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Plane wave decomposition of odd-dimensional
Brownian local times

By

Hideaki UEMURA

1. Introduction

The existence of multi-dimensional Brownian lo ca l tim e s  a s  generalized
Wiener functionals has been shown by Imkeller and W eisz [5]. They have given
adequate meaning to the following formal representation:

L(t , x) = f f  ( B s )ds, (1.1)

where L(t, x ) denotes the local time for r-dimensional Brownian motion {B,} and
Ox  the Dirac delta function at x E  R .

On the other hand, it is well-known that 60 is decomposed as follows:

0 0 ( x \ 1  F(1/2) 
) ( _ 4 7 r ( r - 1

)/
2

 F  ( r  1 2 )  s r - l
ori) (<x ,(0)o-(d(o), (1.2)

where 60 in  the left hand side is the r-dimensional Dirac delta function at 0 and
that in the right hand side 1-dimensional one, O r ) denoting (r — 1)st derivative of
00. Moreover, Sr - 1  denotes the unit sphere in R ,

 a(cico) the uniform measure on
S ' l w ith  total measure 1 and <*, *> the Euclidean inner product on W. T h is
formula is called the plane wave decomposition of the (5 function. Since this
decomposition (1.2) is valid only in  the case where r  is odd, w e restrict our
investigation to  the case where r  is odd.

The purpose of this paper is to represent the r-dimensional Brownian local
tim e by m eans of 1-dimensional ones; roughly speaking, (1.1) and (1.2) imply

1 F(1/2)1.
L (r-  I )  (t , x,(o)o-(dco),L ( t  x )  =  

( 470 ( r - 1 ) 1 2  r  /  2 )

where

d r - 1

L ( r - 1 )  (I, X, = Lc' (t,
c I
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and  L w ( t , )  denotes the local tim e  fo r th e  1-dimensional Brownian motion
{ ( c o ,B ,>} .  We exactly establish the above equality (1.3) in the sense of gener-
alized Wiener functionals.

Bass [1] has shown that every odd-dimensional Brownian additive functional
associated with the measure which has the density function is represented by means
of Brownian local times at hyperplanes under some conditions. This represen-
tation can also be obtained by the same argument which derives (1.3). It should
also be noticed that Yamada [8] has obtained representations o f a  considerably
w ide  c la ss  o f  continuous Brownian additive functionals o f zero  energy via
Brownian local times at hyperplanes in the sense of distributions.

Finally, the author would like to express his sincere thanks to Professor N.
Ikeda for his valuable suggestions.

2. Preliminaries and main theorem

We first introduce the multi-dimensional Brownian local time as a generalized
Wiener functional due to Imkeller and Weisz [5]. We begin with preparing some
notations.

Let (W,,", P )  b e  th e  r-dimensional standard W iener space: W c; = {B, =
(B 11, B ,2, . . . , - inbic :  [0, oo) —> Rr; B ,  is continuous and Bo =  O f and  P  i s  the stan-
dard Wiener m easu re . Let 1 „( 4 )  be the n-ple Wiener-Itô integal with the kernel
function f n :

{

f n  = ( f n ( t l , t2, • • • , t n ) -11 J 2 ' i n ) ) 12 , 1 „ =  1 2 r

where f n belongs to L 2 ([0, —> R'"), and is symmetric in the variables ( j 1, t 1),
(12, t2),... tn )  (see, for instance, Nualart [61). We denote the totality of such
f u n c t io n s  b y  42y1 ([0, oo)" Rr n ). W h e n  n 0 , Io ( f ) represents a  con-
stant. N ow  w e define som e classes of (generalized) Wiener functionals Ds e r and

as follows:

Definition 2.1. Let s  e R .  W e set

D se r = 1 1 ( f )  = ( I0 ( f 0 ) ,  I i ( f 1 ) , .  •  •  ,  n(len), • • •) f n  6 (  [ 0 , )" —>

n = 1, 2,...}

=
.11 112 j„ = I 2, ..

• • • f n (t i t 2 , , t„)./1 4 2 •li  •  •  dill,'"
o

(2.1)

and

= {I:1 1(f) E Dser : III(f)11Z,., =
n=

(1 + n
}

c ! [ f [ 2  <  c o  ,

where 111'11 denotes the L 2 -norm of
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R em ark  2.1. Taking the Wiener-1tô decompsition into consideration, 1X can
be identified with L 2 (P ) .  Under this identification, D  a b o v e  coinsides with D2, s

in  Ikeda and Watanabe [3] o r  D'' 2 i n  Nualart [6].

W e also introduce other classes o f  (generalized) W iener fu n c tio n a ls . Let
y  R . W e  se t 11f11( ) by

Mfg )  = f••• •1 ( ( s ,  y  •  •  •  y  s„) A  1) Y lf(si , . • , Sn)12 dSl • • dsn
[0 1"

for a  function f  e  L 2 ([0, co ) fl ; ((s i y  • • • y  s„) A  1 ) - Yds i . •  •  ds„), where x  y  y and
X A y  denote the maximum and the minimum of x  an d  y , respectively.

Definition 2.2. Let y c  R , c > 0  and p c R . W e  set

er = {1(f ) = (10(.4), • I t i (f , , ) , • . )  f ,  6  1-',yin([O, 0 0 ) "  —> R e :

((s i y  •  •  •  y  s„) A  1) - Yds, • • • ds„), n = 1, 2, ...}

and

{
L' ); 11 14 ) g , , , p) =--- E c ." ( i+  n) P 01 f ig ) < O E ) •

g (yc , p) 1 (f ) c .--,,er ;
n=0

R em ark  2.2. ( i )  In the case where y <  0 , ./„(f ,,) in  the  definition of g )' , '  is
considered a s  a  generalized W iener functional satisfying <In(fn), 1 7(gm)> w =
an ,„,n!<f,„ g„ >2 for any g,„ E 4 2

y ,n ([0, ° o r  R ' ; ((s, y • • y  s n ,) A  1) Y dsi • • • dsm),
where <*,*-> w  denotes the  pairing of W iener functionals and  generalized ones,
<*,*> 2 t h e  L 2 ([0, cor — > R r " ; ds i • • ds„)-inner product and a n , m  K ron eck er 's  a.

(ii) I t  i s  a  m atter o f cou rse  th a t  9 ( ''P )L 2 (P )  holds w hen y  >  0  and
> 1. Moreover, for y <O  and  c < 1, _6-- ,̀ 'P) can be identified with the dual space

of g ( l
yk

W e introduce the multi-dimensional Brownian local tim e given by Imkeller
and Weisz [5].

Lemma 2.1 ([5]). L e t x( 0) e  R r an d  t >  0  be given. T h e n  th e re  e x is ts
L (t. x ) E  D  such that

J
o M e ,  — x)ds —> L(t, x) as v —> 0 in  Eq

f o r all  a G 1 — r/2 , w here  p r (s, x ) denotes the r-dim ensional Gaussian kernel:

1
p r (s, x) — 

(V2ns)r e-px12

W e call L (t, x ) above the r-dim ensional B row nian local time.

cc
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R em ark  2.3. Im kelle r and Weisz [5] have proved the above theorem also for
the multi-parameter Wiener process.

R em ark  2.4. In the above theorem, p r (e, • — x ) is used for a test function
converging to 5 .  T h is  can be replaced by y9(( — X )/E )/E r where yo E C and is of
compact support.

W e next introduce the plane wave decom position. For our purpose, the
inversion formula for the Radon transform is rather useful, which is equivalent to
the plane wave decomposition. Therefore we begin with an  explanation of the
Radon transform together with notations (see, for instance, Helgason [21).

Let f  be a function on Rr, which is integrable on each hyperplane in Ir . Let
E S r - I  a n d  E R, where Sr - I  d e n o te s  the unit sphere in R .  T he R adon

transform k [ f ]  of f  is defined by

k[11(co,) = (x)dx,

where <*, *> denotes the Euclidean inner product on R r  and dx  the Lebesgue
measure on the hyperplane fx; <x, w> = The dual Radon transform is also
defined as fo llow s. Let be a  locally integrable function on S r - I  x  R  such that
yo(o), ) = yo(—co, — 4  The dual Radon transform i?[(o] is

P[0(x) = yo(co, <co, x>)o- (dco),

ct(dco) denoting the uniform measure on S r - 1  w ith  total measure 1.
We now introduce the inversion formula for the Radon transform. Suppose

that r  is  o d d .  Let f  be a Schwartz rapidly decreasing function on R " .  T h e n  w e
have the following inversion formula:

1 F(1/2) i•j(  d r - I

f  =  
—  4mr )  —

F (r 12) lA dV * - 1  R L j  j ) ]

1 F(1/2) f
( - 470 ( r - 1 ) / 2  F (r 1 2 ) is' <Y ,a)>= 

f  (y )dy)
=<x,(0)

old a>) . (2.2)

 

We are now at the position to give our main th eo rem . For this purpose, we
prepare the following two propositions, which ensure the differentiability of L(t, x)
and the integrability of ( t ,  x ,  co) respectively, where

L(r - 1)( t ,  x , w ) L(r —1) ( t  x  c o ) E[L(r —I) ( t  x  c o )1

and L ( r - 1 )  (t, X, CO) is defined in  (1.4).

Proposition 2.1. S uppose r e N  an d  x  O. T hen L(t, x) i s  k  times dif fer-
entiable in  131

2
i '  w ith  respect to  x , w here 131 <  — r/2 —  k. M oreov er th e  k th de-

riv ativ e belongs to D/
2
12 ( 162 < 1 — r/2  — k).
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Proposition 2.2. L e t  r > 2  he  any  positiv e  in teger. L e t  y i <  2  -  r  and
Pi

 <  1 / 2  -  r .  Then L (r- 1 ) ( t ,x ,w )  is  a(do)-integrable

O ur m ain theorem is a s  follows:

Theorem 2.1. Suppose that r  is odd. L et L (t,x ) E D  (t > 0, x 0) E R r ,
<  1  - rI2 ) be the r-dimensional Brownian local time. Then the following equality

holds in  Eq:

1 1(1/2)
L('-1)(t,x, co)a(dco). (2.3)L ( t

'
x ) =  

(-47r) 1)12 r ( r1 2 ) s ' - '

3. Proofs

In  this section, we prove Propositions 2.1, 2.2 and Theorem 2.1.
To begin with, we state another representation of multiple Wiener-Itô inte-

grals. L e t  1 ,( 4 )  be  the n-pie Wiener-Itô integral with kernel function f t,  as in
(2.1). T h e n ,  summing up again by every component of Brownian motion, we can
easily get another representation for /„(j;,):

I n ( f n )  = 1111,• • • • I ni
i ( f n 2 , . . .  n ) , (3.1)

n1d-n2+•••+n r =n

where denotes the m- pie Wiener-Itô integral with respect on ly  to  B .  M o r e
precisely, „r = „ r (t (

1
1) ,...,tS , I,) ; . . . ; t (

1
r) , , 4r„)) is determined by

n!
, ,n 2  , • • • ,n , ni!n•)! • • • nr!

when # -{ k;ik ni (i =  1,2 .......  r) and n 1 +  n2 + • • • + n,. = n. Thus L I m 2 .  • r

belongs t o  L 2 ([O, Do)" -4 R) which is s y m m e t r ic  w i th respect to
t(

t i,t) f o r  all fixed j  ( j  = 1, . . . , r). W hen f n  E L 2 ([0, ce)"; ((s i y y  sn )
1 )'d s , •  •  •  dsn ) (y < 0 ) , w e  can  a lso  ge t th e  same representation as (3.1) for

In (f„. ) ; indeed, from Remark 2.2 (i), we can easily show tha t .1„r, • • • 1„1
 i (f n i . „, , )

can be considered a s  a  generalized Wiener functional and tha t the equality (3.1)
holds in  the  sense of generalized W iener functionals. N oting that the following
equality holds for any y c R:

11./;,11 ) = E
ni+n2+•

ni!n2!• • - nr•
11.11;11,n2, nr il y)•n!

When we express the r-dimensional Brownian local time L(t , x) by the fashion
above, i.e. in  the  form

L (t, x ) = P. • • • I I
ni (g„,,,,, (3.2)

11= 0  " i  +112+.
 •' +n r ="

each g„,,„2 , „ , ,  is exactly obtained a s  follows:
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g n, , n2 , ..., n,(x; si , . . . , sn)

n1!n2! . • ' i!.s, y - y s„

1n  r

( - )  H  H„
'

. ( x  ) p r (s, x)ds
1 .ft

-NTs .J=1 0

X 1[0 , ,](s 1 ) • • • lio,d(sn),

where x = (xi, x2, ... , x r )  a n d  H (x )  denotes the Hermite polynomial:

H (x) = ( — I ) fl
  x2 /2 (  d"  e - x

2 / 2 )

dxn

R em ark  3.1. A lthough our representation (3.3) of ,„, above seems to
be different from that in Imkeller and Weisz [5], it is completely th e  sa m e . We
can easily obtain (3.3) by considering the  H-derivatives o f  sufficient orders of

j yo being a Schwartz rapidly decreasing function.

F o r the  proof of Proposition 2.1, we introduce the  following evaluation of
Hermite polynomials, which has been given in Imkeller, Perez-Abreu and Vives
[4]. Refer also to Szeg6 [7].

Lemma 3.1 ([41,  [71). Let 5  E  [1 /4 ,1 /2 ]. T hen there ex ists a c o n s tan t  C
independent of (5 such that

1)sup llin (x)e - 6 x2 1 < CVW!n- (8
/ 1 2 .(5-

X
(3.4)

Proof  o f  Proposition 2.1. W e prove only the case where r = I ,  a s  multi-
dimensional cases can be done by the same w a y .  First we observe the case where
k  = 1. Set

L (I)(t, x ) = In (dn (x )),
n=0

where g (x ) is a derivative of g (x )  with respect to x ,g ,(x ) being as in  (3 .3). Then
the equality

(3.3)

(n = 0, 1, 2, . . .).

L(t, x + h) — L(t, x) L ( I )  (t, x)
h

1
h (f

x + h

g"; (z)dzdy)
x x

holds. Therefore, to show that L(t, x) is differentiable in 11:1Ç' with respect to x, it
is enough to verify

sup E ( l+ n ) f l ' oon!il n" (z) <il;
ze U(x)

for some neighborhood U (x ) of x such that 0 is not included in its closure. In the
same way, it is sufficient to verify

sup (1 +n) f i l 019 (; ) (z)11Z < °() ( =  2 ,  . . .  ,k  + 1) (3.5)
ze U(x)



sup S u p
0 <s ,t it  z e U (x ) ( 0 )  e V T .i)

<( n + e)!(n ty-451 6.

, , (+1
-(1-60.7 2 /2s (

e
-(1-60z2/2. < M .
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for the proof of the former part of Proposition 2.1. N o w  e ) (z ) is exactly
obtained as follows:

g l / ) ( z )  =  ( - 1 1 (  f 1  )
— H — s, z)ds 1 [0, ti(s 1) • • l[o,d(sn)-n! P I (s,

Thus it holds that

11g,̀ ) (z)11;
2 n ± f   d s  d u r Y  /2 (   I/_ ) (

z
H ,_ ± f  0 7 1  p i ,  z ) p i (tt, z).

(n!) 2 Jo o s v su vs
(3.6)

Appealing to (3.4), for any 6 1 e  [1 /2 ,1 )  there exists a constant C1 independent of
(5I such  tha t

sup 11,,+/ )e-s1z2 12s1- n + te - 6 1  z 2 /2u

S N/ï4

  

Since 0  is not included in the closure of U(x ), there exists a constant M  such that

Substituting these inequalities into (3.6), we can easily show that there exists a
constant C 2  such that

lig(n( ) (z)HZ C2 
( n

1

! )
2 (n + ()!(n I

) -(4 I- 1 )16  1  

n + 2

Thus (3.5) holds if fl1 < -  1 ) / 6  -  t .  Let (51 ->  1  we have the former part of
the claim.

In the proof above we also found that the k  th derivative of L(t, x ) is equal to
i n (g (nk) (x ) ) ,  and it belongs to  13/

2
3 ' ± 1 . Therefore the proof is completed. D

W e next prove Proposition 2.2.

Pro o f  o f  Pro po sitio n  2.2. L et w = (0)1, (0 2, • .. , w,•) e S r 1 . Then w e can
expand L ( - 1 ) ( t,x ,w ) a s  a  generalized functional of {B ,} as follows:

Lfr -  t ,  x ,  (0) =

where

n n  (0 ) , X; S  . •  •  ,

E n i F i r  (0 ), X)1
n=0 ni+ • • • +nr =n

v

1 .\n+r- 1

)
1-1 p  1 ( s ,  < x ,  ( 0 ) )d s

n i!  • •  •  nr!

(<X ,
n-Fr -  I

N[S'

1 10  ( s  ) • • • 1E0 ,  (s„). (3.7)
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Appealing to (3.4) for = 1/2, we have

Mg,,, , 

2

n1 ! • • • nr! ((A l y • • • y  s„ ) A  1 ) - Yi

(  1n+r— I
X

2
(<X, W>)

 Pi
,0'1 H n+r l s ,< x , ( 0 > ) d s  d s i • • dsn

s, ••• Fs)

1<  c  ( 12 (n + r -  1 ) ! n v(n-r-41)12du
• • nr ! )  V n + r - 1 n —y i . o

fo r some constant C ' ,  an d  moreover th e  last two integrals converge since
yi <2 - r. Therefore

L r _ i ( t  x  ( D )11(2),,,l/r,p 1 +1)
co 1 (n r -  1 ) ! n 2 ( 1 n y ,)-1

r" ni! • • • 14! r  - 1  n  - n  -  r  -  2y i ±  2n=1 ni

( 1 ±  n )P i + I n r- 5/2  <  G o ,

n= I

C  a n d  g  being some constants. That is, L ( r -  I ) (t, 0 ) ) c  9 , (y l/r,p i + ) fo r all
w  c Sr- 1 . Noting that

1 k
( 7 5

1
)

h H k ( ) p l (s, ) — ( )  H  k

(

V7S' Hk+i (—z ) p i (s, z )dz ,

we can easily show that Dr -1 1 (t. x, w )  is continuous in .9,V r'Pl ) with respect to w
by the same calculation a s  above. Since Sr - 1  i s  compact, this yields o- (dca)-
integrability of k r - 1 )  (1, X, (0) r  ' P I )  which completes the proof. 0

R e m ark  3.2. S in c e  th e  R iem an n  sum of (w , x ) converges to
fs-, j , , . . . . . . , ,  (w , i n  L 2 (((s i y  • • • y  s„) A  1 ) - - Y1 d s ,  •  •  •  d s „) , we easily obtain
that

L(r-1) (t , X, W )0"(da)) = Es,-, „, (f x)0-(dw)) .
srn=1 n +•••+nr=n

R em ark  3.3. Since Sol p 1(s, )ds E L 2 ( d ) ,  we know that 0:: - 1 1;; m (s, )ds
9', where = 0 1 0  and .V  denotes the dual space of the space o f Cx
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functions o f  c o m p a c t  s u p p o r t . Therefore  fs - , E [ 0 - 1 ) (t,x , co )]a (d o )). which
equals to the inverse Radon transform o f O r  Sol p i (s, )ds, exists in  g '.

We now prove the main theorem . W e notice the following lemma concerned
to  Hermite polynomials.

Lemma 3.2. L e t co  be  an  orthogonal m atrix , w hose f irst colum n is 'co =
t (wi, • • , (or). L et n = n i + • • + n r . Then it holds that

( N n  n i  

( ( ü )  i )
1 1 '1 ,( ( -1 ;6 )0 -1 ) r)  P r(S , Y )dY 2 dy r

= • • • 0 4 i r ( - 1  /-) n ( -4 ) P  (s  Yvs vs , •

P ro o f  Let f  be  a Schwartz rapidly decreasing function o n  R .  S e t  (x) =
f  ((a), x>). T hen it is easy  to  show that

E[0 1 • • 0'," 60 (Bs)] = co' • • • wr E[f ( " )
 (<w ,

 B s >)],

0, denoting 0 /0 x ,. The left hand side above equals to
1 ) Y1

X i xr
•JR '  ( s)  

H n , (,-) •  •  •  H n  (— )  p r (s, x) f (a) x] ± • • ± w r x r )dxi • • dx r
r

and the right hand side

win • • • wirl"
1

R H
H,, ( 4 -I ) P 1(s, Y l) f  (Y 1 )4 1 .VS V S

Therefore the assertion is easily obtained by the change of variables xe) = y on the
left hand side.

Proof  o f  T heorem  2.1. A ll w e have to  d o  is  to  show that

1 F(1/2) f
gn,, =

( -4 7 r) ( r - 1 ) / 2 ( r  1 2 )  j s r- I g  • x)o- (d co), (3.8)

g,,,,,72,  ,„ ,(x ) and 4„1 , ., r (0),x) being as in  (3.3) and as in  (3.7), respectively. For
E Sr - I ,  let e) be an orthogonal matix whose first column is à). Appealing to

the change of variables y = xe ), w e have

[H n , (—x l )  •  H n )Pr(s, x)1(co,

,=2H n j r
+(°i)

 X  p i (s, ) H p (s, y i )dy2 • • dY r,
t=2

w here wf i  d e n o te s  t h e  (j, i)-component o f  cu. Note th a t E i; 2 y1(0) ; (01 =
(J)W- 1 ).1 w here y  ̀= y 2 , . ,  y r ). Thus, applying Lemma 3.2 and the inversion

J
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formula for the Radon transform (2.2) to above, we obtain (3.8) in the case where
n = n i + • • + n r  > O. In the case w here n = 0, let b e  a  fu n c tio n  in  g  such that
0  is not included in  the  closure o f its su p p o rt. Then we easily have

(X ) p r (s, x)dsdx = 
11 ( 1 /2) J (x)1.2 p i(s ,)d s]d x .

(-47r)( r - 1 ) / 2R' r (1 1 2 )

which ensures (3.8) for n = O. T h e re fo re  the proof is completed.

R em ark  3.4. W e can show tha t the  following equality due to  Bass [1],

1 1(1/2)  f
t ( B s )ds =
O( - 4 7 0 ( r - 1 ) 1 2  r  ( r  1 2 )  i s ,

( e r - I  

R [f]) (o), )L œ  (t, )(.*) - (dco),a r-1 (3.9)

holds a lm ost su re ly  f o r  a n y  Schwartz rapidly decreasing function f  o n  R'
( T h e  c o n s t a n t  in  T h e o re m  4 . 6  o f  B a s s  [1] s h o u ld  b e  c o r re c te d  to
( 1 ) (d-1)/2 (2 7 0 -(d-1) / 2) indeed, by the  proof of Proposition 2 .2  we can easily
show tha t La )(t is continuous in (y2 < 1,p2 <  - 1 / 2 )  w ith respect to
(w, and that

 

P [ f ] ) ( 0 ) , )

 

IlL") (t )11 (y2 . 1 / r ,p 2 ) d o - (dc0) <

  

Therefore the right hand side o f  (3.9) exists in  .9 )
(„1/"2 ) a n d ,  by Lemma 3.2 , its

kernel functions coincide with those of the left hand side o f (3.9). O n the other
hand, the left hand side of (3.9) belongs to L 2 ( P ) .  Thus the equality (3.9) holds in
L 2 (P), which leads us the assertion. We should mention that Bass [1] has shown
the equality (3.9) above under some mild assumption on f
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