J. Math. Kyoto Univ. JMKYAZ)
38-2 (1998), 329-341

Convergence of non-symmetric forms

By

Masanori HINO*

1. Introduction

Study on convergence of bilinear forms on a Hilbert space goes back to
1950’s. Even of late years, some fundamental results have been obtained. For
example, in the case of symmetric forms, it was shown that the strong convergence
of associated resolvent operators is equivalent to so-called the Mosco convergence
of forms (see e.g. [9]). This seems like a useful criterion in application; Kuwae and
Uemura [4,5] recently developed theory of weak convergence of diffusion processes
associated with Dirichlet forms with the aid of the Mosco convergence, which
generalizes former results by using, for instance, the monotone convergence
theorem. In the case of non-symmetric coercive closed forms, Rockner and Zhang
[11] obtained strong convergence of resolvents on L%(R") under weak convergences
of coefficients by a purely analytical method, extending Stroock’s results [13] based
on detailed estimates of the transition densities of the corresponding semigroups.

In this paper, we apply Rockner and Zhang’s argument to more general forms
in an abstract setting, and give necessary and sufficient conditions for strong
convergence of associated resolvents. We might say that these conditions are
variants of the Mosco convergence. The forms we treat are the sum of a coerive
closed form (in a wide sense) and a perturbation part induced by a linear operator
generating a semigroup of good properties. The class of these forms includes both
elliptic cases (coercive closed forms) and parabolic cases (time dependent forms). This
framework is borrowed from Stannat’s paper [12], in which he discussed existence
of Markov processes associated with a little more conditioned forms which were
called generalized Dirichlet forms, including time dependent processes as examples.
We hope that our results will be connected with study of these types of Markov
processes.

The organization of this paper is as follows : in the section 2, we set up a
framework and prove preliminary lemmas. In the section 3, criteria for convergence
are given. In the last section, we give a few examples.

2. Framework

In this section, we follow Section 2 of [12] for the framework, with a little
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modification to fit our context. Let s# be a real Hilbert space with its inner
product (-,') and norm |-|=(-,-)"2. Let ./ be a bilinear form on # with a
domain ¥". ¥  is not necessarily dense in #. The symmetric part & of .o/ is
defined by

~ 1
o (u, v) :=i (L, v)+ A (v,0)}, uve?.

For aeR, set o/, (u,v)=f/(u,v)+ou,v). ., is similarly defined. We suppose that
(«/,¢")is a coercive closed form in a wide sense, that is, for some bound constant 1€ R,

e («/,,7) is a nonnegative definite closed form,

® (of,,7") satisfies the weak sector condition: there exists a sector constant
K>1 such that

| 54 (0, 0)| <Kot 5o 1 (uu) 2l 4 (0, 0)2 for all u,vev .

Equipping with the norm ||, =.7,,,(-,-)"/%, ¥ becomes a Hilbert space. We
denote by #° the closure of ¥ in #, and by P the orthogonal projection from
H to #°. Let v"* be the topological dual of ¥". The identification of #° with
its dual induces the dense and continuous embedding ¥~ < #° < ¥"*. The pairing
between ¥~ and 7™* is expressed by (-,-), the same notation as the inner product
of .

Let A be a linear operator on ¥™* with a domain D(A,7"*). We assume the
following:

® A generates a strongly continuous semigroup {U,} on 7*.

® The restriction of {U,} to ¥ (resp. #°) is a strongly continuous semigroup
on ¥ (resp. a strongly continuous contraction semigroup on #°).

The domain of the generator of {U,|,} is denoted by D(A,¥"). Note that the

adjoint operator (A, D(A, ¥°*)) of (A, D(A, ¥")) also satisfies the conditions above.
Set Hilbert spaces & =7 n D(A, ¥"*) with norm |- | z=(|| - |3+ IA-[3+)'% and

F=9 DA, ¥* with |-|s=("12+IA-]2)"2% It holds that & and % are

dense in ¥, (Au,u)<0 for ue # and (u, Au)<0 for ue % (cf. [12, Remark 2.1]).
For given o/ and A, we define a corresponding form & on # by

oA, v)—(Au,v)  ueF, ve?”
Euv)= | Lu,v)—u,Av) ue¥, veF
0 otherwise.

It should be mentioned that we define &u,v)=00 for u¢?’, even if v=0.
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As usual, we define & ,(u, v)=&(u, v)+ o(u,v) for e R. & has an associated form
& on #° which is obtained by the natural restriction of & to H#°.

Proposition 2.1. For all o> A, there exist unique linear continuous bijections
W, ¥V *>F and W,: ¥ * > % such that

(g,a( Waﬂ u)=£a(u, WJ):(]; u), fe V*, uey .

Further, there exist unique, not necessarily strongly continuous resolvent (G,),-; and
coresolvent (G,),», on # such that

G(H#) = F, G(H#)< F,
E(G fiu)=E(u,G . )=(fiu) for all feH, ue¥", a>A

Besides, G, is adjoint of G,, and (x— A)G,, (x— A)G, are contraction operators. Also,
it holds that

s-lim(x—A)Gu=Pu for ue #.

a— oo

Proof. See [6, Chapter III, Theorem 1.1] for the first assertion. Uniqueness
of G, and G, is proved by a standard argument. When # = #°, we refer to [12,
Proposition 2.6] for the proof of the remaining assertions. To treat the general
case, let G, and G, be the resolvent and the coresolvent of &', respectively. Then
it is easy to check that G,P and G,P are what are wanted as G, and G,, respectively.

Let (I)(u)=sup”w“v.=,é°“,(w,u) for ue %.

Py

Lemma 2.2. For ue %, the following hold.
(i) Ow)</2Kl|ul g,
(i) Nully <D(u),
(iii) | Aully < (K + 1)D(u).

Proof. (i): By definition,

Ou)< sup |, (w,u)l+ sup |(w,Au)|
lIwlly=1 lIwlly=1

<Klully+ | Aully < /2K ul £ .
(i) Nul2 <&,y () < llully D).

(iii): For we ¥,
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W, Au) = 5 4 (W, 1) — &1 (W, 1)
< Klwllylully+ [wl D)
<(K+Dlwlly®w) by (ii).

Hence ||Aully+ <(K+ 1)®(u).

From this lemma, ®(-) defines a norm on % which is equivalent to |-|z. We
set ®(u)=oco for u¢ F for convenience’ sake. We also adopt a convention that for
each norm appeared in this section, the norm of elements which are not in the
domain is oo.

Next we define approximate forms &#, > 1 of & by

EPu,v) =B — W u—(B—NGyu,v)— Mu,v), u,veH,

and set &P(u, v)=&PNu, v) + o(u, v).

Proposition 2.3. (i) &P(u,v)=6,(f—NGau,v)  for ue #, ve?v .
(i) EPuu)=E(B—NGgu, (B—AGgu)+(B—A)u—(B—NGpul>  for ue .
(iii) limy, o8P v)=E(u,v)  for ueF, ve?",
(iv) If supys ;8% \(u,u)< 00, then ue?".

Proof. For (i)~(iii), we refer to [8, Lemma 1.2.11] and [12, Proposition 2.7
(Ill)].(iv): Since &(v,v)>.o/(v,v) for veF and (B—A)G, is contractive, we have

ELL\(,u) =68 ,(B—NGyut, (B—NGga) +(B— ) u—(B—NGyu|* + ul?
> 54 (B— DGy, (B—DGgut) +(B— ) |u—(B— )G pu .

Hence the assumption supys 8¢} ,(u,u) < oo implies that

sup.of 4 (B—NGyu, (B—NGpu)< o0, 2.1
p>A
sup(f—A) [u—(B—2)Gyu|* < oo. (2.2)
p>A

From (2.2), (B—2A)Gsu = u in #. Therefore ue #°. Combining this and (2.1), we
have that ue ¥ by [8, Lemma [.2.12].

Lastly, we define the associated semigroup {7,},»o on . When # =#°, the
definition via the generator is well-known. In general cases, we define 7,f=T/Pf,
where {T}} is the semigroup associated with & on #°°.
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3. Criteria for convergence

Suppose that we are given forms {8"};2, and & on # following the framework
in the section 2 with a uniform bound constant AeR. The operators and the
spaces relating to 8" are represented by supplementing a suffix »n, such as G}, @,
and ¥°,. We emphasize that A is taken independently of » but that the sector
constants of &/”s need not be uniformly bounded.

We introduce the following conditions which are referred to henceforth:

(F1) If a sequence {u,} weakly convergent to u in J# satisfies lim,_ ®"(u,)< o,
then ue v .

(F2) For any sequence {u,} weakly covergent to u in # with u,e¥",, ue¥", and
any weZ, there exists {w,} converging to w strongly in # such that
lim, ., ,&"(w,,u,)=8&(w,u).

(F2') For any sequence {n,}1co and any sequence {u,} weakly convergent in #
to ue¥" which satisfies sup, ®"(,) < 0o, there exists a dense subset € of F
for the topology of # such that every we® has a sequence {w,} converging
to w strongly in s with lim,_,  &"(w,,u) < &(w,u).

(R) G, converges to G, strongly for a> A.

We also define (F1,) (resp. (F1,)) by replacing ®"(u,) by |lu,| £, (resp. |lu,lly,) in (F1),
and (F2;) (resp. (F2)) by replacing ®"(u,,) by [u,,| F, (resp. ||u,,k|l,,"k) in (F2').

Theorem 3.1. (F2)=>(F2'), (F1)(F2')<>(R)<>(F1)(F2).
We state a lemma used in the proof of Theorem 3.1.

Lemma 3.2 (cf. [2, Corollary 1.18]). Suppose that double sequences {u;;}; i.n
c H, {a;;}ijen © R and ue #, aeR satisfy that

s-lim s-limu; ;=u,

i j—oo

lim lim q; ;=a (resp. lim lim a; ;<a).

i—»o0 j—o oo i200 jo o

Then there exists a non-decreasing, divergent sequence {i(j)} such that

s-limug;, ;=u,

j=

lim a;;, ;=a (resp. lim a,;, ;<a).
jo o Jj= o

Proof of Theorem 3.1. (F2)=(F2'). By letting u,=0 for every n in (F2), we
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know that for each we# there exists {w,} converging to w strongly in # such
that w,e ¥, for every n. Since & is dense in ¥", every we ¥~ has the same property
by Lemma 3.2. Take an arbitrary sequence {n,} 1 oo, and {u,} weakly convergent
to u with w,e ", , ue¥". From the observation above, we can take {u,} weakly
convergent to u satisfying u,e¥", and u, =u,. This is enough to show that (F2)
holds.

(F1)(F2') = (R): We follow the argument of Rockner and Zhang [11]. We may
assume that =% by Lemma 3.2. Take fe# and a>A. First we prove that
G’ f converges weakly to G,f in #. Tt suffices to prove that for any sequence
{m} 100 we can extract a subsequence {nm,} such that G«f converges to G, f
weakly. For notational convenience, we shall denote a subsequence of {n,} by the
same symbol. Set u,=G"f Since IIG;'llops(a—M)“, {u,} is weakly relatively
compact in #. Take a subsequence of {n} such that u, converges weakly to
some ue#. It is easy to see that sup,®"(u, )<oo. This implies that ue ¥~ by
(F1). For any we #, by extracting a subsequence if necessary, we can choose {w,}
strongly convergent to w such that w,e¥", and lim,_, ,&"(w,,u,)<&W,u) from
(F2). Since & (w,,u,)=(w,, f), it follows that

0=lim {& (wy., u, ) — (Wi, )} < E(w,u)—(w, f).

k— o0

Hence &,(w,u)>(w, f). By substituting —w for w, this becomes equality. Therefore
(W, 'w,u)=(W, 'w,G,f). Since W, (F)=7"* it follows that u=G,f. We have
proved that G! converges to G, weakly, and as a consequence, G! converges to G,
weakly. In order to prove the strong convergence, it is enough to show that
lim,, |G} f|<|G,f| for any sequence {n}1oo. Let v,=G;f. We can take a
subsequence of {n} (which is denoted by the same symbol as already mentioned)
such that —G!™v, converges weakly to some x in #. Since supkw"“(—é;“v,,k)< 0,
x belongs to ¥~ by (F1). Take {w,} corresponding to the case when —G*v, , x
and G,f are taken as u,, u, and w in (F2'), respectively. We may assume that
w,€ ¥, by further extracting a subsequence of {n,}. Then, taking lim,_, of both
sides of the equation
|l)"k|2 = (vnk ) Unk) + (Wk s T vnk) + (wk > Unye
=(£. GV, ) + E(we, = Glv,) + (Wi, v,,),

nye

we have

lim [0,,)> < — (£, %) + 6G, /. 1) +1Go /> =G, f1*.

k—+ oo

Hence (R) follows.
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(R)y=(F1): Let u,—»u weakly in # and M:=lim,, ®"(u,)<oco. Then
ue #° From Proposition 2.3 (i)(ii), for f> 4,

(B—Mu—(B—DGju,u,)+ (B — HGju,u,)
<& 1(B—DGju, u,)
<O(w,)(B—AGgully,
<O, (B~ DG ju, (B—DGju)'"?
<@"(u,)85 ()
= 0"(u,){(B— W —(B— NG ju, u) +[ul*} 2.

Taking lim,_  of both sides, we have

EP) (u,u)—ul® +(B— NG yu, u) <MEP, (u,u)' .

Hence &%) (u,u)"><{M+/M?+4(ul> —(B— DG,u,u)}/2, which implies that

fim,., 6%} (u,u)<M?. From Proposition 2.3(iv), we obtain that ue¥".
(R)=(F2): Letu,—uweaklyin #,u,e¥ ,,uec? ,andwe. Itholdsthat

s-lim s-lim(B—A)Ggw=w,

p—=o® n—ow

lim lim &2®(w,u,)= lim lim (8—A)w—(B—AG}w,u,)

p—>o0 n=>o0 p— 0 n—r oo

= lim &P(w,u)=&(w, u).

B— o0

Due to Lemma 3.2, we can take a nondecreasing sequence {f,} — oo such that

s-lim (B, — Gy w=w,  lim &7P(w,u,) =8 (w,u).

n-w n-oo
Setting w,=(B,—A)G; w, we have

(w,,u,) = (w,u), "w,,u,)=ETENw,u,) > &,(w,u)  as n— oo.
Therefore, lim,,_,  &"(w,,u,)=8Ew,u).

In conjunction with Lemma 2.2, we have the following corollary.

Corollary 3.3. (i) (F1,)(F2,)=(R).
(i) If sector constants of of™s are taken uniformly bounded, then (F1,)(F2;)<>(R).
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Remark 3.4. Even in the case of symmetric forms, the pair of the conditions

(F1) (F2) (or (F1,)(F2,)) seems like a different type of characterization from the Mosco
convergence.

We state relations to semigroup convergence.

Theorem 3.5. When (R) holds, T} f converges strongly to T,f in # for every
feH#°. The convergence is uniform in any finite interval of t>0. Conversely, if
T7 converges strongly to T, for all te[0,T] for some T>0, then (R) holds.

Proof.  See [3, Chapter IX, Theorem 2.16] when ¥°, and ¥~ are all dense in
. We need easy modification in general cases, which is left to the reader.

4. Examples

Example 4.1 (Coercive closed forms with domains which are not dense). We
refer [8, Chapter II, Section 3] for the terminology. Let E be a separable
Banach space, and p a finite positive measure on the Borel o-field #(E) such that
suppu=E. Let E* be a topological dual of E. Define

'gb-(glc)o:{f(ll,'“’[m)l’neN5f€wa(Rm)’ 11""’lmEE*}’

where C°(R™) stands for the collection of infinitely differentiable functions on R™
the derivatives of which are all bounded. Suppose that there is an infinite dimensional
separable Hilbert space H densely and continuously imbedded in E. For ue #€;,
define H *-valued function Vu on E by

ul(Vu(z), )y =lim{u(z+sh)—u(2)}/s, heH.

s—=0

Define a bilinear form Q on L*(E) by
Ou,v)= f (Vu,Vo)gudu, u,veFE2.
E

We assume that (Q, F¥€y) is closable. For example, this holds when (E, H,p) is
an abstract Wiener space. We denote the closure of (Q, #¥€7°) by (Q,D(Q)). Take
a countable subset {¢;}2, of E* which is a c.o.ns. of H* by the natural inclusion
E*c H* We denote by &, the sub o-field of B(E) generated by {e;;1<i<n},
and define FEF(F,)= F € N {F ,-measurable functions on E}. Let £ *(H *) denote
the space of all bounded linear operators on H * with the operator norm || - ||,,. For
Te P*(H*), T stands for the adjoint operator of . We also define T'=(T+ 7)/2
and T=(T—T)/2.

Suppose that we are given strongly measurable maps o:E— £*(H* and
b:E— H* such that
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(1) For some ¢>0, 6(z)=cl in the form sense for p-a.e.z and
1610p€ LYE), 1645 € L(E).

(i) |bly-€ L2(E).

Define bilinear forms on L2(E) by

E(u, u)=J {(6Vu, Vo)y — (b, Vu)guo}du, u,ve FE€7,
E

E"u,v)=8u,v), uveFE(F,).
Then it is easy to see that there exist constants 1>0, ¢>0, and K>1 such that

cQ(u,u) <& y(u, u),

1624 10 S KE 4 (u,u)' 128, (0,0)' %, for uve FE.

Hence, & and &" are all closable and closures are coercive forms in a wide sense with a
bound constant 4 by a similar way of [8, Section Il.3e)]. The domains of the
closures are denoted by ¥~ and 77, respectively. It holds that ¥, c ¥, < --- =
v < D(Q). & and &, are in accordance with the framework in the section 2, by
considering A=A,=0.

Now, we will show the strong convergence of the corresponding resolvents and
semigroups by checking that (F1,) and (F2;) in the section 3 hold.

(F1,): Let u,—»u weakly in L*E) with lim,, &%, (4,,u,)<oo. Then
lim, ., ,&,+,(u,,u,)<oco. This implies that a subsequence of {u,} converges weakly
to u in ¥ by [8, Lemma 1.2.12]. In particular, ue ¥

(F2,): Let {n}1o0o, u,—>u weakly with sup,&’ (u,,u)<oo, ue¥ and
we¥". Then u, —u weakly in ¥". Since the linear span of {e;; ie N} is dense in
E*, there exists {w,} such that w,e¥, for every k and w,—>w in ¥". (cf. [I,
Proposition 2.10.]) Then in the equation

E (Wi, u) = Ew, u)) + E(w —w,wy),
the first term of the right-hand side tends to &(w, u) as k — oo since there exists w'e ¥~
such that &w,v)=&,, (W', v) for every ve ¥ from the Riesz theorem. The second

term converges to 0 by the sector condition.

Remark 4.2. Since 6" has following another expression
E(u, v)=J {(6,Vu, Vo). — (b, , Vu)guv}du, uve FE€L(F,),
E

where 0,: E—> £*(H*) and b,: E— H* are defined by
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o)=Y EL0()er el F N ehme;,  he H*,

ihj=1
bn = -Z| Eu[(b7 ei)H* l'gl—n]ei ’

{&"} are essentially considered as finite dimensional approximations of & In the
forthcoming paper, this example is applied to the proof of existence of invariant
measures of diffusions with infinite dimensional state spaces.

Example 4.3 (Forms with time-dependent coefficients). Let d>2. Let Q be
an open set of R’, possibly unbounded. We equip R and Q with the Lebesgue
measures, denoted by dtf and dx, respectively. Let C®(Q) be the collection of
functions on Q which are infinitely differentiable with compact support. We
define the Sobolev space V by the completion of C®(Q) with the norm
([olV - Pdx + gl - |%dx)"/?, where V stands for the usual gradient operator and || the
Euclidean norm. We consider that ¥ :=L*R — V) is a subspace of L*(R x Q).
Define a closed bilinear form (Q,%") on L*(R x Q) by

O(u, v)=J dtf (Vu,Voydx, u,ve? .
R o

Suppose that we are given ¢,€ L°(R xQ — (R)*®R"), b,, d,e L. (RxQ - RY, c,
eLi(RxQ), ne Nu{oo} satisfying the following:

(i) There exists >0 such that for all ne Nu{ow}, 6,(t,x)>0I in the form sense
dt®dx-a.e. Here 6, stands for the symmetrization of 5,. Also, {0,} are bounded
in L®(R x Q - (R%)*® RY.

(ii) There exists p>d such that
{b,} and {d,} are bounded in L®(R — (L?+ L*)Q — RY),

{c,} are bounded in L®(R — (L"*+ L°)Q)).

We define bilinear forms ", ne Nu{co} on L*RxQ) by
o "(u, v)=J dtf {(6,Vu,Vv)+(b,,Vuo+(d,,Vo)u+cuvidx, uve? .
R 2
By Sobolev’s lemma, for every >0, ge[2,72%) and ge V,

2/q
<J |g|"dx) sz |Vg|2dx + Cj gldx,
(o) 0 Q

where C is a constant depending only on d, ¢ and ¢g. This implies easily that there
exist constants A>0, ¢>0 and K>1, independent of n such that for every n,
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CQl(u’ u)s*d;(u’ H)SC_ 1Ql(u’ u)’

|2 0| <Ky (uu) 2, (0, 0)2, uve .

Hence («/",7") are all coercive closed forms with bound constant A.

We take £ as A in the section 2, which satisfies the required conditions for any
n. Indeed, the corresponding semigroup {U,} on ¥ *=L*R — V*) is described by
U f(s)=f(s+1), and DA, ¥ ®)={fe ¥ "4 e+ *in the distribution sense}. Then as
in the section 2, corresponding forms &"(ne N) and &:=&* are defined.

Now we further assume the following convergence of coefficients:

6,>0,=:0in LL(RxQ - (R)*®R"), b,>b,=:bin L, (RxQ - R,
¢, Ccp=:c in LL (RxQ), d,»d,=:d in L. (RxQ— RY.

Then strong convergence of associated resolvents and semigroups hold by verifying
(F1,) and (F2;).

(F1,): Let u,—u weakly in L}RxQ) with lim,, .2/, (u,,u,)<o. Then
lim,, ,Q,(u,,u,)<oo. From [8, Lemma 1.2.12], a subsequence of {u,} converges
weakly to v in ¥" and in particular, ue ¥".

(F2}): Let {n}1o0, u,—u weakly with sup,% (4,u)<oo, ue¥". Then
u, —» uweakly in ¥". We take €= C(R — V) (cf. [6, Chapter 1, Theorem 2.1]). We
may assume that o, -0, b, —b, d,—d and ¢, - cdt®dx-ae. by taking a
subsequence if necessary. Take we®, and let / < R be a compact set such that
the support of w is contained in /. Then

|E"(w, uy)) — E(w, )|
=|EM(w, u,) — E(w, u) + E(w, uy, —u))

J dtj (b, —b, Vwhdx
1 Je

J dtj (cn, — WU dx
1 Je

Since (,, —0)Vw — 0 strongly in L*(I x Q - R?), we have that J, - 0 as k > 0. Fix
p'€(d,p). For any >0, we choose a compact set K, = Q such that [,di[q x |Vw|?dx

= +

J dtj (0,, —0)VW, Vi )dx
1 Je

J dt J (d,,—d, Vu )wdx
1 Je

=:J1+J2+J3+J4+J5.

+ + +|E(w, u, —u)|

2
<é¢? and |, {(In\mlwlz""/""'z’dx)"’"z”z"'+(j9\,(t|w|2dx)”2} dt <e?. Below, C, stands

for a constant which is independent of k£ and &¢ We have

1/p’ 12
A SJ {Clq (b, —bl"'dX> (J IVWIde> lllly
I Ke [}
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1/2
+C2”bnk_b”(LP+L°°)(Q)<J |VW|2dx> ”uk”V}dt
Q\Ke

2p" Y12
SCan(uk,“k)llz[{[ <J b, — bl dx) dt} 1wl Il oo ry
I\JK.

+ 1By, — bl (o + Loy Lw(nﬁ:l .

Since sup,|ll1b,, —bll Lokl Loqy< 0, we have that J, -0 by letting k— oo and
¢— 0. Next we have

1p’ 12
J3< J [C4<J \d,, — dl”'dx) (J IVUk|2dX> Iwly
1 K. o

12
+ldy, —dl e+ L°°)(Q)<J W“k|2dx>
Iy

o (p'—2)/2p’ 1/2
X {(J |w)|2Pit - 2)dx> + (J lezdx> }] dt
O\K. 2\K¢
S\ )12
< Qi(uy, uk)llzl:C4{J (J \d,,,—d’ dx) dt} Wyl Leogry
I\Jk.

+ lld,, — d (Lo + L=y ||L°°(n3] .

Letting k —» oo and ¢ — 0, we get that J; » 0. Similarly, we have that J, —» 0. That
Js — 0 follows from the weak convergence of u, in 7"
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