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A norm inequality for Itô processes

By

CHANGSUN CHOI

Introduction

Let (Q, F, P ) be a complete probability space with a right-continuous
filtration (gr't)to such that A E 3, -

 0 whenever A E  g i and P(A) =O. The
adapted real Brownian motion B= (.13),0 starts at 0 and the process (Be -

B,),, s is independent of F . for all s. 0.
Let 0 and 0 be real predictable processes such that

0, I 2 +  0 ,  )ds< 00 for all t>0)=1.

Also, let C a n d  be W-valued predictable processes, where 1) is a positive
integer. We assume the same constraint for and  L as above. The Itô
processes X and Y are defined by

X,=X0 +  f  dBs+ ds,

Yt Yo dB,+ f t ", ds.
0

We assume that X and Y are continuous.
For 1<p < 00 we set p **  =  max {2p , P/ (P - 1)} and MIX 111 p = S U P  J X, J p

where the supremum is taken over all bounded stopping times T.

Definition 1. We define that Y is strongly dif ferentially  subordinate to
X i f  117 0 01,1C1 101 and W - 1 0 1 .

The following inequality is due to Burkholder Ea

Theorem 2. If and Y  is strongly differentially subordinate to
X , then

MI 17 111p -1) Illx
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A norm Inequality

Let (Q, P ) and (g - t)to be as in the introduction. The adapted
square integrable real martingale M starts at 0 and, for all 0, the process
(Mt — M,)ts is independent of ,Fs. Let <M> be the quadratic variational
process of M  The adapted integrable increasing process A  starts at O. We
asume that M and A  are continuous. Thus <M> is also continuous.

We follow [3] for notions of stochastic processes. Thus increasing in
th e  above means non-decreasing.  T e r m s ,  positive, negative and
decreasing, will be used similarly. Also one may see [3] for the basic facts
about stochastic integrals.

Consider real predictable processes ço and 0 such that

f o t 9 s  2d<M> s< 0 0  and f dA,< oo, for all t>0.0
Let H be a Hilbert space over R. For x, yEH we denote by x • y  the inner
product of x  an d  y  an d  p u t I x  2 =x • x. The H-valued predictable
processes C an d  h av e  th e  same growth condition as above. The Itô
processes X and Y are difined by

Xt=X 0 + f  cps dM,+ dA„
a

Yt=Y0+ f dM,+ f t sdAs.

We assume that X and Y have continuous paths.
Let and 1<p< (D°. Put r=r(a, p) =max Ra+DP, PAP —

Observe that p** —r (1 , p ) . Define III X I p as in the introduction.

Definition 3 . We define that Y is a-subordinate to X if YoI  X0 I,
c and a .

Theorem 4. If X>0, (,b 0, and Y  is a-subordinate to X , then

MI (r — 1) IMX IM

and the constant r-1  is best possible.

Proof of the Inequality. In order to make the key points of the proof
clear we defer some technical details to the following section. Thus we use
some unproved claims and lemmas in this proof.

We may asume III X IL< co.

Claim 5 .  We may further assume that X>0 a n d  Y  >0.
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Put S = {(x, Y) : 0<x< co and yEH w ith  I y  I >0}.
functions U and V on S  by

U(x, y) —(  I Y — (r — 1)x) (x+ I I ) P - 1 ,
V(x, y) =  I y I P— (r —1)PxP.

Observe that U is smooth and (X , Y ) has value in S.

Define two

Claim 6. It suffices to prove II Yr II p (r — 1) II X. II p  whenever r is a
bounded stopping time f o r  which there is a  number n O such that

fo ços
2

 d<M >sn  a n d  X t +  Y t  +  I U JX t, Y t) + U y (X t, Y 1) I n  f or

Let r and n be as in Claim 6. Observe that the random variables U(X „
Yr ) and V (X „ Yr) are integrable. The inequality in Claim 6 becomes EV
(X „ Yr) which follows from the inequality EU(X „ Yr) 0 and

Lemma 7. There is a constant c>0 such that V  c U  on S.

Observe that hence U(x, Y ).0  i f  I yx .  S i n c e  X > 0  and Y is
a-subordinate to X we have I Yo hence EU(X0, 17 0).- .0. Thus it is
enough to show

EU(X „ Y r) EU(X 0, Yo).

Since r is bounded, Itô's formula gives

U(X„ Yr)=U(Xo, Yo) + f (Ux(X., Ys)gos+U y (X„ Ys) • Cs)dMs

+ f  (Us(X „ Y s)0,-EU,,(X , Y s) •

+ +  fo r (U .(X s, Y s) SD, 12 +2U.y(X „ 17 ,) • gosCs

+Uyy(Xs, K)Cs • C,)d<M>,.
Here U,,,,(X„ Ys) can be regarded as a linear transformation from H to H.

For differentiation of vector functions one may see [4].
We like to finish the proof by showing that the above three integrals

have negative expectations.
The first integral has zero expectation because r is bounded and the

process

t— >f
z A t  

(U jX s , YOÇOs+ Uy(Xs , 17",) • C.,)dAls

is a martingale. This follows from
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Efo'

_ n2E f Sos

Yjcps + U y (X s , 17 ) • C's

d <M> .723 < 00

2 d<M>,

where we used the assumption that Y is a-subordinate to X, that is, I Z's
(Ps I and the assumptions about r.
The rest two integrals have negative integrands ; thus they have

negative expectations because the processes A  and <M> are increasing.
For this we need

Lemma 8. (a ) U (x , y )+ a  U y (x, y) 0forall (x, y)ES.
( b )  U ( x ,  y )  h  2 + 2 U ,(x , y) • hk+Uyy(x, Y)k • k whenever

(x, y)ES, hER, kEH a n d  h k

Because ç5 -0 and Y is a-subordinate to X, using the Cauchy-Schwarz
inequality and (a) of Lemma 8, we have

L/(X, , )(Ps ± LT, (X ,  YO • U, (X , Y )0s+ I Uy (X ,  Y,) I
(tA (X , 17,) + a  U , (Xs, Ys) I )ç5

Similarly, the integrand of the third integral is negative because of (b) of
Lemma 8, Claim 5 and the assumption that Y is a-subordinate to X.

This proves the inequality in Theorem 4 under the assumption of
Claim 5, Claim 6, Lemma 7 and Lemma 8. We will elaborate on these claims
and lemmas in the following section. In the last section we construct
examples which show that the constant r —1 is best possible.

Proof of Claims and Lemmas

Proof of Claim 5 . Let X and Y be Itô processes such that X
and Y is a-subordinate to X . For each e >0, consider new Itô processes X
+E  and (Y, E), where (Y, E )  has value in the standard product Hilbert
space H X R. Observe that these new processes satisfy the extra
assumption in Claim 5 as well as the assumptions of Theorem 4. Assuming
the inequality in Theorem 4 for these new processes, we get

Y I p Ill (Y, p III X + E (r MIX III p+E(r - 1),

which, as e—>(), gives the inequlity in Theorem 4 . This proves Claim 5.

Proof of Claim 6. Let X and Y be Itô processes such that 0, 0,
and Y is a-subordinate to X .  And let r  be a bounded stopping time.
Consider sequences of stopping times (ft,),0 and (a,,)„0 given by
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g„=inflt>0: Xt+ Y 1 1 +  Ux(Xt, Y1) +  U (X „  Y1) >n}

and

o,= in f{t >0 : f I (Psi 2 cl<M>s>n}.0
Notice tha t tt„ increase to infinity as n increase to infinity because the
process in the definition of t, is finite . C oncerning o„, we have assumed
that i t  

(P, 2d<M> s < 00 for all t >0,

hence a increase to infinity as n increase to infinity.
Putting z,1=-1- A,u,,Au„, we have X1+ Y11 + Y1)

+ Uy(Xt, .17 1) __22 for IJ t r„ and

f o r ' I ç9 2 d<11/1>s n

because th e  process in  th e  definition of tt„ an d  th e  process <M> are
continuous. Thus, assum ing the inequality in Claim 6 for r„, we have

Y. ( r —  1 ) II X„, II p —1) III X  III p.
Since Y is continuous and r„—>t we have hence

II Y, inf 1  Y, M ( r - 1 )  III X  III p
b y  Fatou's lem m a. N ow  tak ing  supremum over all bounded stopping
times r, we have III Y III (r — 1) lll XllL. T h is  proves Claim 6.

Proof of Lemma 7. Put c =p (1 —1/r)P- 1 .  W e want to prove
V(x, y) — cU(x, y) = I  .3) P —  (r - 1)Px' — c( (r — 1)x)(x+  y  ) P - 1

for all (x, y )E S . By the homogeneity we may consider only those (x,
Y)ES with x +  I y  I =1. Thus, with

F(x) =  — x) ° —  (r- 1)Y—c(1—rx),

We need to show that F (x ).0  if 0<x<1.
Observe that F is continuous on [0, 11 and smooth on the open interval

(0, 1). Thus, for 0<x<1, we have

(x )=  — P ( (1 — x) P - 1 + (r 1)PxP - 1 ) +rc,
F"(x) =P — 1) (a_ ( r  1)Y - 2 ).

Notice tha t 0<1/r< 1. One can check F(1/r) =F' (1/r) = 0.
We divide the rest of the proof into three cases.
In case p =2 w e  have F" =2 [1 — (r — 1) 21 on  (0, 1) because r

Hence F has the maximum over [0, 11 at t =1/r, which impies that 0 on
[0, 11.
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Now let 1<p <  2 . From the formula of F" we see that F"(x)< 0 if and
only i f  1—x> (r-1)Pm' -2 )x, or x< x* where 1/x* =1+ (r —1)" -2 ). Here
0<1/r<x*. Thus, F __ 0 on [0, x*1 for the same reason as the previous case.
On the interval [x*, 11 the function F is convex. Hence it suffices to check
F(1) _.. 0. For this observe that log x is concave. Thus

lo g l  (p - 1) log (p - 1) + (2 -p) logp, or (p -  1)P- 1  ./JP-2.
Hence

rP-1 > (  P  ) P - 1 — p  P P - 2  > p
— P - 1 (P— DP - 1  —

and

F(1)= — (r —  OP — c(1 — r)

= —(r(—r  —1)

1 ) 2

P
 ± P  ( r  — 1 )  ( 1 —  — r 1  ) P - 1—  r p-1 ( P  r P-1 )._ 0.

The case p>2 is proved sim ilarly . This time one needs to check
F(0) 0 for which the inequality (p —1)P- i pP- 2 is necessary.

Basic facts about convex functions can be found in [5].

Proof of Lemma 8.

Proof of  (a ). From the definition of U we get

{ IL(x, y)= ((p —r) (x+ I y I ) —r(p —1)x) (x + I y I )P-2

1 Uy (x, y) = (P(x + 1 Y 1 ) — r(p — 1)x) (x+  Y 1 )P - 2 1 Yy  1  .

By the homogeneity the inequality in (a) of Lemma 8 is reduced to the
inequality that L 0 on (0, 1), where

L (x) = (p — r) — r(p — Dx +a I 13— r(P — 1)x I.

Observe that L is convex on [0, 1]. Hence it is enough to check L ( 0 )  0
and L (1 ) 0  for which one just needs to keep in mind that (a+ 1)p_r,
PAP - 1 )  r and that 0  a - 1.

Proof of ( b ) .  Let x, hER, y, kEH, (x, y)ES and Ik I Ih I .  Put I=
{tER: x+th >0 and I y+ tk  I >0} and define a function G on / by

G(t)=U(x+th, y+tk).

Observe that I is an open set, OE/ and th a t G (t) is smooth at t= 0. B y  the
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chain rule one has

G" (()) = y)le +2U,(x , y) • hk+ Uy y (x, y)k • k.

Hence the proof is complete if we can check G''(t) 0 for all tE L  If no
confusoin arises, we will not write the arguement t. On I  define more
functions K , Q and R  by K =K (t)=x +th , Q = I y +tk  I and R =K +Q.
T hen, differentiation gives Q Q ' =k  • (y +tk ) an d  Q Q ”=  k  2 —  (QT,
hence, by the Cauchy-Schwarz inequality, we have Q I Q ' =  Q Q '

I Y+ tk  I =  Ik  I Q. Thus, I Q' k  I  and R "=Q ''_0.
Writing G =RP —rKRP- 1 , we compute

G ' ----pIrRP - 1  —rhRP- 1  — r(p -1)KR' RP- 2 ,
G" =pie R P - 1 +P (P-1)(RTRP - 2 -2r(p-1)hR'RP - 2

—r(p— DKR"RP - 2 —r(P — 1) (1) —  2)K(RTR 3.

Thus, putting 1/H=(p —1)R 3,  noting — rKR"R= — i-R"Ir+rRQR", and
inserting terms rR(R ') 2 — rR(RT, we have

HG"=( p
P  r ) 1 ? " R 2 +rR (QR "-2hIr + (R ') 2 ) + (PR — rR — r(P-2)K)(RT

rR(1 k1 2 —  h P )+  ( ( P — r ) Q +  — r(P — M K ) (R') 2 0

because R i =h-l-V , Ik Ili I, (a+ Dp and pAp - This proves
G "  0 on I and Lemma 8 has been all proved.

About the Best Constant

Let (Q, .F, P) be a complete probability space with a right-continuous
filtration  (F ,),0  such that A E F 0 whenever A E,9—' and P(A ) = 0. T he
adapted real Brownian motion (B ,),0 starts at 0  and, for all s  0, the
process (B i —B,),,, is independent of

Let 0(1-1 , 1< p<  co  and r=r(a, p) =max { (a+1)P, PAP — 1)}.
The constant r— l is best possible in the sense that if Q<i3<r —1, then

there are random variables X 0, 17
0 and real predictable processes 0, 0, C" and

such that the Itô processes X  and Y defined by

X,=X 0 + 1 ' 1  ços dBs+ ds,0 0

Y i=Y 0+ f tCs dBs+ f tOE, ds,0 0

satisfy the conditions 0, ç5 . 0, and that Y is a-subordinate to X  but the
opposite inequality

III YIII >j3IIIXIIIp
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holds.
We need the following series test from Calculus :

Gauss Test. I f  a. >() and an+,/an=1-2./n+0(1/72 2)  as n-->09, then
-

E a„< 00 if and only if A>1.n=o

Let O < V r - 1 .  W e cosider tw o cases 1 < i )  ( a + 2 ) / ( a + 1 )  and
(a +2) / (a + 1)<p< 00 separately.

Case 1 . 1 < p  (a+ 2 )/(a+ 1 ).

In this case r=p/(p — 1) and p =r/(r — 1). First define sequences (x„),>1 and
(b„)„1 by rxn=n+1 and 2bn=2n +1. Also, define a sequence of stopping
times (a,,),00: Put a0= 0  and, for n >0, let

a„ = inf >  an _ : (X.-1),,, 1)).

Observe that on is finite almost surely and, with p„=P(B,n —B„_1 =x,„—b„),
we have 1=1)=1—x and

= 1 2p P,= b, —x,+1 2 n - Fp+2 — n+2P .

Thus, as n—>00, we have

p„= P
n + 0 ( n

1
2 )  and P

p
n+1 =1 +0(n12).

We also need the following

/1-1

Proposition 9. ( a )  The series E(I xn I Ppnn (1-ph)) diverges.
n =1 k=1

( b )  The sequence ((n+ 3/2)P f In  ( 1 — P k ) ) „ > i  is bounded.
k=1

Proof of (a ). Let a„ be the n-th term of the above series. Then, (a) of
Proposition 9 follows from the Gauss test and

an+1 n+11)p  pn)a  

=0± 1 ±
1 q 7 ÷ 2 ) ) (

1
 7

1 + 0
(2 7

1
22) ) (

1 P n ± 0
( 7 2 ) )

— 1  7
1
,, + 0 ( 7 4 0



{ (1, 1)1(21Y0n 1 1=1} if 0 < n N ,

if n > N
(go„ =

(0, 0)
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Proof of (b ) .  From
n+2P+1

I I  (1 —pk) Pk) exp( P ) e x P (  P i
dx 

i+2pk=1 k=1 k=1 k +2P x

we have

+ 32  y  (1 pk) < ( n  + 32 ) p  n +1 +2P2p+ 1 y p  <  + 2 p ) p.

Now we go back to the contruction in the first case. Let a„ be as in the
proof of (a) of Proposition 9 .  Since 0 <13< r —1 Proposition 9 enables us to
choose a large positive integer N  so that

a„ >GIS
 1 ) P t i a n ± (N +  DP f11 (1 — pn)).

Putting X0=3/2 and Y0=1/2, define Itô processes X  and Y by their
predictable integrands p ,  0, C and OE: for an_i <s .a ->„ let

and 0=OE= 0.
Then, one can check that X > 0, 0> 0, Y is a-subordinate to X, and that

x„(1, (— 9" + 1 (r — 1)) with probability p„ (1-p i)k=1
(X,N ,  -K w) for 1<n N ,

(N + 32 , ( - 21 ) N
) with probability II (1

thus

a„4 / V + D P ( 1 — PJ,

(r —  DP a„.
n=1

Hence we have

K, LI>13 11 P.
Almost surely UN is finite, hence X t—>X,,,i an d  Yt—>r,p, as t—>00. Also,

101 = IC I  th u s  b o th  X  and Y are martingales. As a matter of fact,
X and Y are uniformly bounded by N+3/2. By Doob's optional sampling
theorem, for any bounded stopping time r, we h a v e  II X. M II X„N  p •



238 Changsun Choi

H ence 111 XMlM  X N  Mp. Also, Lebesgue's dominated convergence
theorem gives

ErN p =lim M Y MM l  YIM0.

Thus we have the inequality Hi 17 1 P ›S 111 X111 p and this completes the
sharpness in Case 1.

Case 2. (a+ 2)/(a +1) <P < œ.

In this case r= (a+ Dp. Choose a small a >0 so that 5(a + 1) (p — 1) < 2.
Define a sequence (xp)pi by rxp =n5(a+1) +2. Notice that ô< 2 and 6<x„
for all A ls o ,  d e f in e  a sequence of stopping times (a„)„0: put 00=0, gi
=inf > 0 : B, 1)1 and, for let 02n = 1+1 + 0 2 , _ 1  and

Chn+1= inf {s>02„: ( x„ (3)1.

With p„—P(B 5, 1—B„2” =x„ —(5) we have P(B„2 1 —Bp2, = —6) =1—pn and as n
—> CO

p„-= = ar =P + 0 ( ) and P '+' = 1  i  + 0 ( I
n 2).

x„ n 5 (a + 1 ) + 2  n n2 p„ n

Putting

an

=  X n
 P  P

c : nri (1  — pk)
k=1

we have

-
Proposition 10. The series E a„ diverges to infinity.n=1

Proof. The proposition follows from  the Gauss test and the
computation

an+1 ( x „ ± i y ,  Pn -Fi  (1

a„ x„ p„
+ 0 ( n

i
2V ni + 0 ( n

1
2 ) ( 1  P

n + 0 ( n
1

2 ) )

= 1  n
i + 0 ( 7,12 ) as n--.00.

Recall that 0<$<r-1. Hence by Proposition 10 we can find N such
that

a„>(
r

i
1
) H-Pa , 2 P - 1 ) .

n = l n=1



{ (Ps=C=0 and a(Ps= =a61{x„2,, c o} if 02-1<s 02„,

So, = — Cs =1ix„2,,---,5) and Os =OEs = 0 if 0-2„< s c h n + 1 .
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We define Itô processes X  and Y. Put X o = Yo=1. For 0 < s c 1 let Os=
.s=-0 and ços= — C=1. For l n N, define

Finally, for s>0 + 1 put Ços=Cs=0s=Es=0.
One can check that

(2, 0) with probability 1

( X °
2N+1

,
' 2 N + 1

)
x„(1, r -1 ) with probability t (1-Pk)

for 1<nAT,

(0, rx„) with probability 1  N  (1 pn).

Thus

Il X,2 N + 1 II a„+2P-1 and Y , „„ (r — 1) P if a„
n=1 n=1

from which we have

II p >19 Il

Observe that almost surely, 0
.
2 x ± i is finite, hence Xt—>X,,2 N + 1  an d

Yt—>K2 N + 1  as t—oo. Also, I §9 I =ICI 0. (P 6 and ()_l a . f 3 .  Thus, X
and Y are submartingales : they are uniformy bounded by rxN=.A.T6(a +1)
+2. Clearly, X ( ) ,  0>0, and Y is a-subordinate to X .  Besides, by Doob's
optional sampling theorem, for any bounded stopping time z-, we have
IIX . M III l p ; hence III X M  X o N  p . Again, Lebesgue's domi-

nated convergence theorem gives

Y„,,± 1 p=lim M 17 „ II MI Y P.

Thus we have the inequality IM YIll >$IlIXlM.
This finishes the proof that r —1 is best possible.

Remark. The idea of considering stopping times a„ in the above two
constructions is due to Burkholder [1].
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