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Introduction

Let us fix a prime number p .  Then B R  denotes the ring of p-adic periods of
algebraic varieties defined over lo ca l (p-adic) fie ld s as considered by J.-M.
Fontaine in [Fo]. I t  is  a  topological local ring with residue field Cp  (se e  the
section Notations) and it is endowed with a  canonical, continuous action of
G := Gal(Qp /Q p ), where Qp  is  the algebraic closure of Qp in  Cp . Let us denote
by I  its maximal ideal and B , := In . Then B R  (and  B , for each n > 1) is
canonically a  Qp -algebra a n d  moreover Qp  i s  dense in  B R  (a n d  in  each B,
respectively) if we consider the "canonical topology" on B R  which is finer than the
/-adic topology.

Let now L  be any algebraic extension of Qp  contained in  Op and GL :=
Gal( / L ) .  I n  [I-Z], th e  authors described all th e  algebraic extensions of
K  := Q p" r such that L  is  dense in  ( B S ) G L  f o r  some n  or in  ( B R ) G L. Let us
formulate this problem in a different w ay . F o r two commutative topological rings
A  B ,  a  subset M  B  will be called a  "generating set -  i f  A [M ] is dense in B.

Definition 0.1. Let A  c  B  be commutative topological rings, then we define
"the generating degree", gdeg(B IA )eN U oo to be

gdeg(B IA ):= min{ MI, where M  is  a  generating set of B I A}

where IM1 denotes the number of elements of M  if M  is finite and co if M  is not
finite.

Then th e  problem I s  L  dense  in  (.8 R ) G 1 ?  can  be form ulated  a s  Is
gdeg((13-1

d
-
R ) G L IL ) z e ro ? For example Theorem 0.1 of [I-Z] can be restated as:

Theorem 0 . 1 .  I f  L  is not a  deeply ramified ex tension of  K  then

gdeg((135 ) G L IL ) = 0 f or all n  and gdeg(131R ) G  ̀IL ) = 0.

A characterization of deeply ramified extensions L  of K  satisfying gdeg((13-
aF,R )

G1.

 I
L )= 0 is obtained in [I-Z], Theorem 0.2. As not all deeply ramified extensions of
K have this nice property, [I-Z] left open the problem of describing ( B S ) G L  for all n
and (B -

d
F
R ) G L , fo r a  general deeply ramified extension L .  The first part of this

paper (section 2) supplies such a description, namely we prove
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Theorem 0.2. I f  L  is a deeply  ram if ied extension of  K  then
i) there ex ists a unif orm iz er z  of  B -f

d
-
R  ( i . e .  a  generator o f  I) such  that

z e ( B ;F
iR ) G L

ii) L[z] is dense in (B R ) G L, and if  we denote by z i ,  the image of z  in B„, then
L[z n ] is  dense in (B„) G  L f or all n .

I n  other w ords, Theorem  0.2 te lls  u s  th a t  i f  L  is deeply ramified then
gdeg((B„) G ` IL ) < 1 fo r a ll n  and gdeg((11;FI R ) G L IL) I.

The second part of the paper (sections 3 and 4) is concerned with a  problem
of a different n a tu re . It is known ([I-Z]) that B i , is a Banach algebra over Q r  for
all n. W e are interested in  constructing a  "nice" integral, orthonormal basis of
B„, as a Banach space over Q .  F irst w e prove a  surprising fact, namely that B -,FI R

is  the  completion of the polynom ial ring in one variable over Qp  i n  a  suitable
topology, i.e. we prove the  following

Theorem 0.3. gdeg(B;F
I R IQ p )  = 1.

Theorem 0.3 provides us with an element Z e 13 R  such that Q [Z ] is dense in
W e can use this "generating" element Z  to construct an orthonormal basis

for B„ over Q .  N a m e ly , let us fix an n > 2 and let us denote by z  the image of Z
in B „.  Then we construct a  sequence of polynomials {M „,(X )} ,,,, 0 in  Qp [X ], with
the  property that M o(X ) =  1  and deg(M,n (X )) = m  for all m , such that

Theorem 0.4. The fam ily  { M ,„(z )} ,„ is an  integral, orthonormal basis of B„
over QP'

i) Fo r any  y  E  B „ there ex ists a unique sequence { c,„} ,,, in  Qp  such  that
c„, 0  and y -= emm„,(z).

in For y  and { c„,} ,„ as in i) above we have

w„(y) = min ll(C m )

where let us recall that w„ is the valuation which gives the Banach-space norm on Bi ,.
iii) For y  and {c„,},,, as in i) above, we have: w n ( y )> 0 i f  and only if c„, E Zp

f o r all m.

W e end the paper (section 5) with some examples and  problems concerning
metric invariants for elements in  1Pd R̀ .

N otations. L et p  b e  a p rim e num ber, K  Q p"T th e  m ax im al unramified
extension of Qp , K  a fixed algebraic closure of K  and Cp  the  completion of K  with
respect to  the unique extension y of the p-adic valuation on Q r  (normalized such
that v(p) =- 1). A l l  the algebraic extensions of K  considered in this paper will be
contained i n  K .  L e t  L  b e  s u c h  a n  algebraic extension. W e deno te  by
GL  :=  G al(K /L), L the (topological) closure of L  in Cp , (91_, the ring of integers in
L  and mL its maximal ideal. If K c L  c F c  ,  and F is a  finite extension of L,
4 F I L  denotes the different of F  over L.

If A and B  are commutative rings a n d  : A B  is  a  ring homomorphism
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we denote by 52 B / A  t h e  B-module o f  Kdhler differentials o f  B  over A , and
d : B S2BIA the  structural derivation.

L e t ,s21 b e  a  Banach space w hose norm  is given by th e  valuation iv and
suppose that the sequence {am }  converges in  d  to som e oc. We will write this:

—> a.
If A  is a  subring of the commutative ring B  and M  B  is a  subset, then we

denote by A [M ] the  smallest A-subalgebra o f B  which contains M.

1. Some constructions, definitions and results

W e'd like to first of all recall some of the m ain results and definitions from
[Fo], [F-C] a n d  [I-Z], w hich w ill be used in  th e  p a p e r . W e'll first recall the
construction of 13-

,
F
IR ,  which is due to J.-M. Fontaine in [Fo]. Let R  denote the set

of sequences x = (x (") ) , 0 o f  elements of Cc, which verify the relation (x ("+1) )P =
x (n) . L e t 's  d e f in e :  vR(x) := v(x (° ) ), x  +  y = s  w here  P O  = lim„_„(x (n+m) +
y
(
"±'"

)
) P ' and x y  = t  where t

(
"
)
 =  x (") y (") . W ith these operations R  becomes a

perfect ring of characteristic p  o n  which vR  i s  a  v a lu a tio n . R  is complete with
respect to  vR. L et W (R ) be the ring of W itt vectors with coefficients in R  and if
x e R  we denote by [x] its Teichmaller representative in  W ( R ) . Denote by 0  the
homomorphism O : W (R ) c p  which sends (xo , x l , ,  x „ ,  . . . )  t o  E ncc 0 p".4,"

)
.

T hen 0  i s  surjective and its  ke rne l is  p rin c ip a l. L e t a lso  0  denote th e  map
W (R)[p - I ] —> Cp . We denote Hd

E
R  := lim _W (R )[p - 1 ]/(K e r(0 ))" . Then 0 extends

to a  continuous, surjective ring homomorphism 0  = OdR : 13;FI R
 - 4  Cp an d  we denote

I  := Ker(OdR) and I  :=  I n W ( R ) . Let e = (e
(
"
)
),,, 0 b e  an  element o f R , where

e("
)
 i s  a primitive p"-th root o f unity such that e

(°)
 =  1 and v(1) 0  1. Then the

power series
CC

E ( - 1 ) " -1 ([v] — 1)"/n
P1=1

converges in 13-
c iR , and its sum is denoted by t := log[e]. It is proved in [Fo] that t

is a  generator of the ideal I , and as GR := Gal(k/K) acts on  t  by multiplication
with the cyclotomic character, we have /n/P+ 1 C p (n), where the isomorphism is
C,,-linear a n d  GK-equivariant. Therefore for each integer n  > 2, if we denote by
Bn := B R / I "  w e have an exact sequence o f  GK-equivariant homomorphisms

0 —> 4+1 —> Bmki Bi , —> 0
where Jn+i i n  in+I Cp(n,) This exact sequence will be called "the funda-
mental exact sequence". W e denote by Op : B R B , ,  : = and by tin : Br,
Cp t h e  canonical projections induced by O.

Let us now review P. Colmez's differential calculus with algebraic numbers as
in ihe Appendix of [F -C ]. We should point out that as our K  is unramified over
Qp a n d  s o  W (R ) is canonically an 0 K  a s  well as an  ek-algebra, we'll work with
W (R ) instead of /11„1. For each nonnegative integer k , we set A  :-= W (R)/ I ! 1 .

We define recurrently the sequences of subrings (O  k  and of Cok -modules f2(k)
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setting: CT )  = C k  a n d  if  k > 1 Q(k) := e k  0  r (k_142 1
0 (k _i) ,(9. and  (.9(!_̀)  i s  the kernel

( k - 1  _ K
K K

of the  canonical derivation d (k ) : ) •  g 2 (k ) Then we have

Theorem 1.1 (Colmez, Appendice of [F-CI, Théorèm e 1). ( i )  If  k E N , then
6 (!̀ ) =  K  fl ( W (R ) +  I k +1 )  and J r  a l l  n c N  the inclusion of  (0!`) i n  W (R )+  I k + 1

induces an  isomorphism

AI,`„f/p"Mcni eK(k)/pnc(k).

(ii) I f  k >  1 , then d( k ) i s  surjective and Q ( k )( K  l a k ) (k ) ,  where a  is  the
fractional ideal of  K  whose inverse is the ideal generated by 8( 1) — 1 (recall e (') is a
f ixed prim itive p-th root o f  unity.)

Some consequences o f this theorem are  gathered in  the  following

C orollary 1.1. (i) ( o n )  p , 0 (: ),
) an d  261n )

f  z Q p  B n - F i  f o r all
n > 0.

(ii) Q ( n )  i s  a p-divisible and a p-torsion (I -module.

T he  authors have defined in  [I-Z] a  sequence Iwn l ,„  o f  valuations o n  K.
We'll recall the definition and their main properties. F or each n > 1 le t Ck

( n )  be
the  subring o f ek  defined above. F or a c K * we define

w (a ) :=  m ax{m eZ lae  p ,n  c (Kn -1 )} .

Properties of  wn
a) wn (a + b) m in (w „(a ), w n (b )) and if w„(a) w ( b )  then we have equality,

for a ll, a, b e K.
b) w „(ab) wn (a ) +  w (b ) for a ll a, b.
c) wn (a ) = oo if  and  only if a =  0.
d) v(a) w „_1 (a ) wn (a ) for a ll a e  K  and n > 2
e) F o r  each n > 1 the  completion o f k  with respect to  w,, is canonically

isomorphic to B .
f) F o r each n > 1, o - c Gal(K/K) and a c K  we have wn (a- (a )) =  w (a)

Remark 1.1. If we define the norm Hall, := n( a )  fo r  all a E K , then wn and
extend  naturally  to  B n  w h ich  becom es a  B anach algebra over K.

Furthermore the  canonical maps 0 „  Bn+1 B ,, are  continuous Banach algebra
homomorphisms of norm 1. As mentioned before, B -dER = lim_B n , with transition
maps the  O's. The canonical topology o n  13-c iR  i s  the projective limit topology,
with topology on each B n  induced by w„.

L e t u s  now recall the concept of deeply  ramified ex tension . L et Qp  L  c  K.
Then we have

Theorem 1.2 (Coates-Greenberg, IC-G1). The following conditions on L  are
equivalent
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i) L  does not hav e a f in ite  conductor (i.e . L  is  no t f ix ed  by  any  o f  the
ramification subgroups o f  Gal(K/Q p ).)

ii) The set { v(z Q p  F  L  a n d  [F  : Qp ] < c o }  is unbounded
iii) For ev ery  L ' f inite ex tension of  L , we have m L  OE Tro L (m y ).

Remark 1.2. There are more equivalent conditions in [C-G], but we will not
use them here.

Definition 1.1 (Coates-Greenberg, [C-GI). We say that L  is a  deeply ramified
extension of Q p i f  it satisfies the  equivalent conditions of the above Theorem.

We'd like now to recall another result of [I-Z], which will be used in the proof
of Theorem 2.2. F o r each n  > 1 we have defined a  derivation

cfn :Q .

The following facts are  proven in [I-Z], section 5:
1) cin is continuous with respect to  wrfro  o n  th e  domain and  the  discrete

topology o n  th e  ta rg e t .  Therefore it extends to an (9 K -linear map from the
topological closure of (9Ln - 1 )  i n  B n + i ,  which w ill be denoted by An+1‘ so  dri
A n +1 —> g i n ) .

2) J n +I A +1 , where J + ] was defined before. So, by restriction we get an
CK-linear map cl,, : 4+1 Q M , which turns ou t to be surjective for all n  > 1.

3) Both Jn+1 and Q ( n) have canonical structures of (9c f,[G]-modules and d„ is
ecAG1-semilinear (let us recall that G := Gal(K/Qp)-)

4) Let L  be a  deeply ramified extension of Q p  a n d  GL  : G a l(K /L ) . Then
the restriction

(Q(n))GL

is "almost surjective", i.e . the cokernel of the map is annihilated by m i . .
Finally, we'd like to recall the  notion  of "generating se t"  an d  - generating

degree" defined in  th e  In tro d u c tio n . F o r  tw o commutative topological rings
A c  B , a  subset M  B  will be called a  "generating set" if A [M ] is dense in B,
where A [M ] is defined in the section Notations.

Definition 1.2. Let A  B  be commutative topological rings, then we define
"the generating degree", gdeg(BI A ) eNU oo to be

gdeg(BI A ) := min{MI, w here M  is a  generating set of B/24 }

where we denote by IM1 the number of elements of M  if M  is finite and oc if M  is
not finite.

We have the very simple properties:
a) If A B OEC then
I) gdeg(C I A ) < gdeg(BI A ) + gdeg(CIB)
ii) gdeg(CI A) gdeg(C  I B ).
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Remark 1.3. It is not true though that gdeg(C I A) g d e g ( B I  A ) .  For ex-
ample gdeg(Qp IQ p ) = oo while gdeg(kd R IQ p ) =- 1 (as will be shown in Theorem
3.1).

b) gdeg(BI A ) is invariant with respect to isomorphisms of topological rings.
c) If A  c  B  is a  finite separable extension of fields, then gdeg(B/ A ) < 1.
d) If L IQ p  i s  a  finite field extension, then gdeg((9L IZ p )
e) gdeg((cc ,14)= cc.

Remark 1.4. In connection with e ) above note that since gdeg(Qp IZ p )  = 1
from i) above and the level 1 case of Theorem 3 .1  below it follows that
gdeg(Cp lZ p ) 2.

2. Galois invariants of B R

Let L  be an algebraic extension of K .  Then we can state and prove the
following description of ( B ) G L  fo r all n 1 and of (B R ) G L.

Theorem 2.1. I f  L  is not deeply  ram if ied then L  is dense in (B,,) G t . f o r all
n 1  and in (B R ) G L

This was proved in [I-Z].

Remark 2.1. In [I-Z] the authors prove much more, namely that (BO G L  =

for a ll n > 2  and (B R ) GL =  L .  Also, the valuations wn restricted to L  are all
equivalent and they are equivalent to the usual p-adic valuation v.

Theorem 2 .2 .  I f  L  is deeply ramified then
i) there exists a uniformizer z  of .8 -

d
F
R  ( le t  us recall

the ideal I ) ,  such that z  E (B R ) G L .
ii) L[0,,(z)] is dense in (B n ) G L for all n > 2 and L[z]

z  is lik e in i).

P ro o f  i) was proved in [I-Z], but we will sketch the proof here as w ell. It is
enough to prove that for each n > 2  there exists a  uniformizer z,, E (B„) G L  such
that the zn 's  are compatible (i.e. 6 (z z, , ) . We'll prove this by induction on
n. For n = 2  the statement follows from the fact that (C p (1)) G L  C I  ([I-Z]
Proposition 3.1). Let us now suppose that the statement is true for n  and let us
prove it for n + 1. Let z,, be a uniformizer of B„, invariant under GL and let y  be
any uniformizer of B,,-ri such that On(Y) zn. Let us recall the "fundamental
exact sequence"

0 J„+ 1 —> Bn+1 B,, —+ O.

On the one hand, 4 + 1 /"/ /n + 1 is  a one dimensional Cr -vector space generated
by y n .  On the other hand, as z„ is invariant under GL ,  for each a G GL we have
a(Y ) — Y  E Jn±i. Therefore for each a E GL there exists a  unique ((a) E Cr  such

that this is a generator of

is dense in (13-,FIR) G
L , where
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that

a(Y ) — Y  = C(a) • Y n

The m a p  :  GL Cp  thus defined is a continuous 1-cocycle for the group GL . As
H i (GL , Cp ) = 0 (as proved in [I-Z1 Proposition 3.1) there exists an E c Cp  such that
C(o-) =  a(e) — E for all a c G L . Now set zn + , : =  y  —  e • y". This will do the job,
a s  it is easy  to  see  that o- (yn) =  y "  for a ll a E GL.

Before we prove ii) we need the following

Lemma 2.1. L et L  be a  deeply r a m if ie d  ex tension, n > 1 and z e (B n +i) G L  a
uniform izer and y  = q5(z) c (Bn ) G L . For each a c L [y ] there exists b e L[z] such
that On (b) = a an d  if  n> 1  then  w n ± i(b) w n (a) —  1 and  if  n  = 1  then w 2 (b) >
v(a) — 2.

wn+]P ro o f  L e t  {  } , n , am  e K  such that a m z .  Then a n , -->w" y.
L e t  n o w  a = E m i y i e L [y ], th e n  x m  :=  E in i (a,„y a. Also {x„,}„, is

C auchy in  w n+i, xm  c E m i z i E L [z ], a n d  Op (c) =  a. L et us suppose
n >  1. T h e n  if wn ± i (c) > wn (a) — 1 then we take b = c and we are d o n e .  If not,
we'll change c by an element of z "L  = Ker(On 1L iz i ), such that the desired inequality
h o ld s . F irs t of all we may suppose that w (a)  =  0  (if not we just multiply by a
suitable power of p ) .  Then w n (xm ) = 0 for m » 0, so x n , c et' )  for m  »  O. A ls o
as -txm l,n  is  a Cauchy sequence in wn + i, we have d ( c )  c l(x ,)  e f l ( ") for m  » 0 as
shown in  s e c t io n  1 . W e  a lso  have cr(d,,(c)) = d(c) fo r  a ll  a e G L ,  so d ( c )  e
(12(n)) GL As was explained in section 1, d„ extends to an Ocp [GL ]-semilinear map,

: 4 + 1 S i n ) , such  tha t its  restriction

(*) dn : n
..G
1( S 2 ( n ) ) G L

is  "a lm o st surjec tive" (in  the  sense  tha t its  cokerne l is  ann ih ila ted  by  mi..)
Moreover, a s  in  th e  proof o f  Theorem 2.2 i), 4+1 '= y " C p  as &c[GL] -modules.
Therefore we have J n

G
±

L
i y n i „  so  from  the  almost surjectiveness o f  cin in  (* ) ,

there exists fi E Zn i, such that pd(c) = pd n (0). Moreover as z "L  is dense in zni,
(in w+1), OW is discrete and °in is continuous, fi can be chosen from z n L .  Finally
w e have wn + 1(c — )6) + 1 > 0 = w n (a). So  w e take  b = c — 13 a n d  w e are  done.
The proof goes identically if n  = 1, but v (a) m ay not be m ade 0 by multiplying
with a pow er of p , but 0 v(a) < 1.

Proof  of  the theorem . Let us denote by zn  :=  O ( z ) .  It would be enough to
prove that L[z n j  is dense in (Bn ) G L  fo r  all n  > 1. This statement is true for n  = 1
as L  is dense in (Ç) GL . S o  let us suppose that it is true for some n  > 1. T h e n
we have the commutative diagram with exact rows

O( z „ + , ) " L —

U
0  — > (z n + ,

— > (B„) G L o

—> L,[z„] o
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T h e  to p  e x a c t sequence comes from considering th e  lo n g  e x a c t cohomology
sequence o f  t h e  fundam ental e x a c t  seq u en ce  ab o v e  a n d  t h e  fa c t th a t
H i (GL,Cp (n)) = 0 ([I-Z] Proposition 3.1). The first vertical inclusion is dense in
wn+i and the third is dense in wn . We want to prove that the middle inclusion is
dense as well (in wn+i)•

Let a e  (B+1) G L a n d  le t  a, c L [z ] such that ai On(Œ). apply Lemma
2.1: there exist e  E L[z,i + 1 ], i = 0, 1, 2, ... such that On (co) =  ao , On(c/) = aH-1 — at,
f o r  i > 0  a n d  wn + 1(c,) — a,) — 2 —> co. T h e r e f o r e  ci 0 .  S o  let
bi := co + c1 + • • • + ci c L[zn+1], then On (k ) = a, and 0,1, is Cauchy in wn + 1. Let
XE Bn + 1 be  the lim it o f  OW. Then, obviously x  (Bn + 1) G L  and 0(x ) = O n (a).
Thus, a — x e  Ker((bn  ( B n + i ) GL ) = z L , s a y  a — x = mzn, m c L .  Let s, e L  be such

w„, tha t si —> m, then s,zn
-1

 m z n .  So, ti : =  bi + si zn c L[zn + 1 ] and  t,

Remark 2 .2 . The same result was obtained by P. Colmez for the case where
L  is  the cyclotomic Z r -extension of Qp  i n  [C], using different methods.

3. Generating elements

The m ain result o f  this section is  the following rather surprising

Theorem 3.1. There exists z E _13,tR  such that Q p [On (z )] is dense in Bn fo r all
n  > 1  and Qp [z] is dense in

Remark 3.1. For n  = 1 this is an  improvement of the result of [I-Z,11 where
the authors proved that one can find an element z  in Cr  such that Q ( z )  is dense in
Cp .

Remark 3 .2 .  Actually, Theorem 3.1 can be stated in  an  apparently stronger
form: there exists z c B R ,  su ch  th a t Q[z] is  dense in B R .

Before we start the  proof of the  theorem we need the  following

Lemma 3.1 ("weak" Krasner's Lemma in Ba ). Let n > 1 be an integer, L any
algebraic extension of Qp  and a, fi E  Qp  such that

w (Œ f l) > Y n(œ ):= creGn2 a4 ) 0 2 W n ( œ  — 6 ( 1 ) ) .

Then L (a) c

P ro o f  I f  this w ere not true there w ould exist cy e G a l ( k / 4 3 ) )  such that
o-(a) 0 a. Since w(Œ — fi) -= w„(o- (a — fl)) = w n (c(a) —  fi) a n d  since wn i s  a  val-
uation we have

wp(a — cr(a)) wp(a — fi)

which is a contradiction.

Remark 3.3 . The "strong" Krasner's Lemma in  X , which is left as an open
problem, would be the  same statement bu t fo r any f i  in  B„.
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Proof  o f  t h e  th e o re m . W e can find a  sequence fu„l n e N  in  Q p  such that

Qp (al) c  Q p (a 2 ) OE • • • Qp (a„) • • • Qp(an) = Op.

Now we construct a  sequence of elements in Op, {a„}, together with a  sequence of
polynomials {hm,n(X)}(,n „ )  in  Q [ X ]  having th e  following properties fo r  each
n E N:

i) h„,,n(an) =  am fo r any in < n.
ii) UQp(Œn) = .
iii) wp (an — c + , ) > max fh, yn(an)05 ,11 ,  where yn  w as defined in  Lemma 3.1

and

: =  max max
m, <m, <n  1 - deg(hmi dn2 )

n —  w n ( Ig ,n , (an )) + wn(j i.) 

(here, if h e Qp [X] and j  is a nonnegative integer then we denote by h(i )  the j-th
derivative of h.)

The construction goes like in [I-Z,1], namely we choose our sequence {a„} n  to
have also the property

iv) Q ( a n ) Qp(Œn)•
First we take al := al. Suppose we have constructed al, OE2, • • • C ;(t, and h , 1 (X )

for i  < j < n  and we want to find an + 1 and h,,, , , + i  for  i n  <  n .  We take (as in
[I-Z,1]) an+1 of the form an+ 1 = ct,, + tn • a,,1, where t,, E Qp  is "small" enough to
have iii) above. From  L em m a 3.1 it follow s that Q (a n ) Q p(an+1), so an+1 =
h a n + 1  — an ) c Qp (an + i ) , i.e . w e  have iv) for a„ + 1 . T h i s  will imply property ii)
after the construction is  d o n e . A lso , f ro m  th e  fac t th a t Q (a n ) Q p (a„± 1) it
follows the existence of hn ,„+ [(X )  satisfying th e  required property. W e define
simply

hm,n+1(X ) := hm,n(hn,n+I(X )) for m  < n.

Hence the inductive procedure works, and so we have a sequence { a,„}, n , which is
Cauchy in w n , fo r all n  > 1, and also Cauchy in k d

 -
R . Let us denote by zn  E B r ,

a n d  b y  z E B R ,  t h e  elements with th e  property: a,,, z , ,zn f o r  a l l  n  > 1 , and
=  z  in B R .  H e n c e  zn  =  0,,(z ) fo r  a ll n  > 1. W e 'd  l ik e  t o  show  that

Qp [zn ] is dense in B r i fo r all n 1 and Qp iz i is dense in  B R .  F o r  this it would be
enough to show that Qp  is contained in the topological closure of Q p [zn ] in Bn for
all n  and in the topological closure of Q [z ] in  13-cii? . W e'll show that for a  fixed
but arbitrary r, ci,, i s  in  th e  topological closure of Q p [zr ]  in  B r ,  fo r all n.

So let us fix two arbitrary positive integers r and M I . We also fix m 2 such that
m 2 > m i and  m 2 >  r  and n  > m 2 . L e t u s  denote by un :=  an-El — an. We have

(

1 \ U n
i )

W r(k n i,m 2 (an ) hrni,m2(CX n-1-1)) ---. w n  E h 21),1n,(
a n ) •

j > 1 - j '

> min (j),'„ (un ) + W n(k:i
j  ,) ,m,( 1 11)) IV  n (.»))I j deg(h,„1,„,2)
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where the first inequality comes from the Taylor expansion of 11,,1 m 2 ( a n + 1 )  and the
property d) of the w n 's. Since wn (un ) > (5,, we get from iii) the following relation

v) W r(hm i,m 2 ( 1 n ) h m i,m 2 ( 01n+ 1)) n.

Let now m 3 > m2. From NI) above we get

wrchm,,,,,,,(am,) — h„,,,,n2(a,n3)) (=  w r  E  ch,„ ,,„„(otn) —  hm 1,m2(an+1))

>_ m i n  wr (hm ,, m 2 (an ) — hn „ )),m2, 1 n+i .1132 < n < 1)33

N o w  w e  let m 3 g o  to  infin ity  a n d  deduce from  th e  fa c t th a t  h,11 „,2 (cxm3 )
h,n i ,m 2 (Zr )  a n d  hmhin2( 1 1n2) = 06, for a ll m 2 that

W r(am , f r im 1 ,m 2 ( Z r ) )  M 2.

Therefore we see that we can approximate a , in the valuation w r ,  as well as we
want with polynomials hm,,m 2 (zr) E Q p [ z r ] •  Thus the topological closure of Qp [zd
in B r  contains all the an , so it contains all the  fie lds Q (c) =  Q [O E ]  so it contains
Q  and  hence it equals B r . This finishes the proof.

N ow  that w e have constructed generating elements z  in  i rc
E
IR  o n e  naturally

might wonder if  these elements could be also used to generate the modules of
differential forms (see section 1). L et us fix some integer n  > 2 then as shown in
[I-Z], ci( n- 1 )  induces an (9 0  -linear homomorphism P - 1 )  : J a g 2 ( ” )  which is
continuous with respect to P wn o n  J, ,  a n d  th e  discrete topology o n  f i n - 1 )  a n d
surjective. Therefore if  z  E B R  i s  a  "generating element" then any element in
Sin - 1 )  w i l l  h a v e  th e  fo rm  d ( 1 1 - 1 ) (P(0„(z ))) f o r  som e polynomial P ( X )  with
coefficients in  Q .  T h i s  doesn't mean, however, that d ( "- 1 ) (z ) generates Sin - 1 )  a s
a n  e k  m o d u le . A c tua lly  w e  know  tha t th is  is  impossible since Q ( ' 1 )  i s  , -
divisible. W h a t h a p p e n s  is  th a t the coefficients in the above polynomials P(X )
have larger and larger powers of p  in their denominators. Therefore if one wants
to generate Si 1' - 1 )  in  terms of On (z ) one needs to use a sequence of polynomials in
On (z ) such that no  finite power of p  will annihilate all their differentials.

4 .  An orthonormal basis for B„
Let us fix an n  > 1 and a "generating element" z E B a over Qp  (we recall that

such a n  element has the  property  that Q [z] is dense in Ba ). Such a n  element
exists by Theorem 3.1, and actually can be chosen such that ti„(z) is a  "generating
element" of Cp . M oreover w e m ay suppose that w,1 (z) > 0 (if not we just multiply
z  by  a  suitable power of p). F or any m  1 we define

6(m, z) := supfivn(.f  (z))1.f  E Qp  [X ], monic, deg ./ . <

m3-1

n=m2

W e have
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Lemma 4 . 1 .  6(m , z ) is an  integer for all M .

P ro o f  It would be enough to show that 6(m, z) is finite. Suppose not, then
from the inequality iv n (f (z)) v (f (ii„(z ))) we deduce that

sup{v(f(iin (z ))) f  e  Q p [X ], m onic, deg f  m l  =  c c .

As Qp  is locally compact, there exists a Cauchy sequence of polynomials of degree
at most ni , { f k (X )} k e r s i ,  such that v (fk (q,,(z))) co as k —> co. The Qp -vector
space of polynomials o f degree  a t m ost m  is  com ple te  so  le t  u s  denote by
f  (X ) := f k ( X ) .  Then f ( ii n (z )) = 0  and s o  n (z ) is algebraic of degree at
most m over Q .  T h is  contradicts the fact that ri„(z) is a  generating element of

For each m  > 1 let us choose f,„ E Qp  [X] monic of degree at most ni such that

(in, z) = w„(f,„(z)).

W e'll call the polynomials f ,„ "adm issible". W e have the following

Lemma 4 .2 .  deg(f, n ) = m.

P ro o f  The proof follows easily from the fact that

6(m + 1, z) > 6(m, z), for all m

This relation follows from the more general inequality: for all m 1 , m2 >  0  w e have
6(m1 + m2, z) (5(mi , z) +6(m2, z )  and the fact that 6(1, z) >  w (z ) > 0 .

In order to prove this formula let us see that

wn(f,,,, +m2 (Z ) )  > (f,„ , (z) • f,„2 (Z ) )  >  Wn (f,„, (z)) wn (f„,(z )).

Let now { f,„(X )} ,„ be a  sequence of "admissible" polynomials, and for each
m  > 1 we define rn, := wn ( f ,( z ) )  and M,n (z) := f„,(z)I pr- . W e set Mo(z) := 1.
Then we have

Corollary 4 . 1 .  If  m o > 1 then { M o , M 1 ,... ,111 }  is a  basis for the Q,,-vector
space of  polynom ials of  degree less than o r equal to mo w ith  coefficients in Qp .

The main result of th is section is

Theorem 4.1. { M,n (z)}, n , 0  i s  a n  integral, orthonorm al basis of  B n ,  a s  a
Banach space over Q .  M o re  precisely:

i) For any  y  e Bn  there  ex ists a unique sequence { c„,} , o  i n  Qp  such that
c„, 0  and y  = Ern crnMin(z).

ii) L et y  e B n ,  y  = cm-Mm(z), with cm  E Qp  J r  a l l  in  >  0  and c„, J-> 0.
Then w n (y ) = min,,t)(c,n ).

iii) For all y e B n , w n (y) 0 i f  and only  if  y  = c,„M„,(z) with c„, E Z,, for
all m  > 0  and c„, 21> O.

P ro o f  Property iii) obviously follows from i) and ii). Let us first prove
ii). For this let us consider a  finite sum: y = 0 en ,M ,„(z), w ith c,„ E Qp  for
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all m .  Let mo be  the largest index k  such that min{y(c„,)} = Y (ck ). We claim
that:

W n ( E  Cm M  m (Z )  =  l l (C m 0 ) .

Obviously we have that the right hand side is less than or equal to the left hand
side. Let us suppose tha t the inequality is strict. Then we have

2r12. p
Wn c m m ,n ( z )  > rm , =-- (5(mo , z).

m=1 C m o

But, a n ° cniMn, (z) is  a  m onic polynomial of degree m o in  z , so  the above
inequality c a tra d ic ts  the definition of (5(mo , z). So the claim  follow s. On the
other hand one has

W n
m=m0+1 

em M 177 (Z )  >  V ( C7770 )

mo

m=1

Therefore ii) h o ld s  t r u e  fo r  f in ite  s u m s , so  a ls o  fo r  su m s  o f  th e  form
E m , 0  Cm A n (Z ) ,  where cm  -+ T h u s  ii)  is proved.

Now let us prove i). Let y  e Bn and as z  is a  "generating element", we have
a  sequence of polynomials Pm (X ) e Q p [X ], such that

P m (z ) yLet km  := deg(Pm (X ) ) .  By Corollary 4.1 each  P m (z )  can  be  w ritten  P,n (z) =
E  :7 0  Cm  j  M j (Z )  such that wn (P„,(z)) = y(c,,,1) from the above discussion. As
the sequence {Pm (z)} i n  is  Cauchy in wn , for each j ,  the sequence {Cm ,j} 1 is  Cauchy
in y (as wnIQ p  =  y ) , so let us define c, := E Qp . Moreover we claim that
y(cj ) co. T o  se e  th is  let us fix r>  0  and fix also ni such  tha t wn (Pm  (z) — y )  >

For a ll j > max(m g , km, )  fixed, le t m  b e  big enough such that iy,(P,„(z) —
Pm ,(z ))  >1 , so w e have y(c,„,, — c„„,j ) > So we get (letting m  go to infinity)
y(cj  — >  and  c,,, i  =  0  as j > k,n ,. This proves the c la im . S o  it  n o w

makes sense to consider

co
cn ,M,n (z) G B„.

m-=0

F ro m  the construction of  5  w e  have P,„(z) .13, s o  j) =  y. The uniqueness
statement of i)  follows easily from ii).
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Remark 4.1. If in  Theorem 4.1 we consider z  as a generating elem ent" of
B , over K  (let us recall that K  = Q )  then the same construction gives an integral,
orthonormal basis o f B , over k.

5. Metric invariants for elements in  13-!iR

Although the topology in 13-
R  does not come from a canonical metric, the Bn 's

d o  h av e  canonical metric s truc tu res . T h is  show s u s a  w ay to obtain m etric
invariants for elements in B R ,  by  send ing  them  canon ica lly  to  any  B „ and
recovering various metric invariants from those metric spaces.

For example, one may consider for any Z  in  13. 1R  the invariants  5(m , Z ) :=
6(m, (O(Z))).

We mention that at level n  = 1 (i.e. in C p ) one knows a  lot more about these
admissible sequences than we presently know in  B ,, for n  > 1, or in  13-

1
d-R . More

details can be found in [P-Z] and [A-P-Z]. Can any of those results be obtained at
higher levels or in  B R ?

In [A-P-Z] it is proved that one can separate the conjugates o f Z  from the
nonconjugates using certain metric invariants. L et us recall how this is done: for
any Z  in Cp  — Qp  th e  sequence {6(m, Z)/m}„, has a  limit 1(Z) in RU f o o l .  Now
we take a  "distinguished" sequence  f 1 (X ) for Z  (this is canonically a  subsequence
of what we called in this paper an "admissible" sequence of polynomials for Z , see
[A-P-Z]) a n d  define f o r  a n y  y  i n  cp , 1(y, Z) lim„, sup v (f n (y ))1 m . Then
1(y, Z) < 1(Z) for any y  in C p  a n d  this holds with equality if and only if y  and Z
a re  conjugate . This provides u s  w ith a  metric characterization fo r the  se t o f
conjugates of Z , as the set of zeros of the function f  (y ) = 1(Z ) —  1(y , Z ). What
will be the analogous result at higher levels o r  i n  k ?

From  the  proof o f  Lem m a 4.2 it follow s easily that fo r  any  z  in  B , the
sequence {6(m,z))1m}„, h a s  a  lim it, say  1(z). N ow  if  Z  i s  in  13-. R  w e  g e t  a
sequence of metric invariants for Z , given by 4,(Z ) := 1(0„(Z )). What can be said
about this sequence?

Since w„ is dominated by wn _ j it is clear that b(m,On (Z )) .- 6(m,O,,,_1(Z)) for
any m ,n  and Z .  Therefore one has: 11(Z) > 12 (Z) > • • • > 1,(Z) > • • •

The questions concerning metric characterizations for the set of conjugates is
particularly interesting fo r  generating elements, fo r  th e  following reason: I f  we
define for any Z  in  11-,FI R  (o r  in  some B „) C(Z) := { 0 - (Z) la a G}, where as always
G := Gal(Qp /Q p )  we have a continuous surjective map from G to  C (Z ) given by
a — > o-(Z). Now if Z  is a  generating element in  iqR  (o r  in  B , respectively) then
the above map is one-to-one and moreover it is a hom eom orphism . So one can
view G  as lying inside B R  v ia  th e  orbits C (Z ) o f these generating elements.

Another class of invariants can be obtained in  the following w a y .  We take
an adm issible sequence o f  polynomials { f ,„(X )} „, f o r  a n  element z a B n a n d
consider the sequence Iw n (f ,'„(z))}„,. In the definition of admissible sequences the
derivatives f n i

t (X )  played n o  role and  so w e have no reason to expect that the
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numbers wn (E n (z )) are independent of the admissible sequence considered. The
following result might then come as a surprise.

Proposition 5.1. L e t z  b e  a  "generating elem ent" o f  Bn ,  f o r som e n > 1.
There is an infinite subset 4  =  4 (z )  of  N such that the sequence Iwn (E n (z))1 m e . 0

is independent of  the particular admissible sequence { f,n (X )},„ considered.

Remark 5.1. If Z  is  a  generating element of B / R  th e n  for any n w e get a
sequence of invariants for Z , namely:

cYn (m, Z) := w„(f;„(On (Z )) m E 4 (0 „ (Z )).

Here the sets .,(0 „ (Z ))  might be different for different n's.

P ro o f  Let us fix an admissible sequence { f,„(X )I m  for z. We claim that the
sequence {b,„}„, defined by

bm  := wn(f t'n(z)) — wn(fm(z)) for all m

is not bounded from below. Suppose not, and let b e Z  be a lower bound for the
sequence {bm }m . Let us first observe that the bm 's  are unchanged if we replace in
their definition the f m (X )'s  b y  the M „,(X )'s (the Mm ' s  are  defined in section
4). So w e have

wn(MM(z))= b„, b for all m.

Then the derivative with respect to  z gives us a  Qp -linear operator

0
: Q[z] Q [z]

which is continuous since it is bounded on the orthonormal basis {Mm (z)} m  by  the
assum ption. Since Q[z] is dense in Bn , the operator s, has a unique extension to
a  continuous, Q p -linear operator :  B„ Bn . Clearly V' is a  derivation of Bn ,
w hich is trivial on  Q .  W e  n o w  look a t  its  restriction to  Q p  . If a E Qp  and
P (X )  is  its  minimal polynomial over Q p , then w e have:

0 =W (P )) = PL(a)W (a).

Since PL (a) 0 0 it follows that V(a) = O. So V' is trivial on Qp  and by continuity
it is trivial on B,,. But this is a contradiction with the fact that k is non-trivial on
Qp [z]. This proves the c la im . N ow  let 4  be the infinite set of those indices m
for which we have:

minfbil0

Our second c la im  is  th a t  fo r a n y  o th e r  admissible sequence o f polynomials
{gm (X )} rn fo r  z, w e have

wn(g:„(z)) =  wn (f  'n (z)) for all m E 4'.

In order to prove our second claim, let us denote by {G„,(z)}„, the orthonormal
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b as is  o f B , o ver Qp  o b ta in ed  fro m  fg,„(X)1„7. L et mo Since

g„,„(X) f,„„(X)
G,„„(X) M „, ( X )

w e are done if w e prove that w,(G,i
n o (z)) = w„(M, ) (z)) A t th is point w e use the

b as is  {M„,(z)},n  to  w r ite
/no

G,„(z) j(z)
j =o

w ith  ci  e Q p . A s wn (G,„0 (z)) =  0 (b y  the construction of the G„,'s) w e get from
Theorem 4.1 iii) th at cj  E Zp  fo r  a ll  0 < j  <  m o . M oreover looking at the leading
coefficients of G,,„ an d  Mj  w e  g e t  th a t  c„, = 1. W e  have

/no

G",,o (z) = C.111V )I
i= 1

N ow  for a n y  j  < nio w e  have

wn(ciM;(z)) v ( c i )  w „(M ;(z ) )  w n (M j(z ) )  =  1)1 > b,„ = w ,(M i
n o (z)).

Therefore

w„(G,'„0(z)) = w„(M,;, o (z)).

This proves the Proposition.
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