Certain unstable modular algebras over the $\bmod p$ Steenrod algebra

By
Yusuke Kawamoto

1. Introduction

Let p be an odd prime. We assume that all spaces are completed at p by means of the Bousfield-Kan [4]. In this paper, a cohomology is taken with \boldsymbol{Z} / p coefficients unless otherwise specified, and $H^{*}(-)$ means $H^{*}(-; \boldsymbol{Z} / p)$. Let \mathscr{A}_{p} be the $\bmod p$ Steenrod algebra and \mathscr{K} denote the category of unstable \mathscr{A}_{p}-algebras. The objects of \mathscr{K} are called \mathscr{K}-algebras. For a space $X, H^{*}(X)$ is a \mathscr{K}-algebra. It is known, however, that a \mathscr{K}-algebra need not be of the form $H^{*}(X)$.

A \mathscr{K}-algebra A is said to be realizable if A is represented as the cohomology of some space, that is, there exists a space X with $A \cong H^{*}(X)$ as \mathscr{K}-algebras. The realizability of an algebra is one of the major problems in the unstable homotopy theory. There are, indeed, many results, such as the Steenrod problem [6], the Cooke conjecture [1], and others.

In this paper we investigate the realizability of the following algebras for $n \geq 1$:

$$
A_{n}=\boldsymbol{Z} / p\left[x_{2 n}\right] \otimes \Lambda\left(y_{2 n+1}, z_{2 n+2 p-1}\right)
$$

with Steenrod operation actions $\beta\left(x_{2 n}\right)=y_{2 n+1}$ and $\mathscr{P}^{1}\left(y_{2 n+1}\right)=z_{2 n+2 p-1}$. Our first result gives a necessary condition for A_{n} to be a \mathscr{K}-algebra:

Theorem A. If A_{n} is a \mathscr{K}-algebra, then $n=p^{i}$ for some $i \geq 0$.
By Theorem A, we concentrate on the algebras of the following form:

$$
B_{i}=A_{p^{i}}=\boldsymbol{Z} / p\left[x_{2 p^{i}}\right] \otimes \Lambda\left(y_{2 p^{i}+1}, z_{2 p^{i}+2 p-1}\right)
$$

with $\beta\left(x_{2 p^{i}}\right)=y_{2 p^{i+1}}$ and $\mathscr{P}^{1}\left(y_{2 p^{i}+1}\right)=z_{2 p^{i}+2 p-1}$.
Actually, the \mathscr{K}-structure of B_{i} is uniquely determined for $i>0$ (see $\S 2$). On the other hand, B_{0} has two \mathscr{K}-structures and the realizability of B_{0} has completely determined by [2] (see Theorem 3.1). We show the \mathscr{K}-algebra B_{1} is realizable as the cohomology of some H-spaces (see Proposition 3.2).

[^0]The \mathscr{K}-algebra B_{2} is realizable as follows: Let $X(p)$ be the H-space constructed by Harper [7] so that $H^{*}(X(p)) \cong \Lambda\left(u_{3}, u_{2 p+1}\right) \otimes \boldsymbol{Z} / p\left[u_{2 p+2}\right] /\left(u_{2 p+2}^{p}\right)$ with $\mathscr{P}^{1}\left(u_{3}\right)$ $=u_{2 p+1}$ and $\beta\left(u_{2 p+1}\right)=u_{2 p+2}$. Then the three-connective cover of $X(p)$ realizes B_{2}, namely we have

$$
H^{*}(X(p)\langle 3\rangle) \cong B_{2} .
$$

Thus the realizability of A_{n} is completely determined by the following:
Theorem B. If B_{i} is realizable as the cohomology of a space, then $i=0,1$ or 2.
We shall prove Theorem B using the work of Lannes about his T-functor [8], which has been remarkable in the recent study of unstable homotopy theory.

This paper is organized as follows: In $\S 2$ and $\S 3$, we prove Theorem A and show the realizability of B_{1}, respectively. $\S 4$ is devoted to the proof of Theorem B.

The author would like to thank Professors Akira Kono, Takao Matumoto, Yutaka Hemmi and Mitsunori Imaoka for their suggestions.

2. Proof of Theorem \mathbf{A}

In this section we prove Theorem A , that is, if the algebra A_{n} with the given Steenrod operation actions is a \mathscr{K}-algebra, then $n=p^{i}$ for some $i \geq 0$.

First we show that the ideal $I=\left(y_{2 n+1}, z_{2 n+2 p-1}\right)$ generated by $y_{2 n+1}$ and $z_{2 n+2 p-1}$ is closed under the action of \mathscr{A}_{p}. If $\alpha \in I$, then $\beta(\alpha), \mathscr{P}^{p^{i}}(\alpha) \in I$ for $i \geq 0$ since $\beta\left(y_{2 n+1}\right)=\beta\left(z_{2 n+2 p-1}\right)=0$ and $\left(\mathscr{P P}^{i}(\alpha)\right)^{p}=\mathscr{P P}^{p^{i+1}}\left(\alpha^{p}\right)=0$. Hence $Z / p\left[x_{2 n}\right] \cong A_{n} / I$ has a \mathscr{K}-structure, and this implies that $n=p^{i} r$ for some $i \geq 0$ and $r \mid(p-1)$. Thus, to complete the proof, we have only to show that $r=1$.

We remark that the generator $x_{2 p^{i}}$ can be taken to satisfy

$$
\begin{equation*}
\mathscr{P} p^{i}\left(x_{2 p^{i} r}\right)=r x_{2 p^{i r}}^{s+1} \tag{2.1}
\end{equation*}
$$

for $s=(p-1) / r$. In fact, using the variation of a result of Adams-Wilkerson as in [3, Th. 4.2] (see also [1, Th. 2.1]), $\boldsymbol{Z} / p\left[x_{2 p^{i} r}\right]$ is isomorphic to $\boldsymbol{Z} / p\left[t_{2 p^{i}}\right]^{\boldsymbol{Z} / r}$ with $\mathscr{P}^{p^{i}}\left(t_{2 p^{i}}\right)=t_{2 p^{i}}^{p}$ as \mathscr{K}-algebras, where Z / r acts as ring automorphisms and as the usual multiplication on $t_{2 p^{i}}$.

Now we divide the proof into two cases for $i>0$ and $i=0$. First assume that $i>0$. Then, there is an Adem relation

$$
\begin{equation*}
\mathscr{P} p^{i} \beta=\mathscr{P} \mathcal{P}^{1} \beta \mathscr{P} P^{p^{i}-1}+\beta \mathscr{P} p^{i} . \tag{2.2}
\end{equation*}
$$

Using (2.1) and applying the operations of (2.2) on $x_{2 p^{i r}}$, we have

$$
\begin{equation*}
\mathscr{P p ^ { i }}\left(y_{2 p^{i}+1}\right)=(r-1) x_{2 p^{i} r}^{s} y_{2 p^{i r}+1} . \tag{2.3}
\end{equation*}
$$

For the dimensional reason, we can put $\mathscr{P}^{p^{i}}\left(z_{2 p^{i r}+2 p-1}\right)=a x_{2 p^{i} r}^{s} z_{2 p^{i r}+2 p-1}$ for some $a \in \boldsymbol{Z} / p$. Then applying (2.2) to $z_{2 p^{i}+2 p-1}$, we have $a=0$. Thus

$$
\begin{equation*}
\mathscr{P} P^{i}\left(z_{2 p^{i r}+2 p-1}\right)=0 . \tag{2.4}
\end{equation*}
$$

When $i>1$, there is an Adem relation $\mathscr{P} P^{P} P^{p^{-p+1}}+\mathscr{P}^{1} \mathscr{P}^{i}=\mathscr{P P}^{p^{i}} \mathscr{P}^{1}$, and we apply these on $y_{2 p^{i r+1}}$. Then, using also (2.3) and (2.4), we have $\mathscr{P}^{1}\left((r-1) x_{2 p^{i} y^{2}}^{s} y_{2 p^{i r+1}}\right)$ $=\mathscr{P}^{p^{i}}\left(z_{2 p^{i}+2 p-1}\right)=0$. Since $\mathscr{P}^{1}\left(x_{2 p^{i} r}^{s} y_{2 p^{i r} r}\right)=x_{2 p^{i} r^{s} z_{2 i r+2 p-1} \neq 0 \text {, we can conclude }}$ that $r=1$. When $i=1$, applying the operations in the Adem relation $\mathscr{P}^{p} \mathscr{P}^{p+1}$ $=\mathscr{P}^{2 p+1}+\mathscr{P}^{2 p} \mathscr{P}^{1}$ on $y_{2 p r+1}$, we obtain $\mathscr{P}^{1} \mathscr{P}^{2 p}\left(y_{2 p r+1}\right)=-(r-1) x_{2 p r}^{2 s} z_{2 p r+2 p-1}$. On the other hand, using the Adem relation $\mathscr{P}^{p} \mathscr{P}^{p}=2 \mathscr{P}^{2 p}+\mathscr{P}^{2 p-1} \mathscr{P}^{1}$, we get $\mathscr{P}^{1} \mathscr{P}^{2 p}\left(y_{2 p r+1}\right)=((r-1)(r-2) / 2) x_{2 p r}^{2 s} z_{2 p r+2 p-1}$. Thus we also have the result $r=1$ in this case, which completes the proof for $i>0$.

Next consider the case $i=0$. Applying the Adem relation

$$
\begin{equation*}
2 \mathscr{P}^{1} \beta \mathscr{P}^{1}=\mathscr{P}^{1} \mathscr{P}^{1} \beta+\beta \mathscr{P}^{1} \mathscr{P}^{1} \tag{2.5}
\end{equation*}
$$

on $x_{2 r}$, we have

$$
\begin{equation*}
\mathscr{P}^{1}\left(z_{2 r+2 p-1}\right)=2(r-1) x_{2 r}^{s} z_{2 r+2 p-1}-r(r-1) x_{2 r}^{2 s} y_{2 r+1} \tag{2.6}
\end{equation*}
$$

We apply (2.5) on $y_{2 r+1}$, and see that $\beta \mathscr{P}^{1}\left(z_{2 r+2 p-1}\right)=0$. By (2.6), we also have $\beta \mathscr{P}^{1}\left(z_{2 r+2 p-1}\right)=2(r-1) s x_{2 r}^{s-1} y_{2 r+1} z_{2 r+2 p-1}$. From these equations, we can conclude that $r=1$ since $s \neq 0$. Hence we have completed the proof of Theorem A.

3. Realization of B_{0} and B_{1}

By Theorem A, the realizability of A_{n} is concentrated on the following cases:

$$
B_{i}=A_{p^{i}}=\boldsymbol{Z} / p\left[x_{2 p^{i}}\right] \otimes \Lambda\left(y_{2 p^{i}+1}, z_{2 p^{i}+2 p-1}\right) \quad \text { for } i \geq 0
$$

with $\beta\left(x_{2 p^{i}}\right)=y_{2 p^{i}+1}$ and $\mathscr{P}^{1}\left(y_{2 p^{i}+1}\right)=z_{2 p^{i}+2 p-1}$.
First we consider the realizability of B_{0}. By (2.6) we have $\mathscr{P}^{1}\left(z_{2 p+1}\right)=0$, and for the dimensional reason and unstability, we see that the \mathscr{A}_{p}-actions on B_{0} are completely determined except for $\mathscr{P}^{P}\left(z_{2 p+1}\right)$. Let $B(p)$ be the H-space introduced by Mimura-Toda [9] so that $H^{*}(B(p)) \cong \Lambda\left(u_{3}, u_{2 p+1}\right)$ with $\mathscr{P}^{1}\left(u_{3}\right)=u_{2 p+1}$, and $B(p)\langle 3 ; p\rangle$ denote the homotopy fiber of the map of degree p

$$
[p]: B(p) \rightarrow K(Z, 3) .
$$

Then the following results of Aguade-Broto-Santos [2] completely determine the realizability of B_{0}, by which it turns out that there are just two \mathscr{K}-structures on B_{0} :

Theorem 3.1 ([2]). (1) On the \mathscr{K}-algebra $B_{0}, \mathscr{P}^{p}\left(z_{2 p+1}\right)=0$ or $x_{2}^{p(p-1)} z_{2 p+1}$.
(2) If $\mathscr{P}^{r}\left(z_{2 p+1}\right)=x_{2}^{p(p-1)} z_{2 p+1}$, then the \mathscr{K}-algebra B_{0} cannot be realizable as a cohomology of some space.
(3) If $\mathscr{P}^{p}\left(z_{2 p+1}\right)=0$, then the \mathscr{K}-algebra B_{0} is realizable as the cohomology of $B(p)\langle 3 ; p\rangle$, namely

$$
H^{*}(B(p)\langle 3 ; p\rangle) \cong B_{0}
$$

(4) If there is a space X so that $H^{*}(X) \cong B_{0}$ as \mathscr{K}-algebras, then $X \simeq B(p)\langle 3 ; p\rangle$ up to p-completion.

For $i>0$, if we impose the unstability condition on B_{i}, the \mathscr{A}_{p}-actions on B_{i} are completely determined except for $\mathscr{P}^{1}\left(y_{2 p^{i+1}}\right)$ and $\mathscr{P}^{i}\left(z_{2 p^{i}+2 p-1}\right)$ by dimensional reason. But it follows $\mathscr{P}^{p^{i}}\left(y_{2 p^{i}+1}\right)=\mathscr{P}^{p^{i}}\left(z_{2 p^{i}+2 p-1}\right)=0$ from (2.3) and (2.4). Thus, B_{i} for $i>0$ has a unique \mathscr{K}-structure.

For the realizability of B_{1}, we have the following:
Proposition 3.2. The \mathscr{K}-algebra B_{1} is realizable as the cohomology of an H-space.
Proof. There is an H-space $Y(p)$ satisfying $H^{*}(Y(p)) \cong \Lambda\left(u_{3}, u_{4 p-1}\right)$. In fact, $Y(3)=G_{2}$, the exceptional Lie group, if $p=3$. For $p \geq 5$, as a special case of [5], we have an H-space $Y(p)$ which contains the cell complex

$$
S^{3} \cup_{\alpha} e^{4 p-1},
$$

where $\alpha \in \pi_{4 p-2}\left(S^{3}\right) \cong \boldsymbol{Z} / p$ is the generator. Computing the Serre spectral sequence, we see that the three-connective cover $Y(p)\langle 3\rangle$ of $Y(p)$ realizes B_{1}, namely we have

$$
H^{*}(Y(p)\langle 3\rangle) \cong B_{1},
$$

which completes the proof.

4. Proof of Theorem B

We use the Lannes theory concerning the T-functor in the proof of Theorem B. Thus, we recall the theory first. The functor $T: \mathscr{K} \rightarrow \mathscr{K}$ is the left adjoint of the functor $H^{*}(B Z / p) \otimes$ - , that is, there is an adjoint isomorphism $\operatorname{Hom}_{\mathscr{H}}(T(A), B)$ $\cong \operatorname{Hom}_{\mathscr{K}}\left(A, H^{*}(B Z / p) \otimes B\right)$ for \mathscr{K}-algebras A and B.

For a \mathscr{K}-map $f: A \rightarrow H^{*}(B \boldsymbol{Z} / p)$, its adjoint restricts to a $\mathscr{K}-\operatorname{map} T(A)^{0} \rightarrow \boldsymbol{Z} / p$, where $T(A)^{0}$ is the subalgebra of $T(A)$ of elements of degree 0 . The connected component $T_{f}(A)$ of $T(A)$ corresponding to f is defined by $T_{f}(A)=T(A) \otimes_{T(A)^{0}} Z / p$, and there is a natural \mathscr{K}-map $\varepsilon_{f}: A \rightarrow T_{f}(A)$.

The evaluation map $e: B \boldsymbol{Z} / p \times \operatorname{Map}(B \boldsymbol{Z} / p, X) \rightarrow X$ induces a \mathscr{K}-map e^{*}, and taking the adjoint of this yields a \mathscr{K}-map $\lambda: T\left(H^{*}(X)\right) \rightarrow H^{*}(\operatorname{Map}(Z / p, X))$. For a map $\phi: B \boldsymbol{Z} / p \rightarrow X$, there is a \mathscr{K}-map $\lambda_{\phi *}: T_{\phi \cdot}\left(H^{*}(X)\right) \rightarrow H^{*}\left(\operatorname{Map}(B \boldsymbol{Z} / p, X)_{\phi}\right)$ considering componentwise. Then, by definition, the composite $\lambda_{\phi * \varepsilon \phi *}$ is induced by the evaluation $e_{\phi}: \operatorname{Map}(B Z / p, X) \phi \rightarrow X$ at the base point. The following theorem is due to Lannes:

Theorem 4.1 ([8]). For a map $\phi: B Z / p \rightarrow X$, if $T_{\phi *}\left(H^{*}(X)\right)^{1}=0$, then $\lambda_{\phi *}: T_{\phi+}\left(H^{*}(X)\right) \rightarrow H^{*}\left(\operatorname{Map}(B Z / p, X)_{\phi}\right)$ is an isomorphism.

Moreover, for each \mathscr{K}-algebra A, T_{f} can be considered as a functor from $\mathscr{K}(A)$
to $\mathscr{K}\left(T_{f}(A)\right)$, where $\mathscr{K}(A)$ denotes the subcategory of \mathscr{K} each of whose objects has an A-module structure compatible with its \mathscr{K}-structure.

We also regard $T_{f}(M)$ as an object of $\mathscr{K}(A)$ through the natural \mathscr{K}-map $\varepsilon_{f}: A \rightarrow T_{f}(A)$ for any object M of $\mathscr{K}(A)$, and $\varepsilon_{f}: M \rightarrow T_{f}(M)$ becomes a morphism of $\mathscr{K}(A)$-algebras. It is well known that T_{f} is exact, and commutes with suspensions and tensor products.

To prove Theorem B, we need the T-functor for B_{i}. As is known, $H^{*}(B \boldsymbol{Z} / p) \cong \Lambda\left(w_{1}\right) \otimes \boldsymbol{Z} / p\left[w_{2}\right]$ with $\beta\left(w_{1}\right)=w_{2}$. Now we define a \mathscr{K}-map $f: B_{i}$ $\rightarrow H^{*}(B Z / p)$ as $f\left(x_{2 p^{i}}\right)=w_{2}^{p^{i}}$ and $f\left(y_{2 p^{i}+1}\right)=f\left(z_{2 p^{i}+2 p-1}\right)=0$.

Proposition 4.2. $\quad \varepsilon_{f}: B_{i} \rightarrow T_{f}\left(B_{i}\right)$ is an isomorphism.
Proof. Let $C_{i}=\boldsymbol{Z} / p\left[x_{2 p^{i}}\right] \otimes \Lambda\left(y_{2 p^{i}+1}\right)$, and $k: B_{i} \rightarrow C_{i}$ be the quotient map. Then it is obvious that $k^{*}: \operatorname{Hom}_{\mathscr{*}}\left(C_{i}, H^{*}(B Z / p)\right) \rightarrow \operatorname{Hom}_{\mathscr{F}}\left(B_{i}, H^{*}(B Z / p)\right)$ is an isomorphism. Thus, by the results of Aguadé-Broto-Notbohm [1], $T_{f}\left(C_{i}\right) \cong T_{g}\left(C_{i}\right)$ for a non trivial map $g: C_{i} \rightarrow H^{*}(B Z / p)$, and $\varepsilon_{g}: C_{i} \rightarrow T_{g}\left(C_{i}\right)$ is an isomorphism. Since T_{f} is exact, we have the following commutative diagram whose horizontal arrows are exact sequences of $\mathscr{K}\left(B_{i}\right)$-algebras:

$$
\begin{align*}
& 0 \rightarrow z_{2 p^{i}+2 p-1} C_{i} \rightarrow \begin{array}{c}
B_{i} \\
\\
\\
\\
\end{array} \rightarrow T_{f}\left(z_{2 p^{i}+2 p-1} C_{i}\right) \rightarrow T_{f}\left(B_{i}\right) \rightarrow T_{f}\left(C_{i}\right) \rightarrow 0 . \tag{4.1}
\end{align*}
$$

Since $z_{2 p^{i}+2 p-1} C_{i} \cong \Sigma^{2 p^{i}+2 p-1} C_{i}$ as $\mathscr{K}\left(B_{i}\right)$-algebras and T_{f} commutes with suspensions, we have $T_{f}\left(z_{2 p^{i}+2 p-1} C_{i}\right) \cong z_{2 p^{i}+2 p-1} C_{i}$. Hence we can conclude that $\varepsilon_{f}: B_{i} \rightarrow T_{f}\left(B_{i}\right)$ is an isomorphism by the diagram (4.1), which completes the proof.

Proof of Theorem B. We assume that B_{i} is realizable, that is, $B_{i} \cong H^{*}(X)$ for some space X. A result of Lannes [8] implies that there is a map $\phi: B Z / p \rightarrow X$ such that $\phi^{*}=f$, and then the evaluation map $e_{\phi}: \operatorname{Map}(B Z / p, X) \phi X$ is a homotopy equivalence by Theorem 4.1 and Proposition 4.2. Let $l: B \boldsymbol{Z} / p \rightarrow \operatorname{Map}(B \boldsymbol{Z} / p, X) \phi$ be the adjoint of $\phi \omega$, where ω is the multiplication map for the H-structure of $B \boldsymbol{Z} / p$. We have the following commutative diagram of fibrations:

$$
\begin{array}{cccccc}
B Z / p & = & B Z / p & \rightarrow & E B Z / p & \rightarrow \tag{4.2}\\
B^{2} \boldsymbol{Z} / p \\
\phi \downarrow & \downarrow & \downarrow & & \| \\
X & \stackrel{e}{\phi} & M & \rightarrow & M_{h B Z / p} & \stackrel{j}{\rightarrow} \\
& B^{2} \boldsymbol{Z} / p
\end{array}
$$

where $M=\operatorname{Map}(B Z / p, X)_{\phi}$ and $M_{h B Z / p}=E B Z / p \times{ }_{B Z / p} M$ is the Borel construction. We consider the Serre spectral sequence of the bottom fibration whose E_{2}-term is given as $E_{2}^{* \cdot *}=H^{*}\left(B^{2} Z / p\right) \otimes B_{i}$.

As is known, $H^{*}\left(B^{2} \boldsymbol{Z} / p\right) \cong \boldsymbol{Z} / p\left[\eta_{2}, \beta \mathscr{P}^{\Delta_{j}} \beta \eta_{2} \mid j \geq 0\right] \otimes \Lambda\left(\beta \eta_{2}, \mathscr{P}^{\Delta_{j}} \beta \eta_{2} \mid j \geq 0\right)$, where
$\mathscr{P}^{\Delta_{j}}=\mathscr{P}^{p^{j}} \cdots \mathscr{P}^{1}$ and η_{2} denotes the fundamental class. We fix the basis Γ of the vector space $H^{*}\left(B^{2} Z / p\right)$ by taking all monomials of $\eta_{2}, \beta \mathscr{P}^{\Delta_{j}} \beta \eta_{2}, \beta \eta_{2}$ and $\mathscr{P}^{\Delta_{j}} \beta \eta_{2}$ for $j \geq 0$. For the \mathscr{A}_{p}-actions on indecomposables, by definition and unstability, we have $\mathscr{P}^{j+1}\left(\mathscr{P}^{\Delta_{j}} \beta \eta_{2}\right)=\mathscr{P}^{\Delta_{j+1}} \beta \eta_{2}$ and $\mathscr{P}^{1}\left(\mathscr{P}^{\Delta_{j}} \beta \eta_{2}\right)=0$. Furthermore, we need the following:

Lemma 4.3 ([1]).

$$
\begin{align*}
& \mathscr{P}^{1}\left(\beta \mathscr{P}^{\Delta_{j}} \beta \eta_{2}\right)= \begin{cases}0 & \text { if } j=0, \\
\left(\beta \mathscr{P}^{\Delta_{j-1}} \beta \eta_{2}\right)^{p} & \text { if } j>0 .\end{cases} \tag{1}\\
& \mathscr{P}^{p^{j+1}}\left(\beta \mathscr{P}^{\Delta_{j}} \beta \eta_{2}\right)=\beta \mathscr{P}^{\Delta_{j+1}} \beta \eta_{2} \quad \text { for } j \geq 0 . \tag{2}\\
& \mathscr{P}^{p^{k}}\left(\mathscr{P}^{\Delta_{j}} \beta \eta_{2}\right)=\mathscr{P} P^{k}\left(\beta \mathscr{P}^{\Delta_{j}} \beta \eta_{2}\right)=0 \quad \text { for } k \neq 0, j+1 \text {. } \tag{3}
\end{align*}
$$

From the diagram (4.2), we have $\tau\left(x_{2 p^{i}}\right)=\mathscr{P}^{\Delta_{i-1}} \beta \eta_{2}+\delta_{2 p^{i+1}}$ since $\phi^{*}\left(x_{2 p^{i}}\right)=w_{2}^{p^{i}}$ and $\tau\left(w_{2}^{p^{i}}\right)=\mathscr{P}^{\Delta_{i-1}} \beta \eta_{2}$, where τ denotes the transgression and $\delta_{2 p^{i}+1}$ is some decomposable element in $H^{*}\left(B^{2} Z / p\right)$. From now on, we assume that $i \geq 3$, and deduce a contradiction from this assumption.

We set

$$
0_{2 p^{i}+2 p^{2}}=\left(\beta \mathscr{P} \mathscr{P}^{\Delta_{i}-3} \beta \eta_{2}\right)^{p^{2}}+\mathscr{P}^{\Delta_{1}} \beta\left(\delta_{2 p^{i}+1}\right)
$$

in $H^{2 p^{i}+2 p^{2}}\left(\beta^{2} \boldsymbol{Z} / p\right)$. Since $j^{*}\left(0_{2 p^{i}+2 p^{2}}\right)=\mathscr{P}^{\Delta_{1}} \beta\left(j^{*}\left(\mathscr{P}^{\Delta_{i-1}} \beta \eta_{2}+\delta_{2 p^{i}+1}\right)\right)=0$, there exists an element of total degree $2 p^{i}+2 p^{2}-1$ which kills $0_{2 p^{i}+2 p^{2}}$ in the spectral sequence. On the other hand, we shall show that $\theta_{2 p^{i}+2 p^{2}}$ cannot be killed in the spectral sequence, which causes a contradiction.

First, we remark the following:
Lemma 4.4. When we represent $0_{2 p^{i}+2 p^{2}}$ as a linear combination with basis Γ, it must contain the term $\left(\beta \mathscr{P}^{\Delta_{i-3}} \beta \eta_{2}\right)^{p^{2}}$.

Proof. If $i \neq 4$, then we have the conclusion since we can see that $\mathscr{P}^{\Delta_{1}} \beta\left(\delta_{2 p^{i}+1}\right)$ does not contain the term $\left(\beta \mathscr{P}^{\Delta_{i}-3} \beta \eta_{2}\right)^{p^{2}}$ by the \mathscr{K}-structure of $H^{*}\left(B^{2} Z / p\right)$. Thus we assume that $i=4$. We set

$$
\begin{aligned}
& \alpha_{2 p^{4}+1}=\left(\beta \mathscr{P}^{\Delta_{2}} \beta \eta_{2}\right)\left(\beta \mathscr{P}^{\Delta_{1}} \beta \eta_{2}\right)^{p^{2}-p-2}\left(\mathscr{P}^{\Delta_{1}} \beta \eta_{2}\right)\left(\beta \mathscr{P}^{1} \beta \eta_{2}\right), \\
& \beta_{2 p^{4}+1}=\left(\beta \mathscr{P}^{\Delta_{2}} \beta \eta_{2}\right)\left(\beta \mathscr{P}^{\Delta_{1}} \beta \eta_{2}\right)^{p^{2}-p-1}\left(\mathscr{P}^{1} \beta \eta_{2}\right),
\end{aligned}
$$

and

$$
\gamma_{2 p^{4}+1}=\left(\mathscr{P}^{\Delta^{2}} \beta \eta_{2}\right)\left(\beta \mathscr{P}^{\boldsymbol{A}_{1}} \beta \eta_{2}\right)^{p^{2-p-1}\left(\beta \mathscr{P} \mathscr{P}^{1} \beta \eta_{2}\right) . . . ~}
$$

Then, for the dimensional reason, we can put $\delta_{2 p^{4}+1}=a \alpha_{2 p^{4}+1}+b \beta_{2 p^{4}+1}+c \gamma_{2 p^{4}+1}$ $+\bar{\delta}_{2 p^{4}+1}$ for some $a, b, c \in \boldsymbol{Z} / p$, where $\bar{\delta}_{2 p^{4}+1}$ is an element which does not contain
the term $\alpha_{2 p^{4}+1}, \beta_{2 p^{4}+1}$ or $\gamma_{2 p^{4}+1}$. We note that $\mathscr{P}^{\Delta_{1}} \beta\left(\alpha_{2 p^{4}+1}\right), \mathscr{P}^{\Delta_{1}} \beta\left(\beta_{2 p^{4}+1}\right)$ and $\mathscr{P}^{\Delta_{1}} \beta\left(\gamma_{2 p^{4}+1}\right)$ contain the term $\left(\beta \mathscr{P}^{\Delta_{1}} \beta \eta_{2}\right)^{p^{2}}$ while $\mathscr{P}^{\Delta_{1}} \beta\left(\delta_{2 p^{4}+1}\right)$ does not contain this term.

Using $\mathscr{P}^{1}\left(x_{2 p^{4}}\right)=\mathscr{P}^{p}\left(x_{2 p^{4}}\right)=0$ and the \mathscr{K}-structure of $H^{*}\left(B^{2} Z / p\right)$, we can show that $a=b=c=0$ by a routine calculations. Then $\mathscr{P}^{\Delta^{1}} \beta\left(\delta_{2 p^{4}+1}\right)=\mathscr{P}^{\Delta_{1}} \beta\left(\bar{\delta}_{2 p^{4}+1}\right)$ does not contain the term $\left(\beta \mathscr{P}^{\Delta_{1}} \beta \eta_{2}\right)^{p^{2}}$, and we have the required conclusion.

For the dimensional reason, the element which hits $\theta_{2 p^{i}+2 p^{2}}$ must have one of the following forms:

$$
\lambda_{2 p^{2}-1} \otimes x_{2 p^{i}}, \quad \kappa_{2 p^{2}-2} \otimes y_{2 p^{i}+1}, \quad v_{2 p^{2}-2 p} \otimes z_{2 p^{i}+2 p-1}
$$

If $i \geq 4$, then any element of the above form cannot hit $\theta_{2 p^{i}+2 p^{2}}$ by Lemma 4.4 and the dimensional reason.

For $i=3$, the only possible case $\theta_{2 p^{3}+2 p^{2}}$ can be hit is that $\kappa_{2 p^{2}-2}=\left(\beta \mathscr{P}^{1} \beta \eta_{2}\right)^{p-1}$ $+\bar{\kappa}_{(2 p+2)(p-1)}$ and $\tau\left(y_{2 p^{3}+1}\right)$ contain the term $\left(\beta \mathscr{P}^{1} \beta \eta_{2}\right)^{p^{2}-p+1}$, where $\bar{\kappa}_{(2 p+2)(p-1)}$ $\in H^{*}\left(B^{2} Z / p\right)$ is some element which does not contain the term $\left(\beta \mathscr{P}^{1} \beta \eta_{2}\right)^{p-1}$. But we have the following:

Lemma 4.5. When we represent $\tau\left(y_{2 p^{3}+1}\right)$ as a linear combination with basis Γ, it does not contain the term $\left(\beta \mathscr{P}^{1} \beta \eta_{2}\right)^{p^{2}-p+1}$.

Proof. Since $\tau\left(y_{2 p^{3}+1}\right)=\beta \mathscr{P}^{\Delta_{2}} \beta \eta_{2}+\beta\left(\delta_{2 p^{3}+1}\right)$, it is sufficient to show that $\delta_{2 p^{3}+1}$ does not contain the term $\left(\beta P^{1} \beta \eta_{2}\right)^{p^{2}-p}\left(\mathscr{P}^{1} \beta \eta_{2}\right)$. For the dimensional reason, we can put $\delta_{2 p^{3}+1}=d\left(\beta \mathscr{P}^{1} \beta \eta_{2}\right)^{p^{2}-p}\left(\mathscr{P}^{1} \beta \eta_{2}\right)+\bar{\delta}_{2 p^{3}+1}$ for some $d \in \boldsymbol{Z} / p$. Then we have $\mathscr{P}^{P}\left(\tau\left(x_{2 p^{3}}\right)\right)=d\left(\mathscr{P}^{\Delta_{1}} \beta \eta_{2}\right)\left(\beta \mathscr{P}^{1} \beta \eta_{2}\right)^{p^{2}-p}+\mathscr{P P}^{p}\left(\delta_{2 p^{3}+1}\right)$, where $\mathscr{P}^{p}\left(\delta_{2 p^{3}+1}\right)$ does not contain the term $\left(\mathscr{P}^{\Delta_{1}} \beta \eta_{2}\right)\left(\beta \mathscr{P}^{1} \beta \eta_{2}\right)^{p^{2}-p}$. This implies that $d=0$ since $\mathscr{P}^{p}\left(x_{2 p^{3}}\right)=0$, and we have the required conclusion.

Then, this causes a contradiction, and we have completed the proof of Theorem B.

Department of Mathematics, Faculty of Science, Hiroshima University

References

[1] J. Aguadé, C. Broto and D. Notbohm, Homotopy classification of spaces with interesting cohomology and a conjecture of Cooke, Part I, Topology 33 (1994), 455-492.
[2] J. Aguadé, C. Broto and M. Santos, Fake three connected coverings of Lie groups, Duke Math. J. 80 (1995), 91-103.
[3] J. Aguadé and L. Smith, Modular Cohomology Algebras, Amer. J. Math. 107 (1985), 507-530.
[4] A. Bousfield and D. Kan, Homotopy Limits, Completion and Localizations, Springer Lecture Notes in Math. 304 (1972).
[5] G. E. Cooke, J. R. Harper and A. Zabrodsky, Torsion Free Mod pH-spaces of Low Rank,

Topology 18 (1979), 349-359.
[6] W. G. Dwyer, H. Miller and C. W. Wilkerson, The homotopical uniqueness of classifying spaces, Topology 31 (1992), 29-45.
[7] J. R. Harper, H-spaces with Torsion, Memoirs Amer. Math. Soc. 223 (1979).
[8] J. Lannes, Sur les espaces fonctionnels dont la source est le classifiant d'un p-groupe abélien élémentaire, Publ. Math. I. H. E. S. 75 (1992), 135-244.
[9] M. Mimura and H. Toda, Cohomology operations and the homotopy of compact Lie groups-I, Topology 9 (1970), 317-336.

[^0]: Communicated by Prof. A. Kono, April 7, 1997
 The author was partially supported by JSPS Research Fellowships for Young Scientists.

