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A Bifurcation phenomenon for the periodic
solutions of the Duffing equation

By

Yukie KOMATSU, Tadayoshi KANO and Akitaka MATSUMURA

1. Introduction and Result

In this paper, we study a bifurcation phenomenon for the periodic
solutions of the following Duffing equation which describes a nonlinear
forced oscillation :

(1 . 1) U "(t) + / I l l '  (t) H- KU (t) +au 3 (t) =1(0, tE R,

where i and a are positive constants, K  is a nonnegative constant, and f ( t )
is a  given periodic external fo rce . It is known that for any periodic
external force there exists at least one periodic solution of (1.1)with same
period as the external force. Furthermore, if the external force is suitably
small, then the periodic solution is proved to be unique and asymptotically
stable. On the other hand, in the case of the relatively large external force,
numerical computations show a possibility of not only the non-uniqueness
of the periodic solution but also the existence of various bifurcation
phenomena. In particular, a strange attractor discovered by Ueda [6], so
called Japanese attractor, is well known. However, it is surprising that
there have been no mathematical proofs of the existence of bifurcation for
the periodic solutions of (1 .1 ). The aim of this paper is to give a
mathematical proof of the existence of bifurcation for a special family of
external fo rces. T o  do that, we define the one-parameter families of
periodic functions {ul(t)},>0 and {f,(0),> 0 with period one by

J u(t): = sin2R -t, A >0,
If, (t): = u",(t)- F  ,uu',(t) Ku(t) d-w ia(t),

so that the equation (1.1) has the trivial periodic solution u (t)=u (t)to
the external force f( t )  = f, ( t )  for any A >0. Then our main Theorem is

Theorem 1. Suppose ke and K  satisfy

C om m unicated by Prof. T. Nishida, November 30, 1995

(1.2)
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3(4z2 —K) (16x 2 — /r) 2  

O rc<47t2, rnin( 207z '3 8 4 , r

 the external force f ( t)=f a( t)  is given by ( 1 .2 ) .  Then there exist at least
three positive constants A 1(i=1, 2, 3;A 1<A 2<A 3), which depend only on g
and K  such that a  nontrivial periodic solution o f  (1 .1 ) with period one
bifurcates from {uA (t)}  > 0 at A ,=1A ,/a(i=1, 2, 3).

To prove Theorem 1, we first reformulate the problem on the periodic
solution of (1 .1 )  to an  integral equation in Section 2, and apply the
Krasnosel'skii's Theorem [3] on bifurcation to the integral equation in
Section 3. A crucial part in this process is to show the eigenvalue problem
of the linealized equation at u (t) =itÀ (t) has at least three algebraicly
simple eigenvalues. We investigate the eigenvalue problem in Section 4
and 5 by making use of the arguments on the continued fraction along the
same line as in the paper Meshalkin and Sinai [4], where they studied the
stability of stationary solutions of Navier-Stokes equation. Finally we
show some results of numerical computations in Section 6.

Acknowledgement. One of the authors would like to thank Prof. H.
Okamoto for calling our attention to the paper Meshalkin and Sinai [4].

2. R eform ulation of the problem

We shall seek the periodic solution of (1 .1 ) with period one in the
form

(2.1) u (t)= u ,( t )  + Av(t).

Substituting (2.1) to (1.1), we obtain the following problem :

(2.2)
v"(t)+,uv/(t) + KV (t) ± a  (L (y) (t) + N (v) (t)) 0,

iv(t+1) --=v(t), t ER,

where L (v ) and N (v ) are defined by

L ( y ) ( t ) :  =3v(t)sin 2 27tt,
( 2.3) N (y )(t): =3v 2 (t)sin 2n -t +v 3 (t).

We reformulate the problem (2.2) into an integral equation in the space E
defined by

(2.4) E = (t) EC(R ) ; u(t+ 1) = u(t) , tER I

with the norm H u ii : u ( t )  .
We first consider the case K  0  . It is easy to see that the problem



To solve (2.8), we consider the following two linear equations for f EE
and $ER,

{

1
If  + f i e  = — ceA2 (L (v) Jr N (v)) + crA 2 f (L  (y ) (t) +  N  (y )(t))d t,

0

(2.8) fo v(t)sin 2 2zt d t =  —  fo i N (v) (t)dt,
1

v (t+1 )— y(t), tER.

{ w" (t) - F gw' (t) =0,

fo
i

w (t)sin 2 27rt dt =$, w (t +1) = w (t), tER.
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f y" (t) + gy' (t) + icy (t) = f (t),
(2.5) 1 v(t+1)=v(t), tER

has a unique solution vEE n c2 (R) for any fE E . Let us denote this solution
by G (f ) .  The problem (2.2) is reduced to the integral equation in E :

(2.6) v = — crA2G(L (y) + N(y)).

In the case of x — 0, since G is not well defined, we need a further
consideration. Noting that the solution of (2.2) satisfies

(2.7) fo 1 L (y) (t) + N (v) (t)dt = 0,

we rewrite the problem (2.2) as

r i
{v" (t) + liv/ (t) — f CO —  j f  (t)dt,0

(2.10)

It is standard to see that the problem (2.9) has a unique solution vEE n 0
(R), denoting it by 6 ( f ) , and the solution of (2.10) is explicitly given by
a constant

(2.11) S w —  r ,
Jo

=219.
sin' 27rt dt 

Thus, the problem (2.2) with IC= 0  is reduced to the integral equation in E :

v= —a2.26 (L (v) +N (v ))
(2.12) i

+20. 2f  (s in 2 27rt)6 (L (v) +N(v)) (t)dt— 2 f iN(v)(t)dt.J o- - a -  o

(2.9)
fo

i

y (t)dt =0, v(t + 1) = v (t), tER,
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3. P r o o f  of Theorem 1

To show Theorem 1, we apply the Krasnosel'skii's Theorem [3] to the
integral equation (2.6)(resP. (2.12)) for K >  (resP. tc = 0).

Theorem A  (Krasnoserskii's Theorem ). Let E be a Banach space and
f (x , A) be an operator with domain Dc EX  R into E of the form

f(x , A )=x— A Tx+ex , A).

Suppose the followings :
(1) A0 0, (0, AO ED.
(2) T is a linear compact operator E--E.
(3) g(x, A) is a nonlinear compact operator which satisfies

g(0, A )=- 0, g(x, A )=o( II x II) uniformly in the neighborhood A =A0.
(4) 1/A0 is an eigenvalue of T with odd algebraic multiplicity.

Then (0, Ao) is a bifurcation point for f(x, A )= 0.

Now, let E be a Banach space defined by (2.4) and T be an operator
E—>E defined by

= f G(— L(v)) if ic (),
(3.1) Tv

la(—L (y)) + 2 f (sin 2 27t) Ô ( L ( y ) ( t ) d t  if K=0,0
and g(v, A) be an operator with the domain D=E x R+ into E defined by

G(aA 2 N (v)) if

(3.2 ) g (v, A) = 6 (0 . 2 N(v)) - 2aA 2f  (sin' 2n-t)O (N (v ))(t)d t

fo
lN (v)(t)dt if K=0,

where R+= {AER; A >0}. Then the both integral equations (2.6) and
(2.12) are equivalent to

(3.3) f (v, A): = v — aA 2 Tv g(v , A ) = 0.

Therefore, we must show the corresponding assumptions (1)—(4) in
Theorem A for the equation (3.3). These are verified by the following two
Propositions.

Proposition 3. 1. ( G (f ) , ( f )  E E  n c 2  ( R )  for any fEE.
( i i )  There exists a positive constant C such that for any fEE

II G ( f )  ii, II 6- ( f )  H1 1 f  II ,
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dt
d

d t
G r f ) d ‹ c  f

(iii) G and -6 are compact oparators in E.

Proposition 3. 2. Suppose g and IL are positive constants satisfying the
assumption of Theorem 1 . Then there exist at least three positive constants A,
(i=1, 2, 3, A 1<A 2<A 3) which depend only on g and it such that A,- 1  are
algebraicly simple eigenvalues of T.

The proof of Proposition 3.1 is given by a quite standard argument on
the ordinary differential equation, so omitted. We shall give the proof of
Proposition 3.2 in the next section. Then applying Theorem A  to the
equation (3.3), we can prove that a nontrivial periodic solution of (3.3)
bifurcates at A,= ,IA, /a(i=1 , 2,3).

4. Eigenvalue problem of linearized equation

In this section, we give the proof of Proposition 3.2. First we note that
the eigenvalue problem for T  is again equivalent to the problem :

f w" (t) + gw' (t) + Kw (t) + 3Aw (t) sin2 27rt= 0,
w (Lk 1) =w (t) , tER,

where we set A =a 22.  We expand the solution by Fourier series as
[0

(4.2) w (t)=  E a„e2—  ̀, {a„}„EzE e 2.

Substituting (4.2) to (4.1), we obtain

(-47c2n2 +27rgni+n+ 3A sin2 271-t)ane2n't = 0,
n = —

which implies that Ia,LEz satisfies the following recurrence formula :

(4.3) A n(A )an±a„_2+a+2= 0, nEZ,

where

A ( A ) =  —2+ 3 A 3A •
We study this recurrence formula according as n is odd or even . In the
case n = 2m + 1(mEZ), setting b„,=a2,n+1 and B.(A) =A2,,,+I(A), we rewrite
(4.3) for {b.} ..z  as

(4.4) B„,(A )b„,+b— i+b,„4.1=0, mEZ.

(4.1)

16 n2-4n 8 z g n i
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In the cace n = 2m (mEZ), setting dm=a2„, and D„,(A )=A 2„,(A ), we rewrite
for {d.}..z as

(4.5) D„,(A )d„,+d„,_1+4+1=0, mEZ.

For the solvability of these recurrence formulas (4.4) and  (4.5), the
following lemma holds.

Lemma 4. 1. (  I )  The recurrence equation (4 .4 ) with A =.4 0 has a
nontrivial solution {bm(A 0)} .EzE 2

, if and only if {Bm(110)}..z satisfies the
condition,

(4.6) Bo (A 0) — (AO I =1,

where

0(A ) = 1

  

B i (A )  

B2(A )
 

B 3 (A ) —
•.

(11) The recurrence equation (4.4) with A =A 0 has a nontrivial solution {d„,
(A 0 )}m E z  E  .e 2,  if and only if {D. (AO} ,,,Ez satisfies condition,

(4.7) Do (110) = 2Rel) (A 0),

where

1

D i (A) 1

D 3 (A)—
• .

.

We shall give a proof of Lemma 4.1 in Section 5. Let us admit Lemma
4.1 for the moment. Then, to prove Proposition 3.2, we have only to show
that there exist A ,E R +(i=1,2 ,3 ) which satisfy the equality (4.6) or (4.7)
and which correspond to the algebraicly simple eigenvalues of T . To do
that, we make use of the following Worpitzky's Theorem [1] concerning a
family of continued fractions.

D2(A) 1

Theorem B (Worpitzky's Theorem ). L e t  be a family of the formal
continued fractions :
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1< -
4
 for any  k  EN— a= c= a 

;  akEC, ak

1+
a2

a 3  1+ 1+ .

 

Let w>,(C) and w (C) respectively denote the n-th approximant and the value of
a convergent continued fraction C. Then a fam ily  a is uniform ly  convergent,
that is,

lim su p  wn(C) — w ( C )  =0.
n-•00 CER

1Furtherm ore, it holds that w ( C )  < -

2
 f or any  CER.

—  

First we consider the existence of 11,(i= 1,2) satisfying the equality
(4.6). We introduce some notations and definitions. Let [h ; r] denote the
ball which has the center h EC and the radius rER +. When the ball [h ;

does not include the origin, we define the reciprocal ball by [h ; r] - 1 = [
h r 

h12— r2]• 
We next define the constants {A1}0(0<A0<A1 <AI h 12 — 7-2 ; i 

2<A3 <ii4<ii 5) by

(- = 8 4R-2—K—)- 2(4 — 'c)—tc) (- 4 47r2 — /c) A oA i21 ' 3 '  A 2 = 3 '
(-, 4 167r2 --tc)A - 2(16z2 —K)x 4(36712 —/c) 

A 3
=

4 1 4 — , i i 5
—

9 ' 3 9 '
so that they satisfy the following relation :

A Ao A, A2 A5

Re Bo (A) 3
2 0 —1

Re Bi (A) 59 28K 16K 8/c 1+2 47r2—tc 16+ 4n2—/c 7+ 4n-2—/c

Re B2(A) 48/c 24K 19 16K48+ 4n2—K 23+ 3
 +  

3(3671-2—K)

A A3 A4

Re Di (A) 1 0

Re D2 (A ) 10+ 0K 6+  6K
1 6 e , 1 6 e ,
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In  the following, we note that the continued fraction O (A ) can be
rewritten in the form

(4.8) Q30 )  = B i (A) 
1 

B1(A).132(A) 

B2(A)B3(A)
1+

In the case 0<A <A 0, it holds that ReBo(A ) 3/2, ImBo (A) < 0, and I Bi
( A )  >4 for i 1. Then Theorem B imples V3(A) 1 / 2 ,  and it easily
follows

(4.9) I Bo(A) — $ (11 ) I >1  for O<A

In the case A =A1, it holds I B i(iii) 16 for So, Theorem B gives
2 I Q3( AD 131(111) and I B0(A1) - 0(A1) B o (A i)  + -

1 

. From8
the assumption of Theorem 1 , I Bo(A i) =  Im Bo(A i) 3/5. Therefore
we have

(4.10) I B0(A1)-$(A1) I <1.

By (4.9) and (4.10), the Intermediate Value Theorem proves the existence
of a constant A I E (Ao, A1) such that

(4.11) I B0(A1)-$(A1) I =1.

In the case .212 <A . 21- 5, it holds that R eB o(A ) —1 and I B(A)B,+1(11.)
. 1-1>4 for i> 1 . Then, Theorem B imples Q3(A)E

B i ( A )  
r
L
i 

'  2

. From the

assumption of Theorem 1, we can see I arg Bi(A) I <7r/6, so that I arg
(A ) < r/3. Therefore R e(A ) > 0 , and we easily have

(4.12) B0(A )-23(A ) I > 1  for A-
2 A

By (4.10) and (4.12) ,the Intermediate Value Theorem again proves the
existence of a constant /12E (A1, -A) such that

(4.13) I Bo (A2) — (A 2) I =1.

Next, we consider the existence of A 3 ER+ such that {D„,(A3)}„2 satisfies
(4.7). In  the case  (R A  w e have I D,(A)Dz+i (A ) I > 4 for 1.
Similarly as in the previous case, we obtain ReZ(A) >0 which implies that



1

1772
4

\OE2+722_ \ 2O E 2+722 1 4 0.2+772 1 51
4 4 4

Rel.) (AO 

(4.16)

2
2 / 

+
1 
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(4.14) D0(A)<2ReZ(A) for O<A

In the case A =A 4, it h o ld s ROO I >4 for Noting that 1) (A )
can be rewritten in the form

Z(A)— 1

         

Di (A )+

 

D2(A )

 

—1  •  3  

1 +  
D 2 (A ) D3(A) 

1+
•

w e have 1)(A)E[D1(A) - 11(21);r(A)1 - 1  w here h (A ) and  r (A )  are the
1 center and the radius of the ball  'D2(A)

 [1 ;
 2  I D2(A) I respectively,

which are explicitly given by

(4.15) ReZ (A4)
D1(A4)—h(214) I 2 —r 2 (114)

Set .=-..ReD2(A4) and 77 = IM D2 (2.1- 4), then Do (21- 4) = — V3, Di (A4) = ni/2, and n
= /  ( 6 4 . Substitu ting and n into (4.15),

1
D2 (A)2  h(A )= , r (A) =

1•
D2(A) I

4
D 2 (A ) 2

4

Therefore we obtain the following estimate

Re(D i (A-  4) — OA 4 ))  + r (A  
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In order to see 2ReZ (A-
4) <D0(A4), we must show the inequality

(4.17) i(Vt2+772 - 14)+772+1» 1 - 1 <

To do that, we define f  (x): =x2+9 • 159x - 24 • 27 • 36. Using OE 6, we have

16 ( 1742 ( 2 +172 1 4) ± 7 7 2 + 1 ) +  21 1

= { 4  ( 114 ) 1 r  + ( V  4  }  + ( g6D 2+  1 114  1

= 124Œ4 , ,If11 E4627r2 ) 2 1 + 24 ( 1 23167:c2 ) 54 - 916V ( 13162 4.r2 )±  L

24 36 2 ( 2 4-/-2 ) 2 +  214( 0 )± 481.5 72 ( 13 L )  43

1 7,2r

24 • 362 f  367(2 )*

From the assumption of Theorem 1, Q<24/(36) so that f (
6

/ I T  )< 037r2•
Therefore we obtain (4.17), which implies

(4.18) 2ReZ (ii4) <Do (21-4).
B y  (4.14) and (4.18), the Intermediate Value Theorem proves the
existence of a constant A 3 E (A3, 1-14) such that

(4.19) Do (21- 3) = 2ReZ (A3).
Thus we have proved that there exist at least three eigenvalues o f T.
Finally we show these are algebraicly simple eigenvalues, which means

-
dim UKer(Il i /— T)' = 1. Since (4.12) and (4.14) shows that (4.6) does

not hold for A = 113, and neither does (4.7) for A  =A  and A =A2, we can see
dim Ker(A,-1 /—  =1 . So we need to show Ker(A» /— T) 2=Ker(A,-1 /—
T ) .  If it does not hold, there exists a nontrivial solution uEE of (A,' I —
T)u =w  for any wEKer(A1 11— T), which is equivalent to the solvability of
the following equation :

(4.20) u"(t)+,uu'(t)+K u (t) 3A,u(t)sin2 27zt = —311,wsin2 27z-t.

From the standard argument, the solvability of (4.20) is equivalent to the
condition

(4.21) f o  (t)w . (t)sin2 2711-dt = 0,
where w. is a solution of the adjoint equation to (4.1):
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(4.22) w". (t)—  aw '.(t) + (t) + 3A W * (t) sin 2 27z1=0.
-

Noting that w *  = w =  E ãe 2"", (4.21) is rewritten as E
= 0. Therefore we must shoW

CO

(4.23) E (a>,—a„+2)2 0  at A =A i(i=1,2 >3).

In the case A =A , from the definition of (1),,LE, given by (5.4) in the
next section,

E (a„—a„+2 ) 2 =  E (b.— b.+ 1) 2

=2 { — 2 Om bo) 2 +  (b i(1  — ,01)2) + „ i Re (b. — b.+1)21

=2 { — 3(Im b0) 2 + (Reb0) 2 +  (bôPi(Pi — 2)) + Ni Re (b. — b„,+1) 2}

= 2 {3 — 4 (Re bo) 2 — Re (1401(Pi — 2)) — Ni
Re(b,, —  tom+1)21

Taking notice that (Re b0) 2 = 4(1± Re(b 0) 2), we have

(4.24) 3-4(Re b 0) 2 — Re(bôP1(01 - 2)) — „ Re(b. — bm+i) 2

=1 - 2Re(N) — Re (bôPi - 2bôpi) —Ni Re(b,„ b.+1) 2

1+ 2Re ±P1) — P I  2 — 2 b.— bm±i 2

1+2Re(Bo+P1) —  I Pi I 
2 _

 2

4 o  I bi I 2 (1+  I P2 I ) 2 I P2 I 2"̀

2

( 1 +  I P 2  I ) 2 P 1  2 

1P1 I 1P 11  
1 —  P 2  2

However, Theorem B implies I p„, B2 so that I pi I <land I P2 I <

N . Using these estimates, we obtain (4.24) >0. Therefore we can show

the inequality (4.23) at A =A 1 .

In the case A =A 2, we can rewrite (4.24)as

(4.25) 3-4(Re bo) 2 —Re (bôPi(pi — 2)) 4 iR e ( b - -  b--F0 2

=1+2Re(Bo+pi)+2Re(bôPi) — Re(bihol) — „,Re(bm — bm+i) 2

=1+2Re(Bo+Pi) +2Re( —  (Bo+TOPI) — Re(bôPi) — N,Re(b. — bm+i) 2

= — 1+2Re(Bo+Pi) +2 I Bo I 2 2Re BoTt+Re((B0+,(Ti)Pi)
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4 Re b.+02.

Since it follows — l<ReBo < 0 and I Im Bo I from the assumption of5
2Theorem 1, and Theorem B im p lie s  P i <  12  and I P2 1 —

23  ' 
we have

7 23

(4.25) —1+2Re Bo(1 +Re Bo) +2 I Tm Bo I 2+2Re pi(l+ReBo)
+2Im Bo Impo+ I Pi I 2 — Re bm+1)2

<-1+2 I 1m Bo I 2+21m Bo 1m pi+ I pi I 2+ , , ;  bm — b.+11 2

—1+2 I Tm Bo I 2+21m Bo Tm ,(30
2+  ( 1 + 1 P2 1 ) 2 1 P1 I 2 

1— I p2 12
(1 I1+ 2 1 IM BO 1 + 2 IM BO 1 1 P1 1 +

2  +  p 2  ) 2 
1— 1 p2  1 2

< 0.

Therefore we can show the inequality (4.23) at A =A 2.
In the case A = A 3, from the definition of {d„,}„,Ez given by (5.5) in the

next section,

E  (a — a+2) 2 =  E (dm —d.+0 2

=2 {Re((1 — d1)2) + Re ((cli —  d2) 2)  + 2R e((dm — dm+1) 2)}

=-2{2  d i  1 2 — 3(1+ 32A/C3 72,c 

—Re {49.2(6,2-2)} — „ 2Re((d. — dm+1)2)).

In order to see (4.23) at A =A 3, we must show

(4.26)2 1 di 1 2
3 @ +   32.1A

9 2  
(32A/C

y

Re {dia2(02—  2)}

4 2Re((d. — dm+i) 2) +0

2 2 Noting that I a2 I < and I a3 '< we have11 31

2 2 —  3(1+ 3
2
A
K

3 ) 2 ( 3
2A 9 2 R e  {(4a2(a2— 2)} —  R e  ((dm— d„,+1)2)
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2  di I 2 - 3
( 1 +   3 A2/9 2  (3 A2/9 2  2  I di I 2 02 1 —  1 di 1 2 C h  2

) 2 1 orz 1 2d 1 I 2

0 .32

> (2 4
_ 41 2   \

2 4 @ + 21 2

11 121 319) 1

( 2/c >  
235
8
 I  d i  I  2 

6 0 +  
3A3).

Since Re d 1 = —Re(A+02)/ 1 D1+02 2 and Re D 1 (A 3) >0, we get

(4.28)2 =  Re(Dl
1+a 2)  ( i +  3A2K3) >  121 ( i +  3A21c3)

By (4.27) and (4.28), we can show the inequality (4.23) at A =11 3. This
completes the proof of Proposition 3.2.

5 .  Proof of Lemma 4.1

In this section, we give a proof of Lemma 4.1, by the similar argument
in Meshalkin and Sinai [3]. Throughout this section, {b,„}„,z, {d„j„,Ez, 0,
and 1) denote {b.(A0)}„„Ez, {d(./10)}.Ez, 0 (A 0), a n d  (A 0)  respectively.
( I ) The case n =2m +1

First we show the proof of necessity. We assume that {b„,.}„,Ez  E  2

satisfies (4.4). Then b m  0 for any m E Z. In fact, suppose that there exists
k  such that b k = 0 .  Then bk+1=Cibk+i for any /EZ, where C1 is a constant
which satisfies 1 C1 I — , 00  as 1 1 I —.00. Let us separate the cases accoding
as bk+i is zero or not. If bk+i = 0, then b„„ =0 for any m E Z, which contradicts
that {b.}..z is a nontrivial sequence. If bk+I*0, th e n  bk+i 1 - ->c° as 1 I 1 —>
co which contradicts that {b,”}..z E  e 2.  Therefore we can well define pm=

b _ 1 
b m  

 (m >  1) and 4, =  m (m  <0 )
' 

So we can rewrite
u—i 

0, (t++pn,+1= 2n 1)
(4.4) as

{

1 (m — 1)B„,+(9m + . =0,
P.+1

which implies respectively,

(1+ I 03
1—



pm= 1B .
B m + 1

1

1

B m +2
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( m  1)

(5.1)
1

B.-1 1 
1

B .- 3 —
•
• •

On the other hand, it follows from (4.4) with m=0 that

(5.2)B 0 — 1  + 1 
1 1  

B1 B_1
11  

B2B 2 -2 D
0 3 .03

. .. .. .

Using the relation B . = B _ ( . + i), we have

(5.3) I B0- 0 I =1,

where

1 0 =
B1 1 

B 2  D

1 
0 3  .

• •

This completes the proof o f necessity. Next, we show the proof of
sufficiency. We assume that { B . ) . e z  satisfies ( 4 .6 ) .  Let us define tb,,.),,,ez
as follows,

bo=fiô, 0 < arg fit< 7/

b.= b0,01,02 . • .p., (771 _1)

b - 1 - 4 27 < ar g j <  2,r
b.— b -1P-1P-2.• . P.+1, O n  — 2)

where p .  and 15,” are given by (5 .1). Then it is easy to see that {b„,},,Ez

satisfies the recurrence equation (4 .4) and {b„,}„,EzE .e 2. This completes
the proof of sufficiency.
( II ) The case n =2m

Let us define {d.},,,Ez as follows,

P.=

B," 2

(5.4)
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do=1,
(5.5) d„,=c102- • -Grm, ( m  1)

dm=6-00-1-•-d.+1, (rn_

where

Dm +1

 

D m + 2

Urn

(5.6)
1

D .-1
(m 0 )

D m - 2  Dm_3—

Noting that Wm),..z satisfies 2 =D — , we can give a proof similarly as in
the case n = 2m + 1. This completes the proof of Lemma 4.1.

6 . Numerical Computations

In this section, we show some results of the numerical computations.
First, we made the numerical computations by the typical Runge-kutta
scheme of four steps and forth order for the equation (1.1), (1.2) with the
coefficients it =K=a = 1 and the initial data (x (0), x/( 0 ) )  which are
suitably taken in a neighborhood of (0, 27rA):

r x" (t) + x' + x (t) + x 3 (t) = P (A sin 27rt)
( 6  .  1 )  t  

P(A  sin 27rt): = (A sin 27rt)" + (A sin 27rt)'+A sin 27rt+ (Asin 2zt) 3

The pictures of the trajectories (x, x ') are given in Figure 1^ , Figure 7.
"Range" in the left upper side of the figure indicates the range of x, while
the range of x' is taken to be 27z- times of it so that the trivial solution ua
depicts a fixed circle. Figure 1 shows the trajectory at A = 3 . We observe
that the trajectory of the trivial solution u 3 is stable. As we continue to
increase A, the trivial solution i t ,  loses stability at A =A 1 4. 19 . Figure 2
shows the trajectory at A = 4.3 . We observe that the trajectory is a slightly
different circle from the trivial solution. Tracing this branch forward, we
have a typical trajectory o f this branch at A=8 in  F igu re 3. The
trajectories of this branch have a symmetry with respect to the origin. As
we continue to increase A, the trivial solution becomes stable again at A =
A2*6.71 • • • . The trajectory at A = 6 .5, which is a little behind A2, is given in
Figure 4. Tracing this branch back, we have a typical trajectory at A = 2 in
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Duffing Equations.
X"+1.0X+1.0X'+1.05(3=P(3.000*sin(2Pi*t))
RANGE=6.0000

LAMBDA= 3.0000
Fig. 1

Duffing Equations.
X"+1.0X+1.0X'+1.0X3=1) (4.300`sin(2Piq))
RANGE=8.6000

Duffing Equations.
X" + 1 . OX + 1 . OX'+ 1 . OX3 = P(8 .000. sin(2Pi*t))
RANGE= 16.0000

LAMBDA= 4.3000
Fig. 2

Duffing Equations.
X"+1.0X+1.0X'+1.0X3=P(6.500`sin(2PN))
RANGE= 13.0000

LAMBDA= 8.0000
Fig. 3

Duffing Equations.
X"+1.0X+1.0X'+1.0X3=P(2.000•sin(2Pi*O)
RANGE=8.0000

LAMBDA= 6.5000 LAMBDA= 2.0000
Fig. 4 Fig. 5
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Duffing Equations.
X"+ 1.0X +1.0r +1.0X3=P(6.500*sin(2Pi*t))
RANGE=20.0000

Duffing Equations.
X"+ 1.0X +1.0X'+ 1.0313 =P(10.000*sin(2Pi*O)
RANGE=20. 0000

LAMBDA= 10.0000 LAMBDA= 10.0000
Fig. 6 Fig. 7

continued fraction
r a n g e =  [1.0000, 11.0000]
Ymax =- 5.000000

D(x) — 2*Ref (x)
1—  I  (B—g)(x)

Fig. 8
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continued fraction
ra n g e =  [1.0000, 101.00001
Ymax= 5.000000

L'

-

D(x) — 2*Ref (x)
1—  (B— g)(x)

F ig . 9

Figure 5. The trajectories also have a symmetry with respect to the origin.
With a further increase of A, the trivial solution loses stability again at A =
2.3* 9 .9 3 . — , and we have a pair of stable trajectories. The trajectories at A
=10 are given in Figure 6 and 7. In this case, each trajectory has not a
symmetry, different from the previous cases.

On the other hand, we mathematically studied the eigenvalue problem
for the linearized equation in Section 4, and we had the necessary and
sufficient condition (4 .6 ) a n d  (4.7). Therefore, we next tried the
numerical computations for the continued fractions in (4.6) and (4.7)
until the error become less than 10-1°. The graphs of the functions 1— I Bo

(A) - 93(2.) 1 and Do(A) — 2 Re 1:)(2.) for 1 A 2 1  are given in Figure 8. We
have that 1 —  i Bo(A) —  93 (A ) 1 intersects A axis at A *4.19.-and A*6.71—,
D0(A) — 2Re t(A) intersects A axis at A -- 9.93.... These results are well
consistent with both the statement in Theorem 1 and the above mentioned
results of numerical computations for the equation (6.1). Finally we
should point out that the number of bifurcation points is expected to be
not only three but infinity, as suggested from computations for 1 1 0 1
in Figure 9.
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