS and U is
defined on it as a linear map.

Lemma 2. 2. The above map U on # (E) C @iy is uniquely extended to
a unitary operator and it gives a natural isomorphism between two Hilbert
spaces as

U: Qlensts —> L' (X, M(E), vo. ) =L} (X, M(E), v..5),
where #:=L*(X;, B, 1) and x:= || xz, | ¥, xe,-

Let us now consider a non-zero decomposable element of ®%yH#; of the
form ®.enxr, with F;=4;. Then we see that F=Il.exF: should be a unital
subset of X, and be u-cofinal with E. In fact, to see FfﬂvE, we check the
criterion for ®ienyr,E ®¥en i, that is,

Dien | 1_<XF,., Xi>xi| < oo,

Since x:= |l x, | ¥, xz, and the product ITiex || xz, |l #, is convergent, the above
inequality is equivalent to

2lien | 1_<XF,., xE’.>x’i| < o0,

This in turn is equivalent to e (EQF,) < oo, or FXE, because F and E
are both g-unital.

Note that if we make correspond to f= ®en¥r,E ®%ni#’: a function on
X as f'(x) = [Lienxr,(p:) for x=(p)iexEX, then it is A (i, E)-measurable but
not necessarily .#,(E)-measurable.

2.3. Group of measurable transformations. Let G be a topological
group consisting of measurable transformations g, which act on each X; in
such a way that the transformed measure ®u; is equivalent to u;, where
g1.(A) = w:(g7'4) (AE4%,). From now on we assume that all the measures
appearing are o-finite, so that there exists the Jacobian between mutually
equivalent measures.

We have a unitary operator T (g) on #:=L*(X., #., u.) given as
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TH(f(p) =a:(g p) /%)glf(g“p) (fe#:, pEX).

Here a:(g, p) is a so-called 1-cocycle, i. e., a function on G XX, measurable
in pEX; and satisfying | a:(g, p) | =1, and for g1, g:€G,

a:(g:g, p) =a:(gi, pa.(g, gi'p) fora.a pEX.

Then we have T7i(g.g,) =T (g) T (gy) for g1, £2EG. Let £ be a measurable
function on X; such that | £(p)|=1(pEX,)), and M, the multiplication
operator on J#; as in § 1. 2, then the transformed operator M, T (g)M; ' has
a similar form as T(g) with a different but equivalent 1-cocycle.

To have a representation of G, we need the continuity G2g—T%(g).
For this we have the following necessary and sufficient condition.

Lemma 2. 3. Let of be a subfamily of & consisting of elements with finite
measures. Assume that every element in #: with a finite measure can be
approxinated by elements of the o-ring generated by /. Then the map g +—
T¢i(g) is continuous if and only if the following conditions hold : for any fixed
AE g, and as g —e,

® [ Jatg »—1|'dmp 0

Furthermore the condition (b) is equivalent to the continuity in
probability of the map g— a.(g, * ) at g=e, that is,
(b”) for a fixed finite measure w =u; on M,
ve>( fixed, w({p;|a(g p)—11 >e})—0(g—e).

Proof. We prove here only the necessity of the conditions (a) and (b).

The continuity of the representation T7 is equivalent to @(g) := || T (g)x4
—xa 20y —> 0 (g—e) for any AE . Taking into account | a; | =1 and
[lal—1b]] <|a—b|, we obtain from ®(g)— 0,

v(g):= fM | %m(g“p)—xﬂ(p) | *du.(p) — 0 (g—e).

From these two formulas, we have
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[ late »—1 12w = lag <
<20 Tei(@xa—xa 12 +2 | Tri(@xa—aixa I* =
=20(g)*+2¥(g)—>0 (g—e).
Let us now prove the equivalence of (b) and (b"). For (b)=>(b"), it is
enough to approximate the density function Z—;:(p) on M by linear combi-

nations of x4, A€ .
For (b)=>(), put A,.:={pEM: | a:(g p)—11| >e}. Then

f,, | ag ) —1 |2du(p) < e (A) +4ut (A,)),

where z# denotes the restriction of u; onto A : u#(B) =u;(BNA). Since uf is
a finite measure and ¢ <w, we obtain ¢#(4,.)—0 from w(A4,.)—(. This
gives (b). Q.E.D.

Note that the condition (a) in Lemma 2. 3 means the continuity of the
representation in case of the trivial 1-cocycle: a;=1.
We have also the next sufficient condition.

Lemma 2. 4. Let o/ C A be as in Lemma 2. 3. Then the map g — Ti(g)
is continuous if the following three functions in g are continuous at g=e for
any fixed A€ :

wiacen, [ | [PEL g [ atep-11duio)

Proof. 1t is sufficient for us to prove the continuity at g=e of the map
G3g > <Ti(@xa, xs>(=: ¢(g)),
for any A, BE«. Then, the difference | ®(g) —®(e) | is majorized by the
sum
du:(g™'p)
dﬂi(p)

For a particular case, we have a simple criterion for continuity as
follows.

uaem)+ [ | ~1|dup)+ [ 1 ale p)~11 dulp).

Lemma 2.5. Assume that the indicator function X, of a set E;=%;, with
0<u:i(E) < oo, is cyclic under G, that is, the set of vectors {T\(g)xs, | gEG} is
total in #:. Then the map g — Tr(g) is continuous if the function
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< Tf‘(g)XEi, X, >, =f5ng£.a"(g’ D)./ %dﬂf(p)

1S continuous in g.

Now let us examine a condition for the existence of the product
®%nTri(g) as an operator on ®leni’;, where x=(¥Dien, x:= |l xz Il # %z, be
asin §2.2. By Lemma 1.1, a necessary and sufficient condition is given
for the existence of the product as
@D §v | 1—<Tf"'(g)Xi. 2> | <oo,

The left hand side is majorized by a constant multiple of

au(g™'p) .,
;ZNZ fs,‘ 1—a(g p)\/%xs,(g p) \du,-(p)

<C § I xe,— Tri(@)x, lli2e,,

where C>( is a constant and || f l.2epy = | fIE Il i2cx,, up-

According to the natural isomorphisms of Hilbert spaces, ®iy#;=
LYX, M\(E), vy,.e) =L*(X, #(u, E), v, r), we can give, from another point
of view, a sufficient condition for that a transformation of each g&G can
be given on the Hilbert space. This is nothing but the so-called absolute
continuous action of G on the product measures.

Lemma 2. 6. Assume that the o-ring M(E) (resp. #(u, E)) is invariant
under G, and that the measure *v transformed by g=G of v=uv, . r (resp. =v, r)
is absolutely continuous. Then we have a unitary operator on the corres-
ponding L%-space # as

fralg x) /Wf(g“x)? T(@f(x) (EX, fe#),
v(x)

for gEG, where a(g, x) is a 1-cocycle. The case where a(g, x) =I;ena:(g, b))
for x=(p:)ien, wWhich is assumed to exist v-almost everywhere, corresponds to
the case of tensor products.

To get a tensor product of representations 77 of G, we should have the
continuity of the map g — ®%xT?(g), which is not automatic from that of
each map g+ T7i(g) ((€N). From the view point of Lemma 2.6, the
continuity needed is that of the map G3g — T*(g)fE # for any fixed fE #.

These representations will be discussed more in detail for cetain
choice of G, in the next section.
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§ 3. Tensor products of natural representations of diffeomorphism
groups

3.1. Diffeomorphism groups and their natural representations.
Let M be a non-compact, g-compact, connected differential manifold of
class C™ 1<n< oo, and G=Diffy(M) the group of all diffeomorphisms g on
M such that the support supp(g):=Cl{pEM | gp#p} is compact. We
introduce a so-called C*”-topology in G and consider its unitary represen-
tations. By definition, a net g; in G converges to gEG if supp(g,) are
contained in a fixed compact set and every differential of gz converges to
that of g.

Denote by Z.#(M) the set of all locally finite (i.e., finite on every
compact subset) measures on M which are equivalent locally to a
Lebesque measure with respect to the local co-ordinates.

For iEN, put X;=M and take a measure u,€ LZ.# (M) on it. Then we
call a natural representation of G the representation of the form 7% on the
L%space #:=L*(X: . u:), where #; is the o-algebra of all Lebesgue
measurable subsets of X,;. Let us study when and how a tensor product of
these representations can be defined.

3.2. Reference vectors for tensor product representations. To form
a tensor product Hilbert space of #:(iEN), we fix a reference vector ¢ =
(¢)ien. Note that under the replacement in § 1.2 of ¢; by x:, and u: by !,
the representation 77 on L*(X;, 4., u:) is transformed to a similar one T
on L(X,, . u!) with another 1-cocycle a/. Therefore, taking also into
account the results in 8§ 2. 1-2. 2, we may assume from the beginning that
the reference vector is of the form x=(xdien, x:= llxg, ¥, 2:E#:=
L*(X;, %, u), with a p-unital product subset E=1Il,enE; of X=1I;en X,
where 1= (u:):en as before.

Let us consider which conditions should be put on the g-unital set E to
get a tensor product representation of G.

We introduce the following condition on (g, E) :

(MU2) for any compact subset K of M, Z.extt:(KNE;) < oo,

Asin 8§82, denote by # (E) the linear span of vectors of ®Z%ys#; of the
form

(®iSN_fi) ® (®f>NXi) =const. (®iSNfi) ® (®i>NXEi)

for some N>( with f,e#.=L*(X,, #., 1.). Then #(E) is a dense subspace
containing a CONS which is standard with respect to x = (x.):ex or rather to
E=Tl.exE:;. Let us define, for gEG, a map from # (E) to ®%x: as

Rlenfi ®,-en(T.~"f(g)ﬁ),
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where fiex#,; and fi=x: (©>1). Suppose that a:(g, p)=1 if p&supp(g).
Then we see that, under the condition (MU2) above, the element in the
right hand side is actually in ®%x#;, and the above formula defines a
unitary operator on ®%ys#;, denoted by Ti(g) with @ = (a.).en. In fact, by
Lemma 1.1, it is sufficient to check that

> 1=<Tr(@x, x:> | =_§ | <xi—Tri(@x, x:> | <eo.

iEN

This is equivalent to Zien | <xz,— T/ (&)xr, x5,> | <. Put K,=supp(g).
Then, since a:(g, p) =1(p&K,)by assumption, each term is evaluated by

du,(g”'p) »
) [0 —aa 2>,/ & e e D) |2 (D))

du,(g7'p)
dp;(p)

< ﬂ,-(KgﬁE,-) +ﬂ,«(KgﬂE,-ﬂg_lE,»)VZﬂ;(KgﬂEg)m < Zﬂ;(KgﬂE;),

<u(K,NE)+ in(g_lp) . XE,,(P) 2k " I XE, Il 2k »
(Kg) g

where | « l.2«, denotes the norm in L*(K,, u:| K;). Thus the condition
(MU2) guarantees the convergence of the infinite sum in question.
Now we state the following

Theorem 3. 1. Assume that a u-unital subset E satisfies, together with
= (i) ien, the conditions (MUI1)—(MU2), and that a;(g, p) =1 if p&Esupp(g).
Then a system of unitary representations (TF, #,), #:=L*(X;, B, w.), gives
naturally a tensor product representation T%, with &= (a.):en, on the tensored
Hilbert space ®*<nH:.

By Lemma 1.1, we can prove Ti(gg,) =T:(g) Ti(gy) (g1, £2EG). To
prove the strong continuity of the map G=2g — T:(g), and also to write
down more neatly the operator Ti#(g), we apply the following

Lemma 3. 2. Under the conditions (MU1)—-(MU2), there exists a p-unital
subset E'= [Liex E, which satisfies E'~E and the condition

(MU2str) for any compact subset K of M, KNE/=¢(@>().

Furthermore E’ can be so chosen that each Eiis a relatively compact, open
subset, and moreorer is connected in case dim M>2.

Proof. Step 1. Since M is o-compact, there exists an increasing
sequence of relatively compact, open subset U,, REN, such that UenU,.=
M. Put K.=CI(U,). Choose an increasing sequence of integers N,(kEN)
such that
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Ei\Kk?& ¢ (1 >Nk) and 2{>Nkﬂi(Eika)<2—k.

and put E/=E\U.:>x K, Note that {k:i>N,} is finite. We have, for any
k, E:NK,=¢ if i>N,, and further ¢ #E/CE; and E\E/= Uh;»Nk(E,ﬂKk). So
we have E'~E because

IEZ; ﬂi(Ei@Ei’) < Z Z #i(EiﬂKk)

iEN k:i>N,

< Z Z ,Ui(EiﬂKk) S% 27+ =1

kEN i>N,

Step 2. To see that the additional conditions can be put on E’, we
renormalize E’ above satisfying (MU2str). Assume, in case dim M>2, that
E’ is obtained using such a sequence U, that M\K, is always connected.

Put K.=¢ for k=0, and for each i&N, let J; be the maximum of {¢kEN;
K.NE/=¢}. Put D::=M\K,, then D:DE;, and so there exists a relatively
compact, open subset E!” of D; such that u.(E/QE;) <2 In case dimM>2,
since D; is connected, E/’ can be chosen as connected. Put E”=II,exE!, then
E"XE, and E” satisfies the additional conditions demanded. Q.E.D.

Let us now consider a new dense subspace # (E’), in place of #(E),
for E'AE chosen above. Then we can define a unitary operator for any g
€G on #(E") which corresponds to a tensor product of representations
(T# #)) as follows. For ag€EQG, put K,=supp(g), then by Condition (MU
2str) there exists an integer N,>( such that K,NE/=¢ for i>N,. Then,
taking N>N,, we have gp=p for pEEif i>N, and T7(g)xe, =xr, and so
the map

@D (®isti)®(®i>NxE‘i) — (®isN(T?i(g)fi))®(®i>NXE,~)

is well-defined on s (E’) and is unitary, i. e., isometric onto. This unitary
operator on # (E’) can be extended uniquely to such a one on the whole
space ®%n#:.. Denote it by T#(g), then we have naturally T#(gig2) =
Ti(g) Ti(gy) for g1, £2G. In this way we obtain the following theorem
which is a version of Theorem 3. 1.

Theorem 3. 3. Assume that a u-unital subset E satisfies, together with L,
the conditions (MUI)-(MUZ2). Then there exists a p-unital set E'XE
satisfying Condition (MUZstr). Assume that a;(g, p)=1 for pEsupp(g).
Then the formula (3. 1) above defines the tensor product (TE, ®%ni#:) of
unitary representations (Tf, #.), #:=L*(X., B, 1.).

Proof. 1t rests only to prove the continuity of the map G3g — Ti(g)
f for any fixed f€ ®@%xs#:. However, since the operators are all unitary, it
is enough to check it for any f in the dense subspace # (E’). In turn, this
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fis of the form (®:<nf) ® (®:>vxr,). For a relatively compact open set V of
G containing ¢, the set Uy= {gEG ; K,C V} is an open neighbourhood of e
in G. On the other hand, we can choose an integer N, >( such that VNE;
=¢ for i >Ny. Then, for any g€ Uy, choosing an N >Ny, the vector T2(g)
fis expressed by the formula (3.1). This means that the continuity of the
map U,2g — T2(g)f comes from that of the maps g — T{(g) for i<N.

3.3. Properties of product measures. In §1, with reference to a
given p-unital set E=TIl.enE:;, we defined two kinds of product measures
X, #(E), vy, r)and (X, #(u, E), v,r) on X=TIl.exX:.. We discuss about
the G-quasi-invariance of these measures. The first point is the invariance
under G of the o-ring A,(E) or #(u, E), and the second point is the
existence of Radon-Nikodym derivatives.

By an example given later, we know that the condition (MU2) on (g,
E) is not sufficient to guarantee these two points affirmatively. Our
primary answer coming from the results in § 3.2 is the following.

Lemma 3.4. Assume that (u, E) satisfies Conditions (MUI1)-(MU2).
Let E'=,enE. be a u-unital set such that E'~E and that Condition (MU2str)
holds. Then, the o-ring M,(E") is invariant under G, and the product measure
Vo .. e 1S G-quasi-invariant with the Radon-Nikodym derivative given for g&G
by

vy, r(87'%) _ v dui(g™'p)
(3 2) dVo,,‘, E(x) - iEN dﬂ;(p.)

for x=(picn on every set of M\(E"). Here the product is actually a finite
product on each FE&(E').

Proof. Note that any set A& #,(E’) is covered by a countable infinite
number of E'®PE&,(E") : AC UwenE’®. Then, we see that, to prove the
assertion for A, it is sufficient to prove it for each A NE’® or rather for E'®
itself. Since E'®E&,(E"), it has the form E'® = ([Ticy, E{ ®) X (1>, E?) for
some N,>(. For ageG, put K,=supp(g). Then, by (MU2str) for E’, there
exists an N,>( such that K,NE/=¢ for i >N,. Hence, taking N>max V.,
N.), we have, for i >N, gp.=p:(Vp.€EE) and so, on the set E'®,

dVU.u,E‘(g_lx) _ dﬂi(g_lpi) _H dﬂi(g_lpi) (x=(1>i)fen).

dUouE'(JC) i<N dﬂi(pi) iEN dﬂi(pi)

Thus we have the assertion. Q. E.D.

In general, assuming Condition (MU1) apriori, we do not have the
G-invariance of the o-ring #,(E) or # (u, E) by the condition (MU2) only.
To show this we give the following example.
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Example 3. 5. Let M=R, and put E:CM as E.=(0, a) U G +1, i+2) with
0<ai<l, a;| 0. Measures y; are given as du;(x) =p:(u)du with positive
functions p; satisfying

5 [(oadu<e, pwy=Lon [1.2), p=1on [i+1 i+2]

iEN
Take an element g&G such that
gw)=u+1 on (0,1), and gw)=u for u>(.

As is easily seen, E=[1;enE; is a g-unital subset of X = [T;ex X; with X;=
M, and it satisfies Condition (MU2).

Consider the set gE :=1I1.exgE:. Then, for i>0, gE=(, 1+a)UG+1, ¢
+2) and so u:(gE.) =2 and even ;(gE:N [1, 2]1) =1. This means that the set
gE is no longer g-unital nor does it satisfy Condition (MU2) for a compact
K=[1, 2]. Furthermore we see that the set gF can not be covered by a
countable infinite number of y#-unital sets so that it does not belong even to
M, E) DM(E).

Thus, neither .#(E) nor .#(y, E) is G-invariant.

Furthermore, put Ei=(G+1, i+2) and E'=1l.enE.. Then E'~E and
Condition (MU2str) holds for E".

3.4. Another expression of tensor product representations.
Assume Conditions (MU1)-(MU2) for (g, E). Then by Lemma 3. 2 there
exists a u-unital set E'=TLevE!~ E which satisfies the condition (MU2
str). As is proved in Lemma 3. 4, the o-ring #,(E’) is G-invariant and a
product measure v, , » is G-quasi-invariant.

We express, in another form by means of this measure, the tensor
product representation ®%x(T?, #:) of G defined with reference to (y, E),
where #:=L*(X;, #:, ;) and x=(x.):ex be as before.

Lemma 3.6. A 1-cocycle (g, x) on X can be defined by the product of 1-
cocycles a; 1EN), if a:(g, p) =1 for p.&supp(g). The product converges
Vou s-almost-everywhere on every subset in #M,(E") in such a way that the right
hand side of the following formula is actually a finite product on each FE
&.(E") for each fixed g€G :

33 a(g x) :=ile'£ a:(g p) (8EG, x=(p)ien).

Proof. Take a compact subset K of M which contains supp(g) in its
interior. Then, by (MU2str) for E’, ENK =¢ for sufficiently large i. For
any fixed F=1Il.enF:€&(E’), we have F,=E/ for sufficiently large i, and
accordingly F;NK=¢, and so, for an x= (p.):enEF,

ai(gr pi) =1G>0).
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This means that the product in the lemma is actually a finite product on F.
Moreover every set in #,(E") is covered by a countable number of
sets in &(E"). This proves completely the assertion of the lemma. Q. E.D.

Using the Radon-Nikodym derivative in (3.2) and the 1-cocycle a in
(3.3), we can define a unitary representation Tg of G on the Hilbert space
L*(X, #M(E), v, r) as

@GP T (@) f(x)=a(g x) / d’:;”&f(g“x),
VO.u.E’(x)

where g€G, fis an #,(E")-measurable L*-function, and xEsupp’(f) := x&
X; f(x)#0}.

This gives another expression of the tensor product representation T§
in 8§ 3.2 as stated in the following theorem.

Theorem 3.7. Let E=1lenE: be a unital subset of X=11.exnX:, Xi=M,
which satisfies the conditions (MUI1)-(MU2). Let x=(x)wex, X:= Iz | %, x£,
and take a p-unital E'AE satisfying the condition (MU2str). Through the
natural isomorphism of the tensor product Hilbert space Q*yi:, #:=L*(X,,
B., 1), with the L%-space L*(X, M (u, E), v, r) =L*(X, M\(E"), vy . r), we have
a unitary equivalence of representations Tg with TE of the group G = Diff,(M).

3.5. Conditions for G-quasi-invariance of v, on #(u, E). As is
shown by Example 3. 5, we need some condition to have the G-invariance
of the oring #(u, E) and also the G-quasi-invariance of the product
measure v,z on it. As a reasonable sufficient condition we propose the
following one on g = (f)en:

(MK) For any g€G and any compact KCM,
Y u(ANK)< o for A,.€8(M), implies 2] 1:(g(A;NK)) < oo,
iEN IEN

where #(M) denotes the g-algebra of all Borel subsets of M.

Under this condition we can prove the desired results as shown below.
For g&€G and x= (p.):enEX, we put gx = (gp.)en, and so gF = [1,exgF. for F
= HiENFiy F.CM.

Lemma 3. 8. Assume (MUI1)-(MU2) for (u, E), and (MK) for u. Then
the o-ring M (u, E) is G-invariant.

Proof. 1t is sufficient to prove that, for any F=I[L.exFi€E(Q, E), we
have gFE€&(u, E). Put K,=supp(g). To prove that gF is again p-unital, it
is sufficient to remark that gF.= (F\K,)|_|g(F:NK,), and therefore
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| 1_,Ui(8'Fi) | < | ]._,ui(Fi) | +ﬂi(FiﬂKg)+ﬂi(g(Fian))-
To prove gFXE, we note that gF.OE,.Cg(F:NK,) U (E.NK,) U (FOE).

Then this gives the assertion.

Lemma 3.9. Assume the conditions (MUI1)-(MU2) for (u, E) and
(MK) for u. Then, for any u-unital set F=I1.enF; XEie, Fe&(u, E), the
products

dp(gp) \vo N
1<i<N dﬂ,-(p,.) for x (pi)l'ENEF
converges on F in the space L*(F, v, ¢|F) as N—>, for any p, 1<p< oo,

Proof. We see in [19, Chap. 2] that the convergence for any p, 1<p<
oo is equivalent to the one for some p. So we prove it here for p=2. Put for
N<N,

du(gp) _ du: (g po)
OignF; | isSN dui(p:) <N du;(p)

Iy v=

‘ ’ iIs:Iv dﬂi(ﬁf)-

Then, we should prove Iyy—(0 as N<N'—oo, On the other hand, Iyy =
[Ticn :(gF) X Jv, v with

Jow= L)+ T neFd—2 T1 || [ B2 g5,

Since the products [Tient:(F:) and Ienui(gF:) are both convergent, Iy y—

0 is equivalent to
/ dui(gp)
- —__d i i < 0,
fEZN ‘ L ‘f;z dﬂf(Pi) # (P) |

Moreover, since Ziex | t:(F) —1| and Zien | #:(gF:) —1 | are convergent,

this is equivalent to
[du.(gp) |2
1_ . .~ d i i < OO.
du(p) ‘ ()

A sufficient condition for the above is given by

2

ieN JF

5 [ |18 g (p) < o

Now put
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A= {p,EX,- ; %')l> 1}, B= {p,EX,- ; %< 1}.

Then, Al |B:.CK,, and the above sum is evaluated as
= g {w(g(F:NA)) —w:(F:NA) +u:(F:NB,) —u:(g(F:NB))}
<2 {w(g(FNKD) +uFENKD} < oo,

This proves our assertion. Q.E.D.

The p-th power of the limit as N—cc of the products in Lemma 3.9
gives the same function for any p, and it gives the Jacobian of the product
measures (cf. [19], or [7] for p=2).

Theorem 3. 10. Let E be a u-unital subset of X, and assume the conditions
MUD)-MU2) for (u, E), and (MK) for u. Then the o-ring #(u, E) is
G-invariant, and the product measure v, r on it is G-quasi-invariant with the
Jacobian given on each FE&(u, E) as

dv.:(gx) _ v dui(gps)
dl/,,, E(x) iEN dﬂ;(p,)

where the infinite product converges in L'(F, v, ¢ | F).

fO?’ X = (pi)ieNEFC-Xy

In the above case, the tensor product representation (7%, ®%ns#;) with
#.=L*(X,, % du.), is realized with a natural expression for representation
operators on the L%space L*(X, #(u, E), v,.r), at least when all the 1-
cocycles a; are trivial.

3.6. Space of ordered configurations and Condition (MU2). A
series x=(p,)wen of mutually different points in M is called an ordered
configuration if it has no convergent subsequence, i. e., the set of points {p:;
iEN} has no accumulation points in M. The set of all ordered
configurations of points in M is denoted by X. We say that a measure (v,
#) on the product space X is supported by X if, for any AE A,

ANXE# and v(A)=vANX).

Then we have the following

Theorem 3. 11. Let = (i) :ex be a system of measures on X;=M (iEN)
taken from LFM(M), and E a p-unital subset of X =1l.ex X, so that (MUI)
holds for (u, E). Let vy, s and v, r be the product measures on the o-rings
M(E) and M (u, E) respectively. Then they are supported by the space X of
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ordered configurations if and only if the condition (MU2) holds for (u, E).

Proof. Forv=yy, s(resp. v, r), it is supported by X if and only if for any
F=T1l.exF; in &,(E) (resp. &(u, E)), we have FNXE #(E) (resp. # (1, E))
and v(FNX) =v(F).

Now take an increasing sequence K,, k&N, of compact subsets of M
such that UwenK:=M. Then the intersection FNX is expressed as follows.
Put F, ,= (IT:<.F:) X (I1i>,(FA\KL)), then U,ex F, . is the set of points in F
which has no accumulation points in K,.CM and so

FﬂX: MNieenUnenFo e

On the other hand, since v(F) < =, we have

y(FNX) =lim lim v (F, ) =lim nm(g ui(Fi)) : (n w(FAKD ).

k—>o0 p—soc0 k—>c0 p—eoo

This limit is positive if and only if
2« w(F;NK,)<oo for any k>1,

and this condition is equivalent to (MU2).
In this case the limit is equal to ITienu:(F) =v(F). Q.E.D.

For the space of (non-ordered) configurations of points and quasi-
invariant measures on it, we cite here the works [16] and [17].

§ 4. Permutations as intertwining operators for an infinite tensor
product representation of G

4.1. Algebra of intertwining operators. Let T be a unitary repre-
sentation on a Hilbert space H(T) of a certain group G. A weakly closed
subalgebra

T(G)'=(T(G))'={LeBH(T)); L > T(g)=T(g) > L(gEG)}

of the algebra #(H(T)) of all bounded linear operators on H(T) is called
the algebra of intertwining operators for 7, and is essential to analyze the
structure of the representation 7. In fact, we may say that it governs
irreducible decompositions of 7. Actually, in case the algebra of inter-
twining operators T(G)’ is of type I, a spatial irreducible decomposition of
this algebra gives essentially an irreducible decomposition of the repre-
sentation T of G. '

Denote by # (H(T)) the set of all unitary operators on H(7T). Then the
algebra T(G)’ is generated weakly by the group S£(T):=T(G)'Nu(H
(T)). Therefore we are interested in determining explicitly a certain
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subgroup of unitary intertwining operators which is weakly dense in the
above group.

In our present case, we take as G the group Diff,(M) and as T one of
the tensor product representations Tz or their equivalents T& in 8 3. Then
there appear the infinite symmetric group . or related groups of permu-
tations which act as unitary intertwining operators on the space of infinite
tensor product H(T) = ®¥ns¥;, #;=L*(X,, %;, 1;), through ‘permutations’
of components. The study of structure of these permutation groups is the
subject of this section.

The denseness in the group £ (T) of the set of intertwining operators
corresponding to such a permutation group will be treated in the next
section.

4.2. Representations of G=Diff,(M). For the group G, we take one
of the tensor products of its natural representaions. As in §3.2, we
assume that the conditions (MU1)-(MU2) hold for (4, E), and consider
the tensor product T of (T% L*(X,, %;, u;)), j&N, with respect to a
reference vector x = (x;);en. Here

/ dr;i(g™'p)
@D Te@h=ale p) | PLEL yep) (peM, gE06),

\/ du;(p)
with a 1-cocycle a;, | a;(g p) | =1. For simplicity, we choose, in this and
the next subsections, a realization of the tensor product by means of
product measures, given in § 3. 4. So that T=Tg on the space H(T) =L*(X,

M(E), vy e)
Te()f () =alg, %), ——d“d"”(g D re).
Vou e ()

Here the 1-cocycle a is defined in terms of a; (F&N) by the product
a(g x)= 11 a;(g %) for x=(x))jen
j€

which is essentially a finite product on every subset F=[I;enF; in &(E"),
and so converges v, , z-almost everywhere on each A € .#,(E") (cf. Theorem
3.D.

With a sufficient generality, we study from now on the case where
each q; is given as

_1(g™'x) (du (g %) s
4.2 a;(g x) = 7,00 du, (x,) >

with i=/—1, s;ER, and 7;(x;) a measurable function in x,&X;=M such that
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| 7 | :]_. Put, fOI' F= HjeNFjego(E,),
r(x)= 161 7,(x) for x=(x)),enEF,

which converges v, , r-almost everywhere as above. Then, we have the
following expression of a :

_r(g™'n) 1y (duleg™'x;
a(g x)= r(x) jen dp;(x;)

) >is" for xEF.

Here the first fractional part containing 7 is a non-essential part.

Now choose all different values from {s;; &N} and let them be s(k),
k€K, and put N(&) = {jEN; s,=s(k)} for kK. Then the above expres-
sion for a gives us

_r(g7'x) du; (g7 1) Nistw
43 alg x)= o) kl;!( (,El;%,) ON for xEF.

4.3. Infinite symmetric group S.. and commuting relations. Let &..
be the group of all finite permutations on the set N of natural numbers.
For a permutation ¢ on N, put supp(o)={kEN; o(k)+#k}, then by
definition o is called finite if supp(o) is finite. We define an action of S.
or its subgroup S on the space H(T) as follows. For cE6.. and x= (x;)ex
€X, put xo=.))jen. Recalling the isomorphism H(T)= ®%ys#; in
Theorem 3.3, we put for cESCG.

oWy R(0)f(x)=B(g, x) /?Mﬂf(xa) (xo€supp’ (),
VO,;A.E’(x)

where the existence of a 1-cocycle 8 for a subgroup SC &.. is assumed :
B(010;, x) =B(a1, x)B(0y, xa1) (01, BES, xEX).
The commuting relation
4.5 R(0) » Te(g)=Tz(g) ° R(0)

is equivalent to the following relation between 1-cocycles: for any A€
My(E),

4. 6) B(o, x) -a(g xo0)=a(g x) -Bo, g'x)

for vy, r-almost all xEA.

Assume that o satisfies s,;y =s; (J&EN), or equivalently, oN (k) =N (&) (&
€K). Then, putting
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— Y(xo) d[lg_lj (x,) is (k)
@D Blo x)= 7(x) kIe]l; (jEl;!k) dﬂj((.)xj) !

we get a 1-cocycle 8 for which the commuting relation (4.5) holds.

The subgroup &.((s;);en) of S. consisting of all o such that s,;,=s;
(VjEN), is equal to the restricted direct product IT;cxSnw, Where, for a
subset J of N, &,= {0€6.; supp(o) CJ}.

The above results give us the following

Lemma 4. 1. The group of unitary intertwining operators #(Tg) for the
representation Tg contains a subgroup {R(0); 0€ES.(s)}, s=(s))ex, Or in
another expression, TE(G) DR (S.(s))".

4.4. More general permutations acting as intertwining operators.
Hereafter it is convenient for us to take the realization of T originally
given as infinite tensor product of T/'s: T=Ti= ®;exTi on H(T) = QenH;
with #;,=L*(X;, %;, ;). We may and do assume that 7;,=1 for j&N.

Now take a permutation o on N : gE&.., and let us examine if one can
define an intertwining operator R (o) on H(T) through permutation of
components by the formula equivalent to (4. 4). The commuting relation
(4.5) of R(0) with the representation T# gave us the expression (4.7) of
the 1-cocycle 8. So, in particular, we have the invariance s,-1;,=s;(FEN).
We denote by S.(s), s=(s))jen, the subgroup of &. consisting of all such
a’s.

Our problem here is to examine if a bounded intertwining operator
can be given canonically through the following formula. Take a
decomposable element f= ®,enf; such that, for >0, fi=x,= l xz |+, 2, in
H(T) = ®%¥ns#; with x=(x,);ex. Then it should be mapped to a decom-
posable h= ®,exh; with

ap, 1 +is;
o) = (510 o) I o )
2

We discuss as in § 1. 3. The decomposable element £z belongs to H(T)
= ®n; if and only if (h;);en is cofinal with the reference vector y=
(Xj)jeN, that iS,

(4 8) Z;’GN | 1- <h;, Xj>xj | < oo,

Since E is p-unital, we have e | 1— Il 2 ll%, | < oo, and so the above
condition is equivalent to

49 Y | 1<k, 2>, | <oo,

JEN
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where, since s,-1;=s;,
a1 s
hi(x;) =<T,U,J— (x;) "XE,-1 ().
Furthermore it is also equivalent to the following condition:

4.10) Z Il Xz ”ir}. - <h;, XE]«>.t’j | =2 | <X5j_h;r Xk >x’j| < oo,
JEN j

jEN

Thus we have next

Lemma 4.2. A permutation 0ES.(s) gives a unitary operator R (o) on
H(T) by the formula stated above if and only if the condition (4. 9) or the
equivalent one (4. 10) holds. This operator R (o) intertwines the infinite
tensor product representation T of G.

Denote by &,z with s=(s;),ex the set of all elements 0€&..(s) for
which an operator R (o) is defined by the above formula. Then it contains
S.(s) and forms a group as we can see without difficulty using the
convergence Zjen Il Xz, %, — I Aj 1%, | <oo.

The important thing is that R(o) gives an intertwining operator for
the representation 7, that is,

R(8,:)"CT(G).

So, we are interested in determining the structure of the group S,
and also in the following problem.

Problem 4. 3. Does the equality hold in the above inclusion relation ? In
other words, is the algebra of all intertwining operators for the infinite tensor
product representation T is generated (weakly) by R(S,:.)=1{R(0); o€
SuEest?

Let us introduce in the group # (H(T)) of all unitary operators on
H(T) the strong convergence topology, which is equivalent to the weak
convergence topology. Introduce on it a compatible metric given by

aU,, Uz)=:§N 27l Uih;—Ush; | +§ 27U hi—Us'h ||
for U,, U, €% (H(T)), where {h:; iEN} is a fixed complete orthonormal
system of H(T). Then the group # (H(T)) is a complete separable metric
group, and accordingly so is the group £(T)=T(G)' N%(H(T)). Induce
the topology and the metric onto the group &, ¢, of permutations through
the representation R. We call this topology as s-w-topology and denote
the metric again by d. Then there occurs a natural question :
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Problem 4.4. When the subgroup S.(s) is everywhere dense in S, 5, ?

4.5. Some generalities on the permutation group S, .. Note that
any element 0E€&.. is expressed uniquely as a (possibly infinite) product
of mutually disjoint cyclic permutations as

(4 11) 0= Ilsex O,

where g, ’s are cyclic and supp(a,)’s are mutually disjoint. Denote by &..,
the subgroup of &.. consisting of all ¢ with cyclic components o, from G..

Proposition 4.5. (i) Let E=1Il;enE; and F=1l;enF; be two p-unital
subset of X such that EAF. Then SLEes=Curs.

(ii) For an element 0ES,, 5, let (4. 11) be its canonical decomposition
into cyclic permutations. Then, for any subset K'CK, the product ox= Il ex Ok
is again an element of S, : ..

(iii) Anyelementof S, r.NG. ,is a limit of a sequence in S.(s)CS, ¢,
in s-w-topology.

Proof. (i) We apply the criterion (4.9). Denote by q;(E) the inner
product <A, x5,> and by a;(F) the corresponding inner product for the
unital subset . Then we see from (4. 9) that it is sufficient for us to prove

Zien [ 1=a;(E) | <o D Fien [ 1=a;(F) | <oo.
From the equality
Xe, X5, Xr, o X, = (Xr = Xm, ) (Xr, = X8) X, X+ XE X, 0
we have
{1-a,(BE)} + {1—a,(F)} =1+ L+ 1L,

where, with t=07},

d () \Etis:
I;= _fx LU)‘) ' '(XF,(,.)_XETU)) (XF]._XEj)d.U;‘,
j

du;
_ ALy \ris,
L=1— X _d?> JxEr(j)XFjd#fy
_ dﬂr(j) F+is
13 i— 1 — ‘[;{i —E) lejXpr(j) dﬂ,

Applying Schwarz inequality for I ;, we have | I.; | <« (B OF.)*
w(EOF;), whence Zjex | I, | < oo.

Note that Zex | 1— <A}, X5> | <oo and Tjen | 1—<xr, x> | <oo
imply Zjen | 1— <A}, X5, > | <oo, Then, applying the last inequality, we
get ZjEN l L; | < oo,
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Replace t by 77! in the above discussion, then we have

_ [ (9t >++isj
;;:: |1 j;j dy, X -1, XF Q15 | < 0.

Replace indices j by 7(j) and take into account s.;=s;, Then the left hand
side equals

_ di.g Vs,
,g \1 ‘f;j du; xijFz(ﬁdﬂ’

=Z | Lyl
JEN

Thus we get finally Zjex | 1—a;(F) | <oo.

(ii) For this, we apply the criterion (4.10). Then the assertion is

clear.

(iii) Itisenough to note that <R (ox)f1, .>—><R(0)fi, f,> as K' /K,
| K’ | <oo, for any f,, f; from the canonical dense subset of H(T) used in
§ 4. 4. This is a consequence of the condition (4.9).

The proof of Proposition 4. ) is now complete. Q.E.D.

Proposition 4. 6. The set of unitary operators {R(0) ; 0ES, 5} is closed
in the group % (H(T)) of all unitary operators on H(T) in the strong operator

topology.
The group S, & . is a complete separable metric group with the metric d.

Proof. The second assertion follows from the first one because % (H
(7)) with d is a complete separable metric group. So we prove here the
first assertion.

Assume that R (0,)—>U, 0,E6, 5. in #(H(T)). Then R(0,0,")—I (m, n
—o0). In particular, for the standard vector v,= ®,ex;EH(T) with x;=
I s, I+, s, =1:(E) ™ x5, we have <R(0.0: vy, vi>—1, that is,

d onom -+ (J
H \/I)(p)x",,",;l(j) (p)xl (p)dﬂ] (p) g ]-'
N JIm a;

Denote by a*" the j-th term in the product on the left hand side. Then
Yex log a"—( (m, n—>0). Since —log(1—x) >27'x for sufficiently small x
>(), we have Sien | 1—a" | =0 (n, n—>c0). Therefore, for any € >0, there
exists N>( such that, for any m, n>N,

41 5[ [ 00— [ ) o) | a0 <,

where A€ £Z.#(M) is a fixed standard measure.
Now fix j, and consider the set of natural numbers ;= {0.(j) ; nEN}.
We assert that this is a finite set. In fact, assuming the contrary, we can



Diffeomorphism groups and infinite symmetric group 287

take a series of integers n,, n,, -+, such that g, (j)—=oo. Then, since

ap, i
o D22 (D)0 (p)  in LM ; ),

the following limit exists for any Borel subset BCM : for z.=a,,,

. Uy (Eq»NB)
lim ———————
ke Mo (E:,,(i))

Put this limit as v(B), then v is a probability measure on M. On the other
hand, we assumed the condition (MU2) on the g-unital subset E=[I;enE;.
Hence v(K) =() for any compact suset K of M. Making K /M, we come to
a contradiction (=1.

Since X, is finite as just proved, there exists at least one element j, &
>, such that S, := {0, ; 0.(1) =j.} is infinite. Similarly, since 2;:= {6(2):0
€8} C X, is finite, there exists a j;&E 25 for which S;:= {0E€S,; 0(2) =73} is
infinite. Successively, we define a series of integers ji, 2, J3, **-, and a series
$:D8;28;D -+, of infinite subsets of &, &, such that o(?) =5; i <k) for oE
Sk..

Put ¢,(1) =j: GEN), then g, is an injective transformation on N, and
So»=5; (JEN). In the evaluation (4. 12), replace the infinite sum X,ex by a
finite sum X%, and take o, from S,. Then, 0,.(7) =0,(§) for 1<j<k, and so
we get

: Altagn Altonn 2
;: L ‘ mxaom(l’) _\/ﬁxanm(?) ‘ dr(p) <e.

Letting £—o0, we obtain

@1 5 [ |00 o)~ [ B2 () o0 (9) | aA () < e

From this we can get

hd d, 000 du;
5 L 0 g (0) = [ HE D) 0) | ar () < oo,

by applying (4. 14) below, or X,enl;(0) < o for any 0E6, ¢ . in the notation
there.

Discussing as in § 4. 4, we see that the above evaluation guarantees
that the following correspondense defines a bounded linear oparator on
H(T) = Qienst;:

R(Uo) . f: ®jenﬁ_‘)h= ®jENhi
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with

oy

d \F+ s
1) = (g )" o ()

Furthermore, for an element of the form
[=AGDfa(g)fa(x) @ (®7Zanixs (), I fill =1,
we have, for 0E€S,,
I R ~R@}f1'=2-2 TT 7
with

- dﬂao(j) d,uo(i)
= j; j\/ du (xj)\/ d (%5 Xagen () Xoc () e (o).

On the other hand, we have, from (4.13), X2.+:2(1—7,) <e. Since 2x >
—log(1—x) for sufficiently small x >(, we have, for 0=2—211Z.+7;,

- _ _5 - _0o o
j=~2+12(1 ) > Hzﬂlogr,« log<1 )25

Thus we get
I {R(00) —R(@™D}f I < 2¢,

for €S, with sufficiently large k. Hence R(g) =U"%

Similar argument shows that there exists an injective transformation
oy on N such that R(o;) =U. Accordingly, R (gy03) =R (0,)R (03) =1, and also
R(gj0,) =1 Thus we see that gy0,=0}0,=id, and so g;E&.. The element o}
belongs to &, . and U=R (o). This is what we want to prove. Q.E.D.

Denote by &..,(s) the subgroup consisting of € &.. ; which satisfy s
=s;(jJEN). Then, in general, we have

Proposition 4. 7. Assume s=(s,)jex be such that ..(s) is not completely
contained in S..,. Then the group S, r, contains neither the whole of G.. ,(s),
nor of Gu(s)\S. ,(s).

Proof. Taking into account Proposition 4.5(i), we can assume from
the beginning that the g-unital subset E=II,enE; satisfies the condition
(MUZ2str), that is, for any compact KCM, KNE;=¢ for 0. Replacing E
by its u-cofinal one if necessary, we may also assume that each E; is
relatively compact.

For a subset JCN, denote by S,(resp. &,) the group of all finite
permutations (resp. all permutations) on J, and consider it as a subgroup
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of S.(resp. €.). The assumption on s means that there exists an infinite
subset ICN for which s;=s. for i, '€ This means that €.(s) D&,. Then,
there exists an infinite subset JC/I such that E;, j&J, are mutually disjoint.
By the criterion (4.9), we see that

SursN éjz S,(s) :=1{0EGS;; s.p=s;FJEN)}.
This proves the assertions of the proposition. Q.E.D.
Let us give another important consequence of the condition (4.9).

This clarifies the situation for “c€6, & ,".

Proposition 4.8. Assume that 0EE..(s) belongs to S, ¢ ..

(i) ENEo 'isu-cofinal with E, and also is no™-cofinal with Ec™' where
Eo'=TlenEo-1¢y and po '= (o-1¢))sex.

(ii) Let F=Tl,enF; with F;=E,NE,~1, if E,NE,-1;,#¢ (true except for a
finite number of j’s), ’land F,CX;=M, a relatively compact open set, otherwise.
Then FAE and F*$ Eo™'. Furthermore the following two product measures
on F are mutually equivalent :

1;!l (u; | Fy), 161 (Uom16 | Fy).
Proof. We study the condition (4.9). Then, first we have
Il A | X ”%rj <| h;_XEj “ifj <
STI= R T+ 1 1= s 1%, | +2 11— <hj, x5>x, |,
and so
4 14) g AT —xe 1%, < oo

The j-th term is the integral

’ dp; (x;).

I(o)= fx ]_ | (d’fi"—;“’(xf)>+xg,,-l(,.) () —x,(x)

Separate the integral on X; into the sum of those on E\E,-1(;), E,-i»\E;, and
on E;NE,-1;,. Then,
I;(0) =1, (ENE.\p) +1to-16p (Eo 1)\E;) +

d.ua_l(i)

+ e 95) Y, 100 )~ 25,50 | s ).

EjﬂEq—l(j) ‘
Since Xjenl;(0) <, we get
(A) Zientti(EN\E,1¢y) < oo,
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B Tientloly (B 1p\E;) < o0,
dﬂa 16y
© % (2w ) 1] due) < .
i€ J

The first inequality shows that ENEc™! is uo '-cofinal with Ec™*. The
third one is rewritten in a symmetric from as follows by means of a fixed
measure AE LZH M) :

5 [ w) (Gw) | am<e

By Kakutani's theorem [T7], this is a necessary and sufficient condition
for that the two product measures on F in the proposition are mutually
equivalent.

Thus the proposition is now completely proved. Q.E.D.

Proposition 4. 9. Assume that all s; 's are equal to zero : s= (s;);en= (0).
Then, for a 0EG.=G.(s), the conditions (A), (B) and (C) are necessary and
sufficient for that o belongs to S, ..

A proof can be given by examining the proof of the preceeding
proposition.

4.6. Examples. We give here several typical examples.

Example 4.10. Assume that all E;’s are mutually disjoint. Then, we
see from the criterion (4.9) that &, ;,=&.(s). Furthermore, in this case,
as will be seen in the next section, we have R(S..(s))”=T(G)’, that is, any
intertwining operator for T can be weakly approximated by linear
combinations of R (o), 0E3.(s). In another terminology, the group G=
Diff,(M) and a permutation group &.(s) form a dual pair.

Example 4.11. Assume that, for any N>(), there exists an integer jy >
N such that Ujg; E; and U;s;, E; are mutually disjoint. Then, again from (4.
9), we see that any cyclic permutation in &. with infinite length cannot
comes into S, z,. This means that &, ;. C&. ,(s). Furthermore, the group
S.(s) is dense in S, . in s - w-topology. In this sense, as will be seen in
§ 5, we can say that the groups G and &.(s) form a dual pair.

Example 4. 12. Let us give an example of &, . which contains a cyclic
permutation with infinite length. This gives also an example for which
the subgroup G.(s) =8.NG&,:. is not dense in S, ;. in s- w-topology.

Put M=R and consider X=1l;e.X;, X;=M. Let 0. be a cyclic
permutation given by 0.(j)=j+1(j€Z). For jEN, put ¢,;=1+1/2+1/3+
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-++1/4, and ¢,=0. We define measures y; on X, as follows. First take a
positive function p on [, =) which satisfies

o 1/j
® [ ewa=1 @ I [ e®d<e,
B o) WeL ([0, ) ;1) with usual Lebesgue measure A.

As an example of such a function p, we have p(t)=Ct(1+¢*) ! with a
normalization constant C >(0. We put du,;(t) =p,;(¢) dt for §>0, and du-,(t)
=p;(—1t) dt for j>( with

,O(t_Cj) (tZCj)
7, (1) (t<cp,

for j>(, where 7,(¢) >( are locally summable functions, arbitrarily chosen.
Take E;C X as follows : E;= [¢;, ) for >0, and E_;=(— oo, —¢;] forj>
0. Then y;(E,))=1, and E=1l,c:E; is a z-unital subset of X which satisfies
the condition (MU2str), i.e., for any compact KCM, KNE;,=¢(|j | >0).
We put s=(sy);ez=(0) with s;=0(V).
Let us check the conditions (A), (B) and (C) in Proposition 4.9. For
(A), E\E,.;=E,\E;-, and is equal to ¢ for j>(0. Moreover for jEN

oS

g1 /G+D
U (ENE ;) =1 (E\E;+1) =f' ,O(t—c,-)dt=j; o(®)dt.

7

Therefore we have
]EZZ W(EN\E 1) = ;go: Ui (EN\E;+1) < oo,
Similarly we see that the condition (B) holds.
Let us now prove the condition (C). Put F,=E;NE,-\; then F;=[c,
), F_j=(—o0, —¢;:1] for >0, and it is enough to prove

,;:q . | Vo, () —Vio;1(®) |? dt < oo,

Then,

j-th termZJ;w o@+1/)— @} dt.

On the other hand,
b@FD —h@=a- [ (b)Y +sads

| bGTa @ | '<at- [ | (oY (t+sa) | *ds.
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Hence
fo“’ | o GF ) — o@D |? dtSaz-j;wl o) (&) |? dt.

Put a=1/4, then we see that the sum over j&EN converges. This proves
that the condition (C) holds, and so the cyclic permutation ¢.. with infinite
length does belong to the group S, ¢ .

Finally we prove that S.(s)(=&. here) is not dense in &, 5, with
respect to s-w-topology in this case. Consider the infinite cyclic
permutation 0.€8, ;.. Take 0E&. and put

SN Loty Altow )
I '_f_m ‘ Vo dt ® %z, 0D _m)(sgm @® I dt

and I(0) :=X,e:.l;. Assume that the element 0. can be approximated by
elements of S.., then I(¢) can become smaller and smaller without limit.
On the other hand, note that 0.(—1)=0. Then, if 0(—1) <0, we have
I(o)>I,=2 Ifo(—1)>0, then there exists a >0 such that (&) <(. Since
0-(k) >0, we have again I(0) >I;=2. Thus we come to a contradiction.

Remark 4. 13. If the condition (C) is replaced by a stronger one

© 3 [ 10 ) ) < o
J€Z JF M
Then, we have no cyclic permutation sE&. with infinite length which
satisfies the conditions (A), (B) and (C).
In fact, let ¢ be an infinite cyclic permutation, and take a Borel
measurable set BCM. Then for t=0"!

| t.n(BNE.) —1;(BNE) | <
<t EG\ED + 1, (ENEy) + | ey BNE;NEy) —1;(BNE;NE) |

<ty (Ep)\Ey) +1;(ENE ) + f ‘ 1—%2‘0@) ‘ dp; (xy).
EjNE) M

Therefore ez | tan(BNEy) —1;(BNE) | <o

Hence, there exists a limit liMe ottt (BN E4;), where j is so chosen
that t(j) #j. Denote this limit by w(B), then, by a general theorem, w is a
measure on M. From the condition (MU2) for (g, E), we see that w(K) =
(0 for any compact KC M, whence w (M) =(. But, this contradicts the fact
that lime.prp (Exp) =1.

4.7. Relation to quasi-invariance of the product measure v, :.
When a permutation 0E&.(s) is addmitted to have a unitary operator
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R(0), or o belongs to &, = ., it acts on the product measures on X =[I;ex Xj,
X;=M, as shown in Proposition 4. 8. Here we study from another point of
view the quasi-invariance under o of the product measure y, ¢ itself. In this
study we find that for the vectors

d o~ 15 .
/%(xa e, (%) GEN),

two multiplicative factors, the square-root of the density and a trans-
formed function Xe,-1,, cannot be separated in general, or they should be
considered together, not separated, in connection with the tensored space
®%nH#;. In other words, for a permutation o, leaving the tensored space
®%yi#; invariant and leaving the measure (v, z, 4 (u, E)) quasi-invariant
are different things.

The following example explains the situation.

Example 4. 14. In Example 4. 12, we have treated (g, E) on X=11,e;. X,
X;=M=R. Assume in this example that Eo=[l;ezE.; is u#-cofinal with E,
and accordingly that ®iesxs, € ®fz;, for an element 0&S, .. The
assumption means the following:

Siez | 1=1i(Eap) | <00, Tieaty(EOE ) < 0.

Now let us take as o the infinite cyclic permutation 0.(j) =j+1(EZ).
Then, for j >0, E,_y)\E;=E_js\E_;=(—¢;, —¢;-1], and

.u—i(Eam(—i)\E—i)sz 7;(t)dt.
-1

Since locally summable functions 7;>( can be chosen arbitrarily, we
take them in such a way that fﬁ;:_l 7;(t)dt =1 (j&N). Then we have
Tiez i (EQE, ») =, and so Eo. is not g-cofinal with E. Accordingly the
oring #(u, E) is not stable under the action of 0w: x=(x;)jez > X0==
(%o_)jez On X, whereas 0. belongs to &, , as shown in Example 4. 12.

Here we give a good sufficient condition for the invariance of o-ring
M (u, E) and the quasi-invariance of the product measure v, r, under a
permutation, as follows.

Proposition 4. 15. Let 0ES... Assume, for (i, E) on X=T1;en X;, X,=M,
that the next three conditions hold :

1) Zieny(EQE.») < oo,
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@ 5[]/ 2w 1w <o,

@) Zienty(N) <0 2 Fen ﬂj(No(i))< 0,

Then, (i) for any p-unital subset F=1;enF;, u-cofinal with E: F XE, Fo
is p-unital and Fo~E. Accordingly the ring of measurable sets M (y, E) is
stable under S(0) : x — xo ' (xEX).

() S@vur=v.r.

Proof. Firstly it follows from the condition (1) that Eo is g-unital, and
Eo“~E Secondly, if FXE, then putting N,=EQOF; in (3), we have
Tientt;(BoyOFy) < o, i. €., Eo~ Eo. Hence Fo~E.

Thus the transformation S(o) on X is .# (u, E)-measurable.

For the assertion (ii), the condition (2) means by Kakutani’s theorem
that v, z|E =~S(0)v.:|E. So that it is enough for us to see that the
condition (2) holds also for any F LE. To see this, we have

L‘\/d—%f—llzdﬂjs EjﬂFj‘\/dﬂ—C;__?_l‘zdﬂj-l-

+ 2116y (FAE) + 14, (FAE)))
and so the condition (2) for F is obtained.

Example 4. 16. Eventhough the situation where the above conditions
(1)-(3) hold is rather general, we give such examples in the framework of
Example 4. 12. Assume that locally summable functions (;);ex there satisfy

[ 4 ®dt < oo.
j=20 — oo

Then the conditions (1)—(3) hold for 0=0w, in this choice of ¢ = (;)jex.
In fact, (1) and (2) are easy to prove, and (3) is essentially equivalent
to the following : for M,C [(, o), kEN,

4
S| pdt<oo & 3 p(t+l)dt < oo, with p(t)=C—tf.
kEN U M), kEN J M, k 1+t

For &, we remark that there exists a constant 7 >() such that p<t+—}c—>

> yp(t) for t>0, REN.
For =, we see that the essential part is to prove
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sl _£
]'_kezp:z kJu, 1+1°

dt < oo,

By Hélder’s inequality for (p, ¢)=(4, 4/3),

1<(5a) (5, 5 )
Again by Holder’s inequality

(Lka-_zﬁdtys <a- kaP(t)dt (a>(, constant).

§ 5. Dual pairs between Diff; (M) and certain permutation groups

5.1. Dual pairs. Let us first introduce the notion of a dual pair.
Assume a unitary representation (7, H(T)) of a certain group G is given
together with such a one R of another group U on the same Hilbert space
H(T). If there holds the relation T(G)'=R(U)”, then we call G and U form
a dual pair (through T and R). Here T(G)’ denotes the commuting algebra
for T(G).

If the group U is compact, a dual pair gives a 1-1 correspondence 7
T., from a subset of U into G by decomposing the representation 7+ R: G
xXU3(g, u) — T(g) c R(w), of GXU into irreducibles: T * R=X,con X T..
Here U denotes the set of all equivalence classes of irreducible unitary
representations of U, and T, is realized naturally in the space Hom,(H (),
H(T)), with H(n) the space for z. In this case, U is also called a symmetry
group of T[14].

In our present case, we take as G the group Diffy(M) and as T one of
the tensor product representations T2 or their equivalents T# in § 3. Then
there appear the infinite symmetric group &. or related permutation
groups as a symmetry group U. Here the group U is turned out to be non-
compact, and accordingly the situation is not so simple as in the compact
group case. However, we will show in another paper that, at least in case
UCG&., an IUR T, can be constructed, for every IURs z of U, and that the
representation T can be decomposed into these IURs T, ’s.

We remark here that representations of the infinite symmetric group
. are studied from many different points of views, for instance, in [2],

(8], [13] and [15].

5.2. Dual pair relations between G and subgroups of S... Here we
assume dimM >2. Let us first treat a simple case where a certain
disjointness condition on E;’s is assumed. The following theorem is one of
our main results in this paper, and it explains well a background of our
method of constructing IURs of G given in the previous paper [4].
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Letz=(u,);en be asin § 3.1 asystem of measures on X;=M taken from
PLFM(M), and E=1l,enE; be a p-unital subset of X =I[I;exX; for which the
conditions (MU1)-(MU?2) hold. Consider the infinite tensor product Ti=
®%enTy5 of representations (Ty5, #,), JEN, with x=(xDjen, ;= ll x5, I+, 2z,
#;=L*X,, %;, 1), and a; given in (4.2) with parameter s;.

Theorem 5. 1. Let dim M > 2, and assume that E is u-cofinal with another
u-unital subset F=[l,enF; for which F;NF.,=¢ for j#k. Then the group of
permutations S, . is equal to the subgroup S.(s) of the infinite symmetric
group S.., where s=(s;);ex. The diffeomorphism group G=Diffy(M) and
S.(s) C & form a dual pair:

Ti(G)"'=R(8(s)), Ti(G)=R(8.(s))".

In particular, when all the parameters s;, JEN, are equal to each other and
all E; ’s are mutually disjoint, the groups G and S. form a dual pair.

Put S=6.(s) and ¥=R(S)"={R(0); o=S}”, the weakly closed
operator algebra generated by R(o)’s. Then, ¢C T#(G)’, by Lemma 4. 1.
Therefore, to prove the theorem, it is enough to show the converse
inclusion ¥ DTi(G)". To do so, we apply several lemmas given in the
succeeding subsections.

5.3. A generallemma on a commuting operator. Let # be a Hilbert
space, #(#) the set of all bounded linear operators, and ¥C#(#) a
weakly closed subspace. Further let P,, n€N, be a sequence of orthogo-
nal projections on J# approximating the identity operator / on 4 strongly.

Lemma 5. 2. Assume that an operator AE B(H) satisfies the following
condition :
P) there exists a sequence of operators A, =%, nEN, such that

(a) P,AP,=P,A,P,(nEN),

(b) A, <M,y(¥n) for some constant My>().
Then A belongs to €: AE%¥.

Proof. Denote by <.,.> the inner product on 4. Then, for any ¢, ¢ &
H,
| <A@, 9> —<A.p, ¢> | < | <Ap, U—PI¢> | +
+ | <AU-P)¢, P> | + | <Ap, U—PD$> | +
+ | <A, U=P)¢, P> | <(IA I +M){loll | U—PD¢ I
+ 1 UT=PIS I ¢} —0@m—>00).

5.4. Lemmas for finite tensor products of representations. To
apply the above general lemma to our situation, we prepare the following
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‘so-called’ dual pair relation for finite tensor products.

Take a finite number of representations (T3 L*(X;, %;, 1)), j€J, of G
=Diff,(M), where q; is a 1-cocycle in (4. 2) with parameter s;&R, and J is a
finite index set. Let s(k), kEK,, be all the different numbers in s;’s, and
put J(k) = {jE€J;s;=s(k)}. Then the subgroup &,((s);e) = {0ES;; sty =S5;
(D} of &, is equal to Iex,Syw. Consider the tensor product T)= ®;e, T}
on the space #,;= ®,e;#; with #,=L*(X;, %;, 1;). Then

Tf(g)h(x]) :M 11 M -+ is (k)

-1
7,(x)  kek <jE](k) du; (x;) h(g 'z,

for hE#, and g=G, where 7,(x)) = I1;c;7:(x), x,= (x;),e,E [1,e, X; with X,=M,
and g7'x,=(g '),  On the other hand, we can define an action of
&,((spjep) as follows:

— 7,(x,0) < dpto—1 (%) \rristor
Ry (0)hx) 7,(x)) kg(, iél_l([k) dﬂj(xj) h (5,0,
where ;0= (Xo)jes.
The dual pair relation is claimed as in

Lemma 5. 3. The tensor product representation T,of G =Diffy(M) and the
representation R, of the subgroup S=&,((s);e) = lrex,Siw of €, form a dual
pair, or

T(G)"=R,(S),  TiG)'=R,(S)".

For the sake of reference, we remark, at this point, about the relation
between different finite tensor product representations. Denote by | J |
the number of elements in J.

Lemma 5. 4. Let ], and ], be two finite subsets of N. Assume that | ], |
# | . |. Then, the tensor product representations T, and T,, are mutually
disjoint, or any intertwining operator between them is identically zero.

For completeness, proofs of these lemmas are given in Appendix.

5.5. Fundamental Lemmas. The following observation is a key for
our proof of dual pair. Let T# on ®%ni;, #;=L*(X;, %;,1;), be the infinite
tensor product representation of G in question. Let U be a connected open
subset of M and put V=M\U, and take a subspace #" of the infinite tensor
product space ®%n#; given as follows: for a finite subset J of N and a
series of vectors f;E#;(F&E]), # is expressed as

(5 1) W = (®fE!~%;(U)) ® (®j$]fi)
with #,(U) =L*(U, %;|U, 1t;|U) = #,
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where f,€#,(V) (j&/) are such that ILe || f; |, is unconditionally conver-
gent and Xje; | 1—<f;, x,> | <oo. Then we have the following simple
lemma.

Lemma 5.5. Take a subspace W of QexH#; of the form in (5. 1), and let

P, be the orthogonal projection onto W . Then, for any intertwining operator

AETHG), Py APy =P, A'Py with an A €E€=R(S,,)" such that | A’ || <
Al

Proof. Let G(U)=Diffy(U)CG. Then, for geGU), TH(g)f;=f; for je&
J, because f;=(0 on U. Therefore the subspace # is invariant under
Ti(G(U)), and so

b2 Ti(g)Py=P,Ti(g)=P,Ti(g) Py (gEG)).
Using this, we get from Tg(g)A=AT:(g),
B3 P,Ti(g)Py o PyAP,=P, AP, o P,Ti(g)P, (gEG()).

On the other hand, the representation of G(U) induced on ¥ is
isomorphic to the finite tensor product of (T3 |G(U), #;(U)), j€J, that is,
P,Ti(g)P,|# isequivalent to T,(g), g&G(U), in the notation in §5.4 (M
and G=G(M) are replaced by U and G(U) here). Thus we can apply
Lemma 5. 3 and see that P, AP, is a linear combination of Py, R,(0)Py, 0E
S,(s;), where s;=(s;),e;, This means that P,AP,=P,A’P, with A’
<R(0); 0€6,(s) >, the finite dimensional algebra generated by these
R(0)’s. Further we have | A" | = || Py APy | = | P+AP, | < A .

Thus the proof of the lemma is now complete.

Applying this lemma, we obtain the following fundamental result.

Lemma 5. 6. Assume that there exists an increasing sequence U, of open
subsets of M such that

(@) U.enU,=M and each U, is connected, and

(b) foreach n, E;CU,(GE],) and E;NU,=¢ (GET,) with a finite subset

J.CN.

Then, under representations Tg and R, the diffeomorphism group G and the
permutation group S.(s)C S. form a dual pair, and also the groups G and
S, ks form a dual pair too :

Ti(G)' =R(S.(s))"=R(€,:)", Ti(G)'=R(Gx(s))'=R(&,5.)"

Proof. Firstnote that U,exG(U,) =G, which comes from U,/'M. Fixn.
Then each space #; is decomposed into a direct sum as

%;Z.Mj(U")®.}fj(Vn) with Vn:M\Un.
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Put #,=(®;c; #,;(U,)) ®(®,¢;,x) and P.=P, . Then, P,/I the identity
operator, or U,ex# . spans topologically the total space ®%nx#;. Since E;N
U.=¢(j&J,) by assumption, we have y;E,(V,) (G&J,), and so we can
apply Lemma 5.5 to G(U,) and #°,. Hence, for any intertwining operator
AETIG), we have P,AP,=P,A,P, with an A,€E¢4=R(S,:,)” such that
lA. <Al

Thus we come to the situation where Lemma 5. 2 can be applied and
conclude that A€¥ or Ti(G)'CR(&,,)”. Since the converse inclusion is
clear, the dual pair relation between G and €,, ;. is now established. Q. E. D.

Note that, in the case of Lemma 5.6, the subgroup &.(s)CS. is
everywhere dense in the permutation group &, =, in s- w-topology, and the
latter is a subgroup of S..,.

5.6. Proof of Theorem 5.1. By assumption on (g, E), we have a
p#-unital subset F=Il,enF; such that FAE and F;, jEN, are mutually
disjoint. Here we normalize F to get a u-unital subset, y#-cofinal with E, for
which Lemma 5.6 is applicable. Cf. [4, §1.8] for another kind of
normalization of E.

Lemma 5. 7. (i) There exists a u-unital subset E' = [1,exnE}, u-cofinal with
E, such that the condition (MU2str) holds, and E;’s are mutually disjoint,
each relatively compact, open and with finite number of connected compo-
nents.

(i) There exists a p-unital subset E”=T1,exE/~<E for which E’s are
relatively compact, not necessarily mutually disjoint but satisfy the following
condition :

(AB) there exists an increasing sequence U,, nEN, of connected,
relatively compact, open subsets of M such that U,exU,=M and that, for each
n, there exists a finite subset J,CN for which E;'CU, or E;'\NU,=¢ according
as j&J, or not.

Proof. (i) Take an increasing sequence of connected, relatively
compact, open subsets W, (mEN) of M such that U,exW,=M, and put K,=
CI(W,). Fix a small constant & >(.

For each Fj, there exists a W, such that u;(F)\ W.)<e/2*. Further,
since E satisfies the condition (MU2), so does F, and so there exists an
increasing sequence N,EN such that 3.y 1;(F;NK,) <e/2"*'. Put E{® = (F;
NWa\U,.jon K, and E®=TLexE®. Then E®~E, and E® satisfies the
condition (MU2str) : for any compact subset K of M, KNE®=¢(5>0).
The sets E{® are mutually disjoint and relatively compact.

Hereafter, we consider only such open subsets U that their boundaries
OU=CI(IH\U are null sets : 1;(dU) =0 for any y,. For each E®, we take a
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relatively compact, open subset E* such that

G 1 (EPOE®) + Liwsutn(EP NEP) <e/2.

Then, E®=IL,exE® ~ E®, Further, put inductively for j=1, 2, ---,
EP =EP\(UsCLEP)) =E"\ U<, CL(EL).

Then, E® are mutually disjoint, open subsets. Note that

EPOE® =E® N (U, ClIEP) ZEP N (U )
CEMNE®)UEPN U EP)  (modulo null sets),

Then we get y;(EPOEM) <i;(EPOEP®) + Xy (EP N ELP), and so
(5.5 > w(EPOF) < 3 1 (EPOE®) + 2. > W(EPNEYP) <e.
JEN JEN kREN j=k+1

This gives us E?=[Lex E? ~ E®, Finally, picking up finite number of
connected components of each E® appropriately, we get E; and then E'=
[I;enE; demanded in the assertion (i) in the lemma.

(i) We start with E” in (i) but take a new increasing sequence W,
M (n—) of relatively compact, connected, open subsets. We note here
the following elementary fact which will be repeatedly applied in the
discussions below. Let CC W, be a closed subset of M and p a point outside
of W,, then a path connecting p with C meets necessarily with W,\C before
meeting C itself, and so we can connect p with W, by a small open path
without touching C inside of W,.

We proceed inductively as follows. First consider E{ and take a Wa,
containing its closure. Put l,={i; EIN W, #¢}, Ji={i€L; EICW,}. Fori
€/, put E’=E!. For j’s in I\ ], consider first the union Uj=W, U (U,
E!). We can make it connected (since dim M>2) by adding small open
pathes appropriately to E;, j&I\ J;, to connect their connected components
outside of W,, to W, , so that we get E j&€I)\J,, and a connected open U,
=W, U (Uje, Ef') satisfying

3.6 u(E/OE;) +k§ w(ESNED <e/2 (GEL\JD.

Note that the above sum is actually a finite sum. Put A,= {k€&1,, E.NE/#*
¢ (Ij€l\J1)} and

(G)) ;/:E;\U1511\11E;/ (REA).

Thus E/ are determined for i€B,:=I,UA,. Note that E//CU, for i€l, and
that E; (REA,) and E/ (i€EB,) are disjoint with U.. Thus the first step of the
induction is completed.

For the second step, we take a W,, m;>m,, which contains all of
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CI(E!), i€B,. Then, U,C W,,. Put ,= {i€B,; EIN W,,,2¢¢} and ,={i€;;
E{CW.,}. Fori€], put E'=E!. Forj’sin L\, consider first the union U;
=W.,U (Uiele,{). We can make Uj connected by adding small open pathes
to Ej, €L\ J,, to connect their connected components outside of sz(finite
number by (i)) to W,,, not touching Ei"C W, iEB,, already determined in
the previous step (cf. the note at the beginning of the proof for (ii)), so
that we get E;, j€L\J,, and a connected open U,=W,,U (Uje,Ef), such
that

(. 69 1 (E/QE)) +k$§w uwlESNED < /2 GEL\J.

Put A,={k€EB\UL; E.NE;#¢(3j€L\],)}, and
(5 7’) E:’e/:E;\(Ujezz\JzE;I) (kEAz)-

Thus E! are determined for i€B,:=B,U,UA,. Note that E'CU,(EB,U
I,), and that E'(i€A,) and E!({€B,) are disjoint with U,.

For the third step, we take a W,.,, m3>m,, containing all C1(E!"), iEB,.
Put I,={i&€B,; ENW,,#¢}, and ;= {iEL; EIC W,}. Fori€J, put E'=E.
For j's in I\ ], consider Us=W,,U (Uie, E7), and so on. We omit to state
the n-th step since it is now clear.

Finally, thus obtained E/, jEN, give a u-unital subset E”~F’, as is seen
by an evaluation similar to (5.5), and satisfies the condition (AB).

The proof of the assertion (ii) of the lemma is now complete.

Proof of Theorem 5. 1. Now let us return to the proof of Theorem 5. 1.
From E'~E, we see that the representations T4 and T§ are unitary
equivalent in a natural fashion, and that the permutation groups S, &, and
&, & s coincide with each other (cf. Proposition 4. 5(i)). So the proof of the
theorem is transferred from E to E”.

To establish the dual pair relation, we apply Lemma 5.6. The
condition (AB) established in Lemma 5.7(ii) is nothing but the
assumptions (a) and (b) in Lemma 5. 6. So we can apply Lemma 5. 6 and
see that the groups G and &..(s) =8, z, form a dual pair.

Thus the proof of Theorem 5. 1 is now complete.

5. 7. Cases of E satisfying a weaker disjointness condition. In our
general situation where only the two conditions (MU1)-(MU2) are
assumed for (i, E), there gives rise to an interesting problem as

Problem 5.8. Under the tensor product representation TE, do the
diffeomorphism group G =Diffy(M) and the permutation group S, z,CS..(s)
form a dual pair?
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At this stage, we have no definite answer. However, if we assume a
certain weak disjointness condition on E, the answer is yes and we have
even more as is given in Theorem 5.9 below.

Let us introduce the following disjointness condition on E=Il;exE;:

(wDIS) there exists an increasing sequence I, of finite subsets of N
such that I,/N and, for any #nEN, U, E; and U.e Ee are mutually
disjoint.

Then we have another main result in this paper as in

Theorem 5.9. Let T3 be the infinite tensor product representation of G
determined from (u, E) as in the preceeding theorem.

Let dimM=>=2. Assume that the u-unital subset E is y-cofinal to another
u-unital subset F which satisfies the condition (wDIS).

(i) The group S,z is contained in G., The subgroup S.NS,z,=
S.(8) of S. is everywhere dense in S, . with respect to s -w-topolygy.

(i) The groups G and S,:. form a dual pair: R(S,:.)" =TiG)".
Furthermore the groups G and G.(s) C &, 5, form also a dual pair in the sense
that R(S.(s))' =TiG)".

5.8. Proof of Theorem 5.9. As in the proof of Theorem 5. 1, we can
replace E by F. For the first assertion (i), it is enough to see that S, 5 .C
&..,, thanks to Proposition 4. 5(iii). In turn, this inclusion relation is not
difficult to prove under the condition (wDIS) on F.

To prove the second assertion (ii), we apply Lemmd 5. 6. Therefore
the main part of the proof is to discuss a normalization of the g-unital
subset E, that is, a replacement of £ by another good u-unital subset to
which Lemma 5. 6 is applicable.

Lemma 5.10. Let (i, E) be a pair satisfying the conditions (MUI1)-(MU
2). Assume that the condition (wDIS) holds for E.

(i) There exists a p-unital subset E'=T1,enE, such that EXE and E'
satisfies the conditions (wDIS) and (MUZ2str), and that each E;is a relatively
compact, open subset of X;=M, with finite number of connected components.

(ii) In case dim M>29, there exists a p-unital subset E”=H,-ENE,{"”~E
with relatively compact E;’s for which the condition (AB) in Lemma 5. 7
holds.

Proof. (i) From the condition (wDIS), there exists an increasing
sequence I,CN, I,,/'N, such that Use, E,CM (m>1), with L,=I,\I-,, L,=
I,, are mutually disjoint. We construct E®=ILcyE® ~ E, and then E¥ =
[LenE® A E® just as in the beginning of the proof of Lemma 5.7, but
starting with E here in place of F there. Then, Q7 := U, E{”, mEN, are
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mutually disjoint, and E{"’s are relatively compact and open.
Put, for j€L,, E®=E{®, and put, for j€L,,, m>2, inductively on m,

EP=EP\US Uuer,CIED) =EP\ U User, CIED).

Then, QP := Ui, E®, mEN, are mutually disjoint, relatively compact and
open. Similarly as in the proof of Lemma 5. 7(i), we have an evaluation

w(EPOEP) <1;(E{POE”) + ZHL w(EPNEP)  (JEL.
1€ UPSLL,

Summing up this inequality, we get Z,eni;(EPOEP)<e as in (5.9),
whence E?XE®, Picking up finite number of connected components from
E® appropriately, we obtain E,and E' = [1,en E, ~E®<E in (i) of the lemma.

(ii) Just as in the proof of (ii) in Lemma 5. 7, we start with E’ given
above, and with a new increasing sequence W,/ M (n—) having the
same properties as there. However we discuss here not according to
individual Ej, i€N, but according to families {E!;iEL,}, mEN.

 Put @,= U, Ei, mEN. First consider @{, and take a W., containing
its closure. Put /= {m;Q.N W, #¢}, and Ji'= m€EI}’; Q,.C W, }. Fori€L
withm&Jy, put E/'=E;. Forj'sinL,, m&I\J¥, consider first the union U;
=W, U(Uwer@u). We make it connected by adding small open pathes
appropriately to Ej, j€L,, m&I\J¥, to connect their connected compo-
nents outside of W, to W,, so that we get Ej] jEL,, mEI\J¥, and a
connected open Uy=W,, U (Uner Q) With Q.= U, E;) satisfying

(.67 /tf(Ef'@Ef)+k$LX'Inemm(E§'ﬂE2) <&/2 (JELn, mEI\JP).

Put AY={a€l; QN (Unep»@n ) #¢}, and
G 17 E=EN\(Unepp@)  (REL,, aEAY).

Thus E! are determined for i€L,,, mEBY :=I* UA"*. Note that Q.,C U, for m
€I¢, and that Q/(mEA,) and Q.(me&EBY) are disjoint with U,. Thus the
first step of the induction is completed.

Now we state the n-th step. Assume that E{ have been determined for
1€L., mEB;_,, by the help of W, CW,,C---C Wa,_. Takea W, , m,>m,_,,
containing all CI(E("), i€EL,, mEB;-,, and put I'= {me&By-,; Q.N W, #¢},
and Ji={m€EI’; Q.CW,}. Fori€L, withm€&]J¥, put E'=E/. Forj'sin L,,
me&IL\ ], consider first the union U,=W, U(Uwe»Qn). We make it
connected by adding small open pathes appropriately to E;, j&€L.., m&EI¥\
J¥, to connect their connected components outside of W, to W, (not
touching E;, j€EL,,, mEBY_,, already determined until the last step), so that
we get Ej jEL,, mEI\J!, and a connected open U,= W, U(UnerQy)
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satisfying

(5 6" u;(Ef’@E§)+k$ 2 wENE) <e&/2 (JELn, mELNTD.

L, mEB UL
Put Av={a&B: UL’ ; QN (Unery#Qn) #¢}, and
G. 7 E=EN(Upepy2Qn)  (REL, aEAY).

Then E! are determined for i€L,, mEBY :=B*_,UI*UAY Note that Q,/CU,
for meBY_,UI¥ and that Q,(mEAY) and Q,(m&B”) are disjoint with U,.

Repeating this process inductively on n, we obtain finally E;, j&N,
which satisfy the condition (AB) in Lemma 5. 7 for the sequence U,, nE€N,

because @,C U, or Q.NU,=¢ for any m, nEN.
This complete the proof of the lemma.

Proof of Theorem 5. 9(ii). Since we have constructed E”~E which
satisfies the condition (AB) in Lemma 5.7, we are now ready to apply
Lemma 5.6. Then the assertion (ii) of the theorem follows from this
lemma.

The proof of Theorem 5.9 is now complete.

§ 6. Groups of volume-preserving diffeomorphisms

Assume that a connected C®-manifold M, n>1, is equipped with a
measure wE LFM(M). We consider here an important subgroup G.=
Diffy(M ; w) of G=Diffy(M) consisting of volume-preserving gEG :dw(gp)
=dw(p), pEM.

6.1. The extension G, of the group G.. Denote by .. the group of
all measurable transformations on M which are equal to the identity
outside some compacts and preserve the volume w, and also denote by G,
its subgroup consiting of all elements g&.#, which can be approximated
by nets g., e >0, in G.. Here, by definition, a net g.€G., € >(, approximates
ge M, if 1) o(pEM: gp#gp})—0 as €0, and (ii) there exists a
compact KCM such that g.=id outside K.

Note that the fact that G, becomes actually a group is seen from the
following

Lemma 6. 1. Assume that two nets g., h., € >0, in G, approximate g, h&
M, vespectively. Then the products g. h.€ G, approximates the product gh, and
the inverse g.' approximates the inverse g\

In this section we investigate firstly what kind of transformations are
contained in the extended group G., and secondly whether or not the
natural representations of the group G, or their tensor products can be
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extended to the group extension G..

6.2. Rotation of a cubic body. In this and the succeeding two
subsections, we treat the local case or the case where M is a connected
open submanifold of R*(d>2). Consider the measure

dw (x) =dx,dx,++dx, (x= ()i ERY.

Let D=/ with closed interval J be a cubic body in MCR% Intoduce
coordinates for which J=[—a, a], a>(, so that the center of D is the origin
0. We devide D into two pieces by D.=J.XJ*"! with J.=[0, a], J-=[—a,
0]. Denote by hy,.» (resp.gs) the measurable transformation on M which
exchanges D, and D_(resp. rotates D arround the center O by the angle 7)
and equals to the identity outside of D. We prove here that the transfor-
mations A, »_and g» can be respectively approximated by a net g.€G., €
>(), as € { 0, where the support of g. is contained in D,=J!CM with J.=
[—a—e¢, a+e]. To do so, it is enough to show it for the rotation gp.

6.2.1. First we assume d=2 and follow the result of Neretin [11].
Introduce the polar coordinates (7, ¢) for (x,, x,) ER%. Take a smooth curve
r=A(¢) contained in the inside of D,\D such that A (¢+7) =2(¢) (V¢), and
also take a monotone smooth function z(s) such that z(s) =x for s<( and
7(s) =() for s=>s,>0, with a sufficiently small number s; so that the curve r
=/A($)?+s,is contained in D.. We define a transformation g.€Diffy(M, w)
as follows. Let g.(r, ) =(r,, ¢,) and, for s=r*—2A(¢)?

(r, p+m) for s<(,
(r, ) =1 (VA (@D) +s, p+1(s)) for 0<s<s,,
(r, ¢) for s>s.

Note that, in the region between two curves r=21(¢) and r=/A(¢)*+s,,
we have 27 dr d¢=ds d¢=2r,dr,d¢,.

6.2.2. Next we proceed to the general case. For x=(x;, X2, X35, ***, Xa2)
ERY we put £=(x3, -*-, x,) and distinguish first two components (x;, x,),
introducing for it the polar coordinates (7, ¢) as in the case of d=2. Our
transformation g. €Diffy(M, w), € >0, is given in the following form : for x
= (%1, %2, ***, Xa), use the coordinates (r, ¢ ; %), then

g ¢;x)=(r, ¢1;%)

with (7, ¢) =g..:(r, ), where g. . is a transformation depending on &= (xs,
-+, %) with a similar form as g in the case of d=2. To give g.., we
introduce two monotone smooth functions £(¢), (), t>0, as

EW=10<t<a), E(a+e/3)=0,
1) =10<t<a+2/3), nla+e) =0,
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and put £(t) =£(—1t), n(®) =n(—1) for t<(, and
d d

E@®) = [[3 E), n@= 11 n(x).

Define (r,, ¢,) =g. .(r, ¢) as follows: put first
A(g)

A0 = T - EGAB)”
and then, for s=r*—21(¢ ; )%,
(r, p+n@)7) for s<(,
(ri, ¢ =17 (VA(¢1; ) +s, ¢+n(@)(s)) for 0<s<sy,
@ @) for s>s,.

Note that, for a fixed £ the curve r=21(¢ ; %), 0<¢ <2x, equals to a unit
circle if | x; | >a+¢&/3 for some i>3, and then the curve (r, ¢1), 0<¢ <27,
for a fixed parameter s, (<s<s,, is a circle r=/I+s, and the rotation of
angle p(®)t(s) on the circle is smoothly consistent at s=s, with the
rotation of angle n(%)x of the unit disc <1 in the center, as it should be.

Note further that the transformation g. keeps the last (d—2)
components £ of x always invariant and, for each %, it equals a volume-
preserving transformation on (x;, x,) €ER? whose angle of rotation
dicreases smoothly along with % This implies in particular that the
transformation g. on MCR* preserves the volume element w.

6.3. More general transformations in G,. We assume still MCR?
Let us divide M by the family of hyperplanes x;=n6 (n€Z) with
sufficiently small 6>0. Then, speaking about the cubic bodies cut off by
these hyperplanes, we arrive at the following situation. Two cubic bodies
are called adjacent to each other if they have in common one of their
surfaces. Any two cubic bodies D, and D, inside of M can be connected by
a chain of cubic bodies in M, C,=D,, C,, -+, C,=D,, in such a way that C;
and C;;; are adjacent for 1<i<n. Then any permutation of C;’s can be
given as a product of the transposition hc, c,,HEG-,, of C; with C;;, through
the common surface, since this is well-known for the permutation group
&.. More in detail we have

Lemma 6. 2. For any two cubic bodies D,, D, in M given as above, there
exists a permutation hy, o, of Dy and D, belonging to G.. Here, by definition,
ho, p,=1d outside of DiUD,. More exactly, take an arcwise-connected,
relatively compact negighbourhood U of D,UD,, then there exists a net g.€G.,
e >(, and a permutation hp, », such that g. approximates ho,, »,and supp(g.)C
U.
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Proof. According to the size of the narrowest neck of U, we devide M
finer by hyperplanes x,=06":=6/N with sufficiently big N. Then new
smaller cubic bodies D/CD; (i=1, 2) can be connected by a chain of (new)
cubic bodies contained in U. Then, the explicit form of measure-
preserving transformations in §6.2 and the argument just above show
that we can do everything inside of the open submanifold U. This means
that a permutation hp,», can be approximeted by a net g6, with
supp(g.)CU. Take K=CI(U), then g.=id outside K, and so we see that
ho,, 5,E G

6.4. Exchange of two equi-volume open sets. Let MCR* d>2. Take
two relatively compact open sets O;, O, with the same volume. Then we
have

Proposition 6. 3. There exists in G, a measurable transformation ho,, o,
which maps Oy onto O,, O, onto O, (modulo null sets), and equals to the
identity outside of O,UQ,. More exactly, for an arcwise-connected relatively
compact open set U containing C1(0,UQ,), there exists a net g., €>0, in
G.(U) :={gE€G.; supp(g) CU}, which approximates ho,, o,. We can choose
ho,, o, in such a way that, for certain open subsets V; of O; with w(V;) =w(0)),
it maps V, onto V, V, onto V,, homeomorphically on each connected
components.

Proof. Step 1. Let y>(. Then there exists a sufficiently fine decom-
position of M by hypersurfaces x;=n6 (nEZ) such that, forj=1, 2, let %; be
the set of cubic bodies for this decomposition contained in O;, then the
union F;= Upe¢, D approximates O; as w(O\F;) <7. Let n; be the number of
elements in %;. Assume that n,<n,. Discurding (n,—n,) elements in %, we
get ;. Put 41=%,. Then w(O\F;) <7y for Fj= Ubee, D. Make pairs (Dy, Dy),
D,E¥%], D,E%;, bijectively, and take hp,,EG, in Lemma 6.2, then the
product hg, i, of hy, p, OVer these pairs, maps F{ onto Fy, F; onto Fi, and
equal to the identity outside of F{UF;, and so it approximates in a sense
the desired transformation ko, o,.

Note that s, r, maps Vi onto V; homeomorphically on each connected
components, where V;=U pec; Int(D), Int(D) =the interior of D, and that
w(FA\V) =0.

Step 2. Now we construct a net in G. of certain hr, r’s which
‘converges’ to an ho,, 0, Then we guarantee, by Lemma 6.4 given below,
the exixtence of a net g., ¢ >(, in the group G., converging to Ro,, oy

Take e=¢,=27% k>1, and put y=e. We discuss by induction on £ and
give a convergent series in G.. For k=1, we follow the process descrived
in Step 1 and put
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0=0, FP=F, VO=V,(G=1 2, hd, .

For the next step k=2, we take e=¢,, y=¢, and O =0\F for O; in
the discussion in Step 1. Then, we obtain F?CO®, VPCF?(j=1, 2), and
thz), ng),

In general, for the k-th step, we take O =0*"P\F#? for O; in the
discussion in Step 1. Then we get F*CO/®, VPCF® and hs®, sp.

Let us now put

ho=hs@, s on FPUFY for 1<k<n, =id elsewhere,
h=hsw, g on FPUFP for 1<k<oo, =id elsewhere,

Put W= U F®, V,=U;= V¥, Then, h,€G. approximates the tansfor-
mation hE.#, which is equal to the identity outside of O,UQO,, and maps
W,C O, onto W,C0, W, onto W;,. Note that w(O\V;)=( and that &
exchanges V,CW, and V,CW,; homeomorphically on each connected
components. We take this & as the transformation Ao, o, desired.

Step 3. The ‘convergence’ of h, in G, to A shows us the existence of a
net g, €>0, in G, converging to s, by the help of the lemma below. To
apply this lemma, we take K =K,=Cl1(U).

For the assertion on the existence of a convergent net in G,(U), we
apply Lemmas 6.2 and 6. 4. Q.E.D.

Lemma 6. 4. Assume that an element g M., is approximated by a net g.,
e>0, in G, in such a way that (a) for a compact K, supp(g.)CK, (b) w(pE
M; g.p#gp})—>0as el (. Then g belongs to the extended group G, if there
exists another compact K, such that each g.€G, is approximated by a net g.s,
6>0, 610, in G, such that supp(g.) CK,.

We omit the proof of this lemma.

6.5. The group extension G, in the general case. Let us treat now
the general case. Let M be a connected C*-manifold, 1<n<oo, and w a
measure on M taken from L%.#(M). For eack local chart (U, ¢), in the
co-ordinates ¢(p) =x= (x)%,, d=dimM, we have dw(p) =px)dx,dx, --dx.
with a locally integrable, positive density p. Assume the following
condition holds:

(Den) the density p is of class C* in every local chart.

Then we can transfer the results in §6. 4 for local case to this general case,
as shown below.

Define new local co-ordinates (v, as y,= S o (ti, xs, %3, **+, Xa)dt,, and
y:=x; for i>1, then we have a standard expression of w as

dw(p) =dyidy:--dy..
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A local chart (U, ¢) is called admissible if the measure w is expressed in the
standard form. For such a chart (U, ¢), consider U as an open subset of R?
through ¢ : U—R* and apply for U the results in §6. 4. Put

G.(U) = {g€G.; supp(g@) CU}.

Theorem 6.5. Assume that a measure w on M satisfies the condition
(Den). Let O, and O, be two relatively compact, open subsets of M with the
same volume. Then there exists an element ho,, 0,& G. which maps O, onto Oy,
0, onto O,(modulo null sets), and equals to the identity outside of O;U O,.

Furthermore, let U be an arcwise-connected open subset of M containing
CI(0,UOy). Then there exists a net g., € >0, in G.(U), converging to ho,, o,
Moreover ho,, o, can be so chosen that there exist open subsets V;C O; such that
w(O\V) =0 and it maps V, onto V,, V, onto V,, homeomorphically on each
connected component.

Proof. Devide O, into small open subsets O; ., 1 <m <N, (up to subsets
of smaller dimensions) in such a way that each O, . is contained in an
admissible chart U, ., and that 0w (0, .) =w (0, .) and w(OA\UY_,0; ) =0.

Fix anm. Then there exists a chain of admissible charts W,=U, .., W,,
-, Wo=Uyn, such that W.CU, W.NW.,,#0(1<i<n). Devide again the
pair Oy ., O,. into pairs of equi-volume open subsets, sufficiently small
compairing to the sizes of W;,, W:N W.,;. Take one of these pairs and let it
be O;, 0;. Choose a chain of open subsets V,=0{, V,C W,NW,, V,C W,N
W, -+, V,=0j all with the same volume. Then, by Proposition 6. 3, V; and
V.1 are exchanged by an hiiv1=hy, v, EG,(W). Therefore V, and V, are
exchanged by an appropriate product of transposition #&;:+;, just as in the
symmetric group &,. Thus we see that O, . and O, . are exchanged by an
element in G., and finally so are the original O, and O,.

Remark 6.6. Take an arbitrary w,& LF# (M), or a locally finite
measure on M which is locally equivalent to Lebesgues measures. Then
there exists, for any € >(), a measure w € Z.# (M) satsifying the condition
(Den) and | w—w, | (M) <e.

6.6. Representations of G,=Diffy(M, w) and of G,. On the Hilbert
space #,=L*(M, w), we have a natural representation T, of G,=Diffy(M,
w) in the form

Ty(@fx)=f(g7'x) (8€G., xEM, fEHY).

This representation can be extended by continuity to a representation
of the group extension G. consisting of measurable transformations ap-
proximated by a net in G,. In fact, suppose that g., e >(, in G, converges
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togEG, as e | 0, then it induces a strong convergence of operators T,(g.),
and the limiting operator can be attributed to g and gives Ty(g), which is
expressed by the same formula as above. Assume the condition (Den) for
w, then the group G. contains a transformation which exchanges two
equi-volume open subsets O, and O, in a compact, and equals to the
identity outside of them. Even if there exist several such transformations,
we denote any of them simply by ko, o,.

The irreducibility of the representation T, of the group G. is
equivalent to the irreducibility under the bigger group G., and the latter,
even it is rather clear, is proved here in the simplest way.

Theorem 6. 7. Let dim M>2, and assume, for a measure wE LFM (M),
that the condition (Den) holds.

(1) Incase w(M) =+ =, the natural representation T, of the group G.,=
Diffy(M, w) is irreducible, and so is its extension to the group G..

(i) In case w(M)< +oo, the 1-dimensional subspace consisting of
constant functions on M is G.-invariant, and its orthogonal complement in H,
is irreducible under G.. The same is true also for G..

Proof. Enough to prove the assertions for the extended group G.. Let
A be an intertwining operator of 7,. Take an open subset U with finite
volume and its indicator function f=x,E#,. Put ¢=Af Take any two
relatively compact, open subsets O, and O, with the same volume, both
contained in U or in M\U, and take h=ho, 0, then Ty(h)f=f and so we
-have Ty(h)¢p=¢, that is,

@ (ho,, 0,x) =¢(x) for almost all xEM.

Since the pair O,, O, are arbitrary both inside or outside of U, the
function ¢ should be constant separately inside or outside of U. Therefore
we have ¢ =A (xv) =cvxv+duvxs With constants ¢y, dyEC. In case w(M) =
+ oo, the constant function y, does not belong to #,, and so dy=0 or A (xv)
=cyxv. In case w(M)< +co, we have, in particular, A (x») =a - x» With a
constant a&C.

The formula A (xv) =cuxv+dvxsx can be extended to a measurable
subset U with finite volume such that w(8U) =0, where U :=C1(U)\Int
(U) is the boundary of U. Now, for such a subset U with w (M\U) >0,
devide it into two disjoint, non-null, such subsets as U=U,|_|U,. Then, we
see easily that cy=cy =cy,. Therefore cy=cy for any two open sets U and
U’ with finite volumes and #M. This means that ¢,=c, a constant.

In case w(M)=+ o, we have Afi=cf; for any fiE#, and so the
representation Ty is irreducible.

In case w (M) < + oo, the 1-dimensional subspace #y=Cyx is invariant
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under G, and so is its orthogonal complement #y= (#w)*. Put ¢p=xv—
(wU)/w(M))xu. Then, ¢pyEx#y and so A (¢py) EHy. Since cy=c, we get
from this that A(¢v) =c- ¢ and so A |H#n =c-Ir,. This means that the
representation Ty| s, is irreducible.

Note 6.8. For the bigger group G=Diff,(M), its natural representa-
tions T;, SER, on #, are always irreducible even when w (M) < + . (The
explicit form of T is given at the beginning of Appendix below, and its
restriction for G, is nothing but T}.) In fact, the subspace #y consisting of
constant functions on M is G.-invariant, but not G-invariant.

The same kind of arguments as in the above proof of Theorem 6. 7 can
be used for the irreducible decompositions of finite tensor products of the
natural representations, and similar results are obtained for the small
subgroup G, =Diff,(M, w) as those for the whole group G=Diff,(M). Let
T#=Q%L,T: with T:=T, be the k-th tensor product of T, on the space #{"
=@t #:, H:=H, The symmetric group S, acts on #{° naturally as
permutations of the components of decomposable vectors.

Theorem 6.9. The k-th tensor product T of the natural representation
Ty of the group G. can be extended to the bigger group G, by continuity.
Assume dim M>2, and w (M) = + oo, Then, on the representation space H#§®,
the groups G, and S, form a dual pair, and so does the groups G, and G,.

The assertion for G, and that for the extended group G. are mutually
equivalent. The proof is quite similar as for the group G itself and is based
on the irreducibility of natural representation given in Theorem 6. 7.

6. 7. Infinite tensor products and dual pairs of G, XS.. Let u=
(U:)iex With ;=w on X;=M, and also let E=1Il.exE:;, E:CX;, be a p-unital
subset of X=1l:.exnX:. Assume the condition (MU2) for (y, E): for any
compact subset K of M, T.enw(KNE)<o. Then the infinite tensor
product T: of natural representation T, of G, is given as in Theorem 3. 1.
Moreover the o-ring # (1, E) and the product measure v, ; are G.-invariant
by the discussions in § 3. 5. So an explicit form of T is given as

Te(@)f(x)=f(g'x) (gE€G6., xEX, fELYX, M, E), v..£)).

Note that any element g in the extended group G, has compact
support, then we see easily that the above formula can be extended to give
an infinite tensor product of the natural representation of the group G..
This representation is an extension by continuity from G. to G., as shown
by the following lemma, and is denoted again by the same symbol T%.

Lemma 6. 10. Assume that a net g., € >0, in G, converges to an element g
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&G.. Then the net of operators T:(g.) converges strongly to T:(g).

We make the infinite symmetric group &. act on the space L2(X, 4 (4,
E), v.r) as

R)f(x)=f(xo) (0€C., fEL*X, M, E),v.r)),

where x0= (X,¢)iex for x=(x);enEX.

Similarly as for the infinite tensor product representations 7% or T#
for G=Diff,(M) in §5, we have a dual pair relation for the group G. of
measure preserving diffeomorphisms and the symmetric group S. as
given in

Theorem 6. 11. Let M be a connected C™-manifold, n>1, with dimM>
2, and w be a measure on M locally finite, locally equivalent to Lebesgue
measures, with C™-class densities, and with w (M) =+ . Put = () wex, t:i=
w, and take a u-unital subset E=1l.enE;. Assume that E;’s are mutually
disjoint. Then, on the Hilbert space L*(X, #(u, E), v,.c), the representation
T: * R of the product groups G, X S. gives a dual pair relation, and a similar
fact holds also for G, X G.:

T:(G.)'=R(S.)", Ti(G.)'=R(S.)".

The proof is similar as for the case of G X&.(s) in §8§ 5. 3-5. 6, but for
a special s = (s;);ey with all s;=( in Theorem 5. 1. It is based on Theorem 6. 9
for the k-th tensor product T¢® of Ty and the symmetric group &,. We omit
the details here.

Remark 6. 12. In the case where the disjointness condition (wDIS) on
the p-unital subset E is assumed, we can give a similar result as Theorem
5.9in §5.7. Further, its proof is also similar.

Appendix. Finite tensor products of natural representations of a
diffeomorphism group

Let M be a connected C™-manifold with n>1, and G=Diff,(M) the
group of diffeomorphisms on M with compact supports. Consider finite
number of representations (T}, #,), #;=L*(X;, %;, 1;) with X;=M, given
by (4.1)-(4.2) in §4.2. Within the unitary equivalence, we may assume
that ,=1in (4.2) and all the u,’s are equal to the same one w E LZF.H4 (M).
We can assume that w has C*”-class density. Thus the representation T} is
determined uniquely by the parameter s;&R in the 1-cocycle a;, and it is
denoted also by Tsl,:
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T, @h(p) (292 Y in (g p)

At first we give the following simple lemma.

Lemma A.1. Any representation T,, SER, of G is irreducible. Two
represbntations T and T, are mutually equivalent if and only if s, =s;.

Proof. For the irreducibility, it is enough for us to quote Note 6. 8. Let
us prove the second assertion. Take a coordinate neighbourhood U of M.
We may assume that the measure w is given in this coordinates p= (p1, ps,
.-+, pa) as dw (p) =dp,dp,---dp.. Take a relatively compact, open subset U,
of U such that CI(U;) CU. Then, there exists an element geGU) =
Diffy(U) CG such that g 'p= (yp, 102, **, 7Da) =7 for pE U, with a positive
constant y#1.

Decompose the representation spaces #,=L*(M, w)(j=1, 2) as #,=
L*(U)®L*(M\U). Then, the restrictions T.,|G (U) are both irreducible on
L*(U), by Note 6.8, and trivial on L*(M\U). Therefore an intertwining
operator A : s —#,, leaves L*(U) and L*(M\U) stable, and A |L*(U) is
zero or invertible. Note that restrictions Tsj | G, (U) to the subgroup G.(U)
=G,NG(U) are both identical on L*(U) and irreducible on its subspace
{xu}*,and so A is a scalar multiplication operator on L*(U) and maps L*(M
\U) onto itself.

Thus, for any h€L*(U), Ah=ah with a constant a&C. So, taking the
above element geG(U), we have, for hEL*(Uy),

T.(h(p)=7*""h(yp), T.,(&)(AR)(p)=r*"ah(yp).
Since AT, (g) =T, (g)A, we have a=0 if s,#s,.

Lemma A. 2. Let dim M>2. Take a finite number of representations T,
JE&], with the parameters s;ER of G, and the same number of T,, jE€J, with s;
ER. Then an intertwining operator between the tensor products ®,~E,T<j and
®,e/ Ty, is a linear combination of the permutation operator R (o) with 0EE,
satisfying s.;y=s; GJEJ). Here R(0)(®jc;f;) :=®je;fo-1tp, for decomposable
element Qje,f;E Q) H; With f,EH,.

In particular, if the sets of parameters {s;; jEJ} and {sj; jEJ} are
different, these two tensor product representations are mutually disjoint.

Proof. For asubset V of M, put #;(V)=L*(V, %;|V, ;| V)C #,. Take
connected open subsets U;, &/, of M which are mutually disjoint, and put
U.=M\U,q,U;,. Then we have an orthogonal decomposition of each #; as

(A. 1) Hy=2; H,(U), with Jo=]JU {oo}.
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Consider the subgroup G'=1Il.,G(U.) of G and its representation under
the tensor product ®,~E,Tsj on the space #,= ®,c;#;. Then, inserting the
decomposition (A.1) in each #;, we get a decomposition of #; as follows :

e9f12236(1m)/9f [Q] with #[Q] :®feje?fj(qu),

where the sum runs over @=(g),e;€(J=). As G’-modules, on each
component # [Q], there acts a tensor product representation

®jE]O(Ts]- | G (qu)’ ”}'(qu))y

with Jo={jEJ; ¢;#°} on the factor ®,, #;(U,), and the other factor
Qe #;(U) gives the multiplicity.

All the components which carry an irreducible tensor product of G'=
I1,c;G(U;), not containing the trivial representation of any of G(U,)’s, are
given as

®,e/(Ty1 G (Uaw), #:(Usi)),

where 0€&,. On any other component, some of G(U;)’s acts trivially.

Take an intertwining operator A of ®jer T, with ®,EJT3/J,. Then the
above fact means that A maps ®,¢,5¢;(U;) onto some of ®;c;(U,;). If
this is not zero, the representations of G’ on these subspaces should be
equivalent. By Lemma A. 1, applied to each of G(U;), we see that s,;y=s;/
(4&€)) in that case. If this does not happen for any &€&, then A should be
zero on ®,e;;(U,).

Now let us study the way of changing when % = (U,),e, is replaced by
another %' = (U});e;. Put # (%) =®,;5¢(U;) anew and denote by P, the
orthogonal projection of #, onto #(%). For a 0€S,, put %o= U.p)ses,
then #(%o)=R(0)# (%). Define &,((sp;e)=1{0EC;; s.n=s;GEN}
Then the above argument shows that

AoPy= 2 alo, %) -R0)oPs= 2 a0, %) -Pu°R(0) 0P,
0€&,((sse) 0€6,((s)ser)
where a(o, %) €C are constants.

Let us prove that these constants do not depend on #. To do so, we
introduce an equivalence relation in the set of all # = (U,);e; with mutually
disjoint, connected open U;’s. Two elements % and %' = (U;);c, are called
adjacent to each other and denoted as # =%’ if U;,NUj#¢(§E]). Further %
and %’ are called equivalent and denoted as U~U’, if there exists a finite
number of elements #®, #® -, 4™ such that #=u®, AP =u* (1<k<
n), UP =9’

Assume now % =4%’. For j&]J, take a connected component U; of U;N
Ui#¢, and put #”=U)je;. Then, #=U"=%" and #(Uc) \H (U c)D
# (4" 0) for any 0EE,. It can be seen from this that a(o, %) =a(o, #") =
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a(o, ) for 0=6,((s)e). Therefore we get a(o, %) =a(o, U") if U~U .

On the other hand, in case d=dim M>2, any two elements # and %’
are mutually equivalent, as we can see without difficulty. This means
that, on the dense subspace of #; spanned by # (%)’s, the operator A is
expressed as A = Zaee,«sj)iej)a(a) R (o) witha(o)=a(o, %). This expression
holds also on the whole space ;.

Remark A. 3. In case d=1, take M=R. Then #,=L*(R* [1A) with k=

| J | and A a Lebesgue measure on R. In this case, there exist 2! number of

equivalence classes of #’s. In fact, consider the order of elements in # =
(U} for x=(x), ,€U; (1<j<k),

Xey <Xy < 0* <oy,

with a certain t&&,. Then each 7 represents an equivelence class of #’s.
On the other hand, put D= {x=(x)ER"; x,<x,<--<x}, and x7=
(x«p)k1, TES,. Denote by Q. the restriction on DTCR* of function f&#;:

Q.f(x)=f(x) x€D.); =0(x&ED7).

Then we have

Lemma A.4. Let M=R. Then for the tensor product ®}L1Tsj of
representations (Tsj, #,), #;=L*R, 1) of G=Diffy(R), the algebra of
intertwining operators is generated by {R(0); 0€6S,((spk )} and {Q.; TES,).
In case where all the s;’s are mutually equal, this algebra is isomorphic to
gl(k!, C) algebraically.

It may be interesting to investigate the situation in case k= | J | =co.
Returning to the general case, we remark here

Lemma A.b5. Let J and J' be two finite sets of indices. Assume that | J |
# | J'|. Then any two tensor product representations ®,e,Ts; and ®erT, of
G are mutually disjoint.

A proof can be given by a similar method as that in the proof of the
above lemma.
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