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Bénard-Marangoni convection
with a  deformable surface

By

Takao IOHARA

1. Introduction

Thermal convection is often studied by an incompressible fluid model, Boussinesq
equations (see for instance [1]),

(1.1)
1

(ur+u•V u)+V p= Au —  p(T)Vy, div u = 0,
Pr

(1.2) Tr+u-V T=A T.

Here, u =(u, , u2 )  is  th e  vector field of fluid velocity, p  the  pressure  and  T  the
tmperature, a n d  P r  is  a  constan t called th e  Prandtl n u m b er. T he  density p  is
assumed to depend linearly o n  T, p(T)=G—  Ra T ; the constant R a is called the
Rayleigh number.

T he simplest setting o f  these equations fo r the  study of thermal convection
would be: consider the equations in  a  strip region, say 1— 1 <y <01, with boundary
conditions

u =0 (non slip) or pri —(Vu + 0 (stress free)

on y =0,  — 1 and

T= 1 o n  y= — 1 and  T=0 on y=0.

This set of equations a re  to o  sim ple for the study o f  real convection of fluids,
because th is does not take in to  account com plicated  physical effects on  the
boundary . In usual setting of experiments, upper boundary of the fluid is open to
the air and possible to deform from flat shape.

In this paper, we will be concerned with the equations (1.1) and (1.2) on moving
two-dimensional region no= {  -  I <y <ti(x ,t), — oo<x < oo}  w ith  th e  following
boundary conditions. O n the  bottom boundary B=fy= — 11, we consider

(1.3) u=0 o n  B,

(1.4) T= 1 o n  B.
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The moving boundary F(t) subject to "kinematic boundary condition" : normal
speed of F(t) a t x  equals to u  Trir , where IT is the outward unit normal vector of
F(t). In  terms of ri(x,t), this can be written as

(1.5) rit =u2 —u1 x.

O n the  moving upper boundary F(t)= {y = ti(x, t)}, we consider stress balance
relation:

(1.6) (p — Pair)if —(V u +Tu). V )a r o n  r(t).

Here, the constant Pa i r  is  the pressure of the air, l i s  th e  tangential unit vectors of
the boundary and H is the curvature of the deformable surface ( ) . We assumevi x
tha t the surface stress a  is given by

a :=a(T)+ViT.VuT,

w here the surface tension coefficient  a ( T )  is  assum ed  to  depend  on ly  on  the
tem perature. The second term represents a dissipation effect, called surface viscosity,
present on the free surface. We consider heat balance on F(t) given as

(1.7) • VT+ Bi T = — 1 o n  F(t),

where Bi is a constant.
The equations (1.1)—(1.7) form a  complete system for unknown functions 11, u,

T and p  supplemented with initial conditions for 1/, u and T .  These equations have
an  equilibrium solution

Ra ,
(1.8) ;7=0 , u =0 , T =r:=- y,

2

which represents the purely conducting state. We will be concerned with the existence
of solutions of the equations (1.1)—(13) for initial data near this equilibrium, assuming
that initial conditions are periodic in horizontal direction.

The above system of equations contains as an  unknown variable the shape of
deformable surface, so this is a free boundary problem. Beale proved an existence
result for an incompressible fluid layer with a  deformable boundary. In  his paper
[B eale], he used a transform ation determ ined by th e  shape o f  th e  deformable
boundary, which maps time dependent fluid domain to a  time independent domain,
and transformed the original problem with a  moving boundary to a  problem on a
fixed dom ain. In  section 4, we show existence of exponentially decaying solution
of (1.1)—(1.7) for initial condition close to  the  equilibrium (1.8), using his method
with minor modificartions.

The next section deals with a  simpler linear system. In section 3, we will show
linear stability around the  equilibrium solution (1.8), when Rayleigh number and
Marangoni number are small enough.
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In the rest of this section, we give a  weak formulation of equa tions. Let initial
conditions, a  function tj0(x )  a n d  functions uo (x ,y ) a n d  th e  0 o (x , y ) defined on
no = —  1  <y <n o (x)} be given. The solution of our problem for the initial condition
is ri(x, t) and functions u(x, y, t) and 0(x, y, t) defind o n  {t>0, —1 <y <q(x ,t)}  which
satisfy div u=0, (1.3), (1.4), (1.5) and the following two equations. (A) Momentum
balance : integral form of the (1.1), (1.6):

(1.9) 0 = —

1  

(u, • (1)—uOu : V(1)) -F 2D: V(1)—(1)• V y p(T)dxdy
rg o Pr

+ V(I)ds (t > 0)
Jr(()

for all vector test functions (I) satisfying div0=0 and (1) 1)3 = 0 .  Here D = (Vu +Wu)/ 2,
I is  the unit matrix and  52(t)={(x,y): —1 < y< ti(x, t)}, F(t)={(x, y): y =ii(x ,t)} . (B)
Energy balance : integral form of (1.2), (1.7):

(1.10) 0= (TY Tu • Vtlf)+ VT • VT dxdy
n(t)

+1 (B i T+ 1)T ds ( t >
r(t)

for all test functions satisfying IB =0.
These can be obtained from the original equations using integration by part

and shown to be equivalent to them for sufficiently smooth u, T  and Q (t). We note
that, in deriving (1.9), we have used a  form of Stokes' formula

D:VO — divD • (Nix -VI' • D- (W s
J r(t)

and

J ( a  1-1-ti— (r. V)aij • Ods = f  a(I —  n ) :n Veods
r(t) r(t)

(see [J]).

R em ark . The above definition of solution does not require much regularity to
the  functions. T h is se t o f equations make sense, if, for example, n  and  i t ,  are
continuous, U, E  L 2 (0, CO ; H i )  and, when Vi > 0, the trace of r.Vu.T to  r(t) has
m eaning. The solution to be shown to exist is enough regular; ri is  more regular
than C 1 a n d  u  and  T  belong to higher order Sobolev spaces.

Here, we give some notations and conventions. n and  F denote the region
occupied by fluid at the  equilibrium (1.8), {(x, y) : —1 <y <0} a n d  its upper side
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boundary {y =O}, respectively. We assume that everything is periodic in horizontal
direction w ith  period  L ,  so  reg ions Q(t),Q, • • • m u st be in terpreted  a s  peridic
o n e .  M D )  and mn denote the Sobolev space of periodic functions with period
L .  W e denote their norm b y ' I

 a n d
 I r , r  respectively. ( • , • ) and ( • , • )r  i s  the

inner product of L 2 (Q)=1-1 ° (0 )  and I P ( F ) .  In  the  following, we use an operator
A —  Ah a n d  its fractional power As.

2. Stokes System with a  Deformable Surface

In  this section, the dimension of the region Q  is not restric ted  to  tw o. The
region s-2 is a  strip { — 1 <y <0} and everything is periodic in horizontal directions

with period L .  W e treat the vertical coordinate y  a s  n-th coordinate
x n  . We denote uh the horizontal part uh =(u, , • • •, u„_ ,, O) of vector u.

We will be concerned with the following linear initial-boundary value problem,
the Stokes system with a  deformable surface

(2.1) uf+Vp = Au+ F, in  Q,

(2.2) d ivu= 0 in  n,

(2.3) T  =  ( — aO Ah + G)trti— ViAh uh + f  o n  F,

(2.4) u =0 on  B,

(2.5) tit =tv œn. lr

with homogeneous initial conditions. Here the stress tensor of fluid is defined as
T:=(pI - 2D) where D:=(Vu+tVu)/2. The constants a n d  G  a r e  assumed to be
positive and V i to be positive or equal to zero . T h is system is different to the one
trearted in [Beale] in the point that the surface viscosity term — ViAhu, is introduced in
the stress balance eq u a tio n . A s will be shown, this term slightly regularize the
solution on the boundary.

Let cp(x) be a  vector test function which is smooth, divergence free and vanishes
near B .  Taking inner product of the first equation with cp, after intergration by
parts, we obtain that the solution (um) satisfies

it ut • cp +2D :V9 — F cpdx

+ f  0- ovo • v on+Gtup+ vhuh:voh+I .=

Thus, we obtain that the equations (2.1)—(2.5) are equivalent to (2.5) and

(2.6) (tit (P)+ < u ,T > + * ,(p .1 0 + v i(vh u h ,vh (p h )r= (F ,(P )-( f,

for all 1>0 and for all smooth and divergence free 9(x) which vanishes near B .  Here
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(u, cp> = f 0 2D(u): D((p)dx a n d  b(ri, TO= 1,- (o- o Vo • Vh cp„ + Gn(p„)do- . W e  n o t e  that
Korn's inequality <u, u> > Mull; holds in 111 (0) div u =0, u 1 B  = 01.

W e will treat the problem by Laplace transformation

ii(A) = e 'u ( t ) d t

in  time variable  as in  [A V ] and [B ea le ]. Laplace transformation transform the
above equation (2.5) a n d  (2.6) t o  the  following boundary value problem with a
complex parameter A.

(2.7) =f4.—rilr,

(2.8) /W I ',  91+ <12, 9> + 9  + V i(V  h , V h9 = ( P ,  —  (P)r

or, eliminating

(2.9) ; (P) = (1", (P) — ( j (P)r

where K(û, (p):= 2(6, (P )  + (p> + 1, p „) + V  i(V  hah , V o h), .  (W e  no te  that, here
and  below CI, (p, ••• and  inner products a re  suitably complexified.) W e will show
that this system  has a unique solution when A is  in  a  c e rta in  region a n d  then
construct th e  s o lu t io n  o f  (2.1)—(2.5) w ith hom ogeneous in itia l conditions by
transforming back through the inversion formula

(2.10) u(t) =  1 fRe.1.= 
const

T o sta te  th e  result o f  th is  section, we describe some function spaces to be
u s e d . Kr(S1 x I) denotes the space - time Sobolev space H ° (I ; MO)) r  H '1 2 (1; H ° 42))
as in [Beale] and K r_ 7 (Q  x I) denotes its weighted version I f  : e tf E 10E1 x /)}, where
/ is a time in terval. For notational simplicity, we write Kr and Kr_ y for Kr(12 x (0, co))
a n d  Kr_ y(Slx (0, co)). Kr_ v . ( 0 ) d e n o te s  I f  e Kr_ y(fl x ( — co, co)) : f  I, < 0  = 0 1 . W e can
think this space a s  a  subspace of ICl y a n d  it is known that

7 ,( 0 ) = the clusure in  Kr_ y o f  I f  e K r_ y : f  vanishes near t = 01

and, when y  is not an  integer,

dk

(2.11) Kr_y,(,)= I f  e K'
Y

l  : f 1, = 0  — 0 (0 <

r  — 1

)1dtk 2

(see [L M ]). Calculation shows that the n o r m  f II IC" y is equivalent to

(2.12) (11t4(A)11, + II a()) II Z)d/1,
Re A = — y
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and Laplace transformation gives an  isomorphism between Kr_ y ( Ø ) a n d  th e  space
of Hr(S2)-valued holomorphic functions o n  { R e 2  -y }  equipped with the norm (2.12)
(S ee  s e c t io n  7  o f  [A V ]) .  F o r  functions o n  F ,  w e  u se  s im ila r , b u t  a  b it
different, spaces Kr-i(F x /):= H ° V; Hr + lir/2(/; Iti(F)), and  1 ((F  x  /):=  If: e f
EKr(F x i)). W h e n  I = R + , w e w rite  K (F ) and K'i!ly(F) for th e m . The meaning
of KrA ( o ) (F) will be obvious from notation. Now, we state the result of this section.

Proposition 2.1. T here ex ists y >0 so  that f o r any and  (F l)e
X 1e1-

1,A(F), the equations (2.1)-(2.5) has a solution u e Kr
-  y ,( 0 ) , e Kr=1 )(F) satisfying

11111ito-_-,2.1(r) + IIif II

where the constant C does not depend on F and f  When Vi > 0, this solution satisfies
V4uh ir  E K 2 4 (F) and

-,24(r) IF II + II II K „ 2 ( r ) .

Remark. From (2.11), the solution in  the above proposition satisfies initial
conditions

r- 1
—ul t =0 , - - t I l t = 0 = 0 ( 0 _ k < ).
dtk2

In the existence proof for the nonlinear problem, we will work in the range r <3. I n
th is  ra n g e  o f  r, these  conditions become ul t _ o =  0  a n d  rilt =0 = 0 . I n  general,
similar conditions must hold for the data Fandf, and these constitute the compatibility
conditions for data F and f  for solvability. But, when r < 3, K 0 ) =Kr_-

7
2 from

(2.11), thus there is n o  need for compatibility conditions for the data.

F o r  sim plicity, at this point, w e assume f= O. T he proof below works for
general f  without essential change. The following proposition is sufficient for the
previous proposition.

Proposition 2.2. A ssume r> 2. There ex ists a positive constant y  determined
by  c o ,  G  and L  so that f o r any  A  in {Re).> -y} and data P e l l ',  t h e r e  i s  a
unique solution tie Hr , G + 1  Of (2.5)-(2.6), satisfying

(2.13) Ilfilir+14illtillo+iliillr+1,r+lal41(1110, - COP11,-2+1/VIIP110).

H ere  the constant C  does not depend o n  A. W h e n  Vi>0, Hr+1(r) and
lAri-alla,,112 + f ,r  is estim ated by  the right hand side of  the above estimate

(2.13).

T he rest o f this section is devoted to the  proof of P roposition  2 .2 . In  the
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following of this section, we om it " .  We assume Vi >0; the proof for Vi =0 is the
obvious modification of the following.

Because Korn's inequality holds a n d  th e  boundary terms b(u„1,-, cp„I,-) and
(Vhuh , Vo,), are equivalent to the 11 1 (F)-inner product for functions on F, it is natural
to consider (2.9) in the function space

V = lue11 1 (Q):div u=0 in Q, /63 =0, ui r e11 1 (F)}.

We have

Proposition 2.3. A ssume Fe L 2 (0) and  Re 2> O. The problem K(u;(p)=(F,(p)
f o r all (pc V  has a unique solution u e V

P ro o f  Setting -=u in (2.9), we obtain

Re
(2.14) Re K(u;u)= Re 211 + <u, u> +

IA
 b(u„ , u„)+ Vid Vhnh II •12

By using Korn's inequality, when Re >0, we obtain

(2.15) K(u;u)._>_6110 +Re2Ilung.r+Villung.

Thus, K (• ,•) is  V-coercive. We apply Lax-Milgram theorem a n d  obtain the
conclusion.

For a  fixed P12), from the above proposition, we obtain a solution u(A) for all A in
{R e  > 0 } a n d  this u(A) is holomorphic in  A  (with value, s a y , in  V). Thus, by
holomorphic continuation, the following estimates are sufficient to obtain the solution
of {Re 2> —y{. (We note that continuation of holomorphic u(2) satisfying (2.9) always
satisfies (2.9), because (2.9) is holomoirphic relation in A.)

Before the estimates of the solution, we state a  lemma.

Lemma 1  ([L ]). Consider a  boundary value problem:

d iv  =  p  in Q, 11-,B=b

for the data p, b satisfying f
j ruab • n =.1.0  whereii is the outer unit normal vector. There

is a solution operator (p,b)i--* (p which satisfies

IlAsT11 I gllAsP110 +

P ro o f  We prove the lemma assuming s = 0 . We take a  function a by solving
A a=p in Q, Va •Ti= b • ri on Fu  B. This a satisfies liVa COP II o + II b II prue), thus,
we have reduced this lemma to the case p =O.

We take an  anti-symmetric tensor w = {wfi } vanishing o n  Fu B  and satisfying
w 1,, = h1 (1 < i <n—  1). Then, setting (p =div (», div 9 = 0  is automatically satisfied
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and, because tangential derivatives of w vanish on F u B, yo satisfies required boundary
conditions.

Proposition 2.4. There is a small positive y  which depends only on o ,  G and
L  so that, when r>2 , we have

f o r 2 with Re 2> — y. The constant C does not depend on 1.

P ro o f  W e take an  auxiliary function a  by solving

div a = 0, a„I r =u,,I r , ah lr =0, al,= 0

by lemma 1. Setting (I) = A' a  in (2.9), we obtain

2 -  1.b(Ar -
 lu e ,

 Ar - A u n )  (Ar - 2F,  Ar + l a ) _ <Ar - u, Ara> —  A(Aru, A r -  l a),

thus

liune+1,r C1/1-10A r - 2 Fil 0 + lull 1/11Arall + C1212 11Arullo MA" -  l a Mo •

<_811Arall + Cl 2 12(MAr - 2 F110+1lAr - +11A rullollA r-100).

According to lemma 1, a satisfies W O C711/4„Ilr+ r and  ilAr- Olin II 2+1,1-
A r -  2 U h • Using these inequalities, we obtain

II un e+1,r Al2 ( II A r 2 F ILi + I A
 r u II

or

(2.16) r A'2F 110 + 1IA r - 1 ) .

O n the other hand, by setting (p=A 2 ( r-
1 ) u in  (2.9), we obtain

(2.17) 0111Ar-lua+6011)/11,0+611Ar- A r  2 F  M ()A r t !

For non-negative a, the proposition follows from (2.16) and (2.17). When a is negative
and sufficiently close to  0, (2.17) leads to

(2.18) 114111 Clal r.r IlAr-2110)

and, combining (2.16) a n d  (2.18), w e show  the proposition for sufficiently small
negative a.

Proposition 2 . 5 .  For Re 2> — y , we have

where the constant C does not depend on A.
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Proof  S ince 1 Re .1+ 1), it is sufficient to show

(2.19)1 m  AnA sulio C lA sn o •

because Re , M all is estim ated in (2.17). We set qi = A 2 su in (2.9) and take imaginary
part, then we obtain

Im
Im

212
b(Asti, As u) Im(AsF, Asa).

1 

Thus,

rim 2 12 11As ug Cb(A 'u, Asir) + CjIm , ASFM0 MASuM0 .

Since b(f, clIfIl ,r app ly ing  Cauchy-Schwarz in equa lity  to  th e  la st term , we
obtain

Inin All A840 C11/1 „11s+ 1,1- + Q A 8 F110 •

So, it is  su ffic ien t to  show  11(1„11,+ i.r C l lA s no •
F ro m  boundedness of trace, i,r AsUn112 • Here, w e  note  that, for f

satisfying div f =  0, we have f, = —V , • [h' thus 111..112 cm A f CM f,Ly y 110 C11Af III •
Using  th is fact, we obtain

(2.20) i , r

Now , p roposition  2.4 and the last inequality  lead to  the desired estimate.

Proposition 2.6. When Vi >0, w e have

PIA < CA  2  FIL)

P ro o f  A s  in  th e  estim ate of in  th e  p ro o f o f p ro p o s it io n  2.4, we solve

div a = 0, a,1,- , al,- =O, a  =  0

and set (p= A '  l a  to  (2.9). Then, we obtain

(2.21) Villu,,11,+1, F CO/1111A'  2 ull0 + II Ar -  1 0 1 +  O r -2F110111 Ara Il0.
Since Mall ° O u h ll..r from  Lem m a  1, P ropos ition  2.4, 2,5 and  (2.21) lead to
the conclusion.

W e have obtained

(2.22) M r - 1 u  +1/1-1M/V - 2 ulio + Ilifir+1+ C11 A r  2 F 110 •

What we have to show is the estimates of norm al derivatives. W e do this following
the process in [SS].
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First, we can obtain the corresponding pressure field p  as a  function satisfying
l(9)=(p, div(p) where l(•) is the functional l(9):= K(u;9) — (F,(p). This p exists because
1(•) is defined and bounded o n  {cp e H 1 : 91,3 =0} , and vanishes for divergence free
go. These p  and u  satisfy

(2.23) K(u ; 9) —  (p, div (p) = (F, go).

for cp not necessarily divergence free, and then, (u,p,q) satisfies equations (2.1)—(2.5)
classically. For estimates for pressure p , we solve

div Cij= p  in Q, tio'h Ir  o, 0 1B = 0

and set cp =A 2 5 in (2.23). Then, we obtain

(Ar_ 2 u , Arefi) + II A ' i p  + u, A,- t + /AA , - in, Ar- 1 - lo n ) (A r  -  2 F , A rep).

Since I A r CP 11 I + r 1lA r IP 110  from  L em m a 1 , using (2.22), we obtain

Now, because u, ;1 and p  satisfy equations classically, we can write normal
derivatives o f  u  as u„, y = —div„U ry a n d  Uk y y = — Ah14— 114h V o+ F h ,  and  we can
show  the needed estimates inductively fo r in te g e r  r . W e  c a n  show  the desired
estimates for general r by interpolation.

Remark. T he pressure p f or the solution (u, q) ex ists an d  satisf y  II/4K ,
C(11FliKr-2+11fIlicr , t r( W e did not include this in the statement of Proposition

2.1, because we do not need this in section 4.

3. The linearized system

In this section, we are concerned with the linearization around the equilibrium
(1.8):

1  

uf +V q =A u +R a0 V y +F , div u=0 in Q,
Pr

01 = AO+ u2, + Fo
 in Q,

— U2 1r ,

o- o Ah + G»/Ti+(MaV„(0-0—ViA hu , ft*-1-f o n  r,
Oy +  B i(0 -0 = f0 o n  F,

u= 0, 0 = 0  o n  B.

H ere Q =1-1 <y <01 is the domain occupied by the fluid at the equilibrium and
F  {y =0}  and B  -  = — 1} are its boundaries. The differential operators A„ and
V,, which appear in  the boundary conditions is (4) 2 a n d  h and the vectors -6  and



W hen V i is positiv e, u,

If,folIKr 2 (r).

- , (0 )  l ( - - ) and lV u 1 11„Kr- 2 (r) <  COIF, 2e  K r-2,2+
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lare  norm al and tangential unit vectors of F, (0,1) and (1,0) • The constant o-
0 and

M a is determined as a(T)= o-
 0 + Ma T+ 0(T 2 ).

This is the Stokes system with a  deformable surface +  heat equation +  lower
o rder te rm s. W e w ill show  that this linear system has exponentially decaying
solution, when R a and IMal are small enough.

This linear system can be written as

(3.1) =u2 Ir

(3.2) K(u, 0 , q ;(D)=-(F,(D) - (f,

(3.3) Ko(u, 0, ; (1:1) = (Fo 4 -1) - (fo

for all smooth (1:0(x) and T(x) with divc1)=0, 018 = T I B =0, where

K(u, 0, q ;(D):= 1— (u „ )+ <1,1,0> +b(1, ( I)  2 ) +V i(V hu , OrPr

- Ra(0, 41)2 ) + Ma((0 - 1 1), Vh(Di)r

Ko (u, 0, q ; T):= (0,, T) + (VO, VT) + Bi(0, T) r . - (u2 , T)

For this system, we prove the following result.

Proposition 3.1. A ssum e R a  an d  M a  are  suf f iciently  sm all. Fo r d ata F,
Fo e Kr_71,20 ) , f, f o e Kr="3,2A(F), the equations (3.1)-(3.3) has a solution u, 0 e Kr_

e Kri+y o ) (F), which satisfies

(3.4) II u, 0 11 + 111711K, j ( r) -- COIF, F011107 ,2 + Ilf /0 IIK-_-» ( r) ).

P ro o f  Existence will be obvious, once the estimates in  the  statement of the
proposition have been shown. Applying Proposition 2.1 to  (3.1)-(3.2), we obtain

!lull IC,
 4 -  0111 + il Wu, Il K l(r)- y

CO. F 11107, 2 + If +  R a 1 1 0 1 1 p 7 ,2+ Mal110,

Similar estimates can be shown for heat equation and we can obtain

110 11pl yC (11F 0 11K-_-, 2 + II oll icr_-, 2

Combining these two inequalities, we obtain
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N/Ra 0 + M M + M NquI M l(r

F  fRa F0 MK-2+ M f, ,1Rafo M )K _ yvn

r
CYRa. lu , N/Ra 01110.- 2-1- C 1MaI 110, 1/11 K ( r )  CfRa IBil 110 II Kr-4( )

a n d  w e obtain  (3.4) fo r  Vi >0 w hen R a  a n d  IMal a re  sm a ll. T he case  Vi =0
can be shown exactly in  the  same way.

In  the next section, we need results for more general form of inhomogeneous
terms as following:

(3.5) K(u,0,11;'$)=-(F,4:)+(F',V 0) —( f o ) r

(3.6) Ko(u, 0, i ; (1)) = (F0 , P) +(J ,V P ) —  (fo 41)r

where F' ={ F} , F (1={ N ,}  and (F 1 , VeD)=

Proposition 3.2. A ssum e R a  an d  M a  are s u f f i c i e n i l y  s m a l l .  For data F,
Fo e e 1- J

v r - 2e , there ex ists a solution u, 0 e Kr_ y,(0 ) ,
ti E Kr_l o ) (F), which satisfies

(3 .7 )l u ,  0 11 Kr_ y + ) C111 F Fo + 11F1ô + 1Iff0II

W hen V i is positive, u t E  K r_73„.
2
( 62

)
+  IT )  and 11V414 1 11 < C(11F,Fo lix r-, 2 +

This proposition can be reduced to the previous proposition using 1,F 1 : Valdxdy
= div •flodxdy+ •Odx.

4. Existence for the nonlinear problem

In  this section, using the result in  the previous section, we show an existence
result for (1.1)—(1.7).

First, we write equations for perturbation (u,O,n) to  the equilibrium solution
(1.8). We substitute T= D - 4- 0 t o  (1.9) and (1.10). Because

— (I) V y p(T)dxdy = (I) V(Gy + Ra y2 / 2)dxdy —  Ra 2dxdyI
M t )

(Gy +Ra y2 /2) ds — R a i  0(1)2dxdy,
r(t) I2(1)

(1.9) becomes
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r(4.1) u,-(1)+Ra04:13,2dxdy + I (— -
1-uOu+2D):V eldxdy

.1 ow Pr 0(t)

(Gy + R a ,),2 / 2)0 T i + -3(:)ri) : Weds =- O.

(1.10) becomes

(4.2) (0, + u2 )Tdxdy+ (-Ou +VO)•VtPdxdy
10 (1 )

BiOtPds +(f T- y dxdy + T d s ) =  0.I
52(t)J  ru)

W e use a transform ation t = t ,  x =  X ( ,? )  (i,Œ = l  o r  2) determined by the
shape of the deformable boundary

(4.3)

(4.4) Y +(55 + 1 )(Pii *11.

Here, p  and 0 3-, are l(p(•/9) and }, lfr( • /9), and cfr and tk are smooth functions with
compact support satisfying 9 = 1 and 1 0  = 0 . *  denotes the convolution product
in T h i s  t r a n s f o r m a t io n  m ap s th e  tim e-dependent fluid dom ain f/(t)= { —1
<y <n(x ,t)}  to  a  fixed domain 1— l< j.;< 01= a

B y  t h i s  transfo rm ation , the  independent v a r ia b le s  a re  transform ed as

A=A +0 xi , and dxdy =M V P= \ /1+rd dg.
As in [Beale], we define velocity field on SI by

ui = J 1

where J=det x,,„ is the Jacobian determinant of the transformation. By this choice,
div u = 0  a n d  f i t  = u2 — r ( f )  a re  transform ed to  div = 0  a n d  lit —U- 21r • We
transform test function 41) in the sam e m anner. Then, the new test function II) runs
through Nil/ 1) = 0 , 1 ,=01.

By these changes of variables, the integrals in  (4.1) and (4.2) become integrals
over SI and F  and the integrands are written in  terms of it, 6, n, 410, ;  we write
obtained equations as k(2; 431)=0, k o ( i. ; ti') =0 where 5= (a, 0",r1). The difference with
th e  left hand side o f  th e  linearized system, kei;41)—K(54), can  be  w ritten  as
j,,(F(5)- (T)+ F 1(5):'020dxdy — r f(5)- &lg. S im ila rly , w e  set --o(f IT1)—  K0(2 ;
= f 0 (F0 (5)'P+F (;(2)• V ‘P)dxdy—  foCiff'dg.

We write the linear system treated in the previous section (3.1), (3.5) and (3.6) as

where = ( O ,  j ) , = (F, Fo  , F 1 ,

Then, the transformed problem can now be written as
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(4.5) -292=37(2), 2'1,=0=20

where ,F(5)= (F(5),F0 (4 F 1(2), F(2),.1(5),f0 (2)), and 20  is determined by z0 .

We fix y chosen according to Proposition 3.2 and consider

Xr =1"2"-=(Û,6,n):

;it = /12 Ir div = 0 in 5/, = ° ,  (1 18=0 , f  = 0

i, ÔE Kr_y ,  fi e Kr41(F), V  û 1 Ir E
Yr = {Y7  =(F, F , ,  f  f o ):

, F l , ,  f  f o e Kr_-
1,24 (F)}

and K . a n d  r ;  be the spaces with K I , replaced by Kl y ,( 0 ) . We note that, when
2< r <3, Yi; is equal to  Yr  from Remark in section 2.

L et Q= { (x,y,t): t >0, -  1 <y <n(x, t)}  and  K r(Q)=1u 1:u e K r({ y > - 1} x R + ).

Proposition 4.1. Suppose r> 2 and 2=( i7, a,n)e X r be given. Then, corresponding
u and T  are well-defined and belongs to K r(Q). If  2e X r is a solution of (4.5), (u, T,n)
is a solution of  (1.1)- (1.7).

P ro o f  Regularity of rt eK r +
),1 is sufficient for a u and 0 to be well-defind

on the class K r . See [Beale], especially Lemma 5.2.

I f  initial c o n d itio n  , e  H  ' 1(F) a n d  /to , 00 e i ( 140 1 Iri)(0)), -1;I (F(0)) iS
small, 2 1)=(i0 ,6 0 ,1 10) is also small and we can construct their extension z (o )E X

'  to
t > O .  T h is  c a n  b e  c h o s e n  to  s a t is f y  II z(°)II < noirr  - 1  +  110 0 11, - 1

(This can be shown by using extension theorem for K r . See [Beale].)
W e substitu te  = z

(°)a n d  we obtain the equation for

y z o ), It = 0 = °.

A ccording to  previous sec tion , the  re str ic tion  o f the  linear p a r t  _ V ' to  X ,
: XI; r ;  h a s  a bounded inverse. Thus, th e  problem  has been reduced to

a  fixed point problem

zz = Y 0
- 1  V ( Z ( ° ) -  2 2 Z(13)].

W e can show existence of solution 2: for small initial da ta  by verifying that the
right hand side define contraction mapping on a small ball in ,1",; centered at the origin,
if the following estimates for the nonlinear terms hold.

Proposition 4.2. W hen r>i,

(4.6) C  z
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(4.7) 11,97(z0-,;(z2)11y- CmaxClzillx,, Ilz211s011zi - z211x-

Transforming back (lb i, 6) to  the variables defined on physical domain, we can
obtain a solution (q,u, T) of the system (1.1)-(1.7).

Theorem . W e assume 3-<r <3, constants Ra and M a are sufficiently small and
Vi is zero or positive. Initial conditions no el-P- 1  and uo , To e Hr - 1({ - 1<y < rio(x)})
periodic in horizontal direction are given and satisfy Sri, =0, div uo =0, uo 18 = 0 and
TolB= — I. T h e n ,  th e re  e x is ts  S>0 s o  t h a t  f o r in itial co n d itio n s  satisfying
InoIHr- + liu oll II- 1+  o  -  <(5 ( i n  t h e  c a s e  Vi >0, moreover, satisfying

Iluo•tl y = <(5), there exists a solution ri e K (F x (0, co)), u, Te Kr_ y(Q) periodicno

in  x  w ith the sam e period of initial condition. W hen V i>0 , m oreover, we have
u•t l x =n e x (0, co)).

Rem ark. Even when Ra and M a are not small, we can show Proposition 3.1
with some positive y and, working in  spaces like Kr(S2 x(0, T)), obtain an existence
of the solution in finite time for general Ra and Ma.

Proof  of  Proposition 4.2. We don't present full detail. W e describe  the proof
for (4.6);(4.7) can be show n sim ilarly. F o r estimates of these nonlinear terms, we
use the following inegqulities.

(4.8) 140-1184 . ( f E K r, ge K s , r>2 , 0 <s< r),

(4.9) clIfIl IC"./(1111 g Ks.1(r)

(f e Kr'4(F), ge Ks4 (F), r > ,  <s<r).
2'

((4.8) is proved in [Beale], Lemma 5.1. (4.9) can be proved by the same argument.)
Using (4.8), when r>2, we obtain

(4.10)

(4.11)

(4.12) C /111(411 +

(4.13) 11F(1 / K4IIVUll +

and, we obtain the required estimates from IT X -/1 1 1 0 -_C III/ illo -_ -,,i(r ), which can be

shown from the definition of X (see [Beale]).
The last integral in  (4.1) becomes
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a HO .71 — Ma V)(0V)(0 — D  1+ Ma(0 —  ri )HI) + 0(0 — ti) 2 i V (1)
ro)

+ Vu: 6 d s .

Because H  =  ( —  1 + 001.501 ,  r  Vu .T = ( — 1 + 000171,5c- + 007 a n d  ds

= \ /1+ri,id".i, recalling the definition of f( i) , when r

If Il K. 2 .i r c II qi 1110-_-,,i( r) (11 'i ll + 110 n II K 1, 1(r) +

+ C11 0 ' —I/ II to-_-; , (r) 1 0 n 1110-_-,2.1(r)

and, with C110 11 Kr_ th is leads to  the desired estimates for f(2). B y

similar computation, we can obtain Ilf0(2)11Kr_-,24(-) ri II K-4(- ) (11nilicrl(r) gll Kr_-,2.1(n)

and we have completed the proof.

D E P A R T M E N T  O F  M A T H E M A T IC S

O S A K A  U N IV E R S IT Y
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