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Chern classes for parabolic bundles

By

Indranil BISWAS

1. Introduction

T h is  i s  a  con tinua tion  o f o u r ea rlie r  w o rk s , [B i2 ], [B i3 ], w h e re  w e
studied various properties of parabolic bundles (both on curves and on higher
d im ensional varie ties). P arabolic  bundles (in troduced  i n  [M S ] fo r  curves
and generalized to higher d im ension  in  [M Y ]) are  vector bundles (or more
generally torsion-free coherent sheaves) on  open  varie ties toge ther w ith  a
weighted filtration a t  th e  boundary . V arious resu lts  on  vector bundles over
projective manifolds generalize to the parabolic context.

H ere  w e  g ive  a  can d id a te  fo r  w h a t sh o u ld  b e  the  C hern  c lasses o f a
parabolic bundle. Taking a  hint from the definition of parabolic degree, which
should be the  first parabolic Chern c lass, o f a  parabolic bundle, in Section 3
w e define parabolic  C hern c la sse s . (Indeed, th e  definition o f  th e  parabolic
degree in  higher dimensions, which is rather nontrivial (introduced in  [MY] ),
serves as a good hint.)

Given a  representation in  GL (r, C ) of the fundamental group of a  smooth
open variety , there is a  natural extension of the corresponding fla t bundle to
some suitable compactification (the  d iv iso r a t in fin ity  shou ld  be  of normal
crossing) a s  a  parabolic  bundle . W e give a justification for our definition of
parabolic Chern classes by pointing out that all the parabolic Chern classes of
such a parabolic bundle vanish.

S . B loch  and  D . G ieseker show ed that the  C hern  c lasses of an  am ple
vector bundle a re  numerically p o s it iv e . T h is  result w as extended in  [F L ],
and  a ll th e  numerically positive characteristic polynomials for am ple vector
bundles w ere  iden tified . In  [B i2 ]  w e defined parabolic am ple bundles and
show ed  tha t they  exh ib it various p roperties ana logous to  an  am p le  vector
bundle — for example, Hartshorne's characterization of am ple vector bundles
on curves, Le Potier vanishing theorem.

In  Section 4a w e  show  th a t th e  parabolic C hern c la sse s  o f  a  parabolic
ample bundle a re  numerically p o s itiv e . T h e  statem ent correpponding to the
theorem of [F L ] is also v a l id .  W e prove that under certain conditions on the
filtration, a  parabolic s tab le  bundle w ith vanishing parabolic  C hern classes
sh a re  th e  characteristics o f  a  s ta b le  vector bundle  w ith  vanishing C hern
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c la s se s . T h e  characteristics in  question  a re  the  re la tions w ith  th e  unitary
representations o f  th e  fundamental g roup , and  the  Hodge a n d  th e  Lefschetz
decompositions of the cohomology groups.

2. Preliminaries

L e t X  b e  a  connected sm ooth projective v a r ie ty  o v e r  C  o f  complex
dimension d. Let D be an effective divisor on X.

Fix an ample line bundle L on X . F o r  a  c o h e re n t  x module E, define the
degree

deg (E )  = (c i (E) ci (L) " )  n [x] E Z

Definition 2.1. L e t  E  b e  a  to rsion - f r e e  coheren t V X  module. A
quasi - parabolic s tru c tu re  o n  E  (w ith  respec t to  D )  i s  a  f iltra tio n  b y  ex -

coherent subsheaves

E = (E) D F 2 (E) D ...D Fi(E) F1+ 1 (E) = E ( — D)

Where E ( D ) is  the im age of E ® a„ex( — D ) .  T h e  integer 1 is  ca lled  the
length of the f iltration. A parabolic structure is  a  quasi - parabolic structure, as
above, together with a  system of weights {a1. .... a1)  such that

0 ' al<a2...<al-.1<al<1

where the weight a i corresponds to the sheaf F,(E).

W e w ill denote a  parabolic sheaf, a s  above , by  (E, F * ,  a* ) ;  and  when
there  is  no scope of confusion, simply by E .  D e f in e  the  following filtration,
(Er), of coherent sheaves parametrized by R:

E :—F (E)( —  [1] D) (2 . 2)

w here  [ t]  is  the  integral part o f t  and a i _i <t— [t] w ith the convention
tha t ao = al — 1 and a 1 1 = 1. A n y  c o h e re n t  subsheaf V of E has an  induced
parabolic structure such that if  (171)  is  the corresponding filtration then  Vt=
Et n  V for any t . O.

The parabolic degree of E* , denoted by par_deg E*, is defined as:

par_deg E*  : = f i cleg(E,) dt (2.3)

The quotient par_degE * /rank E is usually denoted by par_f/E * .

Definition 2.4. T h e  parabolic sheaf E*  i n  (2 .1 ) is  ca lled  parabolic
sem istab le (resp. parabolic stable) if for any subsheaf V of E, w ith 0<rank V
< r a n k  E , a n d  E /F  be ing  torsion - free , the  cond ition  par_ttV*  . par_ttE *

(resp. par_ttV* <par_ttE * )  is satisfied.

All the above definitions can be found in  [MY].



Parabolic bundles 599

Consider the decomposition

(2.5)

where any Di is a  reduced irreducible divisor and ni Let

j 1 : ni.Di — > X

denote the inclusion of the subscheme ni.Di.
Take a torsion - free coherent sheaf E on X .  For 1<i let

0=Fl i.f 1CFVFLiC  • • • CFC .F1=fE (2.6)

with l be a filtration of coherent sheaves on niD i . Given strings of real

numbers a l, 1 .< j1 1 +1, satisfying

1=a11+1>a11>aft_i>•••>a>af0 (2.7)

w e m ay construct a  parabolic s truc tu re  on  E  w hich w e w ill describe now .
Define the  coherent subsheaf, j ,  w h e r e  1 <i <n and 1 of E  using the
following short exact sequence:

0 —> E  (JIM /P i — ) 0 (2 . 8)

(the surjective homomorphism is given by th e  re s tr ic tio n  m ap ). F o r 1 <i <n
and 0 < t1 ,  let l  b e  the smallest number in the set of integers

fic{1, ...,1,+1 } c x j t }

Define Er to  be the following intersection of subsheaves of E

n
:=  n (2. 9)

The filtration {Et} defines a  parabolic structure on E .  It is  easy  to  see  tha t
any parabolic structure on E, with D  as the parabolic divisor, arises this way.

Let f  :  X —  D —> X denote the inclusion of the complement of D .  F or two
parabolic sheaves E* and W* on X , with D  as the parabolic divisor, and c E R ,
define A l, t o  b e  t h e  subsheaf o f  t h e  quasi-coherent sheaf f *f* (E ® 147)
generated  by all Es 0 W r w ith  s c .  T h e  parabolic  sheaf g iven by the
filtration { c}ceR is called the parabolic tensor product of E * a n d  W*, and it is
denoted by E* OW * [B i2 ]. The parabolic m- fold symmetric product, Sm(E * ),
is  the invariant subsheaf of the m-fold parabolic tensor product of E *  for the
natural action of the permutation group for the factors of the tensor product.
T h e  underly ing  sheaf o f  t h e  parabo lic  sheaf Sm (E * ) w ill be  deno ted  by

Sm (E*) o.
The parabolic sheaf E*  is called parabolic ample if  fo r any coherent sheaf

F  on  X  th e re  is  a n  integer mo su c h  th a t  fo r  any m  m o, th e  tensor product
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FO S " i (E*) o  is generated by its global sections ([Bi2], Definition 2.3).
We will now recall the definition of an orbifold bundle.
Let Y /C  be a  smooth projective variety, and let

p  : G —> Aut (Y)

be a  finite group acting faithfully on Y.

Definition 2.10. An orbifold sheaf  on Y, with G as the orbifold group,
consists of the following data: a torsion - free coherent sheaf, V, on Y, and a lift
of the action of G on Y to  V, i.e., G acts on the total space of stalks of V  such
tha t fo r any g E G  th is  action gives a  coherent sheaf isomorphism between V
and p(g - 1 ) * V .  A  coherent subsheaf, F , of V , w ith  V /F  being torsion-free,
will be called an orbifold subsheaf if the action of G on V preserves F.

-
Let E be  an orbifold line bundle on  Y  w hich is a lso  a m p le . So using L

we may define the degree of any coherent sheaf on  Y.
A n orb ifo ld  sh e a f  V  o n  Y  is  c a lled  orbifold sem istable ( r e s p .  orbifold

stable) if  fo r any nonzero proper orbifold subsheaf, F, of V  w ith  V /F torsion
free, the following holds:

deg F/rank F deg  V /rank  V  (re sp . deg  F /rank  F < deg  V /rank  V)
(2. 11)

If V  is  an orbifold stable bundle with ci (V ) =  0=c2(V ), then there  is an
u n ita ry  f la t  connection o n  V  w h ic h  is  in v a rian t u n d e r  th e  a c t io n  o f  G;
m o re o v e r , su c h  a  c o n n e c t io n  is  u n iq u e  ( [ S 1 ] ,  p a g e  8 7 8 ,  Theorem  1,
P ro p o sitio n  3 .4 ) . T h is  connection is irreducible in  the sense that there is no
p ro p e r n o n ze ro  o rb ifo ld  su b sh ea f o f  V  w h ic h  i s  le f t  in v a ria n t b y  the
connection.

W e will now recall some results proved in [Bi2], [Bi3].
Assume tha t D  is  a  divisor of normal crossing, i.e., all n i =  1  and D i a re

smooth divisors and they interect transversally.
L e t  (E * , F* , a* ) b e  a  parabolic bundle on X  g iv e n  b y  ( 2 .9 ) .  Assume

that all F i
f  o n  D i are subbundles of f t E .  Also, assume tha t a ll the  weights aj

are  rational numbers; so  a m /N , where N  is  a  fixed integer and m E  (0 , 1 ,
2, ..., N - 1).

W e will now recall the  "Covering Lemma" of Y.Kawamata (Theorem 1.1.1
of [KMM], Theorem 17 of [K] ).

W ith the above notation, there is a  connected smooth projective varie ty  Y
and a Galois covering morphism

p: Y  X

w ith  Galois group G = Gal (Rat (Y) /Rat (X ) )  such  tha t 5 : = (p*D) r e d  is a
divisor of normal crossing on Y, and p*D i =k i N.(p*D ; ) r e d , 1 where k i are
positive integers.
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Let 15, denote th e  reduced  d iv isor (p*D) red • Let denote the  vector
bundle on D i defined by:

Q. : = ftE/ F;)0f*Px (Di) = ftE/ P i ) ON, (2.12)

where Ni is the normal bundle to the divisor D.

Let Ui; denote the kernel of the obvious projection of the pullback bundle,
p* (E x (D)) , on to  th e  re s tr ic tio n  o f  th e  pullback sheaf, f * Qii (which is

supported on k,N15;), to ki.(N — mJ-1)15,.
T h e re  is  a  natural orbifold bundle structure on f *  (E®  e x  (D )) for the

group o f  deck transfo rm ations. Since th e  divisor 15 i i s  invarian t under the
action of G on Y , th e re  is  an  orbifold  structure  on C y  ( j . i5 i)  fo r  any j c  Z.
Hence there is an induced orbifold structure on the sheaf Uif.

Define V:  fl U) to  be the intersection of all U .; inside f *  (E0Ox (D)) •
From th e  assumption on E * ,  nam ely that any F t;  is  a subbundle of Ei, it

follows that any Ui; and V  are all locally free coherent sheaves on Y.
Note that since p is  a  covering morphism, the direct image p* v  is locally

f r e e  o n  X .  M oreover, t h e  o r b i f o ld  s t r u c tu r e  o f  V  g iv e s  an  in jective
homomorphism of G into Aut (p* v) , the group of global automorphisms of p* v

The parabolic bundle E *  can be recovered from  the orbifold bundle V  in
the following way: define

E i :=( f * ( V O C r( i  [ — t.ki.M.15i))) 
G

(2.13)

to  be  the  invarian t pa rt o f the  d irec t im agde . Then the  filtra tion  {E t } t E R  is
precisely the filtration associated to E *  a s  in  (2 .2 ) [B i2 ], [B i3 ].

L e t P ' :  15,-  Y denote th e  embedding in  Y .  The norm al bundle on 5,
( fo r  t h e  embedding [3 9  w ill b e  d e n o te d  b y  N .  L e t  K (Y )  deno te  the
Grothendieck g roup  o f  coherent sheaves o n  Y. ( S i n c e  Y  is sm ooth, K (Y)
coincides w ith  the G rothendieck g roup  o f  locally  f r e e  sheaves.)  In [13i3]
( ( 3 .1 5 )  a n d  L e m m a  (3 .1 6 ) )  w e  sh o w e d  th a t  t h e  fo llow ing  equality  of
elements of K (Y ) holds:

n1  k i m )

V =p * E +  E  E X ((F ii /F).")0AT) (2.14)
1 = 1  i= 1  k = 1

If we use E =p * L  in  order to define the degree o f a  coherent sheaf on Y, then
(2.14) implies that

degV= # G.par_degE* (2.15)

w here # G is  the cardinality of the group G.
Using the obvious identification of coherent subsheaves of E  and orbifold

subsheaves of V and (2.15) w e get the following proposition:
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Proposition 2.16. The orbifold bundle V i s  orbifold semistable (resp.
orbifold stable) if and only if E* is parabolic semistable (resp. parabolic stable).

In  ([B i2], Lemma 4.6) we proved the following lemma:

Lemma 2.17. If E* is parabolic ample then the vector bundle V is ample
(in the usual sense).

T he symmetric tensor power Sm (V), 1, of an orbifold bundle has an
induced orbifold s tru c tu re . T h e  parabolic bundle corresponding to S t ( V )  (by
(2 .1 3 ))  is  the parabolic symmetric power Sm (E* ).  It is  easy  to  see that for
a torsion - free coherent sheaf F on X, the  equality , (v0p*F) G =  EOF, holds.
This immediately gives the following converse of Lemma 2.17:

Lemma 2.18. I f  th e  orbifold v ector bundle  V  i s  ample th e n  the
corresponding parabolic bundle E* is parabolic ample.

3. Parabolic Chern character

W e now want to define parabolic Chern c la s s e s . W e do not assume D to
be a  divisor of normal crossing.

F o r  a  coherent sheaf V  on  X , le t  Ch (V) E  seven  (X , Q )  b e  the Chern
character o f  V . I f  V is a  vector bundle of rank r, for a real number t, the t-th
power of the Chern character of V, namely Ch (V ) , makes sense as an element
o f  s e v e n  R ) .  Indeed, setting A  =  E i >ichf (V ) , w h e re  Ch i  ( V )  i s  the
component of Ch (V) of degree 2j, the power series expansion

Ch (V ) = (r+  ECIV (V)) t : = (r+ A) ( t  r " A '
5=0 j

w here ( t ) =  t (t — 1) ... (t — j 1) /1  . 2 ...j, is actually  a  fin ite  sum , since

(X, = 0 for j> 2 d .
Let E* b e  a  pa rabo lic  bund le  g iven  by  (2 .9 ). W e  de fine  the parabolic

Chem Character of E*, denoted by Ch (E*), as follows:

Ch (E ) :=  Ch (E) f it Ch (0 x (n, 1. i ) )

Ch (Fi). (Ch (0 x (hip 1))
i=1 k=2

where P, are  as in  (2 .8).
T h e re  a re  polynomials Pk o f  k - variab les and  w ith  ra tiona l coefficients

s u c h  th a t  f o r  a  coheren t sheaf F  o n  X , th e  k - th  C h e rn  c la s s , ck (F ) ,  is
Pk (Ch° (F) ..... Ch '  (F)) , where Ch i  (F ) is the component of Ch (F ) of degree 2j.

The k- th parabolic Chem class of E*, denoted by ck (E*), is defined to be

c k (E *) := P k (Ch ° (E *) , Ch i (E *) , Chk (E *)) H 21' (X , (3 . 2)

" — Ch(Ox(nt. D i) )  - 9E1 -1 " " (X ,  R) (3.1)
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where Ch i  (E*) is the component of Ch (E * )  of degree 2j.
C learly  w e have  th a t  Ch

°
(E*) =  ran k  E , a n d  par_deg E *  = (c 1 (E * )  U

(L) d - 1 ) n [X] .

L e t  CH*  (X )  deno te  t h e  C how  r in g  o f  c y c le s  o n  X  m odulo rational
equivalence. There is a  natural cycle class map

: CH* (X) Oz R  
H e v e n

(3.3)

Following (3 .1) we may define Ch (E )  E  CH* (X ) O zR  such  that 0(Ch (E*))
=Ch (E * ) .

Let D  b e  a  d iv isor of norm al c ro ss in g . T a k e  a  vector bundle  V on  X
equipped w ith a  logarithmic connection, V , o n  V w hich is singular along D.
( S e e  [ D ] ,  [ K a ]  f o r  t h e  definition o f  a  logarithm ic connection a n d  its
properties.) Let

R(17 , D,) EH') (Di, E n d  ([ `E))

denote th e  residue o f  V  along D .  So locally  around D  th e  connectinn V,
with respect to some suitable trivialization of V, is  of the form

d  + iR  ( V , Di) d z 'z i

where 2', is  a local defining equation for the divisor D i .  Assume that the real
part of any eigenvalue, /1, of any R (V , D i) satisfies the condition that

—1 <Re (2)

F o r  exam ple, given a  f la t  vector bundle  o n  X — D , th e re  is  a  natural
extension of the flat bundle a s  a  logarithmic connection on  X , known as the
Deligne extension, satisfying th e  above eigenvalue cond ition  fo r the  residue
[ K a ] .  T h e  genera lized  eigenspace decom position f o r  R ( V , D i) g iv e s  a
filtra tion  as in  (2 .6 ), and  the  negative o f the  rea l p a rt o f  th e  eigenvalues of
the residue gives a  string of numbers a s  in  ( 2 .7 ) .  Thus w e have a parabolic
struc tu re  on  V . L e t V* denote the parabolic bundle obtained this way.

The Chern classes of V can be expressed in  term s o f the  residues o f  V;
the precise expression can be found in Theorem 3  (page 16) o f  [Oh].

I t  i s  a n  e laborate  b u t  straight - fo rw ard  ca lcu la tion  to  check th a t  the
parabolic Chern character

Ch (V *) = rank  V (3.4)

T he following inductive step  is  necessary  in  th e  computation o f  (3.4) : The
connection V  using local coordinates induces a  logarthmic connection on _eV,
w hich is singular a long D, n (D — D i ) ,  a n d  any  F t;  i s  invarian t under this
connection . T hus F i

; h a s  a n  induced logarithmic connection, and hence any
Fl h a s  a n  induced  logarithm ic  connec tion . S o  w e  m a y  u s e  t h e  above
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mentioned result in  [Oh] to calculate the Chern classes of F .

4. Parabolic ample bundle and parabolic Chern classes

4 a . Positivity of parabolic Chern classes. I n  [BG] it was proved
th a t  t h e  (non triv ia l)  C hern c la s s e s  o f  a n  a m p le  v e c to r  b u n d le  a r e  all
numerically p o s it iv e . In  [FL], extending the above result o f  [BG], the class
of all numerically positive characteristic classes for ample vector bundles was
identified . W e w ill show th a t  (2 .14 ), Lemma 2.17 , and  the  definition (3.1)
combine to g e th e r  to  g iv e  th e  generalizations o f  t h e  a b o v e  re su lts  to  the
parabolic c o n te x t. F o r  that we need to restrict the class of parabolic bundles.

Assumption 4.1. Henceforth we will always impose the following two
conditions on the parabolic bundles that we will consider:

(1) the parabolic divisor is a divisor of normal crossing;
(2) all P i  ( in  (2 .6 ) )  are subbundles of f; IT.

Let t )  denote the collection of all pairs of the form  (X , E * ) where X  is  as
in Section 2 and E* is  a  parabolic ample bundle of rank r  on X  satisfying the
conditions in 4 . 1 .  Take a  weighted homogeneous polynomial of degree d  in  r
variables

PE Q [xi, x2..., xr] (4.2)

w ith the  weight of x i  being i. Following [F L ] w e w ill call P  as numerically
positive for parabolic ample bend les if for any  (X , E*) E

LP (c *) , 2 (E *) , c r(E*) ) E R (4.3)

is actually a strictly positive number.
Let A denote the space of partitions of d  by nonnegative integers bounded

by r.
For A  En, let Pi denote the corresponding Schur polynomial [F L ]. S o

P =  E ciP i (4 . 4)
AEA

where CA a re  rational numbers.

Theorem 4.5. A ny  parabolic Chern class is num erically  positive for
parabolic am ple bund les. M ore generally , th e  characteristic polynomial P  (in
(4  .2 )) is numerically positive for parabolic ample pundles if  and only if  all ci  ( in
(4 .4)) are nonnegative and Pis nonzero (i.e., not all ci are zero).

Proof. Since th e  usual characteristic  c la sse s  o f  a  vector bundle  are
special cases of the parabolic characteristic c lasses (take the zero divisor as
the  parabolic  divisor!) Theorem  I (page 3 6 ) o f  [F L ]  ( th e  result mentioned
above) w ou ld  im ply  tha t i f  P  is num erically  positive  fo r parabo lic  ample
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bund les  then  P  is  n o n z e ro  w ith  a ll c 2  b e in g  n o n n e g a tiv e . T o  p ro v e  the
converse, t a k e  a  nonzero  polynomial P  s u c h  th a t  a l l  c 2  ( in  ( 4 .4 ) )  a r e
nonnegative. T ake  any  (X , E*) E V . W e  w an t to  check that the real number
in  (4 .3 )  is strictly  positive.

A  parabolic  bundle is parabolic  am ple if and on ly  if  th e  new parabolic
struc tu res  obta ined  from  suffic ien tly  sm all p e r tu rb a tio n s  o f  th e  parabolic
weights (keeping the qtuasi-parabolic structure fixed) are all parabolic ample.
Sim ilarly, a  top cohom ology c la ss  on  a  p ro jec tive  m anifo ld  is numerically
(s tr ic t ly )  p o s it iv e  if  a n d  o n ly  if  th e  co h o m o lo g y  c la sse s  obtained from
sufficiently  sm all p e rtu rb a tio n s  o f  i t  a r e  a ll n u m erica lly  s tr ic tly  positive
c la s s e s . From these observations we conclude that in order to prove that P is
numerically positive  for parabolic ample bund les, it is  enough  to  check the
positivity o f  (4 .3 )  only for parabolic bundles with rational parabolic weights.
So we will assume that the parabolic weights of E* are all rational numbers.

Com paring (2.14) a n d  (3 .1 )  it  is  a  straight - forward calculation to check
that

p*ch (E*) =Ch (V) (4. 6)

(W e will omit the computation for the above equality.) Note tha t the equality
(4 .6 )  is equivalent to the equality between Chern classes, namely p c i (E * ) =
c, (V) , fo r all i 0. F rom  L em m a 2 .17  w e know  that the  vector bundle V on
Y is a m p le . Thus, from Theorem I of [FL ] we conclude that

:=-f P(ci (V) , c2 (V) c r  (V )) >0

Now th e  e q u a lity  (4 .6 )  im p lie s  th a t th e  rea l n u m b er i n  ( 4 .3 )  is stric tly
positive (=c/ # G ) .  This completes the proof of the theorem.

Remark 4.7. I n  [ F ] ,  F u l t o n  identified  t h e  s e t  o f  a l l  positive
c h a ra c te r is tic  c l a s s e s  f o r  filtered a m p le  v e c to r  b u n d le s  ( f il te r e d  b y
subbund les). Im ita ting  t h e  a b o v e  argum ent it i s  e a s y  t o  e s t a b l i s h  the
parabolic analogue of this result of Fulton.

4 b .  Examples of parabolic ample bundles. In  [B i2 ] we observed
th a t a  parabolic line bundle L * on X  is parabolic am ple if the first parabolic
Chern class ci (L*) E112 (X , R) is contained in the positive cone in NS (X) ® R
(i.e., the cohomology class is represented by a positive (1,1) - fo rm ). W e w ill
show  how  using  a  c e r ta in  re su lt o f  E . V iehw eg  it is  possible to construct
examples of parabolic ample bundles of h igher ranks. F irst w e w ill describe
the result of Viehweg in question.

L e t f  :  X — M  b e  a  sm ooth surjective m orphism  between connected
sm ooth projective v a r ie t ie s . T h e  re la tiv e  canonical bundle  o n  X  fo r the
projection f  w ill be denoted by K x/m . Let Y b e  an am ple line bundle on X.
T he P roposition  2 .43  (page  75) o f [V ] (which is proved using som e results
of T. Fujita and Y. Kawamata) implies that the direct image on M
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W  :=f*(Y OKx/m)

is  nef. (From the Kodaira vanishing theorem all the  higher direct images of
(S) Kx/m vanish, a n d  hence W  is  loca lly  free  o n  M; now  observe Remark

2.12.2 in page 59 o f  [V].)
W e now  w ant to show  th a t  W is actually  an am ple vector bundle on M.

Take an ample line bundle on M and a positive integer n  such that the  line
bundle  Y n  f * V  o n  X  i s  a m p le . L e t  h  : M '—* M b e  a  fin ite  surjective
morphism, where M' is  a  connected smooth projective variety, such that there
is  a  line bundle on M ' w ith  Cn = The existence of such a  morphism h
is guaranteed by Lemma 2.1 o f  [BG].

L e t X ' b e  a  component o f  th e  fibe r p roduc t X X T h e  obvious
projection of X ' to M ' (resp. X ) will be denoted by f  (resp. Replacing f
and Y  by f  and  h * D g f * C*  respectively , in  th e  above m entioned result of
Viehweg and using the projection formula w e get that the  vector bundle h* W

C*  o n  M ' is  nef. (That 1 * Y 0 f—*C*  i s  ample on X ' follows from th e  fact
that the pullback of a  line bundle by a  finite morphism is  ample if and only if
the original line bundle is ample.) Tensor product of an ample line bundle and
a  n e f  bund le  is  a m p le . Since h i s  a  finite morphism and i s  am ple  (C is
ample since is assum ed to  be  am ple), w e conclude that the vector bundle W
is ample.

L et D ' b e  a  d iv iso r o f  norm al crossing o n  M .  Since f  is sm ooth , the
pullback divisor D  := f *D  on X is a lso  a of norm al c ro ssing  d iv iso r. Let L*
b e  a  parabolic am ple line  bundle  o n  X  w ith  parabolic  s truc tu re  along the
divisor D and with rational parabolic weights. Consider the decomposition

D '=  iD ;

of D ' in to  its irreducible  com ponents. L et the  parabolic weight of L * along
f *D; be mi/N, where m i and N are nonnegative integers.

Let h : M'—>Al be a  Kawamata cover (as in Section 2) w ith Galois group
G such that h*D k iN(h *D) r e d . C o n s id e r  the fiber product

:= X x m m,

The obvious projection of Y onto X is clearly a Galois cover with the same Galois
group G .  There is an orbifold line bundle Y on Y  (constructed as in Section 2)
which corresponds to the parabolic line bundle L .  S in c e  L *  is assumed to be
parabolic ample, from Lemma 2.17 we get that the line bundle Y is ample on Y.

The obvious projection of Y onto M' will be denoted by f  L e t  K yim ,  denote
the relative canonical bundle on Y for the (smooth) p ro je c tio n f  Earlier we saw

that the amplitude of Y implies that the direct image on M', namelyf * (TOKy /m
, ),

is a m p le . Clearly this direct image is an orbifold bundle for the Galois action of
G on M '.  We may apply the construction (2.14) to the orbifold bundle 7*  (Y®



Parabolic bundles 607

K ym e). Now Lemma 2.18 implies that the parabolic bundle on M obtained this
w ay (w hich  has a  parabolic structure  along D ') is actually  parabolic  ample.
(This parabolic bundle can be directly constructed without using the covering h
(i.e., using just L* and !), bu t we will need the covering h in order to be able to
conclude that th e  parabolic  bundle  is actually  ample.)

4e. Unitary local systems. Let E* be a parabolic stable bundle with
rational weights (Definition 2 . 4 ) .  Assume the following vanishing of parabolic
Chern classes:

ci (E*) = 0 = cz (E*)

Proposition 2 .16  sa y s  th a t th e  corresponding orbifold bundle  V  i s  orbifold
s ta b le .  From  th e  eq u a lity  (4 .6 )  we conclude that

ci ( V) = 0 =c2 (V)

So there is a unique unitary flat connection on V, which is left invariant by the
action of the orbifold group G on V (i.e., the connection operator commutes with
the action of G), and it is irreducible for the action of G  (i.e., there no proper
nonzero orbifold subsheaf of V which is left invariant by the connection) ( [S1],
p a g e  878, T heorem  1 ,  Proposition  3 . 4 ) .  L e t  V d e n o te  th is  f la t  unitary
connection on V.

Since the restriction of V to  Y- 5  is the pullback of the restriction of E to
X — D, the  G invariance of the connection V im plies tha t V would induce an
unitary  flat connection on  the  restric tion  of E to  X D .  L e t  V denote this
connection on the restriction of E to X D .  T h e  G - irreducibility o f  V would
im ply that V is actually an irreducible connection in the usual s e n s e .  Clearly,
this connection V  does no t in  general extend across D; b u t it ex tends as a
logarithmic connection on  E.

The holonomy o f  r around a component D, is a kiN - th root of the identity.
Indeed, the k,N- th m ultiple of the loop in  X — D, around D i l if t s  a s  a  loop in
Y- 5 —  a consequence of the fact thatp * Di=kiNi5, —  hence the ki N- th power of
the holonomy of r along the loop around D i must be the identity. Exam ining the
construction of V from E* , it is easy to deduce that the eigenvalues of the above
holonomy a re  actually of the  form exp (27ri,/ - 1m id N )  (recall that al=m idN).
More precisely, the  residue o f  r (defined in Section 3 )  along the  divisor D,
preserves the flag (2 .6), and on the graded piece, F i,/f1+1 , this residue acts as
multiplication b y  — aj.

Conversely, let E*  be a parabolic bundle with rational parabolic weights and
le t  V ' be an irreducible unitary flat connection on the restriction of E to X D ,
such that its residue along any D i has the above property -  that it preserves the
f la g  (2 .6 )  a n d  it  a c ts  o n  FVF1+1 as m ultiplication b y  — a l

./. Consider the
induced connection on the restriction o f V to  Y- 5 .  T his connection extends
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across 15, and we get an unitary flat connection on V which is invariant under the
action of G on V and it is G - irreduc ib le . S o  V is orbifold stable, and ci ( V) =0,
fo r  any i 1.

W e p u t down th e  above observations in  the  form  o f  th e  following:

Theorem 4.8. Let E* be a parabolic stable bundle with rational parabolic
weights such that it satisfies the following two conditions: (1) A ssumption 4.1 holds;
and (2)

(E*) = 0 = c2 (E*) (4 . 9)

Then E adm its a unique irreducible flat unitary connection outside the parabolic
divisor such that the residue along any component of the parabolic divisor satisfies the
above condition. Conversely, let E* be a Parabolic bundle with rational parabolic
weights such that E admits an rreducible flat unitary connection outside the parabolic
divisor and the residue along any component of the parabolic divisor satisfies the above
condition. T hen E*  must be a parabolic stable bundle satisfy ing (4 .9).

In the rest of this section we will always assume that the parabolic weights
of E*  a r e  rational numbers, and  that E*  is  parabo lic  stable satisfying (4.9).

L et S2§' (log D ) denote th e  sheaf o f logarithmic forms on X  [D, page 72,
Definition 3 . 1 ] .  R ecall that there  a  na tu ra l residue map

: Q1 (log D) S2t, (4.10)

such  tha t th e  kernel of i s  Q .
Let E *  be a  parabolic bundle (as i n  ( 2 .9 ) ) .  F o r some i E {1, n )  the

num ber a l  m ay be  z e ro . L e t  a l= 0  for j-=1, 2, m .  Define

m _
E  := n LIÇE (4.11)

to be the vector bundle on X  (the subsheaves T5 were defined in  ( 2 .8 ) ) .  If all

the  a l  a re  nonzero, then E=E.
For k consider the vector bundle S-21 (log D) OE on X .  Let 521 (log D)

(E) denote the subsheaf of it generated together by QI0E and Q1 (log D) OE
Clearly Q1 (log D) (E) is locally free on X, and it coincides with Qik (log D) ®E if
a ll a ll a re  nonzero.

In  Lemma 4 .1 1  and  Corollary 4 .14  o f  [B i2 ] w e proved that

(P* (Q 0 0 ) G = S21 (log D) (E) (4.12)

(The orbifold bundle V corresponds to E*.) Since p is a finite covering morphism,
fo r any coherent sheaf F  on  Y  and  any q O, t h e  following equality holds

Hq (Y = Hq (X , p*F)
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The group G has acts naturally on the bundle S-60v; so it has an induced action
o n  i ts  cohomology Hq (Y, 52 /{ggV).

Let r) : G Aut (p* (Q1, 0 v) ) denote the natural homomorphism induced by
the action of G on Qky 0 V .  The inclusion of the sheaf of invariants, (p* (Q1, 0
V )) G , in  p*(Q 0 V )  h a s  a  n a tu ra l sp littin g  g iv e n  b y  th e  kerne l of the
endomorphism

E  -0- (g) E  II
°
 (X , End (p* (Q ,0v)))

a.c

N ow  using (4 .12) w e get that

Hq ( Y, S2 /1, E )  G -=1-1q (x , p* (S-210v)G) = (x, SPI (log D) (E)) (4.13)

Let g denote the sheaf on X given by the kernel of the logarithmic connection

E 05 -6  (log D)

The restriction of g to X D  is  the local system given by the (restriction of the)
connection V. L e t  "17  denote the local system on Y given by the connection V.
So,

IP (Y, V) G  = H q (X, g) (4.14)

Since 17 is  an  unitary local system, its cohomology, H*  (Y, ,  has Hodge
decomposition a n d  Lefschetz decom position. T h e  fo llo w in g  is  t h e  Hodge
decomposition:

H' (Y,1/) = H' ( 7 ,560v) (4.15)
j+k =4

Define (T) :=c 1 (f) E H ' (Y, S21., ). The cohomology class acts by multiplication on
the right hand side o f  ( 4 .1 5 ) .  Let Pl (V) CH (Y , 1/) denote the primitive part,
i.e., it is the kernel of the operator given by multiplication by th e  (d — j+ 1 )  - th
power of (T). The operator given by the multiplication by (T)-1 will also be denoted
by T h e  follow ing is th e  Lefschetz decomposition

[d/2] (d—j)
H *  ( Y , p  (V) 0 (4.16)

j= 0  i= 0

T he  pairing

0 1 0 0 2  f  <  @ , > w »

defines a  nondegenerate bilinear form  on P i  ( I / ) .  S o  u s in g  the  decomposition
(4.16) we get a nondegenerate bilinear form on Hi (Y ,17) , which is symmetric or
skew-symmetric depending on whether q is even or odd . S ince  the cohomo logy
class (T) is  an invariant for the action of G  on FP (Y , S21, ) ,  th e  decompositions
(4.15) and  (4.16) are both equivariant for the action G .  Thus we have Hodge
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decomposition and the Lefschetz decomposition for the invariant part H*  (Y ,17) G ,

along w ith a  nondegenerate bilinear form  on it.
Let '174' denote the dual local system . Taking conjugations, in  Qt and the

one fro m  V  to  17*, w e ge t a n  C-antilinear isomorphism

r  : (Y , (Y , Q ®  v*) (4.17)

L et w  :=c i  (L) E H ' (X, Q i) be  th e  cohomology c la ss  o n  X . T h e  above
observations combine together to imply that there is a Hodge decomposition and a
Lefschetz decomposition fo r  g .  In  other words,

Hq (Y  , g) = E H' (X, S211 (log D) (E)) (4.18)
11-k=4

[d/2 ] (d-1)

H* ( y, g) E P (g) w (4.19)
1 = 0  1-0

where P' (g) denotes the subspace of H' (X, g) which is the kernel of the operator
given by the multiplication by (The class w acts by multiplication on
th e  righ t hand  side  o f  (4.18))

Let E : denote the dual parabolic bundle for E . ( T h e  underlying sheaf for
E t: (i.e ., E t) is  the subsheaf of E* which maps any E t , 0< t 1, into ex (— D).
The filtration of E : is defined by the following rule : E  m ap s Es into ex( f (t, s) .
D) , where f ( t ,  s )  i s  th e  sm allest integer than o r  equa l to  t ±s.)

It is easy to check that the parabolic bundle Et corresponds to the orbifold
bund le  V . R ep lac ing  the parabolic bundle E* by E : in the construction of E,

-
the vector bundle on X  thus obtained will be denoted by E .  Let Q i

x  (log D) (P)
denote the vector bundle on X obtained by replacing E* by E : in the construction
o f  Qix  (log D) (El.

T ak in g  G  in v a r ia n ts  o f  b o th  s id e s  o f  (4 .17) w e  g e t  t h e  following
C-antilinear isom orphism  induced by r

y : H0 (X, (log  D ) (f)) (x, (log D) ( E l )
( 4 . 2 0 )

As a consequence o f (4.18), (4.19) and (4.20), we obtain the result o f [T]
(see also Theorem 13.5, page 139 o f [E V ]) in the case of elliptic local systems
(i.e., th e  finite  order o f  th e  holonomy around any boundary component).

5. Parabolic Higgs bundles

L e t  Endpar(E) g End ( E )  b e  t h e  coheren t subsheaf consisting o f  all
endomorphisms which preserve the flag (2 .6 ) (for all j.). Similarly, let Endpa r

( f tE )  be the  coherent subsheaf of End (f i*E) on Di w hich preserves the  flag
(2 .6 ). F or a  sec tion  0  o f SPx  (log D)0Endp a r (E), using the  residue m ap in
(4.10) w e have
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residue (D i , E (D i , Endpar (>1E)) (5 . 2)

Using the algebra structure of Endpa r  (E) given by composition, and the exterior
algebra structure of QI (log D), there  is an  algebra structure  on 521(log D )0
Endpa r  (E); the multiplication operation of this algebra w ill be denoted by A .

Definition 5.3. A parabolic Higgs bundle is  a pair of the form  (E* ,
where E* is  a  parabolic bundle (as in  (2 .9 ))  and OEH

°
 (X, Qi(log D) ®Endpar

(E )), satisfying th e  following two conditions
(1) th e  endomorphism, residue (D ,, 0 ), (defined i n  ( 5 .2 ) )  m ap s the

subbundle F  ( in  (2 .6 ) )  into
(2) the section of SU  (log D) 0Endpar (E), namely OA 0 is the zero section.
A paraboljc Higgs field on a parabolic bundle E* is a section 0, as above, such

th a t  (E *, 0 ) i s  a  parabolic Higgs bundle.
A  parabolic Higgs bundle (E* , 0) is defined to be stable if for any proper

nonzero subsheaf, FCE, with E/F torsion-free and 0 (F ).gF052, the following
inequality holds: par_gF*<par_pE*.

The above condition 5.3 (1) can be rephrased as: the residue of 0 along D i is
nilpotent w ith respect to  th e  flag i n  (2.6).

Remark 5.4. The definition of parabolic Higgs that we adapt above is
slightly diffierent from the one given in  [ Y ] .  The residue of a parabolic Higgs
field accord ing  to  [Y ] w ould preserve th e  flag i n  (2 .6 ) , a s  opposed to the
stronger condition here that the Higgs field is actually nilpotent with respect to
the flag.

Following [ s i ] ,  we define an orbifold Higgs field on an orbifold bundle V on
Y (as in section 2) to be a section 0EH ° ( Y, Sry ®End (V)), such that OA 0=0,
and 0  is  an invariant for the action of the orbifold group G  on Qly0End (V).
T h e  p a ir  (V , 0 ) is  ca lled  orbifold stable if  fo r  any proper nonzero  orbifold
subsheaf, F c  V , w ith  V/F torsion - f re e  a n d  0(F ) g FO Q ly , th e  following
inequality holds: ft (F) <,u(V).

Theorem 5.5. For E* an d  V related as in S ection 2, there is a natural
one-to-one correspondence between parabolic Higgs f ield on E* and orbifold Higgs
f ield on V , such that the parabolic stable Higgs bundles correspond to the orbifold
stable Higgs bundles.

Proof. T h is  a g a in  is  a n  easy  com puta tion . L e t End (Et) d e n o te  the
parabo lic  bund le  g iven  by  th e  parabolic  tensor product E t, O E * . I t  i s  a
straight - forward computation to check that the underlying vector bundle for the
parabolic bundle End (E t ) i s  Endpa r (E).

We noted in  (4 .12) th a t  (p*(S21, 0v)) G = Q1 (log D ) (k ) . F irst check that
if in the construction of S-4  (log D) (E) we replace E* by End (E *) , then we obtain
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precisely the subsheaf of S21.(log D)®End(E) defined by the condition that the
residue along D i is  n ilp o te n t w ith  respect to  th e  flag i n  (2.6).

Now replacing E * by End (E*)  in  (4.12) and setting k -=1 , and then taking
the global sections of both sides o f  (4.12), we get an identification between the
parabolic Higgs fields on E * and the orbifold Higgs fields on V. (We used the
fa c ts  th a t  H°

 (Y , End (V) =H° (x, p * (End (V) 0 5 4 ) ) ,  a n d  th a t  the
condition OA 0 = 0  transla tes in to  the condition that OA 0=0.)

Since the G -invariant subsheaves o f V  are  in  one-to-one correspondence
with the subsheaves of E - that the parabolic stable Higgs bundles correspond to
th e  orbifold stab le  bundles, is  im m edia te . T h is  complete th e  proof of the
theorem.

Let E* be a parabolic stable Higgs bundles satisfying ( 4 .9 ) .  Now we may
apply the  Theorem 1  and Proposition 3 .4  o f  [Si] ( p a g e  878), and obtain a
G-irreducible flat Hermitian-Yang-Mills connection o n  V .  T h is  in  turn will
induce a flat Hermitian-Yang-Mills connection on the restriction of E  to X D
w ith som e precies boundary conditions a t  th e  infinity. T h u s  w e  o b ta in  the
analogue of Theorem 4 .8  fo r  parabolic stable  Higgs bundles.

In Section 2 of [S2] (page 23-26) Simpson proved several properties of the
(hyper) cohomologies o f  th e  various complexes associated to a  Higgs bundle
equipped  w ith  a  f la t  Hermitian-Yang-Mills connec tions. For exam ple , the
Lefschetz decomposition (Lemma 2.6), the Kodaira-Serre duality (Lemma 2.5)
a n d  th e  isomorphism between t h e  (hyper) cohomologies o f  a l l  the relevant
complexes (Lemma 2 .2 ) are proved. W e m ay apply these results to the vector
bund le  V .  J u s t  a s  in  S e c tio n  4c, tak ing  G - invariants, w e  m ay  de rive  the
parabolic analogues of a ll the  above mentioned results in  [ S 2 ] .  W e will omit
this routine w ork . W e a lso  observe that the parabolic analogues of the results
on the Hitchin system on the moduli of Higgs bundles proved in [B u ]  a r e  also
valid.
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