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Hecke algebras and quantum general linear groups

Dedicated to Professor Takeshi Hirai on his sixtieth birthday

By

Shin-ichi KATO

Hecke algebras of the Weyl groups are q-analogues of the group
algebras of them. There is another kind of q-analogues, quantum groups,
due to Drinfeld and Jimbo. Although there is a direct relationship between
these two objects in the classical case, such simple relation seems not to be
known in the q-analogue case.

In this paper, we shall show that Hecke algebras of the symmetric
groups arise naturally from quantum general linear groups (quantum
GL„), or from quantum matrix spaces, in a way analogous to the classical
case (see Sect. 1). This construction of the H ecke algebras fits
representation theory of quantum GL„ well, and enables us to adapt the
work of Green [G] on polynomial representations for GL„ to quantum GL„
in a straightforward manner. Namely, in Section 2, we obtain certain
representations of the Hecke algebras, which are essentially identical to
the Specht modules defined in [DJ], from polynomial representations of
these quantum groups, and study some of their properties. In this way, we
could look again the relations between Hecke algebras and quantum GL„.
Further study on this subject will be given in [HKU].

The application in Sect. 2  was inspired by conversation with T.
Umeda, to whom the author would like to express his deep gratitude.
Thanks are also due to R. Howe for helpful discussion and H. Naruse for
critical comments on this work, especially on the Specht modules.

1  . Construction

Let R=Z[q, q -
1]  be the Laurent polynomial ring of the indeterminate

q over Z. We define A =A (n )= R [M , (n ) ]  a q-analogue of the coordinate
ring of the n X n matrix space over R  as follows. The noncommutative
R-algebra A is generated by z, n ) with respect to the following
conditions :
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(1) xux ii = q (j<l) ,
(2) X ijX k j q (j <k),
(3) X ijX k l X k lX ij (i<k , j>1),
(4) X k l l  = q - 1 ) X i l X k j (i>k , j>1).

This algebra is a bialgebra under the comultiplication : A -*A 0 A  and
th e  counit e :  A - > R  g iv e n  b y  4 ( x ) = E7z =1x,,oxk, and E (x )
respectively (see [D], [RTF]).

We can define a  Hopf algebra, the quantum general linear group
R [GL,(n)] =A [det, - 1 ] as the localization of A by certain central group-like
element, the quantum determinant deto =det,(1, , n  ; 1 , , n ) E A  . (W e
refer to Sect. 2 for the definition of the quantum determinant ; we will not
use this in the present section.) But we do not go into details about
R [G L ,(n)] since we will work on A  in this paper. For example, we deal
with only polynomial representations of the quantum general linear group,
namely A -comodules, in Section 2 (cf. [G]).

Let I be the two-sided ideal of A generated by x,,x,/ and x,,x k, for 1 i ,  j>
k , 1<n with j0 1 ,  i0 k .  We see easily that this I is also a coideal of A, i. e.,
we h a v e  (I)CIOA  -FA OI and e(I) = O. Set F = A / I. Then F  becomes a
bialgebra in a natural way. We denote the comultiplication and the counit
of F  by the same letters 4 and E. Note that F  is a  q-analogue of the
coordinate ring of monomial matrices.

Let J be the ideal of A  generated by x,, (j * j ) .  Then J is also a coideal
and we have a bialgebraD=A/J. We shall identify D with the polynomial
ring of n-variables (the coordinate ring of diagonal matrices in both
classical and quantum senses), R , y„1 by the correspondence x„
(mod J) y , .  The R-module A has a left and right D-comodule structure
under the comodule structure maps 4D =4  mod A O J: A ->A 0 D  and
D 4 =4  mod JO A : A ->D 0 A  given by 4D(x) =x,,OY, and D4 (xJ=y,Ox,,.
Similarly, I and F have D-bicomodule structures.

Now we take the "invariants under a maximal torus" in F .  Set 5 -
(1, ,  1 )  E T  (the determinant weight). We put y6 =y 1.-3/„ED. We define
by

P =  I fE F  4 .0 (f )= f0 y 6 1,

the right (5-eigenspace of F. If m EA is a right 5-eigenvector, then m can be
written as an R-linear combination of monomials of the form .X,11-  ')Clwt (1

, _n). But if i1 =ik for in the above, the corresponding monomial
is in I .  This implies that P  coincides with the left 6-eigenspace of F, j. e.,

P = { f E F  I 0 4 ( f )  =.3/6 0 f}.

Hence F' is the (a, 6)-eigenspace (=left (3- and right 6-eigenspace) for D of
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F. Let S. be the symmetric group of the n-th order. We see that F 6 is a free
R-module with basis

[xwmix.,(2)2•••x„.,(0„1 —x„Anix.(2)2•••x.,(0„ mod / (71) E Sa) ,

since there is no(6, a)-eigenvector in / so that these monomials are linearly
independent. Note that

4 ( [ x 1,1••• X I  (n)nl ) E
. distinct 

[x ( l ) I1 •• ..xt0 ( 5) 1n ] g  E x i i i• • •x i nnl•

This shows that F 8 is a subcoalgebra of F .  Set H=Hom R (P , R ) .  Then H
has a free R-basis T . (w E S„) with

T (  EX5(1)1 . • *Xv(n )n i )  a u n i (yE  SO.

The coalgebra structure on F 6 defines an algebra structure on H.

Theorem 1. The basis elem ents T . ( w E S „ )  satisf y  the following
multiplication rule

if  w ( i ) < w ( i + i )
T.  •  Ts= I r ' s

(q — q - 1 ) T . +  T., if  w ( i ) > w ( i  +  '

where s  is the transposition ( i  i +  1) Namely the algebra H is
isomorphic to the H e c k e  algebra of S .

Proof . For vES„, we have, by using commutation relations (3) and
(4),

( T u,  •  T s) ( [Xii(1)1 .  • 'Xii(n)ni )

= T .(L x „(ok i•••x „(ok ni) • T s([x k i i•••xk o i )

— T.([x„(1)1•••x,(0i+ix„(i+Di•••X ti(n)ni )

fT.([x,(1)1•••x,(i+Dix„coi+1•••x„(n)„]) if v ( i ) < v ( i + 1 )

T.(Ex,(Di•••xv(i+Dix„coi-f-i•• *X v(n)nl)

±  (q — q 1) Tw([xvom•••x„wixv(i+Di+1•"x,,(n).]) if v ( i )  >v  (i +  1)

if v ( i ) < v ( i + 1 )

6., „s +  — q- 1 ) (  „ if v ( i ) > v ( i + 1 )

R em ark. We have seen that our Hecke algebra relation is a simple
consequence of the defining relations of A , (1)— (4). Note that these
relations are derived from certain R-matrix (see [R T F 1 ). But, as was
shown by Jimbo [J], this R-matrix is written as (transposition) X (Hecke
algebra action). This factorization explains why the Hecke algebra of the
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symmetric group arises from the quantum matrix algebra, or the quantum
general linear group in our way. Hence our construction should work for
other quantum groups provided that the corresponding R-matrix admits a
factorization as above.

2. Representations

We construct representations of H, the quantum Specht modules, on
the determinant weight spaces of certain polynomial represntations for
quantum general linear groups (i. e. certain A -comodules) as in the case of
S„ (cf. [G]).

First, we give a general remark about how to obtain H-modules from
A -comodules. Let L  be a right A -comodule and AL : L—>L OA the comodule
structure map of L .  Naturally L  becomes a D-comodule. Let L'5 be the
6-eigenspace of L:

1,5 = { 1EL  L ( 1 )  mod L  ® J=/ O A .

It is easily seen that this La becomes a right P-comodule, hence a left
H-module.

Let A = (A 1 , ,  AO be a partition of n : Ai • 0 and E',z=i A, =n. We
set y' = y li• • •y „ , . ED (cf. ya in Sect. 1). Let 'A. be the left A -eigenspace of A,

'A= {m E A  I (m )  mod JOA =.3/' 0m}.

Then 5A  is a right A -comodule. Let A '  (5A )a be the (A, (5)-eigenspace of A,

A Im E A
(m ) mod A 0.1=m  0y 6 1

"— 
z  (m )  mod JOA =y4lOnf

This A "  is an H-module ; see the remark given above. As an R-free basis
of A " ,  we may choose the set of elements x,, x1, 9Cle where the letter k
appears Ai, times for each in the first indices , i„. Note that the
H-action on A "  is given by

T .(x i i i•••xy) — xi 1.(1)•••xin w(o•

In order to define the quantum Specht module, certain H-submodule of
we need quantum determinants. Let I= li b  ,  i j  and J =  I ll, • • • ,

be two ordered subsets of {1, , n) with r-elements. We assume that
i i < ... <i,. W e set

det,(/ ; J)  = detg (ii, , ; • jr)

= .

Here E (w ) is the length of w, given by the cardinality of {(i, j )  I i <j, w ( i)
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>w (D ).
Hereafter we fix a partition A of n unless otherwise stated. We let T (A)

be the set of Young tableaux of shape A : elements of T(A) are of the form

t(1, 1) t a  2 ) A1)
t(2, 1) t(2, 2) t(2, 2 . 2 )

t = •

• t ( 1 2 ,  2)
•

t(u1, 1)

where t(i, j) runs over 1 to n exactly once. Here,u=(gi, •• • ,,a1)(1=A1) is the
dual partition of A . The group S. acts on T (A) in the way (wt)(i, =
w (t( i, j) )  for w E S „, tE T (A ). Similarly, we define T (A, n) the set of
tableaux of shape A with entries from {1, , n} , by replacing the condition
for t ( i, j)  above with the one, 1 t(i, j) n  for any i ,  j .  We call tET (A)
standard (resp. tET(A, n) sem istandard) if t(i, j)< t(i-1-1, j )  and t(i, j) <
t( i, j+1 ) for any i, j, (resp. t( i, j)< t( i+1 , j)  and t(i, j+1 )  for any

j ) .  The set of standard (resp. semistandard) tableaux of shape A (with
entries from {1, , 71}) is denoted by ST(A) (resp. SST(A, n)).

For t, t' ESST (A, n), we define the quantum bideterminant d(t ; t')  by

d ( t ; )=c le t ,(C i (t) ; Ci (t' ))det,(C2(t) ; C2(t' ))..-det,(Ci(t) ; Ci(t' ) )

where /=A 1 . Here C,(t)= (t(1, i), , t(g ,, 0 )E  {1, , n}"., the transpose of
the i-th column of t. Note that from the definition of det,( • ), we may
allow t ' above to be an arbitary tableau in T(A, n). Let ti E SST (A, n) be the
special semistandard tableau uniquely determined by the condition
t(i, j) =1:

1 1 1
2 22

t1-=
1/2

It is easily seen that d(ti ; t)E A 1 1  for any tET(A). We put cl,=d (t,; t)  for
simplicity.

Now we define the quantum Specht module of type A, SA by

SÂ =  E  R • d,.
tE T (a)

Let
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E  ST (2. )

be the leading standard tableau of shape A. Since T . • dt0 =d., 0 for wES„,
we see SA — H • clto.  Hence S A  is the cyclic H-submodule of A.'. 5 generated by
c1,0 . (Compare our definition with the "classical" definition of Specht
modules for S,: I f  w e put q = 1, this construction coincides with the
realization of the Specht modules for S. given in [G].)

We shall show that our quantum Specht module S2 is essentially
identical to the Specht modules of H defined by Dipper and James in [DJ].
For that purpose, we recall the construction of Specht modules in [DJ] in
our formulation. But before the review, we note the following : First our
Hecke algebra H is the Hecke algebra in [DJ] with the parameter q2 , and
that our g' ( - ) T„, corresponds to their T. for w E S„. Secondly all H-modules
in  [DJ] are right H-modules. Hence we define for any right H-module M,
the left action of H  on M  by T., • m =m  • T.-1 so that we regard all
H-modules appearing in [DJ] as left H-modules.

We put

MA. — x11 . . . X111X2A1+1 . • . X21,-1-12 ' . . Xpel•

Then we have ni2EA 2 . â . (Our m, and A ' t o  x2 and M 1 in  [DJ]
respectively.) Since H acts on A "  in the way described before, we have

T wA •  MA — + 2 • •

— XII X 22 • •
X f/ i f e i X i g i  + 1 X21, 1+1 .  • •

for the permutation

u ) ,= ( 1 2 A1+1 A1+2
_ / 1 1 + 1  ••• gi+ •••+ 11i— i+ 1 2 tii + 2  — )

which transforms

1 2
A 1+ 1 A 1+ 2 Ai+Ao

E  ST(2)

to to, the leading standard tableau. Here we used the relation ( 3 )  to have
the second equality. Denote by S„ the column stabilizer of the tableau to,
i. e., the stabilizer of the subsets 11, ,  ,  Lai +1, , + ,u 2 1 , ,{ (E lk = i,u k )
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+1, ,  n 1  in S„. Then we have

E
tuES„ 

( — q ) '  T„,T„m;,= cit
y

B u t th e  left hand  side above is no th ing b u t th e  element in  A "
corresponing to Dipper-James' e which generates their Specht module S'
[DJ; 4.11 by definition (under certain shifts of the parameter and basis of
H as explained).

Thus we have proved the following theorem.

Theorem 2 . For a partition A of n , the quantum S p ech t module S , is
isomorphic to the S p ech t module S  defined by Dipper and James.

The properties of quantum Specht modules can be decuced from the
work of Dipper-James. But we may obtain some of them together with the
relation to polynomial representations of quantum GL„ (i. e. A -comodules)
also in our formulation.

As an example, we handle the Garnir relations in the following way.
Let t  be a tableau in T (A). There exists a unique element w, in S. with
w (t0 )= t. We define the right Sn-action on T (A) by t * y= w ,y ( to )  for yE S..
The /-th and 1+ 1-th colums of t *y are given in the following form :

w ,y (a + 1 ) w ,.1 1 (a +P + 1)
w ,y (a + w,Y(a+P+ 2)

•
w ,y (a. +p)

where a—E l
k ji,uk, P=,a, and q=ii1+1. Set

X = la +b, ,  a +I)}

and let Gx  y  be the set of the representative elements for Sx ,y/Sx x Sy  with
minimal length. (Here, for any subset Z of {1, ,  n }, we denote by Sz  the
subgroup of Sn permutating only the elements of Z .)  We choose yt=y,. X U Y

E S X u y  so that

wty,(a + h) < ••• < w ,y ,(a+ b+ c).

(In other words, wty, is of minimal length in the coset w, • Sxuy.) Suppose
that tE T(A) is column increasing (i. e., increasing in each column from top
to bottom). Then we have 31,- 1 EG 1 , y  since we see that

w ,(a+ b)< •••< w ,(a+ P ), w,(a+P+1)< •••< w ,(a+ p+ c).

•
w ,y(a  +p +q)

( 1 < b c < q )Y = {a+p+1,
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from /-th and l + 1-th columns of t.

Proposition 3 (The Garnir relations). For any  colum n increasing
tE T (A),

E

Proof . This can be done by direct calculation using properties of quantum
determinants (see below, for example). Note that this equality is just the
generalized Plücker relations in [NYM ; 1.2] (cf. [T T ]).

The assumption "column increasing" is not essential here : For any t,
there uniquely exist column increasing t' E T (A) and yES, (the column
stabilizer of the tableau to) such that t= t' * y .  Then, by the property of the
quantum determinant

det,(1, , n ; w (1), ,  w  (n)) = (— q) - "det,(1,  n ; 1, ,  n)

(see, e. g., [TT]), we see that d,= (— q) - 2 6 ') d,, . Thus exactly as in the
classical case (see, e. g., [P] or [G]), we can show that SA has R-free basis
d, (tEST (A )) by using the Garnir relations (cf. [DJ] ).

Rem ark. (j ) L et LA be the right A -comodule generated by d, for all
tE T (A, n) over R . We then have (L AY =SA . This is a q-analogue of the fact
that each irreducible representation of Sn can be realized on the 0-weight
space of some irreducible representation for SL, over a field of characteris-
tic 0. Actually, let R—*K be a specialization map of R  to some field K. W e
know that KO R L,(resp. KO, SO is an irreducible KO, A -comodule (resp.
irreducible KOR H-module) when the specialized KOR H is semisimple, see
e. g., [HH] (resp. [DJ]).

Incidentally it is known that LA has R-free basis d, (t ESST (2., n ) )  (see
[T T ], [HH] o r [N Y M ]).  Thus we see again that ,% has R-free basis
d, (t EST (A)) .

( i l )  L e t  A (m,n) = R[M,(m,n)] be the q-analogue of the coordinate
ring of the m X n matrix space over R  defined as in the case of A =A  (n) :
A (m , n) is  the noncommutative R-algebra generated by x„

under the relations (1)—(4) given in Sect. 1. Then this A (m, n)
becomes a left A (m)- and right A (n)-comodule in a natural way. Take the
right 6-eigenspace A (m,n) 5 o f A (m ,n ). This is a  left A (m)- and right
Y-comodule and has a free R-basis xy.•.x,„” ,  in _m). Hence, as in
the remark at the beginning of Sect. 2, we have a Hecke algebra action on
A (m ,n)' commuting with A (m). Set V= E7= 1 R • y, and  give a  left
A (m)-comodule structure by y, 1-->E7= 1 x O y ,.  (This is a q-analogue of
the vector representation of G L„.) Then we see easily that V®" = A (m, n)'
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as left A (m)-comodules. In this way, we can see why the Hecke algebra H
appears in  EndA(.) (V ® ").

T h e  q-analogue of Schur-W eyl reciprocity discovered by Jimbo [j]
asserts that

EndKØR A() (KOR 17 ' )  = K O R H  (when K  RH is semisimple).

We would like to discuss this in  [HKU].
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