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Tauberian theorem of exponential type and its application to
multiple convolution

By

Nobuko KOSUGI

1. Introduction

Let { Un (x)} be a sequence of non-decreasing, right-continuous functions on R
vanishing on (-- co, 0], and let con (s ) be the Laplace transform of Un (x). In this
paper, w e  sh a ll s tu d y  the relationship between the asym ptotic behavior of
log con (ns) and th a t of log Un (x). This problem  is m otivated by the following
question: Let X 1 ,  X 2 ,  .  .  be positive, independent random variables with common
distribution. By the law of large numbers, we see that X1 + X 2  ±  •  •  •  +  C O

a s  n —> oo , a.s., and  it i s  o f in te re s t to  k n o w  h o w  fast P[X i + X 2  +  •  •  ±

X n  <  a](a > 0 ) tends to  0  as n —> oo . In other words, we are interested in the
asymptotic behavior of the multiple convolution

da(x i )da(x 2 ) • • • da(x,), (a > 0)

0<xl+x2+.••+x,, a

as n —> co , where a (x ) is a right-continuous non-decreasing function vanishing on
(— cx), 0] and here w e no longer need  to  assume th a t a  is  a distribution func-
tion. This may be considered as a problem of large dev ia tion . In a study of the
local tim e of Gaussian processes, Kasahara, e t al. obtained the following result
(Lemma 3 of [111). If a  varies regularly at 0 (i.e., lim2-0 -().x)/a(A ) =  f. x>  0,
for some a ; see [I]), then

)1 / n

d a (X i )  •  •  •  do-(x„) x  o- ( -
1
) , n —> oo , (1.1)

n

where f  x  g means 0 < lim inf f (x )Ig (x ) <  lim sup f (x) 1 g(x) < cc. Our question
is to determine the exact constant in (1.1). To this end, we first consider the case
of a (x) =  x +OE (a >  0), where x +  =  x  y O. An elementary calculus provides us with

F (a + 1) n 

cla(xi)da(x2) • • • c l a x n F (an + 1)
0<xi +•••+x„ <1
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where F ( a)  is  the  gam m a function (see Appendix fo r  details). Therefore, by
Stirling's formula, we get

, 1
!till:10-01n) f • • • f

) 1 1 n

d ( X i )  •  •  •  do-(xn) =  ( e
c) œr(cc + 1). (1.3)

One of the main results of this paper is that (1.3) remains valid if a varies regularly
at 0 with exponent a  (Theorem 2). The idea of the  proof is a s  fo llow s. Put

Un (x) = (0 .0 0 „ • • • I do-(x l ) • • • do-(xn) (1.4)
o<x, +•+x„

and consider its Laplace transform . Since

o
e' d U n ( x )  =  1   f c° e ""d o -(x)

o-(1 1 n) o

we have

-1 log  fC° e '
o-(11

sxdUn (x ) = log 1

n) 0
f c° e ' s x da(x). (1.5)

n o 

I f  c (x )  i s  a  regularly varying function, we can apply Karamata's Tauberian
theorem (see [6] pp. 442-448) to the right side o f  (1.5) and have

lim  -1 log J e
- "xdUn (x) = log s + log T(oc + 1). (1.6)

n

Thus, our problem is deduced to a  certa in  kind o f  Tauberian theorem o f  ex-
ponential ty p e .  There have been many works o n  this su b je c t. F o r  examples,
Davies ([4]), Fukushima ([7]), Fukushima, Nagai and Nakao ([8]), Kasahara ([101),
Kohlbecker ([12]), Kôno ([13]), Minlos and  Povzner ([14]), Nagai ([151), and  so
o n .  Especially, Kasahara ([10]) shows that all of the above works are deduced to
the  relationship between measures d U(x ) and their Laplace transforms

fo
° expfÀf (x10(/1,))}dU(x), ( 1 . 7 )

where 0(.1) is  a  regularly varying function, and gives a  Tauberian theorem in a
most general f o r m . From (1.7), notice that a  m easure dU is fixed in  each
Tauberian theorem of exponential type that we mentioned above, and thus we can
apply none of these works to the  case of (1.6), in  which we have to treat the
measures dUn (x ) depending on n. Therefore, in the present paper we construct a
Tauberian theorem which treats the case where the measures dUn (x ) depend on n.
Afterwards, we shall see that our theorem contains a  special case of Kasahara's
theorem, and the  proof o f our theorem becomes much easier than that of his.
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We remark that, as we mentioned before, our problem may be treated in the
framework of large deviations. Especially, our theorem  is m uch silim ar to the
theorem due to J. Gartner (see [91) and R . S. Ellis (see [51), which, however, does
not contain ours.

This paper consists as fo llow s: In Section 2, as we mentioned in the above,
we give a  new Tauberian theorem, and using it, we shall show that (1.3) holds in
the case where o-  is a  regularly varying function at O. The proof of the Tauberian
theorem is given in Section 3. In section 4, we give another Tauberian theorem in
which the  roles o f  th e  origin a n d  infinity a re  interchanged and show  that our
theorem includes a part of K asahara's Tauberian theorem.

2. M ain Theorem

Let go(s) c C 1(0. co) be a  decreasing convex function such that

lim (e) =  —cc ,l i m  go'(s) = 0 , (2.1)
E-■0+

and define

go*(x) = inf {sx + o(s)},
.s>o x>  0 . (2.2)

Then go*(x) is a  non-decreasing concave function on (0, cc). Indeed, from  (2.2), it
is easy to see that go* is non-decreasing, and  it also follows that

yo* (tx + (1 — t)y) > tyo* (x) + (1 — t)yo* (y), for 0  <  t < 1,

which proves the concavity. Since s s x  +  y o (s ) attains its minimum a t s such
that x + yo' (s) = 0, denoting by g (x ) the inverse function o f  —goi(s), we have

go*(x) = xg(x) + yo(g(x)). (2.3)

By (2.2), it follows that T*(x) sx + yo(s) for all s > 0 and x > 0, and therefore, it
is easy to see that

T(s) sup{ —sx + go* (x )}
x>o

However, from (2.3), we have

go(s) =  —sx + yo* (x) if  x  =  —Y(s), (2.4)

and hence, in  fact it holds that

go(s) =  sup{ —sx + go* (x)}. (2.5)
x>o

For example, put go(s) = —a log s  (a > 0). T h e n ,  g(x) = cc/x and go*(x) = a log x +
lo g (e /a ) . F o r another example, if go(s) = s-

OE (a > 0), then, g (x ) =  (al x) 1 1 ( x + 1 )

and yo* (x) = (1 + a ) (x I a)l(œ+1)

s-■ 00



do-(x,) • • • da(xn),
1

Un (x) =
(o- (1 1 n))" • • •

o<xl+•••+. „
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Remark that from (2.4) and  (2.5), we can see that x 1-* yo*(x) -  sx takes its
maximal value ço(s) a t  x  =  -yo'(s), a n d  furthermore, x = •--ço'(s) is  the unique
solution of ye (x) - sx =  y9(s), fo r  a  given s >  O.

N ow  w e state our m ain theorem:

Theorem 1. L et yo(s),ço*(x) be as  ab o v e . Suppose Un (x )  be  a  sequence of
non-decreasing, right-continuous functions on R  vanishing o n  ( -oo, 0]. I f

lim -1 log J e
- n 'sx dUn(x) = (0(s), f o r all s > 0, (2.6)

n—■oo n

then

Conversely, if

1lim  -  log Un(x) = So* (X ) ,

n—>oo n f o r all  x >  0. (2.7)

lim sup-
1

 log J e ' d U n (x ) <  co, f o r all  s >  0,
n—,  co n

then (2 .7 ) implies (2.6).

W e postpone th e  proof o f  Theorem  1 a n d  w e apply  th e  above result to
multiple convolution.

Theorem 2. L et a > 0, and a (x) (x E R) be a non-decreasing, right-continuous
function vanishing o n  ( -oo, 0].

(i) I f  a (x ) varies regularly  at 0  with exponent a ,  then

o- (1 1 n)
1 (

o<xl+ +x,,,x

= x . ( _
a

)  T(a +1), f o r every x > 0. (2.8)

(ii) Conversely, if  (2.8) holds and if

lim sup 1 e-n"do-(x) < oo ,
n—,00 a(l/n )

then, o-(x) varies regularly  at 0  with exponent a.

Proof  o f  Theorem 2.
(i) Recall that if  w e put

f o r all s > 0, (2.9)

lim

1 1 n

)da (X 1) • • • da(x n )
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then

-1 log r e- n s x clUn (x )= log
n Jo a(1 In)

(See (1.4) and (1.5) in Section 1). Using Karamata's Tauberian theorem, we have

lim  1 e - n " d o - ( x ) =  s - "F(a+ 1). (2.10)
n-cco-(11n)

Therefore,

lim  -1 log fc° e ' d  Un (x) -= -a log s + log F ( a + 1). (2.11)
n—oon 0

As we mentioned above, if  g9(s) = -oc log s + log F ( a+ 1), then go*(x) = a log x +
a log(e/a) + log T (a+ 1). Applying Theorem 1, we see that (2.11) implies

u
. 1

-  log Un (x) =  a log x + a log(e/a) + log F ( a+ 1),
n

(2.12)

which proves (2.8).
(ii) Assume (2.8), and put Un as in (1.4). Then, (2.8) and (1.4) imply (2.12).

By the assumption (2.9), we can apply Theorem 1 to (2.12) and thus we have
(2.11). As (2.11) means (2.10), using Karamata's Tauberian theorem, we see that
a  is a  regularly varying function at 0  with exponent a.

Consider a positive sequence an which tends to  oo as n -> co. We remark
that the proof of the following theorem can be carried out completely in parallel
with that of Theorem 1.

Theorem  la. L et v (s),v *(x ) and U n (x ) be as  Theorem I, an d  le t an
positive sequence which tends to  co  as  n -> co. If

1 cc
lim  -  log e- a"sx clUn (x )= v (s), f o r all  s >  0,
n-co ano

be a

(2.13)

then

lim  
1

-  log Un (x) =  yo* (X ) , f o r all x  > 0. (2.14)
n-, cc

Conversely, if

1 cc
lim sup -  log e - a dUn (x) < co,

n—■ oo an 0

then (2.14) implies (2.13).

Furthermore, since
1

-  log
 f

e - b "sx clUn (x)
an

f o r all s> 0 ,
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can be rewritten as

1— log e- a "s x dUn(anxIbo),
on0

we obtain

Theorem  lb. L et yo(s),yo*(x) and Un (x ) be as in Theorem 1, and let an and  bn

be positive sequences, where a„ tends to oo as n —> co. I f
cc

li111 —a
l

n log

then

l
1

im — logn-, x  an
anUt,

e dUn (x) = v(s),

Y0*(x),

f o r a ll s>  0,

f o r a ll x >  0.

(2.15)

(2.16)

Conversely, if

lim sup 1  log
 f

e d
n->x) an

then (2.16) implies (2.15).

Un (x ) < cc, f o r a ll s>  0,

According to this extention, we have the following corollaries.

Corollary 1. L e t X1, X2, . . . be positive independent random variables with
common distribution function

lirn log

then f o r every x>  0,

—

1

fi n

a, and let fi n an d  y„ be positive sequences.

e- sxIY,, do- (x) = v(s), f o r a ll s>  0,

= n(logfi i , + q (x )  + o(1)), n oo.nd

If

(2.17)

(2.18)lo g  P
[Xri + • • • Xn

Proof Put

1
Un (x) • da(xl) • • da(xn ).(13 n ) n

o<x,+• - F A ./ X

By using the same method as the proof of Theorem 2, we have

1-  log e- sxIY.dUn (x ) =  log —10
. e- "lYndo- (x)..1°D (2.19)

n o Pn 0

Combining (2.17) and (2.19), we see

lim -

1 
logx n Je ' l Y ” d U n (x ) = (s). (2.20)
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Applying Theorem l b  to  (2.20), we have

lirn -

1  

log Un(nYn x) = 49 * (4n-■ op n

Since

U n (lly n X )  =
(fin)

0<(xi-- --1-x„)In5_y„x

do-(xi ) • • • da(xn ),

these two equations imply (2.18).

We remark that if fl n = 1 and yn =  1 , then the above corollary is a  special case
of Chernoff's theorem ([3], see also [2]).

Corollary 2. L e t X 1, X 2, . . . be positive independent random  variables with
common distribution function a, and let yn b e  a positive sequence such that yn tends
to 0 as n goes to oo. If  a(x) varies regularly  at 0  with exponent a(a> 0) , then for
ev ery  x > 0,

log P
[

< y n xX  + X 2 + • • • ± X n i
= n(log o- (y„) + a log x + a log(e/a) + log F ( I  +  1) + o(1)),

n D.

P ro o f  Applying Theorem lb to the proof of Theorem 2, we see immediately

in
1  (

lim
a (y n )

• • • do-(xi) • • • do- (xn ) = x ) 1 1- (a + 1),
n—, 00 a

o<(x, +•••+.v)in y„x

which proves the assertion.

3. Proof of Theorem 1

W e prepare a  few  Lem m as to prove Theorem  1. According to the
assumptions o f Theorem 1 , we may and do assum e that

lim sup -  log I  e - "sxdU„(x) < co, for a ll s > 0,
nJ o

throughout this section.

Lem m a 3.1. Suppose

lim sup !  log J e
- "sx dUn (x) go(s), f o r all  s >  0.

n—,co n
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Then,

lim sup -

1  

log Un (x) yo*(x),
n

f o r all  x >  O.

P ro o f  W e need nothing but Chebyshev's inequality . For each y > 0,

Y
e-

n
 dU ,,(x ) e - " "d U (x )

o
s

0

> CnSY Lin (y ). (3.1)

Hence

lim sup 
1

-  log U (y ) inf {s y + go(s)}
n s>o

=  V* (Y),

which proves Lemma 3.1.

Lemma 3.2. Suppose

lim inf -

1  

log Un  (x) yo*(x),
n—■co n

Then

f o r all x > O .

lim inf 1-  log J e
- ns dUn (x) g9(s),

n -4 0 0  n

P ro o f  From (3.1), we have

f o r all  s >  O.

lim inf 1-  log J e's x dU,„(x) sup{ -s y + yo* (y)}
n-co n y>0

= yo(s),

which proves Lemma 3.2.

Lemma 3.3. Suppose

lim sup ! log Un  (x) ço*(x),
n

f o r all  x >  O.

For a f ix ed  s> 0 ,  le t x o  =  -go' (s). Then,

(i) Fun sup -

1  

log Jn—,co n
e- ""d U n (x) < - sfi + 4 9 *  CO f or each ,u > X0,

1
(ii) lim sup - log

n
Cris"' dUn (x) < - s,u + v* (p)

0
f or each 0 < ,u < xo •

P ro o f  Before proving (i) a n d  (ii), remark that x (0* (x) - sx attains its
maximum at xo a s  we mentioned in  the  previous sec tio n . Therefore, if p < xo,
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th e n  -sp + go* (,u) is a monotone increasing function, w hile -s,u +  yo* (p) is
monotone decreasing if p >  x0 . To prove Lem m a 3.3 and 3.4, w e use the fol-
lowing fact: I f

lirn sup -

1 

log anc i ,
GO n

lim sup -

I  

log bn C 2 ,
n—, co n

lim sup -

1 

log(a n  +  bn ) max{c t , c2}.
n -o 9  n

For each 6 >  0 , pu t Pk = p +6k  (k = 0, 1, 2, ...). Then,

Hence

Pk+I

e- n"dUn (x) e '
ILk

1

lim sup - log
Pk+I

t k
e -n S  X  d Un(X ) SPk g9* (Pk+i) ,

n—, co n

which implies

1
lim sup - log je 'sxdU n (x) max{ -s,uk  + 40*(fik+t )}

n—■co n

-  sit + yo*(p)+ s6,

for each N > p. Since (5> 0 is arbitrary, by putting 6 t 0 we get

fN
urnsup -

1 

log J e ' d U n (x) - sp+ y9* (p ).
n

On the other hand, for each N > p,

J

 o
e-n(4e' 2)xe-n(si2dUn(x) = )xdUn(x)

< e-
n

(
s i2

)
N e -

n
(
s/2

)
x d tin  ( x ) .

0

Therefore,

1
lint sup - log e'sxdUn (x) -  - N lim sup - log e- " (s12) xdUn (x).

n—,00 n N 2 n—,00 n .0

and

then

(i)
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By assumption,

1
lim sup - log f  e - n(s12)xdUn (x ) <A , for some A,

oo n

and hence

1
lim sup - log e' d  Un (x) (-4/ + ço*(p)) y ( N  +  A ).

oc n p 2

Since N  is arbitrary, by choosing sufficiently large N , we get

lim sup 
1

- log e- nsxd Un (x) - s it + * (14).
n_, 00 n

Similarly we can prove (ii).

Lemma 3 . 4 .  Suppose

lim sup -

1  

log Un (x) < ço*(x),
oo n

Then

f o r all  x > 0.

urn sup hoglog e- nsxdUn (x) (s), f o r all  s > 0.
n—> oo n

P ro o f  Let xo be as in Lemma 3.3, and choose x1 an d  x2 so that 0 < <
X0 <X2<OC. Then,

X2

urn sup -

1  

log e'sxdUn(x)
co h xi

< lim sup 
1

- log{e - ' 1U„(x2)}n_4.0

< — sxi + y9 * (x2 ) •

Therefore, by Lemma 3.3,

1
lirn sup - log J e ' " d U n (X )

n—+ co n

1 (

U
l'x' x2

n )= lim sup -  log e -n s x d U „ (x )+  f e 's x d Un (x )+  fc c  e -nsxd  u ( x )

h O Xi X2

< max{ -sx1 + ç * (x ),), -sx1 + yo* (x2), -sx2 + y*(x2)}.

As we mentioned in Section 2, xo = -ço '(s ) turns to be the unique solution of

v* (x) - sx = q)(s), for a given s >  0.



Then,

1lim  - log Un  (x) ço* (x),
n —■ O D  n f o r all x > O .
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Thus, letting x1 1' xo, x2 J. xo, we see

1lim sup -  log e- ""dU n (x) - sxo + ço * (xo) = T(s).
n—■ o0 n 0

Lemma 3.5. Suppose

and

1lirn sup -  log Un (x) *(x),
n—,0o n

1lim inf -  log I  e- n"dUn (x) T ( s ) ,
n—■ n

f o r all  x >  0,

f o r all  s >  0. (3.2)

P ro o f  F o r  a  given x>  0 ,  choose any 0  <  y  <  x . Since ço(s) is  a  C I

function satisfying (2.1) by assumption, we may choose s >  0  such that y <
-q' (s) <  x .  Put xo = - yo'(s), then by Lemma 3.3,

1 rlim sup -  log e ' d  Un (x )
n—›09 n 0

• — sy + T*(y)

< —sxo + W(xo) = 49(s),

1lim sup -  log e' d U n (x)
n--■ co n x

< —  sx  ç o t (x)

< -sxo + 49 * (xo) = 01(s).
(3.2), (3.3), and (3.4) imply

lim inf -
1 log e' d U n (x) ço (s ).

n—■ oo n

On the other hand, we have

lim inf -

1  

lo g  f
x  

e' d  Un (x) -  sy lim inf -

1  

log Un  ( X ) .
n.—+ co n n--■ co 1 1Y

Thus, combining these two inequalities, we see

lim inf -

1  

log Un (x) s y  T (s )
n—■ op n

w, *(y)

(3.3)

(3.4)

Letting y  Î x , we obtain the assertion.
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W e are now ready to show Theorem 1. Assume (2.6), then combining
Lemmas 3.1 and 3.5, we get (2.7). For the converse half, if we assume (2.7), then
Lemmas 3.2 and 3.4 imply (2.6).

4 . Another asymptotic behavior

In this section, as we mentioned in Section 1, we show that our theorem
contains a part of Kasahara's Tauberian theorem. Let us see Kasahara's Tau-
berian theorem at first. Assume a  to  b e  a  fixed positive number and f (x )

const.) to be a  real valued non-decreasing function defined on the interval
(0, oc) such that f ( )  i s  concave for some fl(> a). Put

g(x )= s u p { f ( )  +  x a for x < 0,
>c)

then the following theorem holds.

Theorem A  ([10]). Suppose 12(dx) be a f inite B orel measure on (0, co) and
0(x ) be a  regularly  v ary ing function w ith ex ponent I. Set

co(2) = expfilf (x10(/1))1p(dx).

Then;

1
lim  - log/J(0(x), co) = A (< 0)
rx-co x

if  and only  if

1
lim  log w (2) =  g(A).

A—. op

In the special case where f (x )= x , we have

Theorem B  ([10 ]). S e t 0 < a < 1 .  L et 0(x ) be  a positive function varying
re g u larly  at  c o  w ith  ex ponent a  a n d  t/i(x) b e  t h e  asy m ptotic inv erse of
x 1 0 (x ) . Suppose ,u(dx) be a f inite B orel measure on  (0, co). Then,

. 1
-  log p(0(x), co) = -A  < 0x-,co x

if  and only  if

1
lim  

2 )

 log ki(dx)= (1 - a)(ocl A r 1 (1 - ") .
1-ao 0( o

Now we go back to our Tauberian theorem. By considering

Jex pf -nsf (x )} dUn (x) (4.1)
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instead of so-  exp{ -nsx}dUn (x), we can extend Theorem 1. Here, we study the
case where the roles of the origin and infinity are interchanged in Theorem 1. If
w e put f (x ) =  - 1/x  i n  (4.1), then we can have the following theorem. Let
v(s) E C I (0, co) be an increasing convex function. Suppose

lim yo'(c) = 0, lim q/(s) = +co.
s—■ cc)

Define g9 (x) as

yo.(x) = inf{v(s) - sx}.
s>o

From this definition, yo. is  a  non-increasing concave function on (0, cx)). If we
denote by g (x ) the inverse function of go/ (s), then we have

q).(x) = ço(g(x)) -  xg(x),

and

ço(s) = sup{y9* (x) + sx}.
.x>o

Furthermore, for each s >  0, there exists a positive unique solution of

yo* (x) + sx = v(s).

For example, if we put go(s) = s", for a > 1, then g(x) =  (x/Œ) y 9 (x )  =
(1 - ot)(x/a) 4 ( a - 1 ) .

Theorem 3. Let (s) and ç9(x) be as ab o v e . Suppose tin (dx) be a sequence of
Radon measures on (0, co). I f

lim  -

1 
log J ensx,un (dx) = v(s), fo r all  s >  0, (4.2)

n—.0o n

then

1
lim  - lo g  (x , co) = yo„(x), fo r all  x >  O.n (4.3)

Conversely, if

1
firn sup -  log ensxpn (dx) < co, fo r all  s > 0,

n—■ co n 0

then (4.3) implies (4.2).

P ro o f  Since the proof of Theorem 3  is essentially the same as that of
Theorem 1, we omit the details.

Now we study the relationship between Theorem 3 and Tauberian theorems of
exponential type which are already known. To see that Theorem 3  contains
Theorem B, it suffices to show the following proposition.
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Proposition. Let B > 0, and 0(x) be a positive function varying regularly at co
with exponent a(0 < a <  1 ) .  Suppose p(dx) be a R adon m easure on  (0, oo). If

n - co nu r n -  log J exp{nx/0(n)},u(dx) = B,
1 (4.4)

then

lirn log r exp{nsx/0(n)}ti(dx) = BS I/
 (I—a) .00 n

P ro o f  For a given s > 0, put = s l / ( I - " ) . Let e >  0 be arbitrary and put
( 1 + 0-1/(1—a),. Replacing n by nil in  (4.4), we get

lim  log J exp{nrix10(nri)}p(dx) = B . (4.5)
n

By the property of regularly varying function, there exists an  N E > 0 such that

(1 ° MoeO ç b((r11:1) ) (1 + e ) (D œ
for n > N . (4.6)

Applying (4.6) to (4.5), we have

-
1  

log exp  m ix  }p(dx)
n {0(nn)

 p(dx)= 1
 10g e x p {   n rix   ° (n ) }

n 0(n)0(nn)

.< -1 log f exp{(1 +e) "
0 1(: )

x },u(dx)
n 0

= -1171 log t œ  exp{ 11 1
( : )

x }p(dx).

Hence,

1
lim inf - log

1 B .exp{ },u(dx)
0 (b(n) (1 + c)n — , 00 n

Similarly, we have

N .{ n
o

l
(: )

x
} , (d x )u_ <  ( 1 _  0 1 7 0 - a )

1 lim sup .1-  log exp
n — ,0 0  n 0

Since c is arbitrary, letting E  0, we have

lim
c o  

1
F

-  log exp {n 
' x

-0(n)}p(dx),---
n 

which proves our assertion.
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Appendix

The following fact is well-known, but we give the proof for the convenience of
the reader.

Proposition. Fo r n  nr i , r 2 , • • • pn  > 0, an d  q > 0,

S  :  = f  X P I - 1  X P 2 - 1  - • • X n
P " - 1  (1 —  X i —  X 2 —  - • • —  X n ) q - i d x ,  • • • dx n2

K  1

F(A )T ( p2 ) •  •  •  F(pn)r (q) 
r( p i + p2 +  -+ pn  +  '

where

K  = { (x i, x z , ... , x n ) E R n 1  X 1 , X 2 , ... , X n  > 0 , X 1  + X 2  + • •  •  + X n  5 _  1 } .

Pro o f  W e change the variables as follows:

{

xi + X 2  +  •  •  •  ±  X n --= U1

X 2  + • • • + x,, = ui U2

• '  '

X n  = U 1U 2 Un,

or equivalently,

{

X i =  U 1 (1  —  U2)

X2 = U1112(1 —  U3)

X i i = U1U2 • " Un •

Then,

_ 
1"

„,i_
"

i,„-2 „ 1  , 0
\ 2

a (1 4 1 , . .  •  ,  Un )

Therefore,

1 1
= U ri+  + P "- 1  (1 — P 2 +  -111" - 1  (1 — U2) P I - 1  duz • •u2

1
n- —1X UnP_")1+Pn-1 (1 —  U n _ i )

n - 2 - 1
Pd u n _ it e r  I (1 —  Un )

I
P d u ,

= B (p i + • • • + Pn,q)B (P2 + • • • + Pn, Pi) • • • B(Pn,
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where B (p ,q ) denotes th e  usual beta function. Using th e  fact that B (p,q) =
F(p).1- (q)11- ( p  q ) ,  we have

s  = F(p i )F(p 2 ) ... F(p )F(q ) 

F(Pi + P 2 ±  • • ±  ±  9)

which proves the assertion.
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