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A norm inequality for It0 processes

By

CHANGSUN CHoOI
Introduction

Let (2, #, P) be a complete probability space with a right-continuous
filtration (#).s such that A%, whenever A% and P(A)=(. The
adapted real Brownian motion B= (B,)s starts at () and the process (B,—
B.):, is independent of &, for all s>(.

Let ¢ and ¢ be real predictable processes such that

P(fﬂ’( | . |2+ | ¢, | Yds<oo for allt>0>=1.

Also, let { and £ be R*-valued predictable processes, where v is a positive
integer. We assume the same constraint for ¢ and € as above. The It
processes X and Y are defined by

X1=X0+f (ps qu+f¢s ds;
0 0
vi=Yot [ ¢aB.+ [ £ ds
0 0
We assume that X and Y are continuous.

For 1<p<oo we set p**=max{2p, p/@®—1)} and I X||,=sup | X. |,
where the supremum is taken over all bounded stopping times t.

Definition 1. We define that Y is strongly differentially subordinate to
Xif |0l <IXI[,1¢1<lel and |E|<|¢].

The following inequality is due to Burkholder [2].

Theorem 2. If X>(, ¢>0, and Y is strongly differentially subordinate to
X, then

Y i,<@ =DNXI,
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A norm Inequality

Let (2, #, P) and (£, be as in the introduction. The adapted
square integrable real martingale M starts at () and, for all s>(), the process
(M,—M,).s. is independent of #,. Let (M) be the quadratic variational
process of M. The adapted integrable increasing process A starts at ). We
asume that M and A are continuous. Thus (M) is also continuous.

We follow [3] for notions of stochastic processes. Thus increasing in
the above means non-decreasing. Terms, positive, negative and
decreasing, will be used similarly. Also one may see [3] for the basic facts
about stochastic integrals.

Consider real predictable processes ¢ and ¢ such that

f | @, | 2d{M),< o and f | ¢, | dA,< oo, for all t>(.
0 0

Let H be a Hilbert space over R. For x, y&H we denote by x » y the inner
product of x and ¥ and put |x|?=x-+x. The H-valued predictable
processes ¢ and £ have the same growth condition as above. The Ito
processes X and Y are difined by

X,= X+ fo o dM.+ fo "¢, dA.,
Y= Yot fo ©dM,+ fo £ dA.,

We assume that X and Y have continuous paths.
Let 0<a<l and 1<p<o. Put r=r(a, p)=max{@+1p, p/—1}.
Observe that p**=7(1, p). Define || X|l, as in the introduction.

Definition 3. We define that Y is a-subordinate to X if | Yy | < | Xo |,
¢l <le¢| and |E| <al¢]|.

Theorem 4. If X>(, ¢>0, and Y is a-subordinate to X, then
Nym,<@-=DMNXII,

and the constant r—1 is best possible.

Proof of the Inequality. In order to make the key points of the proof
clear we defer some technical details to the following section. Thus we use
some unproved claims and lemmas in this proof.

We may asume || X ||| ,< oo.

Claim 5. We may further assume that X>0and | Y | >(.
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Put S={(, y): 0<x<co and y€H with |y| >0}. Define two
functions U and V on S by

Uk, )=Cly| —C—-Dx)&+ [y])7}
Vg, y)= 1y |?—@—1)"

Observe that U is smooth and (X, Y) has value in S.

Claim 6. It suffices to prove | Y.l, <(r—1) Il X. |, whenever t is a
bounded stopping time for which there is a number n>( such that

f()’ | o | 2dMY.<nand X+ | Y, | + | U.X,, YD | + | U(X, Y) | <n for
0<t<et,

Let 7 and 7 be as in Claim 6. Observe that the random variables U (X,
Y.) and V(X,, Y.) are integrable. The inequality in Claim 6 becomes EV
(X., Y.) <0, which follows from the inequality EU(X., Y.)<( and

Lemma 1. There is a constant ¢ >() such that V<cU on S.

Observe that »>2, hence U(x, y) <0 if |y | <x. Since X>( and Y is
a-subordinate to X we have | Y, | <X,, hence EU(X,, Y,) <(0. Thus it is
enough to show

EU(X., Y)<EU(X,, Y.

Since 7 is bounded, Ité’s formula gives

UX., Y)=UX, Y+ fo (UAX,, YD+ U (X., Y.  £)dM.

+ [, YI$H+UX, Y - £)dA,
3 [ WX YD 0 1 20,(X,, ¥ o

+Uy(X, YO « L)diM),.

Here U, (X,, Y.) can be regarded as a linear transformation from H to H.
For differentiation of vector functions one may see [4].

We like to finish the proof by showing that the above three integrals
have negative expectations.

The first integral has zero expectation because 7 is bounded and the
process

™A
=[O YA UK, Y - am,

is a martingale. This follows from



232 Changsun Choi

Ef |U.(X., Yot UX, Y - &,
<HE[ | g, dM), <ni<oo

A<M,

where we used the assumption that Y is a-subordinate to X, that is, | & |
< | ¢, | and the assumptions about z.

The rest two integrals have negative integrands; thus they have
negative expectations because the processes A and (M) are increasing.
For this we need

Lemma 8. (@) U.(x, y)+a | U,(x, ¥) | <0 for all (x, y)ES.
@) Ulx, v) | h|2+2U,(x, y)hk+Uy(x, y)k<+k<(0 whenever
(x, v ES, hER, kEHand |h| > |k ].

Because ¢ >( and Y is a-subordinate to X, using the Cauchy-Schwarz
inequality and (a) of Lemma 8, we have

Ux(X:;; YS)¢s+Uy(Xs. Ys) * Engx(Xs; Ys)¢s+ | Uy(Xs, Ys) | IE@‘
<UX.,, Y)+a | UX,, Y | )¢.<0.

Similarly, the integrand of the third integral is negative because of (b) of
Lemma 8, Claim b and the assumption that Y is a-subordinate to X.

This proves the inequality in Theorem 4 under the assumption of
Claim b, Claim 6, Lemma 7 and Lemma 8. We will elaborate on these claims
and lemmas in the following section. In the last section we construct
examples which show that the constant »—1 is best possible.

Proof of Claims and Lemmas

Proof of Claim 5. Let X and Y be Itd processes such that X>(), ¢ >0,
and Y is a-subordinate to X. For each £ >(), consider new Itd processes X
+¢e and (Y, &), where (Y, &) has value in the standard product Hilbert
space HXR. Observe that these new processes satisfy the extra
assumption in Claim 5 as well as the assumptions of Theorem 4. Assuming
the inequality in Theorem 4 for these new processes, we get

Ny ,<ly, ell,<G-—DIX+ell,<T—DIIXIl,+e—1),
which, as e—(, gives the inequlity in Theorem 4. This proves Claim b.
Proof of Claim 6. Let X and Y be Itd processes such that X>(), ¢ >0,

and Y is a-subordinate to X. And let ¢ be a bounded stopping time.
Consider sequences of stopping times (,).»¢ and (0.).=0 given by
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w,=inf{t>0: X+ | Y. | + | UX, YD) | + | UX,, Y) | >n}
and
—: [ 2
a,=inf{t>0: [ |g.1* a0 >n).

Notice that g, increase to infinity as » increase to infinity because the
process in the definition of 4, is finite. Concerning o,, we have assumed
that

f | @, | 2d{M),< o for all t>0),
0

hence o, increase to infinity as »n increase to infinity.
Putting t,=tAu.Ao,, we have X,+ | Y, | + | U.(X,, Y.) |
+ | U,X,, Y) | <n for 0<t<t, and

fO’" | ¢, | 2dM).<n

because the process in the definition of y, and the process (M) are
continuous. Thus, assuming the inequality in Claim 6 for z,, we have

1Y, 1,<G=D I X, 1,<G-DIXII,.
Since Y is continuous and z,—>7 we have Y. =Y., hence
| Y. ,<lim inf | Y, |,<G—DIXII,

by Fatou's lemma. Now taking supremum over all bounded stopping
times 7, we have || Y |l,<(@—=DIIXl,. This proves Claim 6.

Proof of Lemma 7. Putc=p(1—1/r)"". We want to prove

Vi, »)—cUlx =1y |?~@—D—c(ly| —@—Dx)&x+ |y|)!
<( for all (x, y)ES. By the homogeneity we may consider only those (x,
y)ES withx+ |y | =1. Thus, with

F)=0—-x)—(—Dx"—c(1—rx),

We need to show that F(x) <0 if 0<x<1.
Observe that F'is continuous on [0, 1] and smooth on the open interval
(0, 1). Thus, for 0<x<1, we have

F@)=—p(A—x)"+@—1D""+rc,
F')=p@—-D(A-x)"=T—-1Dx"?.

Notice that 0<1/7<1. One can check F(1/r)=F (1,/r)=0.

We divide the rest of the proof into three cases.

In case p=2 we have F'=2[1—(—1)1<0 on (0, 1) because r>2.
Hence F has the maximum over [0, 1] at ¢=1/7, which impies that F<() on

(0, 11.
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Now let 1<p<2. From the formula of F” we see that F”’(x) <( if and
only if 1—x>(r—1)"*?x, or x<x* where 1/x*=1+(@—1)”*"?  Here
0<1/r<x*. Thus, F<(0on [0,x] for the same reason as the previous case.
On the interval [x*, 1] the function F is convex. Hence it suffices to check
F(1)<(. For this observe that log x is concave. Thus

logl>(®—1) log@—1)+(@2—p) logp, or (p—1)*"'<p*2

Hence

2(Gh) gt

and
FO=-0-1D"~c-n
——G-Dr+pG-D(1-1)"
= (r_ l)P (p_rp—l) SO

rP—l

The case p>2 is proved similarly. This time one needs to check
F(0) <0 for which the inequality (»p—1)*"'>p*"? is necessary.
Basic facts about convex functions can be found in [5].

Proof of Lemma 8.

Proof of (@). From the definition of U we get
U, )=(@-nk+ y|)—r@-Dx)&+ |yl )”‘2
U, =&+ |y | )—r@—Dx)(x+ [y ] )?

lyl

By the homogeneity the inequality in (a) of Lemma § is reduced to the
inequality that L<( on (0, 1), where

L@)=@p—-r—r@—Dx+alp—r@p—Dx]|.

Observe that L is convex on [(, 1]. Hence it is enough to check L () <0
and L(1)<( for which one just needs to keep in mind that (@+1)p<r,
p/@®—1)<7 and that 0<a<]1.

Proof of (b). Letx, h€R, vy, kREH, (x, y)ESand |k | < |h]|. PutlI=
{tesR:x+th>0and | y+tk | >0} and define a function G on 7 by
G =U(+th, y+tk).
Observe that I is an open set, &I and that G(¢) is smooth at t=(. By the
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chain rule one has
G"(0)=U.(x, y)h*'+2U,(x, y) « hk+U,(x, y)k * k.

Hence the proof is complete if we can check G”(¢) <( for all t&I If no
confusoin arises, we will not write the arguement t. On I define more
functions K, @ and R by K=K(@)=x+th, Q= | y+tk | and R=K+Q.
Then, differentiation gives Q@ =k« (y+tk) and QQ"= |k |*—(Q")’
hence, by the Cauchy-Schwarz inequality, we have Q | Q' | = | QQ’ |
<|k| |y+tk| =|k|1Q Thus, |Q | <|k| and R"=Q">0.

Writing G=R’—rKR’*"!, we compute

G =pR’'R*'—rhR*'—r(p—1)KR'R*?
G'=pR"R"'+p(p—1D(RIR*—2r(p—1)hR'R"*
—r@—DKR'R*—r(p—-1D)@p—-2DKR)R

Thus, putting 1/H=(®—1)R*"® noting —7KR"R=—rR"R*+rRQR", and
inserting terms rR(R")*—rR(R’)% we have

HG”=<p"%l—r>R”R2+rR(QR”— IR+ (R + (PR —R —r(p—DK) (R')’
SrR(IRI* = [hID+(@-—NNQ+P—r@—1))K)R)*<(

because R'=h+@Q’, |k | < |h|, (@a+1)p<randp/(p—1)<r. This proves

G”"<(0onI and Lemma 8 has been all proved.

About the Best Constant

Let (2, #, P) be a complete probability space with a right-continuous
filtration (%), such that AE#, whenever A€ and P(A)=(. The
adapted real Brownian motion (B)., starts at ( and, for all s>(, the
process (B,—B.)s, is independent of ..

Let 0<a<1,1<p< o and r=r(a, p) =max{(a+1)p, p/®—1)}.

The constant r—1 is best possible in the sense that if 0<8<r—1, then
there are random variables X, Y, and real predictable processes ¢, ¢, { and
£ such that the It6 processes X and Y defined by

X,=Xg+f<ps st+f¢s ds,
0 0
Y,=Yo+fu§; st+fogs ds,

satisfy the conditions X>(, ¢ >0, and that Y is a-subordinate to X but the
opposite inequality

Y > IX M,
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holds.
We need the following series test from Calculus:

Gauss Test. If a.>0 and a../a.=1—2/n+0(/n?) as n—>, then
iﬂ ar< % if and only if 1 >1.

Let 0<B<r—1. We cosider two cases 1<p<(a+2)/(a+1) and
(@+2)/(a+1)<p< oo separately.

Case 1. 1<p<(a+2)/(a+1).

In this case r=p/(p—1) and p=7/(r—1). First define sequences (x,).», and
(b.)nz1 by mx,=n+1 and 2b,=2n+1. Also, define a sequence of stopping
times (0,).=0: put 0,=0 and, for n>(, let

o,=inf{s>0,1: B.—B,_ & (x.—b,, D}.

Observe that o, is finite almost surely and, with p,=P(B, —B %0 —ba),

we have P(B, —B, =1)=1—p, and

1 2P p
bi—x+1 n+p+2 = n+2p°

%1

n—1

b=

Thus, as n—o, we have

p= +O< >a d p"“ %-FO(%).

We also need the following

n—1

Proposition 9. (a) The series Z}( [ x. | p,,H (1—p.) ) diverges.

n=1

(b) The sequence <(n +3/2) kf:Il 1 —m))m is bounded.

Proof of (a). Let a, be the n-th term of the above series. Then, (a) of
Proposition 9 follows from the Gauss test and

Mz(unﬂ) *Pri()p)

~(1+5+0Ge >><1— +o()(1-4+0(e)
=1, +0(;;)
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Proof of (b). From
kI:II (1—pw Sexp(—gpQSexp( z=: k+2p><eXp< pf:;zpﬂ dx

we have

<n+3> ma- p,z)<<n+3> ("Tij’zzl < (142"

Now we go back to the contruction in the first case. Let a, be as in the
proof of (a) of Proposition 9. Since (<8<r—1 Proposition 9 enables us to
choose a large positive integer N so that

N L » N i » N _ )
Ba>(r) (Bat(vey) HU-p).
Putting X,=3/2 and Y,=1/2, define Itd6 processes X and Y by their
predictable integrands ¢, ¢, { and £: for 0,-,<s<o,, let

(1, =2Y,,_Dleiv, |- if 0<n<N,

(¢, &) =[
o 0 ifn>N

and ¢=E£=0.
Then, one can check that X>0, ¢>0, Y is a-subordinate to X, and that

x(1, (=1 (r—1)) with probability pklji (A—-pw)

Xy, Yo ) = for 1<n<N,

(N+—§—, (_21)N> with probability H (I—pw:

n=1

thus

- 3V —
1%, 13= S at(N+5) TT A-p0,

N
Y., 122 G—17 3 a.

Hence we have

1Yo, 1 ,>8 11 Xo Il 5.

Almost surely oy is finite, hence X—X,, and Y—Y,, as t—=c. Also,
| =1¢| <1;thus both X and Y are martingales. As a matter of fact,
X and Y are uniformly bounded by N+3/2. By Doob’s optional sampling
theorem, for any bounded stopping time 7, we have | X.[,< X, II,.
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Hence [IXII,<[IX.,Il,. Also, Lebesgue’s dominated convergence
theorem gives
“ Y"N ” pzli_hm || Yn ” pg “I YI”P'
Thus we have the inequality || Y|l,>8I1XIl, and this completes the
sharpness in Case 1.
Case 2. (a+2)/(a+1)<p<oo.

In this case r=(a+1)p. Choose a small 6>( so that §(a+1)(p—-1)<2
Define a sequence (x,).s; by m,=né(a+1)+2. Notice that 6<2 and 6<x,
for allm>1. Also, define a sequence of stopping times (0.).s¢: put g,=0, o,
=inf{s>0:B.4£(—1, 1)} and, for n>1, let 0;,=1+0-, and

02n+1=inf {S >02n . Bs_Bazan (_5: xn_d)}-

With p,=P(B,,, , —B.,, =x,—0) we have P(B,, , —B,, =—06)=1—p,and asn
—>00
_0_ or iy Pn+1 1—Lio(L
b= né(a+1)+2 n+0< > nd n+0<n2>'
Putting
n—1
a,— I Xn | ,D_I;_” (l_pk)

E=1

we have

Proposition 10. The series 2 a, diverges to infinity.
n=1

Proof. The proposition follows from the Gauss test and the
computation

an+1 <xn+1 pn+l (l_p")

(1+ +0( ) (= 0Ge) (1=5+0(52)

- + O<—2> as n—>oo,
n n

Recall that (<8<r—1. Hence by Proposition 10 we can find N such
that

g a,l>(7§—T>p (é an+2”‘1).
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We define 1t6 processes X and Y. Put X;=Y,=1. For 0<s<g let ¢,=
£=0and ¢;=—¢&=1. For 1<n<N, define

(pSZCSZO and a¢s:Es=a61(Xazn_l=0) lf 02n—1<SS(72,.,
- _(szl(x,,zfa) and ¢s=Es:O if 02n<s_§02n+1.

Finally, for s >ow.; put ¢.=&=¢,=£,=0.
One can check that

@ 0 with probability %
-1
Kogpryr Vo) = x.(1, r—1) with probablllty ]_[l A—pw
or 1<n<N\,
N
0, x.) with probability H 1- )
Thus

N N
I Xopy 13=2 @t 27" and || Yoy, 132 =17 2 a
from which we have

I Yoy, 1,>8 1 X,

99N +1 I pe

PN +1
Observe that almost surely, Oy is finite, hence X,—>X,,2NH and
Y=Y, ast—o. Also, |¢| =[] <1, 0<¢<dand 0<E<ad. Thus, X

and Y are submartingales: they are uniformy bounded by rxy=N&é(a+1)
+2. Clearly, X>0, ¢>0, and Y is a-subordinate to X. Besides, by Doob’s
optional sampling theorem, for any bounded stopping time 7, we have
I X ll,< || Xop,, I »; hence X, <l X,,Il,. Again, Lebesgue's domi-
nated convergence theorem gives

Y. p:li_’rol;l Y.l p =< “l Y”lp

Thus we have the inequality || YII,>B8Il X ,.
This finishes the proof that r—1 is best possible.

e |

Remark. The idea of considering stopping times g, in the above two
constructions is due to Burkholder [1].

Acknowledgement. The author would like to thank Professor D.L.
Burkholder from whom he learned martingales and It6 processes. He also
would like to express his sincere gratitude to the anonymous referee who



240

Changsun Choi

pointed out several mistakes in the orginal manuscript.

(1]

(2]

(3]

(4]
(5]

DEPARTMENT OF MATHEMATICS
KAIST
TaEjon, 305-701 Korea

References

D. L. Burkholder, Sharp probability bounds for 1td6 processes, Statistics and Probabi-
lity : A Raghu Raj Bahadur Festschrift, J. K. Ghosh, S. K. Mitra, K. R. Parathasarathy,
and B.L.S. Prakasa Rao, editors. Published by Wiley Eastern Limited (1993) , 135-
145.

D. L. Burkholder, Strong differential subordination and stochastic integration, Ann.
Probab., 22 (1994) , 995-1025.

N. Ikeda and S. Watanabe, Stochastic Differential Equations and Diffusion Processes,
North-Holland, Amsterdam, 1981.

S. Lang, Analysis 1, Addison-Wesley, Reading, Mass., 1968.

A.W. Roberts and D. E. Varberg, Convex functions, Academic Press, New York and
London, 1973.



