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Cyclic morphisms in the category of
pairs and generalized G-sequences

By

Kee Young LEe* and Moo Ha Woo**

1. Introduction

In [1,2,3], D.H. Gottlieb introduced and studied the evaluation subgroups (or
Gottlieb groups) G,(X) of n,(X). He used the concept of cyclic homotopies in the
definition of Gottlieb groups. Varadarajian [12] transfered the epithet “cyclic” to
the maps rather than homotopies and used the concept of cyclic maps to define a
subset G(A4,X) of I(A4,X) the set of homotopy class of maps from A4 to
X. Furthermore, he used the subset G(4, X) to study the role of cyclic map and
cocyclic map in the set-up of Eckmann-Hilton duality.

Since then, many authors have studied and generalized G,(X), for instance, G.E.
Lang [6], K.L. Lim [8], N. Oda [9], J. Siegel [11], J. Kim and the authors
[S5, 7, 10, 13]. In [5], the second author and J. Kim have generalized G, (X) to
G,(X, A)for a CW-pair (X, A). In [7], the authors introduced the subgroups GX¢(X, A)
of the relative homotopy groups =,(X,A) and showed that for a CW-pair (X,A4),
G,(A), G (X, A) and GR(X, A) make a sequence

i, Ju a
== G,(A) = G(X, A) = GI (X, A) > -+ > GIHX, A) > Go(A) — Go(X, A),

where i, j, and 0 are restrictions of the usual homomorphisms of the homotopy
sequence

@ i

*

e = (A) = m,(X) 3 (X, A) = -+ = mo(A) = 7o(X).

We call this sequence the G-sequence of a pair (X,4). We showed that if the
inclusion i: 4 — X is homotopic to a constant map or has a left homotopy inverse
then the G-sequence of the CW-pair (X, A) is exact. Recently, Oda [9] introduced
the set of the homotopy classes of the axes of pairings as a generalization of the
Varadarajin set G(A4,X) and the generalized evaluation subgroup G*(X, 4) (in [5]).

In this paper, we introduce the concept of “cyclic morphism” as a generalization
of cyclic map and we use this concept to define a set in the category
of pairs. We show that this set is a generalization of all subgroups
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mentioned above, that is, Gottlieb groups G,(X), Varadarajian’s set G(4, X), Oda’s
set G"(4, X), generalized evaluation groups G,(X, A) and relative evaluation groups
GR°'(X,A). Furthermore, we study the conditions for the sets to be homotopy
invariant or groups. We also use the sets to study the role of cyclic morphisms
in the category of pairs. We generalize the concept of G-sequence of a CW-pair
to that of the category of pairs and study the conditions for this new sequence to
be exact. By exactness, we obtain a nice form of computations for the generalized
Gottlieb subsets.

Throughout this paper, all spaces will be connected and of the homotopy type
of CW-complexes. Hence the exponential law of function spaces holds and all base
points denoted by * are nondegenerate.

2. Definitions and Notation

For n=0, let £"4 be the n-th suspension of 4, CA the cone of 4 and
i(A): A > CA the natural inclusion given by i(4)(x)=(x,0). Then we are able to
identify CZ"A4 with £"CA and i(Z"A4) with X"(i(4)) by bringing the last coordinate
forward. So X"4 and CX"A have the co-Hopf structure. Let i{(X"4) be denoted
by i,+1. We denote by T1(4, X) the set of homotopy classes of maps from A4 to
X preserving base point. It is well-known that T1,(4, X)=TI(X"4, X) is a group if
n>1 and is abelian for n>2.

The category of pairs is the category in which the “objects” are maps (4, *) — (B, *)
and a “map” from « to f is a pair of maps (f}, f,) such that the diagram

a

A, - A,

fll lfz

B, - B,
B

commutes [4].

We shall call the maps in this category just “morphisms” to distinguish from maps
between spaces. Two morphisms (f3, ), (g,,8,): o — B are called homotopic if there
is a morphism (H,,H,):ax 1; - f such that H, is a homotopy between f, and g,
and H, is a homotopy between f, and g,, where 1; is the indentity map of the
unit interval [ into iteself.

The set T(a, f) is the set of homotopy classes of morphisms from « to § in the
category of pairs. In particular, IT,(x, f) =TI(X"a, ff) is a group if n=1 and is abelian
for n=2. If a=i,:X" 4 - CX" 'A4 is the natural inclusion, I1(x, f) is denoted by
I1,(4,B) and is called the n-th homotopy group of B rel. A. If B is an inclusion
and 4=S°, then we get the ordinary relative homotopy groups. Furthermore, if
B:*— B, then T1,(4,p)=T11,(4, B) and if f: B — %, then I1,(A4,B)=T11,_ (4, B).

Let Y* be the function space of maps from X to Y with compact open topology,
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(YX; f) the path component of fin Y* and w: Y* - Y be the evaluation map given
by w(f)=f*»). Then w is always continuous map for CW-complexes.
Here we recall several generalizations of Gottlieb groups and cyclic homotopies.

Definition 2.1 ([12]). A map f: 4 — X is said to be cyclic if there eixist a map
H:Ax X — X such that the diagram

H
AXX— X

ok

AVX—XVX
fvi

is homotopy commutative, where j is the inclusion map and V is the folding map.

Definition 2.2 ([12]). G(4, X)={[f]eTl(4, X)| f is a cyclic map}, equivalently,
G(4,X)=w,I1(4, X*), where w:X* > X is the evaluation map. In particular,
G(Z"4, X) is denoted by %,(4, X). Equivalently, w,I1,(4, X*)=%,(4, X).

The subgroup %,(A4, X) is a generalization of G(4, X) and the Gottlieb group
G,(X). In fact, 9(4, X)=G(A4,X) and 4,(S5° X)=G,X).

Definition 2.3 ([7]). A pair map f:(B",S"~ ') — (X, A) is relative cyclic if there
exists a map H:(B"x X,S" ' x A) > (X, A) such that H|g..,=f and H|,.x=1x 4

In fact, for the CW-Pair (X, A), IH:(B"x X,S"~ ! x A) - (X, A) such that H |g.,,=f
and H|,,x=1x., if and only if 3H":(B"x A,8" "' x A) - (X, A) such that H'|.,,=f
and H’ltXA—_—iA’

Definition 2.4 ([7]). GR(X,A)={[/Jen,(X,A)| [ is relative cyclic.}

Definition 2.5. Let h:B— X be a map. A map f:4 > X is called a cyclic
map with respect to h if there exists a map H: A4 x B — X such that the diagram

H
AxB—» X
A
AVB —= XV X
Svh

is homotopy commutative.

In [9], Oda introduced the following set to generalize some of the results on
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the Varadarajin [12].

Definition 2.6 [9]. %"(4,X)={[/1€Tl(4,X)| f is a cyclic map with respect to
h}, equivalently, ¥"(4, X)=w J1(4, X®;h), where (X®;h) means the component of
h in the function space from B to X. In fact, Oda denoted this set h (4 X).

If & is the identity map of X, then the Oda’s set 4"(4, X) is just the Varadarajin
set G(4,X). In particular, we denote ¥"(X"4, X) by %%(4, X) and is equivalent to
the image of w, ; T1,(4, X®;h) - T1,(4, X). The subgroup %"(4, X) is a generalization
of the several subgroups mentioned above. In fact, we have 4}*(4, X)=G(A, X),
ZHS° X)=GNX,B) (in [5]) and (4, X)=%"(4, X).

3. Cyclic morphisms and their homotopy classes in the category of pairs

In this section, we introduce the notion of cyclic morphisms and study the set
of their homotopy classes in the category of pairs.

Definition 3.1. Let h: X —» B, be a map. A map (f}, f>):a — f is called a cyclic
morphism with respect to h if there exists a map (H,,H,):ax 1y — f such that
(H,,Hy)|,=(f1, f2)and (H, H,)|,, =(h, Bh), that is, the following diagram commutes

Sivh
A, VX —» BI,VB,

AzxX — Bz

jT T v
A2VX h— 32 VBz
S2v ph
(H,,H,) is called an affiliated morphism of (f}, f,) with respect to h. If h: B, - B,
is the identity, then (f}, f3) is called just a cyclic morphism.

Remark. 1f B: B, — *is the trivial map, then it is easy to show that (f;,%):0— f
is a cyclic morphism with respect to 4 if and only if f;:4, - B, is a cyclic map
with respect to .

Let i,:S" '—=B" and i,:4— X be the inclusions. Then a pair map
f:(B",S"" ") > (X, A) is relative cyclic if and only if (f|s.-1, f):i, =i, is a cyclic
morphism. So the concept of cyclic morphism is a generalization of relative cyclic
map.
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Definition 3.2. We define the subset %*(a, ) of T1(a, ) as the set of homotopy
classes of cyclic morphisms with respect to A. That is,

Mo, B)={[f1, f,]e (o, B) | (f}, f3) is a cyclic morphism with respect to h}.

We denote 4"(Z"x, B) by %!(«, f), where £"a: "4, — £"4, is the map between two
suspensions induced by a which is called a suspension map. In particular, if
i,:X""'4 -5 CZ""'4 is the natural inclusion, then we denote %"(i,,B) by
%"A,B). Moreover, we denote ¥%(A,B) by 4,(A,p) if h:B, —» B, is the identity
map. 9%,(A,p) is a generalization of GX°(B,,B,) because ¥4,(S°i)=Gr(B,,B,),
where i: B, —» B, are the inclusion.

Define f:(BY,h)— (BX,Bh) by B(g)=PBg, where B:B, - B, is a map and let
w,:Bf > B, and w,:B¥ > B, be evaluation maps. Then (w,,w,):f—p is a
morphism and it induces a map (w,,w,),: (x, f) - (o, p).

Theorem 3.3. Let f: B, —» B, be amap and f:(BX ,h) — (BY , Bh) be a map. Then
(wl s wl)*n(a’ B') = gh(a’ ﬁ)

Proof. Let [f,,f,]€%"(«,B). Then there exists an affiliated morphism
(Hy,Hy):ax13x— B of (f1,f,) wrt. h. Let f; be the adjoint of H; given by
fia)(x)=H{a;,x), where a;e A; and xe X, for i=1,2. Since Bf;=Fo, (f;, /) is a
morphism from o to f. So [f,,f,]eM(xfp). Since [f;,fo]l=[0.fi,0,/3]
=(wy,0,),[f1, 2], we have [f1, fo]€(w,,w,),J1(a, ). Therefore we obtain $"(a, f)
<(wy, ), M(x, f).

Similarly, we have (w,,w,),I1(a, f) = ¥"(o, B).

By Theorem 3.3, if a is a suspension map, then "(a, f) is a group. In particular,
G'(a, f)isa group, forn=1. Itiseasy to prove the following theorem by using lemma.

Lemma 3.4. Let (g,.8,):y —a be a morphism. If (f},f): 0> B is a cyclic
morphism with respect to h, then the composition (fy, f3)°(g,.,8,):y = B is a cyclic
morphism with respect to h.

Theorem 3.5. If (g,.g,):y—0a is a morphism, then the induced map
(g1,82)*: (e, f) = T1(y, B) carries §"(a, B) into G"(y, p).

Lemma 3.6. [If (g,.g,):8—7v is a morphism and (f},f;):0— B is a cyclic
morphism with respect to h, then the composition (g,,8,)°(f1, f3) is a cyclic morphism
with respect to g h.

Proof. Let (H,,H,):ax 14— f be an affiliated morphism of (f},f;). Then
(g.H,,g,H,): ax 1y — vy is an affiliated morphism of (g,,g,) > (f1, f3). It is explained
by the following diagram and the fact that g,ff=yg,;
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Sivh g1vgL

Ale —— BIVBl——> CIVC1

i v v

AIXX —_— Bl e Cl

dxlxl pl ly

A, xX —= B, —= G,

JT VT TV
A,VX —= B,VB, —~ C,VC,
S2vBh g2vg2

Theorem 3.7. If (g,.8,):f—7y is a morphism, then the induced map
(81,82): (o, B) = [N(et, y) carries G"(a, B) into G& (o, y).

If ax1y:4; xX—> A,xX is a cofibration, then %*(a, ) is determined by the
homotopy class of A.

Lemma 3.8. Let ax1y:4,xX—> A, xX be a cofibration and h,h': X — B, be
maps. If h is homotopic to k', then G"(a, f)=%"(a, f).

Proof. 1t is sufficient to show that one of them contains the other. Let
(/1. f>):a— f be a cyclic morphism with respect to A. Then there is an affiliated
morphism (H,,H,;):ax 1y —  with respect to 4 such that the following diagram
are commutative

Sivh
AIVX *’B]VBI

2 '

H,

A xX —= B,

wxt) |s

A, xX —= B,

T

szX ——’BZVBZ
S2v ph

Moreover, since 4 is homotopic to /', there exists a homotopy Ffromhto h’. Define
H{:(A,VX)xI A, xXx0- B,
by
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Hylgxox1=f1s Hiloxxxr=F and Hy |4 «xxo=H;.

Then since the inclusion 4,VX g 4, x X is a cofibration, there is an extention
H,:A,xXxI—B, of H,. Consider the map BH,:A, xXxI— B, and the
following diagram

A xXx0 c > A x XxI

/

axlyxl, ax1lyxl,;

\ A, x X xI

A, x Xx0 S >

Since ax 1y is a cofibration, there exists a map f,:A4,x X xI— B, such that
BH =Hy(ax1yx1;) and H,=H,|,«xx0- Let Hi=H |, «xx; and H,=H,
lazxxx1- Then Hil, «.=f1, }_Iil.x;(:h' _and H£|Azx.=_1'_12|/12x.x1"’ﬁzl,qzx.xo
=f,. Furthermore, Hj(* Xx)=H,(* x,1)=H,(d(*),x,1)=BH (% x,1)=pkh(x). Thus
[flﬁfZ]:[flﬁHélAzX*]egh'(“»ﬁ)'

In Lemma 3.8, (H;,H;) may not be an affiliated morphism of (f;,f,) with
respect to A’ because we can prove only H;|,,., is homotopic to f, rather than
equal. Butifa=i:4, - A, is the inclusion, then we can obtain an affilated morphism
of (fi,f,) with respect to A. So we can get a stronger theorem than Lemma
3.8. In the proof of Lemma 3.8, define

I:lz:AlxXxl Azx*xl—’Bz

by H,=BH,1] f,. Then it is well-defined since SH,(a, x 1)=pf,(a)=/(a). If we
substitute A, for BH, and apply the property of cofibration, then we obtain a map
Hj:A,x X — B, such that H,|,,.,=f,. So (H{,H)) is an affiliated morphism of
(f1, f>) with respect to A'. Thus we have the following theorem.

Theorem 3.9. Let a=i:A, - A, be the inclusion and let h,h':X— B, be
homotopic. Then (f}, f,):0— B is a cyclic morphism with respect to h if and only
if it is a cyclic morphism with respect to h'.

Corollary 3.10. If h,h': X — B, are homotopic, then 9" A, B)=%"(A, p).

Let (f},/>):a— f§ be a morphism. A morphism (g,,g,): 8 — a is called a left
homotopy inverse of (f,,f,) if (g,.g,)°(f;, /) is homotopic to 1,, that is, there
exists a morphism (H,,H,):ax 1; — a such that (H,,H,)|,.o=(g:.£,)° (/1. f3) and
(H,,Hy)|,x,=1,. Similarly, (g,,g,):f — a is called a right homotopy inverse of
(fin f2):a = B if (f1, f3)°(g1.82) is homotopic to 1,. In particular, (f}, f5):a — 8 is
called a homotopy equivalence if it has a right and left homotopy inverse.
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Corollary 3.11. If the morphism (g,,8,):y = a is a homotopy equivalence, then
the induced map (g,,g,)*:%"(x, B) = %"(y, ) is an isomorphism of sets.

Proof. 1t follows from Corollary 3.5 and Corollary 3.10.

Lemma 3.12. Let ax1y: A, xX > A, x X be a cofibration. If the morphism
(81.82):B—7y is a homotopy equivalence, then the induced map (g,,8,): %"« p)
— 48Ny y) is an isomorphism of sets. If « is a suspension map, then it is a group
isomorphism.

Proof. Let (ry,ry):y— f is a homotopy inverse of (g,,g,). Then (r,r,),
carries %&'"(a,y) into % 8"(x, ff) by Theorem 3.7. By Lemma 3.8, we have
gr&ih(y, B)=%"(a, f) and hence this completes the proof.

Theorem 3.13. The subgroup 9,(A,pB) of T1(A,p) is homotopy invariant with
respect to two variables.

Proof. For the first variable, the theorem is true by Corollary 3.11. We show
that it is true for second variable.

Let (g,.g,): 8 — y is homotopy equivalent with homotopy inverse (r,,r,) where
f:B,— B, and y:C, - C,. By Lemma 3.12, (g,,8,),:%.(4.0) = %'(A,y) is an
isomorphism. So it is sufficient to show %8(A4,y)=%,(A4,y). Let [f}, f2]1€ %5 (A,y).
Then there is an affiliated morphism (H,,H,):i,x 15, —y such that (H,, H,)|;
=(/1,/f2) and (H, ‘H2)|’m =(g1,781). Let Hy=H,(lg.-1,xr,) and Hy=Hy(lcgn-14
xry). Then (Hj,H3)|;,=(f1.f2) and (H; aH§)|1Cl=(g|"| v81ry)- So [fy. file
481"1(A,y). Since 48'(A4,y)=%,(A4,y) by Lemma 3.8, we have %'(4,y) = 9,(4,y)
Similarly, 484(A,y) > 9,(A4.7y).

4. A generalization of G-sequence to the category of pairs

Let §:(B,%,15,) — (B, B) be a map given by p(g)=pg and let w,:B," —» B,
and w,:B,% — B, be evaluation maps given by w (g)=g(*» and w,(g)=g'(%
respectively, where * is a base point of B,. Then (w,,w,):f— f8 is a map and it
induces a homomorphism (w, ,®,),:T1,(4, f) > T1,(4, f). By Theorem 3.3, we have
(@, ,0,),1,(4,P)=%,(A.p). Therefore, if f:+— B,, then %,(4,5)=11,(4,B,) and if
B:B, = %, %A, p)=w; 1T, (4, B,")=9,_,(4,B)).

Let f:B, » B, be a map. Then there exists an exact sequence

B, J 8
s nn(A$B])_) nn(A’BZ)—’ n"(A,B) - nn-l(AaBl)—’ B}

where f8, is the induced map, J is explained by the diagram
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1
" '4 —= x —> B,

I2 g,
¥ '4—» B, — B,

and 0 by

g,

I
"4 —» B, —» B,

T

[2
CI" '4 —» B, —»

If f: B, - B, is a map and f§: B,% — B,®' is the map defined by B(g)=fg, then
we have an exact commutative ladder by the naturality

B, J _ 2
s nn(A’BlBl;IBI) - nn(AvBZB‘;B) - I—I"(A,ﬂ) - nn—l(AvBlBl;]Bl) -

@1, w2, (w1.02), [CIW
l l l !
J 2

ﬂt
~—=  I(4,B)) - TI(4,B) - IMA4p - 1I,,4B8) -
By Definition 2.2 and Definition 2.7, we can make a subsequence

B, J @
> G (A,B)) = GN(A,By) = G, (A, B) > %, (A, B)) > -

from the above commutative ladder. We call this sequence G-sequence of f§ rel. A
in the category of pairs.

Theorem 4.1. If 8:B, — B, is null homotopic, then the G-sequence of i rel. A
is exact.

Before we prove the Theorem 4.1, we shall show the following lemma.
Lemma 4.2. If f:B, - B, is null homotopic, then %% A, B,)=T1,(4, B,).
Proof. Since f is homotopic to a constant map c¢: B, — B, such that c(b)= %,

there is a path /:/— B,® from f to ¢. So we have a natural isomorphism
,:T1(4, B, ; ) > T1,(4, B,® ;¢). Moreover, w,/,=w, in the diagram
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"
I,(A4,B,"; p) — T1,(4, B," ;)

w‘l lu),
1

nn(A* BZ’ *) - nn(A’ BzQ*)

where w: B,?" — B, is the evaluation given by w(g)=g(*). Let f:(Z"4, %) - (B,, ¥
be a map. If we define f:(X"4, *) = (B,%, ¢) by fla\b)=fla), then [ fle (A4, B," ;¢)
and w,[f]1=[f1€ll(4, B,;*). So we have w,(I1,(4,B,% ;c)=T1,(4,B,;*). Thus
we have 9%(A4, B,)=T1,(4, B,; #.

Corollary 4.3. If f:B, — B, is null homotopic, then J(I1,(A, B,)) = 4,(A,p).

Proof of Theorem 4.1. Consider the following commutative diagram

8. J _ é
I nn(AﬂBlBl;]lh) - nn(AsBZB‘;B) I I"l,,(A,ﬁ) - nn—l(A’BlBl;lBl) i

l(ol* lwz, ‘(wl,wz)* lwl*

Iz v Py
i {gn(A’Bl) - gg(fLBZ) - gn(A*ﬁ) - gn—I(AaBl) e
I I I T
T T
i nn(A’Bl) - nn(A’BZ) - nn(A’ ﬁ) - nn—-l(A»Bl) e

where B,'=PB,l¢ a8y J/ =Jlss.8y> 0 =0lg, a5 and I's are inclusions.

Since B is null homotopic, f: B,® — B, is null homotopic. Thus B, and fj,
are 0-homomorphisms and J, J are monomorphisms. From this fact, the G-sequence
of B rel. A is exact at 9%(A4,B,). Furthermore, the sequence is exact at %,(4,f)
by Corollary 4.3. We must show that the sequence is exact at 4,_,(4, B,) but it
is sufficient to show that 9(4,(4,8)=%,_,(4,B,). Since J is an epimorphism,
(G4, B) =00, ,0,),(I(A, P =, d1,(A, P)=w, (T, (4, B,")=%,_ (4, B,).

Theorem 4.4. If f:B, —» B, has a left homotopy inverse, then the G-sequence
of B rel. A in the category of pairs is exact.

Before we prove Theorem 4.4, we need to show the following lemma
Lemma 4.5. If B:B, - B, has a left homotopy inverse, then we have
B A% (A, B,)= B (T1,(4, B) "G4, B,).
Proof. Since B(%.(4,B,) < B, (I1,(4,B,))n%iA,B,), it is sufficient to show

that B(%,(A4,B,) > B11,(4,B,))n%4(A,B,). Let y:B,— B, be a left homotopy
inverse of B and [f]ef 1,4, B))N¥%5A,B,). Then there is an element
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[glell,(A4,B,)and amap H:X"A x B, - B, such that . [g]=[f] and the following
diagram commutes homotopically

H
Y"AxB, - B,
) 1Y
¥"AVB, - B,VB,
Ivp

Define H'=yH. Then yHl|g. x, ~7vf and yH| g ~yB ~ 1p,. Thus H' is an
affileated map of yf So y,[f]=[yf]€%.(A4,B,). Furthermore, [g]=y,0,[g]
=7,[/1€9,(4,.B,). So B,[g]l=[/1€p,%,(4.B,)

Corollary 4.6. If B: B, — B, has a left homomtopy inverse y, then y (9%A, B,))
= %,(A,B)).

Proof of Theorem 4.4. Let y:B, —» B, be a left homotopy inverse of f. Then
we have commutative ladder

~i

B, 3
- M,(4,B,%;15) > (A, B," ;) = TL(AB - T,_1(4,B,%;1p) >

—

¥y

l oy, l 2, $ (©1,02), * O1,
- 9,(4,B) Ll YNA.B) - G(Ap) 5 Gni(4,B) -
2 g ' '}

B, @
- nn(A’Bl) - nn(AﬁBZ) - H"(A,ﬁ) - nn—l(A’Bl) -

<
9

~

~
*

where B,/ =Py lg, 48, /' = lasa.8,, 0 =0lg,ap. I's are inclusions, p:B% - B,™
is given by B(f)=pf and 7:B,% — B,® is given by j(g)=yg.

Since the lower sequence is exact and y, f, =1, f, is a monomorphism and so dis a
0-homomorphism. Therefore, the G-sequence is exact at 4,(A4,). By Lemma 4.5,
we have

B%.(A, B)) =B (T1,(4, B\)) nG}(A, B,)=Ker Jn g4, By)=KerJ".

So the G-sequence is exact at 9%(A, B,).

Finally, we show the G-sequence is exact at %,(A4,f). Since yf~ lg,
B~ 1p»,. Let F:B,xI— B, is a homotopy from yB to 15 . Then F:B% xI
— B,®t given by F(f,1)(b)=F(f(b),?) is a homotopy from 7f to 152 . Thus f, is
a monomorphism and J is an epimorphism. Therefore, we have J'(%4%(A,B,))
=9,(A,p)=Kerdn%,(A,f)=Kerd'.



282 Kee Young Lee and Moo Ha Woo
Corollary 4.7. If f: B, = B, has a left homotopy inverse, then we have

gg(A’ BZ);gn(A» Bl)@)gu(/" /3)

v B
Given a differential triple B, - B, — B, with fv=x, there exists a homomorphism

e:11,(4,v) = I1,(A4, B,) given by ¢[ /1, fo]1=( p) S, f>] in the following commutative
diagram

*

I
Zn—IA - BO - %

i,.l \'l lt
CT""'A - B, > B,
f2 B

v B
In particular, if B, — B, — B, is a fibration, then e:I1,(A4,v)—>1I1,(4,B,) is an
isomorphism.
Lemma 4.8. If the following diagram of two differential triples

v B
B, - B, - B

aol all laz

B, - B, - B
v B

is commutative, then we have the following commutative diagram

€

nn(Asv) - nn(AvBZ)
(20.21), l l 22,

nn(A’ "'l) - nn(A$ BIZ)

&

Proof. We can prove the lemma by the following two diagrams

S ao

¥ '4 > B, - B - *

i”l vl lv‘ l
cz""'4 - B, » B, — B,

2 ay

and
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B * *
4 o By » x —

" "l | !

cx"'4 - B, » B, - B,
S2 B a2

Since oy, f1, [21=[* 2B f2). €(%9,20)[f1: [21=[* B2 f2] and a,f=Po,, the

lemma was proved.

B
Theorem 4.9. If B, — B, = B, is a fibration, then we have 9,(A,v)=T1(A4, B,).

Proof. 1t is sufficient to show that ¢lg 4., is an epimorphism. If we define

7:(Bo", 15,2,) = (B;™,v) and f:(B,™,v) - (B,™,c),
v ]
by #(f)=vf and f(g)=Pg. then the triple (Bo®,15.7,)— (B %, v)—(B,%,c) is a
fibration, where ¢ is the constant map. So there exists an isomorphism
£:T1,(A,7) - T1,(A, B,%). Since the diagram

v p
(Bo®, 15,5,) = (B,%,v) = (B,*.0)

@0l ol o2l

v p
(Bo,® - (By.%) — (B,.%

is commutative, we have the following commutative diagram

€

nn(A# ;’) - nn(A3 (BZBov C))

(wo.m1), l l w2,

nn(A’ \') - nn(A’ BZ)

£

By the fact w,, is an epimorphism, we can prove %,(A4,v)=I1(4, B,).

By Theorem 4.9, we have the following corollaries.

v B
Corollary 4.10. If B, — B, — B, is a fibration, then we have the following sequence

Ve By 2
=94, Bo) > G(A, By) > 11,(4,B,) > G, _ (4, By) = -
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This sequence is called the G-sequence of the fibration rel. A in the category

v

B
of pairs. If By— B, — B, is a fibration, we can easily check that the G-sequence

of v is exact if and only if the G-sequence of the fibration in the category of pairs
is exact. Thus if v is null homotopic or has a left homotopy inverse, then the
G-sequence of the fibration in the category of pairs is exact. Especially, if v has a
left homotopy inverse, then we have the following corollary.

o8
Corollary 4.11.  If B, — B, — B, is a fibration and v has a left homotopy inverse,
then we have

9,(4,B,)=%,(4, Bo)®IN,(A4, B,).

Consider the following commutative ladder which consists of G-sequence of the
fibration and the homotopy sequence of the fibration

v

* ﬂt ?
- gn(AvBO) - g:;(A1Bl) - nn(A$BZ) -

| 10 | I, | 1
Vi B, 14
- nn(A* BO) - nn(A’ Bl) - nn(A’ BZ) -

Ve B,
Y,-1(4,Bo) = 9,_\(4,B)) = T1,_,(4,B;) —

l’g—l l'vl!—l ll

* B,
N, 1(4,B)) = 1,_,(4,B)) = T, (4,B,) -

where the I’s are inclusions and 1 is the identity. If the upper sequence (G-sequence
of the fibration rel. A) is exact, then by the theorem of Barratt and Whitehead, we
have the following theorem.

v p
Theorem 4.12. Let B, — B, — B, is a fibration. If v is null homotopic or has

a left homotopy inverse, then we have following long exact sequence

(’2 Vt) vt_’h 6[’* 241,‘;)
. _){qn(A’BO) > nn(A’BO)G—)g;(A’Bl) - nn(AsBl) - gn—l(A’BO) -
v* - "lI -

,_,(4,B)®@%,-(4.B,)
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