Certain unstable modular algebras over the mod p Steenrod algebra

By

Yusuke Каwамото

1. Introduction

Let p be an odd prime. We assume that all spaces are completed at p by means of the Bousfield-Kan [4]. In this paper, a cohomology is taken with \mathbb{Z}/p coefficients unless otherwise specified, and $H^*(-)$ means $H^*(-;\mathbb{Z}/p)$. Let \mathscr{A}_p be the mod p Steenrod algebra and \mathscr{K} denote the category of unstable \mathscr{A}_p -algebras. The objects of \mathscr{K} are called \mathscr{K} -algebras. For a space X, $H^*(X)$ is a \mathscr{K} -algebra. It is known, however, that a \mathscr{K} -algebra need not be of the form $H^*(X)$.

A \mathscr{K} -algebra A is said to be *realizable* if A is represented as the cohomology of some space, that is, there exists a space X with $A \cong H^*(X)$ as \mathscr{K} -algebras. The realizability of an algebra is one of the major problems in the unstable homotopy theory. There are, indeed, many results, such as the Steenrod problem [6], the Cooke conjecture [1], and others.

In this paper we investigate the realizability of the following algebras for $n \ge 1$:

$$A_n = \mathbb{Z}/p[x_{2n}] \otimes \Lambda(y_{2n+1}, z_{2n+2p-1})$$

with Steenrod operation actions $\beta(x_{2n}) = y_{2n+1}$ and $\mathscr{P}^1(y_{2n+1}) = z_{2n+2p-1}$. Our first result gives a necessary condition for A_n to be a \mathscr{K} -algebra:

Theorem A. If A_n is a \mathscr{K} -algebra, then $n = p^i$ for some $i \ge 0$.

By Theorem A, we concentrate on the algebras of the following form:

$$B_i = A_{p^i} = \mathbb{Z}/p[x_{2p^i}] \otimes \Lambda(y_{2p^{i+1}}, z_{2p^{i+2p-1}})$$

with $\beta(x_{2p^i}) = y_{2p^i+1}$ and $\mathscr{P}^1(y_{2p^i+1}) = z_{2p^i+2p-1}$.

Actually, the \mathscr{K} -structure of B_i is uniquely determined for i > 0 (see §2). On the other hand, B_0 has two \mathscr{K} -structures and the realizability of B_0 has completely determined by [2] (see Theorem 3.1). We show the \mathscr{K} -algebra B_1 is realizable as the cohomology of some *H*-spaces (see Proposition 3.2).

Communicated by Prof. A. Kono, April 7, 1997

The author was partially supported by JSPS Research Fellowships for Young Scientists.

Yusuke Kawamoto

The \mathscr{K} -algebra B_2 is realizable as follows: Let X(p) be the *H*-space constructed by Harper [7] so that $H^*(X(p)) \cong \Lambda(u_3, u_{2p+1}) \otimes \mathbb{Z}/p[u_{2p+2}]/(u_{2p+2}^p)$ with $\mathscr{P}^1(u_3) = u_{2p+1}$ and $\beta(u_{2p+1}) = u_{2p+2}$. Then the three-connective cover of X(p) realizes B_2 , namely we have

$$H^*(X(p)\langle 3\rangle) \cong B_2$$

Thus the realizability of A_n is completely determined by the following:

Theorem B. If B_i is realizable as the cohomology of a space, then i=0, 1 or 2.

We shall prove Theorem B using the work of Lannes about his T-functor [8], which has been remarkable in the recent study of unstable homotopy theory.

This paper is organized as follows: In §2 and §3, we prove Theorem A and show the realizability of B_1 , respectively. §4 is devoted to the proof of Theorem B.

The author would like to thank Professors Akira Kono, Takao Matumoto, Yutaka Hemmi and Mitsunori Imaoka for their suggestions.

2. Proof of Theorem A

In this section we prove Theorem A, that is, if the algebra A_n with the given Steenrod operation actions is a \mathscr{K} -algebra, then $n = p^i$ for some $i \ge 0$.

First we show that the ideal $I = (y_{2n+1}, z_{2n+2p-1})$ generated by y_{2n+1} and $z_{2n+2p-1}$ is closed under the action of \mathscr{A}_p . If $\alpha \in I$, then $\beta(\alpha)$, $\mathscr{P}^{p^i}(\alpha) \in I$ for $i \ge 0$ since $\beta(y_{2n+1}) = \beta(z_{2n+2p-1}) = 0$ and $(\mathscr{P}^{p^i}(\alpha))^p = \mathscr{P}^{p^{i+1}}(\alpha^p) = 0$. Hence $\mathbb{Z}/p[x_{2n}] \cong A_n/I$ has a \mathscr{K} -structure, and this implies that $n = p^i r$ for some $i \ge 0$ and $r \mid (p-1)$. Thus, to complete the proof, we have only to show that r = 1.

We remark that the generator $x_{2n^{i}r}$ can be taken to satisfy

$$(2.1) \qquad \qquad \mathscr{P}^{p^i}(x_{2p^ir}) = r x_{2p^ir}^{s+1}$$

for s = (p-1)/r. In fact, using the variation of a result of Adams-Wilkerson as in [3, Th. 4.2] (see also [1, Th. 2.1]), $Z/p[x_{2p^{i}r}]$ is isomorphic to $Z/p[t_{2p^{i}}]^{\mathbb{Z}/r}$ with $\mathscr{P}^{p^{i}}(t_{2p^{i}}) = t_{2p^{i}}^{p}$ as \mathscr{K} -algebras, where Z/r acts as ring automorphisms and as the usual multiplication on $t_{2p^{i}}$.

Now we divide the proof into two cases for i>0 and i=0. First assume that i>0. Then, there is an Adem relation

(2.2)
$$\mathscr{P}^{p^{i}}\beta = \mathscr{P}^{1}\beta \mathscr{P}^{p^{i-1}} + \beta \mathscr{P}^{p^{i}}.$$

Using (2.1) and applying the operations of (2.2) on x_{2p^ir} , we have

(2.3)
$$\mathscr{P}^{p^{i}}(y_{2p^{i}r+1}) = (r-1)x_{2p^{i}r}^{s}y_{2p^{i}r+1}$$

For the dimensional reason, we can put $\mathscr{P}^{p^i}(z_{2p^{i_r+2p-1}})=ax_{2p^{i_r}z_{2p^{i_r+2p-1}}}^s$ for some $a \in \mathbb{Z}/p$. Then applying (2.2) to $z_{2p^{i_r+2p-1}}$, we have a=0. Thus

344

Unstable modular algebras

(2.4)
$$\mathscr{P}^{p'}(z_{2p'r+2p-1})=0.$$

When i > 1, there is an Adem relation $\mathcal{P}^p \mathcal{P}^{p^i - p + 1} + \mathcal{P}^1 \mathcal{P}^{p^i} = \mathcal{P}^{p^i} \mathcal{P}^1$, and we apply these on $y_{2p^{i_r+1}}$. Then, using also (2.3) and (2.4), we have $\mathcal{P}^1((r-1)x_{2p^{i_r}}^s y_{2p^{i_r+1}}) = \mathcal{P}^{p^i}(z_{2p^{i_r+2p-1}}) = 0$. Since $\mathcal{P}^1(x_{2p^{i_r}}^s y_{2p^{i_r+1}}) = x_{2p^{i_r}}^s z_{2p^{i_r+2p-1}} \neq 0$, we can conclude that r = 1. When i = 1, applying the operations in the Adem relation $\mathcal{P}^p \mathcal{P}^{p+1} = \mathcal{P}^{2p+1} + \mathcal{P}^{2p} \mathcal{P}^1$ on y_{2pr+1} , we obtain $\mathcal{P}^1 \mathcal{P}^{2p}(y_{2pr+1}) = -(r-1)x_{2pr}^{2s} z_{2pr+2p-1}$. On the other hand, using the Adem relation $\mathcal{P}^p \mathcal{P}^p = 2\mathcal{P}^{2p} + \mathcal{P}^{2p-1}\mathcal{P}^1$, we get $\mathcal{P}^1 \mathcal{P}^{2p}(y_{2pr+1}) = ((r-1)(r-2)/2)x_{2pr}^{2s} z_{2pr+2p-1}$. Thus we also have the result r = 1 in this case, which completes the proof for i > 0.

Next consider the case i=0. Applying the Adem relation

(2.5)
$$2\mathscr{P}^1 \mathscr{B} \mathscr{P}^1 = \mathscr{P}^1 \mathscr{P}^1 \mathscr{B} + \mathscr{B} \mathscr{P}^1 \mathscr{P}^1$$

on x_{2r} , we have

(2.6)
$$\mathscr{P}^{1}(z_{2r+2p-1}) = 2(r-1)x_{2r}^{s}z_{2r+2p-1} - r(r-1)x_{2r}^{2s}y_{2r+1}.$$

We apply (2.5) on y_{2r+1} , and see that $\beta \mathscr{P}^1(z_{2r+2p-1}) = 0$. By (2.6), we also have $\beta \mathscr{P}^1(z_{2r+2p-1}) = 2(r-1)sx_{2r}^{s-1}y_{2r+1}z_{2r+2p-1}$. From these equations, we can conclude that r=1 since $s \neq 0$. Hence we have completed the proof of Theorem A.

3. Realization of B_0 and B_1

By Theorem A, the realizability of A_n is concentrated on the following cases:

$$B_i = A_{p^i} = \mathbb{Z}/p[x_{2p^i}] \otimes \Lambda(y_{2p^i+1}, z_{2p^i+2p-1}) \quad \text{for } i \ge 0$$

with $\beta(x_{2p^i}) = y_{2p^i+1}$ and $\mathscr{P}^1(y_{2p^i+1}) = z_{2p^i+2p-1}$.

First we consider the realizability of B_0 . By (2.6) we have $\mathscr{P}^1(z_{2p+1})=0$, and for the dimensional reason and unstability, we see that the \mathscr{A}_p -actions on B_0 are completely determined except for $\mathscr{P}^p(z_{2p+1})$. Let B(p) be the *H*-space introduced by Mimura-Toda [9] so that $H^*(B(p)) \cong \Lambda(u_3, u_{2p+1})$ with $\mathscr{P}^1(u_3) = u_{2p+1}$, and $B(p)\langle 3; p \rangle$ denote the homotopy fiber of the map of degree p

$$[p]: B(p) \to K(\mathbb{Z},3).$$

Then the following results of Aguadé-Broto-Santos [2] completely determine the realizability of B_0 , by which it turns out that there are just two \mathcal{K} -structures on B_0 :

Theorem 3.1 ([2]). (1) On the *X*-algebra B_0 , $\mathscr{P}^p(z_{2p+1}) = 0$ or $x_2^{p(p-1)} z_{2p+1}$.

(2) If $\mathscr{P}^{p}(z_{2p+1}) = x_{2}^{p(p-1)}z_{2p+1}$, then the *X*-algebra B_0 cannot be realizable as a cohomology of some space.

(3) If $\mathscr{P}^{p}(z_{2p+1})=0$, then the \mathscr{K} -algebra B_{0} is realizable as the cohomology of $B(p)\langle 3; p \rangle$, namely

$$H^*(B(p)\langle 3; p \rangle) \cong B_0.$$

Yusuke Kawamoto

(4) If there is a space X so that $H^*(X) \cong B_0$ as \mathscr{K} -algebras, then $X \simeq B(p)\langle 3; p \rangle$ up to p-completion.

For i > 0, if we impose the unstability condition on B_i , the \mathscr{A}_p -actions on B_i are completely determined except for $\mathscr{P}^{p^i}(y_{2p^i+1})$ and $\mathscr{P}^{p^i}(z_{2p^i+2p-1})$ by dimensional reason. But it follows $\mathscr{P}^{p^i}(y_{2p^i+1}) = \mathscr{P}^{p^i}(z_{2p^i+2p-1}) = 0$ from (2.3) and (2.4). Thus, B_i for i > 0 has a unique \mathscr{K} -structure.

For the realizability of B_1 , we have the following:

Proposition 3.2. The \mathscr{K} -algebra B_1 is realizable as the cohomology of an H-space.

Proof. There is an *H*-space Y(p) satisfying $H^*(Y(p)) \cong \Lambda(u_3, u_{4p-1})$. In fact, $Y(3) = G_2$, the exceptional Lie group, if p = 3. For $p \ge 5$, as a special case of [5], we have an *H*-space Y(p) which contains the cell complex

$$S^3 \cup_{\alpha} e^{4p-1}$$

where $\alpha \in \pi_{4p-2}(S^3) \cong \mathbb{Z}/p$ is the generator. Computing the Serre spectral sequence, we see that the three-connective cover $Y(p)\langle 3 \rangle$ of Y(p) realizes B_1 , namely we have

$$H^{*}(Y(p)\langle 3\rangle) \cong B_1,$$

which completes the proof.

4. Proof of Theorem B

We use the Lannes theory concerning the *T*-functor in the proof of Theorem B. Thus, we recall the theory first. The functor $T: \mathscr{K} \to \mathscr{K}$ is the left adjoint of the functor $H^*(B\mathbb{Z}/p) \otimes -$, that is, there is an adjoint isomorphism $\operatorname{Hom}_{\mathscr{K}}(T(A), B) \cong \operatorname{Hom}_{\mathscr{K}}(A, H^*(B\mathbb{Z}/p) \otimes B)$ for \mathscr{K} -algebras A and B.

For a \mathscr{K} -map $f: A \to H^*(B\mathbb{Z}/p)$, its adjoint restricts to a \mathscr{K} -map $T(A)^0 \to \mathbb{Z}/p$, where $T(A)^0$ is the subalgebra of T(A) of elements of degree 0. The connected component $T_f(A)$ of T(A) corresponding to f is defined by $T_f(A) = T(A) \otimes_{T(A)^0} \mathbb{Z}/p$, and there is a natural \mathscr{K} -map $\varepsilon_f: A \to T_f(A)$.

The evaluation map $e: BZ/p \times \operatorname{Map}(BZ/p, X) \to X$ induces a \mathscr{K} -map e^* , and taking the adjoint of this yields a \mathscr{K} -map $\lambda: T(H^*(X)) \to H^*(\operatorname{Map}(Z/p, X))$. For a map $\phi: BZ/p \to X$, there is a \mathscr{K} -map $\lambda_{\phi^*}: T_{\phi^*}(H^*(X)) \to H^*(\operatorname{Map}(BZ/p, X)_{\phi})$ considering componentwise. Then, by definition, the composite $\lambda_{\phi^*\mathcal{E}\phi^*}$ is induced by the evaluation $e_{\phi}: \operatorname{Map}(BZ/p, X)_{\phi} \to X$ at the base point. The following theorem is due to Lannes:

Theorem 4.1 ([8]). For a map $\phi: B\mathbb{Z}/p \to X$, if $T_{\phi}(H^*(X))^1 = 0$, then $\lambda_{\phi}: T_{\phi}(H^*(X)) \to H^*(\operatorname{Map}(B\mathbb{Z}/p, X)_{\phi})$ is an isomorphism.

Moreover, for each \mathscr{K} -algebra A, T_f can be considered as a functor from $\mathscr{K}(A)$

346

to $\mathscr{K}(T_f(A))$, where $\mathscr{K}(A)$ denotes the subcategory of \mathscr{K} each of whose objects has an A-module structure compatible with its \mathscr{K} -structure.

We also regard $T_f(M)$ as an object of $\mathscr{K}(A)$ through the natural \mathscr{K} -map $\varepsilon_f: A \to T_f(A)$ for any object M of $\mathscr{K}(A)$, and $\varepsilon_f: M \to T_f(M)$ becomes a morphism of $\mathscr{K}(A)$ -algebras. It is well known that T_f is exact, and commutes with suspensions and tensor products.

To prove Theorem B, we need the *T*-functor for B_i . As is known, $H^*(B\mathbb{Z}/p) \cong \Lambda(w_1) \otimes \mathbb{Z}/p[w_2]$ with $\beta(w_1) = w_2$. Now we define a \mathscr{K} -map $f: B_i$ $\to H^*(B\mathbb{Z}/p)$ as $f(x_{2p^i}) = w_2^{p^i}$ and $f(y_{2p^i+1}) = f(z_{2p^i+2p-1}) = 0$.

Proposition 4.2. $\varepsilon_f: B_i \to T_f(B_i)$ is an isomorphism.

Proof. Let $C_i = \mathbb{Z}/p[x_{2p^i}] \otimes \Lambda(y_{2p^i+1})$, and $k: B_i \to C_i$ be the quotient map. Then it is obvious that $k^*: \operatorname{Hom}_{\mathscr{H}}(C_i, H^*(B\mathbb{Z}/p)) \to \operatorname{Hom}_{\mathscr{H}}(B_i, H^*(B\mathbb{Z}/p))$ is an isomorphism. Thus, by the results of Aguadé-Broto-Notbohm [1], $T_f(C_i) \cong T_g(C_i)$ for a non trivial map $g: C_i \to H^*(B\mathbb{Z}/p)$, and $\varepsilon_g: C_i \to T_g(C_i)$ is an isomorphism. Since T_f is exact, we have the following commutative diagram whose horizontal arrows are exact sequences of $\mathscr{H}(B_i)$ -algebras:

Since $z_{2p^i+2p-1}C_i \cong \Sigma^{2p^i+2p-1}C_i$ as $\mathscr{K}(B_i)$ -algebras and T_f commutes with suspensions, we have $T_f(z_{2p^i+2p-1}C_i)\cong z_{2p^i+2p-1}C_i$. Hence we can conclude that $\varepsilon_f: B_i \to T_f(B_i)$ is an isomorphism by the diagram (4.1), which completes the proof.

Proof of Theorem B. We assume that B_i is realizable, that is, $B_i \cong H^*(X)$ for some space X. A result of Lannes [8] implies that there is a map $\phi: BZ/p \to X$ such that $\phi^* = f$, and then the evaluation map $e_{\phi}: \operatorname{Map}(BZ/p, X)_{\phi} \to X$ is a homotopy equivalence by Theorem 4.1 and Proposition 4.2. Let $\iota: BZ/p \to \operatorname{Map}(BZ/p, X)_{\phi}$ be the adjoint of $\phi\omega$, where ω is the multiplication map for the H-structure of BZ/p. We have the following commutative diagram of fibrations:

(4.2)
$$BZ/p = BZ/p \rightarrow EBZ/p \rightarrow B^{2}Z/p$$
$$\downarrow \qquad \downarrow \qquad \parallel$$
$$X \stackrel{e_{\phi}}{\leftarrow} M \rightarrow M_{hBZ/p} \stackrel{j}{\rightarrow} B^{2}Z/p,$$
$$\simeq$$

where $M = \operatorname{Map}(BZ/p, X)_{\phi}$ and $M_{hBZ/p} = EBZ/p \times_{BZ/p} M$ is the Borel construction. We consider the Serre spectral sequence of the bottom fibration whose E_2 -term is given as $E_2^{*,*} = H^*(B^2Z/p) \otimes B_i$.

As is known, $H^*(B^2 \mathbb{Z}/p) \cong \mathbb{Z}/p[\eta_2, \beta \mathscr{P}^{\Delta_j} \beta \eta_2 | j \ge 0] \otimes \Lambda(\beta \eta_2, \mathscr{P}^{\Delta_j} \beta \eta_2 | j \ge 0)$, where

 $\mathscr{P}^{\Delta_j} = \mathscr{P}^{p^j} \cdots \mathscr{P}^1$ and η_2 denotes the fundamental class. We fix the basis Γ of the vector space $H^*(B^2 \mathbb{Z}/p)$ by taking all monomials of η_2 , $\beta \mathscr{P}^{\Delta_j} \beta \eta_2$, $\beta \eta_2$ and $\mathscr{P}^{\Delta_j} \beta \eta_2$ for $j \ge 0$. For the \mathscr{A}_p -actions on indecomposables, by definition and unstability, we have $\mathscr{P}^{p^{j+1}}(\mathscr{P}^{\Delta_j} \beta \eta_2) = \mathscr{P}^{\Delta_{j+1}} \beta \eta_2$ and $\mathscr{P}^1(\mathscr{P}^{\Delta_j} \beta \eta_2) = 0$. Furthermore, we need the following:

Lemma 4.3 ([1]).

(1)
$$\mathscr{P}^{1}(\beta \mathscr{P}^{\Delta_{j}} \beta \eta_{2}) = \begin{cases} 0 & \text{if } j = 0, \\ (\beta \mathscr{P}^{\Delta_{j-1}} \beta \eta_{2})^{p} & \text{if } j > 0. \end{cases}$$

(2)
$$\mathscr{P}^{p^{j+1}}(\beta \mathscr{P}^{\Delta_j} \beta \eta_2) = \beta \mathscr{P}^{\Delta_{j+1}} \beta \eta_2 \quad for \ j \ge 0.$$

(3)
$$\mathscr{P}^{p^{k}}(\mathscr{P}^{\Delta_{j}}\beta\eta_{2}) = \mathscr{P}^{p^{k}}(\beta \mathscr{P}^{\Delta_{j}}\beta\eta_{2}) = 0 \quad for \ k \neq 0, \ j+1.$$

From the diagram (4.2), we have $\tau(x_{2p^i}) = \mathscr{P}^{\Delta_{i-1}}\beta\eta_2 + \delta_{2p^i+1}$ since $\phi^{*}(x_{2p^i}) = w_2^{p^i}$ and $\tau(w_2^{p^i}) = \mathscr{P}^{\Delta_{i-1}}\beta\eta_2$, where τ denotes the transgression and δ_{2p^i+1} is some decomposable element in $H^{*}(B^2 \mathbb{Z}/p)$. From now on, we assume that $i \ge 3$, and deduce a contradiction from this assumption.

We set

$$\theta_{2p^i+2p^2} = (\beta \mathscr{P}^{\Delta_{i-3}} \beta \eta_2)^{p^2} + \mathscr{P}^{\Delta_1} \beta(\delta_{2p^i+1})$$

in $H^{2p^i+2p^2}(\beta^2 \mathbb{Z}/p)$. Since $j^*(\theta_{2p^i+2p^2}) = \mathscr{P}^{\Delta_1}\beta(j^*(\mathscr{P}^{\Delta_{i-1}}\beta\eta_2 + \delta_{2p^i+1})) = 0$, there exists an element of total degree $2p^i + 2p^2 - 1$ which kills $\theta_{2p^i+2p^2}$ in the spectral sequence. On the other hand, we shall show that $\theta_{2p^i+2p^2}$ cannot be killed in the spectral sequence, which causes a contradiction.

First, we remark the following:

Lemma 4.4. When we represent $\theta_{2p^i+2p^2}$ as a linear combination with basis Γ , it must contain the term $(\beta \mathcal{P}^{\Delta_{i-3}}\beta \eta_2)^{p^2}$.

Proof. If $i \neq 4$, then we have the conclusion since we can see that $\mathscr{P}^{\Delta_1}\beta(\delta_{2p^{i+1}})$ does not contain the term $(\beta \mathscr{P}^{\Delta_i - 3}\beta\eta_2)^{p^2}$ by the \mathscr{K} -structure of $H^*(B^2\mathbb{Z}/p)$. Thus we assume that i=4. We set

$$\alpha_{2p^4+1} = (\beta \mathscr{P}^{\Delta_2} \beta \eta_2) (\beta \mathscr{P}^{\Delta_1} \beta \eta_2)^{p^2-p-2} (\mathscr{P}^{\Delta_1} \beta \eta_2) (\beta \mathscr{P}^1 \beta \eta_2),$$

$$\beta_{2p^4+1} = (\beta \mathscr{P}^{\Delta_2} \beta \eta_2) (\beta \mathscr{P}^{\Delta_1} \beta \eta_2)^{p^2-p-1} (\mathscr{P}^1 \beta \eta_2),$$

and

$$\gamma_{2p^4+1} = (\mathscr{P}^{\Delta_2}\beta\eta_2)(\beta\mathscr{P}^{\Delta_1}\beta\eta_2)^{p^2-p-1}(\beta\mathscr{P}^1\beta\eta_2).$$

Then, for the dimensional reason, we can put $\delta_{2p^4+1} = a\alpha_{2p^4+1} + b\beta_{2p^4+1} + c\gamma_{2p^4+1} + \delta_{2p^4+1}$ for some $a, b, c \in \mathbb{Z}/p$, where δ_{2p^4+1} is an element which does not contain

348

the term α_{2p^4+1} , β_{2p^4+1} or γ_{2p^4+1} . We note that $\mathscr{P}^{\Delta_1}\beta(\alpha_{2p^4+1})$, $\mathscr{P}^{\Delta_1}\beta(\beta_{2p^4+1})$ and $\mathscr{P}^{\Delta_1}\beta(\gamma_{2p^4+1})$ contain the term $(\beta\mathscr{P}^{\Delta_1}\beta\eta_2)^{p^2}$ while $\mathscr{P}^{\Delta_1}\beta(\delta_{2p^4+1})$ does not contain this term.

Using $\mathscr{P}^1(x_{2p^4}) = \mathscr{P}^p(x_{2p^4}) = 0$ and the \mathscr{K} -structure of $H^*(B^2 \mathbb{Z}/p)$, we can show that a = b = c = 0 by a routine calculations. Then $\mathscr{P}^{\Delta_1}\beta(\delta_{2p^4+1}) = \mathscr{P}^{\Delta_1}\beta(\delta_{2p^4+1})$ does not contain the term $(\beta \mathscr{P}^{\Delta_1}\beta\eta_2)^{p^2}$, and we have the required conclusion.

For the dimensional reason, the element which hits $\theta_{2p^i+2p^2}$ must have one of the following forms:

$$\lambda_{2p^2-1} \otimes x_{2p^i}, \quad \kappa_{2p^2-2} \otimes y_{2p^i+1}, \quad v_{2p^2-2p} \otimes z_{2p^i+2p-1}.$$

If $i \ge 4$, then any element of the above form cannot hit $\theta_{2p^i+2p^2}$ by Lemma 4.4 and the dimensional reason.

For i=3, the only possible case $\theta_{2p^3+2p^2}$ can be hit is that $\kappa_{2p^2-2} = (\beta \mathscr{P}^1 \beta \eta_2)^{p-1} + \bar{\kappa}_{(2p+2)(p-1)}$ and $\tau(y_{2p^3+1})$ contain the term $(\beta \mathscr{P}^1 \beta \eta_2)^{p^2-p+1}$, where $\bar{\kappa}_{(2p+2)(p-1)} \in H^*(B^2 \mathbb{Z}/p)$ is some element which does not contain the term $(\beta \mathscr{P}^1 \beta \eta_2)^{p-1}$. But we have the following:

Lemma 4.5. When we represent $\tau(y_{2p^3+1})$ as a linear combination with basis Γ , it does not contain the term $(\beta \mathscr{P}^1 \beta \eta_2)^{p^2-p+1}$.

Proof. Since $\tau(y_{2p^3+1}) = \beta \mathcal{P}^{\Delta_2} \beta \eta_2 + \beta(\delta_{2p^3+1})$, it is sufficient to show that δ_{2p^3+1} does not contain the term $(\beta \mathcal{P}^1 \beta \eta_2)^{p^2-p} (\mathcal{P}^1 \beta \eta_2)$. For the dimensional reason, we can put $\delta_{2p^3+1} = d(\beta \mathcal{P}^1 \beta \eta_2)^{p^2-p} (\mathcal{P}^1 \beta \eta_2) + \delta_{2p^3+1}$ for some $d \in \mathbb{Z}/p$. Then we have $\mathcal{P}^p(\tau(x_{2p^3})) = d(\mathcal{P}^{\Delta_1} \beta \eta_2) (\beta \mathcal{P}^1 \beta \eta_2)^{p^2-p} + \mathcal{P}^p(\delta_{2p^3+1})$, where $\mathcal{P}^p(\delta_{2p^3+1})$ does not contain the term $(\mathcal{P}^{\Delta_1} \beta \eta_2) (\beta \mathcal{P}^1 \beta \eta_2)^{p^2-p}$. This implies that d=0 since $\mathcal{P}^p(x_{2p^3}) = 0$, and we have the required conclusion.

Then, this causes a contradiction, and we have completed the proof of Theorem B.

DEPARTMENT OF MATHEMATICS, FACULTY OF SCIENCE, HIROSHIMA UNIVERSITY

References

- J. Aguadé, C. Broto and D. Notbohm, Homotopy classification of spaces with interesting cohomology and a conjecture of Cooke, Part I, Topology 33 (1994), 455-492.
- J. Aguadé, C. Broto and M. Santos, Fake three connected coverings of Lie groups, Duke Math. J. 80 (1995), 91-103.
- [3] J. Aguadé and L. Smith, Modular Cohomology Algebras, Amer. J. Math. 107 (1985), 507-530.
- [4] A. Bousfield and D. Kan, Homotopy Limits, Completion and Localizations, Springer Lecture Notes in Math. 304 (1972).
- [5] G. E. Cooke, J. R. Harper and A. Zabrodsky, Torsion Free Mod p H-spaces of Low Rank,

Topology 18 (1979), 349-359.

- [6] W. G. Dwyer, H. Miller and C. W. Wilkerson, The homotopical uniqueness of classifying spaces, Topology 31 (1992), 29-45.
- [7] J. R. Harper, H-spaces with Torsion, Memoirs Amer. Math. Soc. 223 (1979).
- [8] J. Lannes, Sur les espaces fonctionnels dont la source est le classifiant d'un p-groupe abélien élémentaire, Publ. Math. I. H. E. S. 75 (1992), 135-244.
- [9] M. Mimura and H. Toda, Cohomology operations and the homotopy of compact Lie groups-I, Topology 9 (1970), 317-336.