Generating elements for $B_{d R}^{+}$

By

Adrian Iovita and Alexandru Zaharescu

Introduction

Let us fix a prime number p. Then $B_{d R}^{+}$denotes the ring of p-adic periods of algebraic varieties defined over local (p-adic) fields as considered by J.-M. Fontaine in $[\mathrm{Fo}]$. It is a topological local ring with residue field \mathbf{C}_{p} (see the section Notations) and it is endowed with a canonical, continuous action of $G:=\operatorname{Gal}\left(\overline{\mathbf{Q}}_{p} / \mathbf{Q}_{p}\right)$, where $\overline{\mathbf{Q}}_{p}$ is the algebraic closure of \mathbf{Q}_{p} in \mathbf{C}_{p}. Let us denote by I its maximal ideal and $B_{n}:=B_{d R}^{+} / I^{n}$. Then $B_{d R}^{+}$(and B_{n} for each $n \geq 1$) is canonically a $\overline{\mathbf{Q}}_{p}$-algebra and moreover $\overline{\mathbf{Q}}_{p}$ is dense in $B_{d R}^{+}$(and in each B_{n} respectively) if we consider the "canonical topology" on $B_{d R}^{+}$which is finer than the I-adic topology.

Let now L be any algebraic extension of \mathbf{Q}_{p} contained in $\overline{\mathbf{Q}}_{p}$ and G_{L} := $\operatorname{Gal}\left(\overline{\mathbf{Q}}_{p} / L\right)$. In [I-Z], the authors described all the algebraic extensions of $K:=\mathbf{Q}_{p}^{u r}$ such that L is dense in $\left(B_{n}\right)^{G_{L}}$ for some n or in $\left(B_{d R}^{+}\right)^{G_{L}}$. Let us formulate this problem in a different way. For two commutative topological rings $A \subset B$, a subset $M \subset B$ will be called a "generating set" if $A[M]$ is dense in B.

Definition 0.1. Let $A \subset B$ be commutative topological rings, then we define "the generating degree", $\operatorname{gdeg}(B / A) \in \mathbf{N} \cup \infty$ to be

$$
\operatorname{gdeg}(B / A):=\min \{|M|, \text { where } M \text { is a generating set of } B / A\}
$$

where $|M|$ denotes the number of elements of M if M is finite and ∞ if M is not finite.

Then the problem $I s L$ dense in $\left(B_{d R}^{+}\right)^{G_{L}}$? can be formulated as $I s$ $g \operatorname{deg}\left(\left(B_{d R}^{+}\right)^{G_{L}} / L\right)$ zero? For example Theorem 0.1 of [I-Z] can be restated as:

Theorem 0.1. If L is not a deeply ramified extension of K then

$$
\left.\operatorname{gdeg}\left(\left(B_{n}\right)^{G_{L}} / L\right)=0 \quad \text { for all } n \text { and } \quad g \operatorname{deg}\left(B_{d R}^{+}\right)^{G_{L}} / L\right)=0 .
$$

A characterization of deeply ramified extensions L of K satisfying $\operatorname{gdeg}\left(\left(B_{d R}^{+}\right)^{G_{L}} /\right.$ $L)=0$ is obtained in [I-Z], Theorem 0.2. As not all deeply ramified extensions of K have this nice property, [I-Z] left open the problem of describing $\left(B_{n}\right)^{G_{L}}$ for all n and $\left(B_{d R}^{+}\right)^{G_{L}}$, for a general deeply ramified extension L. The first part of this paper (section 2) supplies such a description, namely we prove

[^0]Theorem 0.2. If L is a deeply ramified extension of K then
i) there exists a uniformizer z of $B_{d R}^{+}$(i.e. a generator of I) such that $z \in\left(B_{d R}^{+}\right)^{G_{L}}$
ii) $L[z]$ is dense in $\left(B_{d R}^{+}\right)^{G_{L}}$, and if we denote by z_{n} the image of z in B_{n}, then $L\left[z_{n}\right]$ is dense in $\left(B_{n}\right)^{G_{L}}$ for all n.

In other words, Theorem 0.2 tells us that if L is deeply ramified then $g \operatorname{deg}\left(\left(B_{n}\right)^{G_{L}} / L\right) \leq 1$ for all n and $g \operatorname{deg}\left(\left(B_{d R}^{+}\right)^{G_{L}} / L\right) \leq 1$.

The second part of the paper (sections 3 and 4) is concerned with a problem of a different nature. It is known ([I-Z]) that B_{n} is a Banach algebra over \mathbf{Q}_{p} for all n. We are interested in constructing a "nice" integral, orthonormal basis of B_{n}, as a Banach space over \mathbf{Q}_{p}. First we prove a surprising fact, namely that $B_{d R}^{+}$ is the completion of the polynomial ring in one variable over \mathbf{Q}_{p} in a suitable topology, i.e. we prove the following

Theorem 0.3. $g \operatorname{deg}\left(B_{d R}^{+} / \mathbf{Q}_{p}\right)=1$.
Theorem 0.3 provides us with an element $Z \in B_{d R}^{+}$such that $\mathbf{Q}_{p}[Z]$ is dense in $B_{d R}^{+}$. We can use this "generating" element Z to construct an orthonormal basis for B_{n} over \mathbf{Q}_{p}. Namely, let us fix an $n \geq 2$ and let us denote by z the image of Z in B_{n}. Then we construct a sequence of polynomials $\left\{M_{m}(X)\right\}_{m \geq 0}$ in $\mathbf{Q}_{p}[X]$, with the property that $M_{0}(X)=1$ and $\operatorname{deg}\left(M_{m}(X)\right)=m$ for all m, such that

Theorem 0.4. The family $\left\{M_{m}(z)\right\}_{m}$ is an integral, orthonormal basis of B_{n} over \mathbf{Q}_{p}, i.e.
i) For any $y \in B_{n}$ there exists a unique sequence $\left\{c_{m}\right\}_{m}$ in \mathbf{Q}_{p} such that $c_{m} \xrightarrow{0} 0$ and $y=\sum_{m} c_{m} M_{m}(z)$.
ii) For y and $\left\{c_{m}\right\}_{m}$ as in i) above we have

$$
w_{n}(y)=\min _{m} v\left(c_{m}\right)
$$

where let us recall that w_{n} is the valuation which gives the Banach-space norm on B_{n}.
iii) For y and $\left\{c_{m}\right\}_{m}$ as in i) above, we have: $w_{n}(y) \geq 0$ if and only if $c_{m} \in \mathbf{Z}_{p}$ for all m.

We end the paper (section 5) with some examples and problems concerning metric invariants for elements in $B_{d R}^{+}$.

Notations. Let p be a prime number, $K=\mathbf{Q}_{p}^{u r}$ the maximal unramified extension of \mathbf{Q}_{p}, \bar{K} a fixed algebraic closure of K and \mathbf{C}_{p} the completion of \bar{K} with respect to the unique extension v of the p-adic valuation on \mathbf{Q}_{p} (normalized such that $v(p)=1)$. All the algebraic extensions of K considered in this paper will be contained in \bar{K}. Let L be such an algebraic extension. We denote by $G_{L}:=\operatorname{Gal}(\bar{K} / L), \hat{L}$ the (topological) closure of L in $\mathbf{C}_{p}, \mathcal{O}_{L}$ the ring of integers in L and m_{L} its maximal ideal. If $K \subset L \subset F \subset \bar{K}$, and F is a finite extension of L, $\Delta_{F / L}$ denotes the different of F over L.

If A and B are commutative rings and $\phi: A \rightarrow B$ is a ring homomorphism
we denote by $\Omega_{B / A}$ the B-module of Kähler differentials of B over A, and $d: B \rightarrow \Omega_{B / A}$ the structural derivation.

Let \mathscr{A} be a Banach space whose norm is given by the valuation w and suppose that the sequence $\left\{a_{m}\right\}$ converges in \mathscr{A} to some α. We will write this: $a_{m} \xrightarrow{\underline{W}} \alpha$.

If A is a subring of the commutative ring B and $M \subset B$ is a subset, then we denote by $A[M]$ the smallest A-subalgebra of B which contains M.

1. Some constructions, definitions and results

We'd like to first of all recall some of the main results and definitions from [Fo], [F-C] and [I-Z], which will be used in the paper. We'll first recall the construction of $B_{d R}^{+}$, which is due to J.-M. Fontaine in [Fo]. Let R denote the set of sequences $x=\left(x^{(n)}\right)_{n \geq 0}$ of elements of $\mathscr{O}_{C_{p}}$ which verify the relation $\left(x^{(n+1)}\right)^{p}=$ $x^{(n)}$. Let's define: $v_{R}(x):=v\left(x^{(0)}\right), \quad x+y=s \quad$ where $\quad s^{(n)}=\lim _{n \rightarrow \infty}\left(x^{(n+m)}+\right.$ $\left.y^{(n+m)}\right)^{p^{m}}$ and $x y=t$ where $t^{(n)}=x^{(n)} y^{(n)}$. With these operations R becomes a perfect ring of characteristic p on which v_{R} is a valuation. R is complete with respect to v_{R}. Let $W(R)$ be the ring of Witt vectors with coefficients in R and if $x \in R$ we denote by $[x]$ its Teichmüller representative in $W(R)$. Denote by θ the homomorphism $\theta: W(R) \rightarrow \mathcal{O}_{C_{p}}$ which sends $\left(x_{0}, x_{1}, \ldots, x_{n}, \ldots\right)$ to $\sum_{n=0}^{\infty} p^{n} x_{n}^{(n)}$. Then θ is surjective and its kernel is principal. Let also θ denote the map $W(R)\left[p^{-1}\right] \rightarrow \mathbf{C}_{p}$. We denote $B_{d R}^{+}:=\lim _{\leftarrow} W(R)\left[p^{-1}\right] /(\operatorname{Ker}(\theta))^{n}$. Then θ extends to a continuous, surjective ring homomorphism $\theta=\theta_{d R}: B_{d R}^{+} \rightarrow \mathbf{C}_{p}$ and we denote $I:=\operatorname{Ker}\left(\theta_{d R}\right)$ and $I_{+}:=I \cap W(R)$. Let $\varepsilon=\left(\varepsilon^{(n)}\right)_{n>0}$ be an element of R, where $\varepsilon^{(n)}$ is a primitive p^{n}-th root of unity such that $\varepsilon^{(0)}=1$ and $\varepsilon^{(1)} \neq 1$. Then the power series

$$
\sum_{n=1}^{\infty}(-1)^{n-1}([\varepsilon]-1)^{n} / n
$$

converges in $B_{d R}^{+}$, and its sum is denoted by $t:=\log [\varepsilon]$. It is proved in [Fo] that t is a generator of the ideal I, and as $G_{K}:=\operatorname{Gal}(\bar{K} / K)$ acts on t by multiplication with the cyclotomic character, we have $I^{n} / I^{n+1} \cong \mathbf{C}_{p}(n)$, where the isomorphism is C_{p}-linear and G_{K}-equivariant. Therefore for each integer $n \geq 2$, if we denote by $B_{n}:=B_{d R}^{+} / I^{n}$ we have an exact sequence of G_{K}-equivariant homomorphisms

$$
0 \rightarrow J_{n+1} \rightarrow B_{n+1} \xrightarrow{\phi_{n}} B_{n} \rightarrow 0
$$

where $J_{n+1} \cong I^{n} / I^{n+1} \cong \mathbf{C}_{p}(n)$. This exact sequence will be called "the fundamental exact sequence". We denote by $\theta_{n}: B_{d R}^{+} \rightarrow B_{n}:=B_{d R}^{+} / I^{n}$ and by $\eta_{n}: B_{n} \rightarrow$ \mathbf{C}_{p} the canonical projections induced by θ.

Let us now review P. Colmez's differential calculus with algebraic numbers as in the Appendix of [F-C]. We should point out that as our K is unramified over \mathbf{Q}_{p} and so $W(R)$ is canonically an \mathscr{O}_{K} as well as an $\mathscr{O}_{\hat{K}}$-algebra, we'll work with $W(R)$ instead of $A_{\text {inf }}$. For each nonnegative integer k, we set $A_{\text {inf }}^{k}:=W(R) / I_{+}^{k+1}$. We define recurrently the sequences of subrings $\mathcal{O}_{\bar{K}}^{(k)}$ of $\mathcal{O}_{\bar{K}}$ and of $\mathcal{O}_{\bar{K}}$-modules $\Omega^{(k)}$
setting: $\mathcal{O}_{\bar{K}}^{(0)}=\mathcal{O}_{\bar{K}}$ and if $k \geq 1 \Omega^{(k)}:=\mathcal{O}_{\bar{K}} \otimes_{\mathcal{O}_{\bar{K}}^{(k-1)}} \Omega_{\mathcal{O}_{\bar{K}}^{(k-1)} / \mathcal{O}_{K}}^{1}$ and $\mathcal{O}_{\bar{K}}^{(k)}$ is the kernel of the canonical derivation $d^{(k)}: \mathcal{O}_{\bar{K}}^{(k-1)} \rightarrow \Omega^{(k)}$. Then we have

Theorem 1.1 (Colmez, Appendice of $[\mathrm{F}-\mathrm{C}]$, Théorème 1). (i) If $k \in \mathbf{N}$, then $\mathcal{O}_{\bar{K}}^{(k)}=\bar{K} \cap\left(W(R)+I^{k+1}\right)$ and for all $n \in \mathbf{N}$ the inclusion of $\mathcal{O}_{\bar{K}}^{(k)}$ in $W(R)+I^{k+1}$ induces an isomorphism

$$
A_{i n f}^{k} / p^{n} A_{i n f}^{k} \cong \mathcal{O}_{\bar{K}}^{(k)} / p^{n} \mathcal{O}_{\bar{K}}^{(k)}
$$

(ii) If $k \geq 1$, then $d^{(k)}$ is surjective and $\Omega^{(k)} \cong\left(\bar{K} / \mathbf{a}^{k}\right)(k)$, where a is the fractional ideal of \bar{K} whose inverse is the ideal generated by $\varepsilon^{(1)}-1\left(\right.$ recall $\varepsilon^{(1)}$ is a fixed primitive p-th root of unity.)

Some consequences of this theorem are gathered in the following
Corollary 1.1. (i) $A_{\text {inf }}^{(n)} \cong \lim _{\leftarrow}^{\leftarrow}\left(\mathcal{O}_{\bar{K}}^{(n)} / p^{i} O_{\bar{K}}^{(n)}\right)$ and $A_{\text {inf }}^{(n)} \otimes \mathbf{Z}_{p} \mathbf{Q}_{p} \cong B_{n+1}$ for all $n \geq 0$.
(ii) $\Omega^{(n)}$ is a p-divisible and a p-torsion $\mathcal{O}_{\bar{K}}$-module.

The authors have defined in $[I-Z]$ a sequence $\left\{w_{n}\right\}_{n}$, of valuations on \bar{K}. We'll recall the definition and their main properties. For each $n \geq 1$ let $\mathcal{O}_{\bar{K}}^{(n)}$ be the subring of $\mathscr{O}_{\bar{K}}$ defined above. For $a \in \bar{K}^{*}$ we define

$$
w_{n}(a):=\max \left\{m \in \mathbf{Z} \mid a \in p^{m} \mathcal{O}_{\bar{K}}^{(n-1)}\right\} .
$$

Properties of w_{n}
a) $w_{n}(a+b) \geq \min \left(w_{n}(a), w_{n}(b)\right)$ and if $w_{n}(a) \neq w_{n}(b)$ then we have equality, for all, $a, b \in \bar{K}$.
b) $w_{n}(a b) \geq w_{n}(a)+w_{n}(b)$ for all a, b.
c) $w_{n}(a)=\infty$ if and only if $a=0$.
d) $\quad v(a) \geq w_{n-1}(a) \geq w_{n}(a)$ for all $a \in \bar{K}$ and $n \geq 2$
e) For each $n \geq 1$ the completion of \bar{K} with respect to w_{n} is canonically isomorphic to B_{n}.
f) For each $n \geq 1, \sigma \in \operatorname{Gal}(\bar{K} / K)$ and $a \in \bar{K}$ we have $w_{n}(\sigma(a))=w_{n}(a)$.

Remark 1.1. If we define the norm $\|a\|_{n}:=p^{-w_{n}(a)}$ for all $a \in \bar{K}$, then w_{n} and $\|\cdot\|_{n}$ extend naturally to B_{n} which becomes a Banach algebra over K. Furthermore the canonical maps $\phi_{n}: B_{n+1} \rightarrow B_{n}$ are continuous Banach algebra homomorphisms of norm 1. As mentioned before, $B_{d R}^{+}=\lim _{\leftarrow} B_{n}$, with transition maps the ϕ 's. The canonical topology on $B_{d R}^{+}$is the projective limit topology, with topology on each B_{n} induced by w_{n}.

Let us now recall the concept of deeply ramified extension. Let $\mathbf{Q}_{p} \subset L \subset \bar{K}$. Then we have

Theorem 1.2 (Coates-Greenberg, [C-G]). The following conditions on L are equivalent
i) L does not have a finite conductor (i.e. L is not fixed by any of the ramification subgroups of $\operatorname{Gal}\left(\bar{K} / \mathbf{Q}_{p}\right)$.)
ii) The set $\left\{v\left(\Delta_{F / \mathbf{Q}_{p}}\right) \mid \mathbf{Q}_{p} \subset F \subset L \text { and }\left[F: \mathbf{Q}_{p}\right]<\infty\right\}_{F}$ is unbounded
iii) For every L^{\prime} finite extension of L, we have $m_{L} \subset \operatorname{Tr}_{L^{\prime} / L}\left(m_{L^{\prime}}\right)$.

Remark 1.2. There are more equivalent conditions in [C-G], but we will not use them here.

Definition 1.1 (Coates-Greenberg, [C-G]). We say that L is a deeply ramified extension of \mathbf{Q}_{p} if it satisfies the equivalent conditions of the above Theorem.

We'd like now to recall another result of [I-Z], which will be used in the proof of Theorem 2.2. For each $n \geq 1$ we have defined a derivation

$$
d_{n}: \mathcal{O}_{\bar{K}}^{(n-1)} \rightarrow \Omega^{(n)} .
$$

The following facts are proven in [I-Z], section 5 :

1) d_{n} is continuous with respect to w_{n+1} on the domain and the discrete topology on the target. Therefore it extends to an \mathcal{O}_{K}-linear map from the topological closure of $\mathcal{O}_{\bar{K}}^{(n-1)}$ in B_{n+1}, which will be denoted by A_{n+1}, so d_{n} : $A_{n+1} \rightarrow \Omega^{(n)}$.
2) $J_{n+1} \subset A_{n+1}$, where J_{n+1} was defined before. So, by restriction we get an \mathcal{O}_{K}-linear map $d_{n}: J_{n+1} \rightarrow \Omega^{(n)}$, which turns out to be surjective for all $n \geq 1$.
3) Both J_{n+1} and $\Omega^{(n)}$ have canonical structures of $\mathcal{O}_{\mathbf{C}_{p}}[G]$-modules and d_{n} is ${ }^{{ }^{(} \mathbf{C}_{p}}[G]$-semilinear (let us recall that $G:=\operatorname{Gal}\left(\bar{K} / \mathbf{Q}_{p}\right)$.)
4) Let L be a deeply ramified extension of \mathbf{Q}_{p} and $G_{L}: \operatorname{Gal}(\bar{K} / L)$. Then the restriction

$$
d_{n}: J_{n+1}^{G_{L}} \rightarrow\left(\Omega^{(n)}\right)^{G_{L}}
$$

is "almost surjective", i.e. the cokernel of the map is annihilated by m_{L}.
Finally, we'd like to recall the notion of "generating set" and "generating degree" defined in the Introduction. For two commutative topological rings $A \subset B$, a subset $M \subset B$ will be called a "generating set" if $A[M]$ is dense in B, where $A[M]$ is defined in the section Notations.

Definition 1.2. Let $A \subset B$ be commutative topological rings, then we define "the generating degree", $\operatorname{gdeg}(B / A) \in \mathbf{N} \cup \infty$ to be

$$
\operatorname{gdeg}(B / A):=\min \{|M|, \text { where } M \text { is a generating set of } B / A\}
$$

where we denote by $|M|$ the number of elements of M if M is finite and ∞ if M is not finite.

We have the very simple properties:
a) If $A \subset B \subset C$ then
i) $g \operatorname{deg}(C / A) \leq g \operatorname{deg}(B / A)+g \operatorname{deg}(C / B)$
ii) $g \operatorname{deg}(C / A) \geq g \operatorname{deg}(C / B)$.

Remark 1.3. It is not true though that $g \operatorname{deg}(C / A) \geq g \operatorname{deg}(B / A)$. For example $\operatorname{gdeg}\left(\overline{\mathbf{Q}}_{p} / \mathbf{Q}_{p}\right)=\infty$ while $\operatorname{gdeg}\left(B_{d R}^{+} / \mathbf{Q}_{p}\right)=1$ (as will be shown in Theorem 3.1).
b) $\operatorname{gdeg}(B / A)$ is invariant with respect to isomorphisms of topological rings.
c) If $A \subset B$ is a finite separable extension of fields, then $\operatorname{gdeg}(B / A) \leq 1$.
d) If L / \mathbf{Q}_{p} is a finite field extension, then $\operatorname{gdeg}\left(\mathcal{O}_{L} / \mathbf{Z}_{p}\right) \leq 1$.
e) $\operatorname{gdeg}\left(\mathcal{O}_{\mathbf{C}_{p}} / \mathbf{Z}_{p}\right)=\infty$.

Remark 1.4. In connection with e) above note that since $\operatorname{gdeg}\left(\mathbf{Q}_{p} / \mathbf{Z}_{p}\right)=1$ from i) above and the level 1 case of Theorem 3.1 below it follows that $\operatorname{gdeg}\left(\mathbf{C}_{p} / \mathbf{Z}_{p}\right) \leq 2$.

2. Galois invariants of $\boldsymbol{B}_{\boldsymbol{d R}}^{+}$

Let L be an algebraic extension of K. Then we can state and prove the following description of $\left(B_{n}\right)^{G_{L}}$ for all $n \geq 1$ and of $\left(B_{d R}^{+}\right)^{G_{L}}$.

Theorem 2.1. If L is not deeply ramified then L is dense in $\left(B_{n}\right)^{G_{L}}$ for all $n \geq 1$ and in $\left(B_{d R}^{+}\right)^{G_{L}}$.

This was proved in [I-Z].
Remark 2.1. In [I-Z] the authors prove much more, namely that $\left(B_{n}\right)^{G_{L}}=\hat{L}$ for all $n \geq 2$ and $\left(B_{d R}^{+}\right)^{G_{L}}=\hat{L}$. Also, the valuations w_{n} restricted to L are all equivalent and they are equivalent to the usual p-adic valuation v.

Theorem 2.2. If L is deeply ramified then
i) there exists a uniformizer z of $B_{d R}^{+}$(let us recall that this is a generator of the ideal I), such that $z \in\left(B_{d R}^{+}\right)^{G_{L}}$.
ii) $L\left[\theta_{n}(z)\right]$ is dense in $\left(B_{n}\right)^{G_{L}}$ for all $n \geq 2$ and $L[z]$ is dense in $\left(B_{d R}^{+}\right)^{G_{L}}$, where z is like in i).

Proof. i) was proved in [I-Z], but we will sketch the proof here as well. It is enough to prove that for each $n \geq 2$ there exists a uniformizer $z_{n} \in\left(B_{n}\right)^{G_{L}}$ such that the z_{n} 's are compatible (i.e. $\phi_{n}\left(z_{n+1}\right)=z_{n}$). We'll prove this by induction on n. For $n=2$ the statement follows from the fact that $\left(\mathbf{C}_{p}(1)\right)^{G_{L}} \neq 0$ ([I-Z] Proposition 3.1). Let us now suppose that the statement is true for n and let us prove it for $n+1$. Let z_{n} be a uniformizer of B_{n}, invariant under G_{L} and let y be any uniformizer of B_{n+1} such that $\phi_{n}(y)=z_{n}$. Let us recall the "fundamental exact sequence"

$$
0 \rightarrow J_{n+1} \rightarrow B_{n+1} \xrightarrow{\phi_{n}} B_{n} \rightarrow 0 .
$$

On the one hand, $J_{n+1} \cong I^{n} / I^{n+1}$ is a one dimensional \mathbf{C}_{p}-vector space generated by y^{n}. On the other hand, as z_{n} is invariant under G_{L}, for each $\sigma \in G_{L}$ we have $\sigma(y)-y \in J_{n+1}$. Therefore for each $\sigma \in G_{L}$ there exists a unique $\zeta(\sigma) \in \mathbf{C}_{p}$ such
that

$$
\sigma(y)-y=\zeta(\sigma) \cdot y^{n} .
$$

The map $\zeta: G_{L} \rightarrow \mathbf{C}_{p}$ thus defined is a continuous 1-cocycle for the group G_{L}. As $H^{1}\left(G_{L}, \mathbf{C}_{p}\right)=0$ (as proved in [I-Z] Proposition 3.1) there exists an $\varepsilon \in \mathbf{C}_{p}$ such that $\zeta(\sigma)=\sigma(\varepsilon)-\varepsilon$ for all $\sigma \in G_{L}$. Now set $z_{n+1}:=y-\varepsilon \cdot y^{n}$. This will do the job, as it is easy to see that $\sigma\left(y^{n}\right)=y^{n}$ for all $\sigma \in G_{L}$.

Before we prove ii) we need the following
Lemma 2.1. Let L be a deeply ramified extension, $n \geq 1$ and $z \in\left(B_{n+1}\right)^{G_{L}} a$ uniformizer and $y=\phi_{n}(z) \in\left(B_{n}\right)^{G_{L}}$. For each $a \in L[y]$ there exists $b \in L[z]$ such that $\phi_{n}(b)=a$ and if $n>1$ then $w_{n+1}(b) \geq w_{n}(a)-1$ and if $n=1$ then $w_{2}(b) \geq$ $v(a)-2$.

Proof. Let $\left\{\alpha_{m}\right\}_{m}, \alpha_{m} \in \bar{K}$ such that $\alpha_{m} \xrightarrow{w_{n+1}} z$. Then $\alpha_{m} \xrightarrow{w_{n}} y$.
Let now $a=\sum m_{i} y^{i} \in L[y]$, then $x_{m}:=\sum m_{i}\left(\alpha_{m}\right)^{i} \xrightarrow{w_{n}} a$. Also $\left\{x_{m}\right\}_{m}$ is Cauchy in $w_{n+1}, x_{m} \xrightarrow{w_{n+1}} c:=\sum m_{i} z^{i} \in L[z]$, and $\phi_{n}(c)=a$. Let us suppose $n>1$. Then if $w_{n+1}(c) \geq w_{n}(a)-1$ then we take $b=c$ and we are done. If not, we'll change c by an element of $z^{n} L=\operatorname{Ker}\left(\left.\phi_{n}\right|_{L[z]}\right)$, such that the desired inequality holds. First of all we may suppose that $w_{n}(a)=0$ (if not we just multiply by a suitable power of p). Then $w_{n}\left(x_{m}\right)=0$ for $m \gg 0$, so $x_{m} \in \mathcal{O}_{\bar{K}}^{(n-1)}$ for $m \gg 0$. Also as $\left\{x_{m}\right\}_{m}$ is a Cauchy sequence in w_{n+1}, we have $d_{n}(c)=d_{n}\left(x_{m}\right) \in \Omega^{(n)}$ for $m \gg 0$ as shown in section 1. We also have $\sigma\left(d_{n}(c)\right)=d_{n}(c)$ for all $\sigma \in G_{L}$, so $d_{n}(c) \in$ $\left(\Omega^{(n)}\right)^{G_{L}}$. As was explained in section 1, d_{n} extends to an $\mathcal{O}_{\mathbf{C}_{p}}\left[G_{L}\right]$-semilinear map, $d_{n}: J_{n+1} \rightarrow \Omega^{(n)}$, such that its restriction

$$
\text { (*) } \quad d_{n}: J_{n+1}^{G_{L}} \rightarrow\left(\Omega^{(n)}\right)^{G_{L}}
$$

is "almost surjective" (in the sense that its cokernel is annihilated by m_{L}.) Moreover, as in the proof of Theorem 2.2 i$), J_{n+1} \cong y^{n} \mathbf{C}_{p}$ as ${ }^{{ }_{\mathbf{C}}^{p}} \mathbf{}\left[G_{L}\right]$-modules. Therefore we have $J_{n+1}^{G_{L}} \cong y^{n} \hat{L}$, so from the almost surjectiveness of d_{n} in (*), there exists $\beta \in z^{n} \hat{L}$ such that $p d_{n}(c)=p d_{n}(\beta)$. Moreover as $z^{n} L$ is dense in $z^{n} \hat{L}$ (in w_{n+1}), $\Omega^{(n)}$ is discrete and d_{n} is continuous, β can be chosen from $z^{n} L$. Finally we have $w_{n+1}(c-\beta)+1 \geq 0=w_{n}(a)$. So we take $b=c-\beta$ and we are done. The proof goes identically if $n=1$, but $v(a)$ may not be made 0 by multiplying with a power of p, but $0 \leq v(a)<1$.

Proof of the theorem. Let us denote by $z_{n}:=\theta_{n}(z)$. It would be enough to prove that $L\left[z_{n}\right]$ is dense in $\left(B_{n}\right)^{G_{L}}$ for all $n \geq 1$. This statement is true for $n=1$ as L is dense in $\left(\mathbf{C}_{p}\right)^{G_{L}}$. So let us suppose that it is true for some $n \geq 1$. Then we have the commutative diagram with exact rows

$$
\begin{array}{ccccccc}
0 & \rightarrow\left(z_{n+1}\right)^{n} \hat{L} & \rightarrow & \left(B_{n+1}\right)^{G_{L}} & \xrightarrow{\phi_{n}} & \left(B_{n}\right)^{G_{L}} & \rightarrow \\
\cup & & 0 \\
0 & \rightarrow\left(z_{n+1}\right)^{n} L & \rightarrow & L\left[z_{n+1}\right] & \rightarrow & L\left[z_{n}\right] & \rightarrow
\end{array}
$$

The top exact sequence comes from considering the long exact cohomology sequence of the fundamental exact sequence above and the fact that $H^{1}\left(G_{L}, \mathbf{C}_{p}(n)\right)=0([\mathrm{I}-\mathrm{Z}]$ Proposition 3.1). The first vertical inclusion is dense in w_{n+1} and the third is dense in w_{n}. We want to prove that the middle inclusion is dense as well (in w_{n+1}).

Let $\alpha \in\left(B_{n+1}\right)^{G_{L}}$ and let $a_{i} \in L\left[z_{n}\right]$ such that $a_{i} \xrightarrow{w_{n}} \phi_{n}(\alpha)$. We apply Lemma 2.1: there exist $c_{i} \in L\left[z_{n+1}\right], i=0,1,2, \ldots$ such that $\phi_{n}\left(c_{0}\right)=a_{0}, \phi_{n}\left(c_{i}\right)=a_{i+1}-a_{i}$, for $i>0$ and $w_{n+1}\left(c_{i}\right) \geq w_{n}\left(a_{i+1}-a_{i}\right)-2 \rightarrow \infty$. Therefore $c_{i} \xrightarrow{w_{n+1}} 0$. So let $b_{i}:=c_{0}+c_{1}+\cdots+c_{i} \in L\left[z_{n+1}\right]$, then $\phi_{n}\left(b_{i}\right)=a_{i}$ and $\left\{b_{i}\right\}_{i}$ is Cauchy in w_{n+1}. Let $x \in B_{n+1}$ be the limit of $\left\{b_{i}\right\}_{i}$. Then, obviously $x \in\left(B_{n+1}\right)^{G_{L}}$ and $\phi_{n}(x)=\phi_{n}(\alpha)$. Thus, $\alpha-x \in \operatorname{Ker}\left(\left.\phi_{n}\right|_{\left(B_{n+1}\right)}{ }^{G_{L}}\right)=z^{n} \hat{L}$, say $\alpha-x=m z^{n}, m \in \hat{L}$. Let $s_{i} \in L$ be such that $s_{i} \xrightarrow{v} m$, then $s_{i} z^{n} \xrightarrow{w_{n+1}} m z^{n}$. So, $t_{i}:=b_{i}+s_{i} z^{n} \in L\left[z_{n+1}\right]$ and $t_{i} \xrightarrow{w_{n+1}} \alpha$.

Remark 2.2. The same result was obtained by P. Colmez for the case where L is the cyclotomic \mathbf{Z}_{p}-extension of \mathbf{Q}_{p} in [C], using different methods.

3. Generating elements

The main result of this section is the following rather surprising
Theorem 3.1. There exists $z \in B_{d R}^{+}$such that $\mathbf{Q}_{p}\left[\theta_{n}(z)\right]$ is dense in B_{n} for all $n \geq 1$ and $\mathbf{Q}_{p}[z]$ is dense in $B_{d R}^{+}$.

Remark 3.1. For $n=1$ this is an improvement of the result of $[I-Z, 1]$ where the authors proved that one can find an element z in \mathbf{C}_{p} such that $\mathbf{Q}_{p}(z)$ is dense in \mathbf{C}_{p}.

Remark 3.2. Actually, Theorem 3.1 can be stated in an apparently stronger form: there exists $z \in B_{d R}^{+}$, such that $\mathbf{Q}[z]$ is dense in $B_{d R}^{+}$.

Before we start the proof of the theorem we need the following
Lemma 3.1 ("weak" Krasner's Lemma in B_{n}). Let $n \geq 1$ be an integer, L any algebraic extension of \mathbf{Q}_{p} and $\alpha, \beta \in \overline{\mathbf{Q}}_{p}$ such that

$$
w_{n}(\alpha-\beta)>\gamma_{n}(\alpha):=\max _{\sigma \in G_{L}, \sigma(\alpha) \neq x} w_{n}(\alpha-\sigma(\alpha)) .
$$

Then $L(\alpha) \subset L(\beta)$.
Proof. If this were not true there would exist $\sigma \in \operatorname{Gal}(\bar{K} / L(\beta))$ such that $\sigma(\alpha) \neq \alpha$. Since $w_{n}(\alpha-\beta)=w_{n}(\sigma(\alpha-\beta))=w_{n}(\sigma(\alpha)-\beta)$ and since w_{n} is a valuation we have

$$
w_{n}(\alpha-\sigma(\alpha)) \geq w_{n}(\alpha-\beta)
$$

which is a contradiction.
Remark 3.3. The "strong" Krasner's Lemma in B_{n}, which is left as an open problem, would be the same statement but for any β in B_{n}.

Proof of the theorem. We can find a sequence $\left\{a_{n}\right\}_{n \in \mathbf{N}}$ in $\overline{\mathbf{Q}}_{p}$ such that

$$
\mathbf{Q}_{p}\left(a_{1}\right) \subset \mathbf{Q}_{p}\left(a_{2}\right) \subset \cdots \subset \mathbf{Q}_{p}\left(a_{n}\right) \subset \cdots \subset \bigcup_{n} \mathbf{Q}_{p}\left(a_{n}\right)=\overline{\mathbf{Q}}_{p} .
$$

Now we construct a sequence of elements in $\overline{\mathbf{Q}}_{p},\left\{\alpha_{n}\right\}_{n}$ together with a sequence of polynomials $\left\{h_{m, n}(X)\right\}_{(m<n)}$ in $\mathbf{Q}_{p}[X]$ having the following properties for each $n \in \mathbf{N}$:
i) $h_{m, n}\left(\alpha_{n}\right)=\alpha_{m}$ for any $m<n$.
ii) $\bigcup \mathbf{Q}_{p}\left(\alpha_{n}\right)=\overline{\mathbf{Q}}_{p}$.
iii) $w_{n}\left(\alpha_{n}-\alpha_{n+1}\right)>\max \left\{n, \gamma_{n}\left(\alpha_{n}\right), \delta_{n}\right\}$, where γ_{n} was defined in Lemma 3.1 and

$$
\delta_{n}:=\max _{m_{1}<m_{2} \leq n} \max _{1 \leq j \leq \operatorname{deg}\left(h_{\left.m_{1}, m_{2}\right)}\right)} \frac{n-w_{n}\left(h_{m_{1}, m_{2}}^{(j)}\left(\alpha_{n}\right)\right)+w_{n}(j!)}{j}
$$

(here, if $h \in \mathbf{Q}_{p}[X]$ and j is a nonnegative integer then we denote by $h^{(j)}$ the j-th derivative of h.)

The construction goes like in [I-Z,1], namely we choose our sequence $\left\{\alpha_{n}\right\}_{n}$ to have also the property
iv) $\mathbf{Q}_{p}\left(a_{n}\right) \subset \mathbf{Q}_{p}\left(\alpha_{n}\right)$.

First we take $\alpha_{1}:=a_{1}$. Suppose we have constructed $\alpha_{1}, \alpha_{2}, \ldots \alpha_{n}$ and $h_{i, j}(X)$ for $i<j \leq n$ and we want to find α_{n+1} and $h_{m, n+1}(X)$ for $m \leq n$. We take (as in $[\mathrm{I}-\mathrm{Z}, \mathrm{I}]) \alpha_{n+1}$ of the form $\alpha_{n+1}=\alpha_{n}+t_{n} \cdot a_{n+1}$, where $t_{n} \in \mathbf{Q}_{p}$ is "small" enough to have iii) above. From Lemma 3.1 it follows that $\mathbf{Q}_{p}\left(\alpha_{n}\right) \subset \mathbf{Q}_{p}\left(\alpha_{n+1}\right)$, so $a_{n+1}=$ $\frac{1}{t_{n}}\left(\alpha_{n+1}-\alpha_{n}\right) \in \mathbf{Q}_{p}\left(\alpha_{n+1}\right)$, i.e. we have iv) for α_{n+1}. This will imply property ii) after the construction is done. Also, from the fact that $\mathbf{Q}_{p}\left(\alpha_{n}\right) \subset \mathbf{Q}_{p}\left(\alpha_{n+1}\right)$ it follows the existence of $h_{n, n+1}(X)$ satisfying the required property. We define simply

$$
h_{m, n+1}(X):=h_{m, n}\left(h_{n, n+1}(X)\right) \quad \text { for } m<n
$$

Hence the inductive procedure works, and so we have a sequence $\left\{\alpha_{m}\right\}_{m}$, which is Cauchy in w_{n}, for all $n \geq 1$, and also Cauchy in $B_{d R}^{+}$. Let us denote by $z_{n} \in B_{n}$ and by $z \in B_{d R}^{+}$, the elements with the property: $\alpha_{m} \xrightarrow{w_{n}} z_{n}$ for all $n \geq 1$, and $\lim _{m} \alpha_{m}=z$ in $B_{d R}^{+}$. Hence $z_{n}=\theta_{n}(z)$ for all $n \geq 1$. We'd like to show that $\mathbf{Q}_{p}\left[z_{n}\right]$ is dense in B_{n} for all $n \geq 1$ and $\mathbf{Q}_{p}[z]$ is dense in $B_{d R}^{+}$. For this it would be enough to show that $\overline{\mathbf{Q}}_{p}$ is contained in the topological closure of $\mathbf{Q}_{p}\left[z_{n}\right]$ in B_{n} for all n and in the topological closure of $\mathbf{Q}_{p}[z]$ in $B_{d R}^{+}$. We'll show that for a fixed but arbitrary r, α_{n} is in the topological closure of $\mathbf{Q}_{p}\left[z_{r}\right]$ in B_{r}, for all n.

So let us fix two arbitrary positive integers r and m_{1}. We also fix m_{2} such that $m_{2}>m_{1}$ and $m_{2}>r$ and $n \geq m_{2}$. Let us denote by $u_{n}:=\alpha_{n+1}-\alpha_{n}$. We have

$$
\begin{aligned}
w_{r}\left(h_{m_{1}, m_{2}}\left(\alpha_{n}\right)-h_{m_{1}, m_{2}}\left(\alpha_{n+1}\right)\right) & \geq w_{n}\left(\sum_{j \geq 1} h_{m_{1}, m_{2}}^{(j)}\left(\alpha_{n}\right) \cdot \frac{u_{n}^{j}}{j!}\right) \\
& \geq \min _{1 \leq j \leq \operatorname{deg}\left(h_{m_{1}, m_{2}}\right)}\left(j w_{n}\left(u_{n}\right)+w_{n}\left(h_{m_{1}, m_{2}}^{(j)}\left(\alpha_{n}\right)\right)-w_{n}(j!)\right)
\end{aligned}
$$

where the first inequality comes from the Taylor expansion of $h_{m_{1}, m_{2}}\left(\alpha_{n+1}\right)$ and the property d) of the w_{n} 's. Since $w_{n}\left(u_{n}\right)>\delta_{n}$ we get from iii) the following relation

$$
\text { v) } \quad w_{r}\left(h_{m_{1}, m_{2}}\left(\alpha_{n}\right)-h_{m_{1}, m_{2}}\left(\alpha_{n+1}\right)\right) \geq n .
$$

Let now $m_{3}>m_{2}$. From v) above we get

$$
\begin{aligned}
w_{r}\left(h_{m_{1}, m_{2}}\left(\alpha_{m_{2}}\right)-h_{m_{1}, m_{2}}\left(\alpha_{m_{3}}\right)\right) & =w_{r}\left(\sum_{n=m_{2}}^{m_{3}-1}\left(h_{m_{1}, m_{2}}\left(\alpha_{n}\right)-h_{m_{1}, m_{2}}\left(\alpha_{n+1}\right)\right)\right) \\
& \geq \min _{m_{2} \leq n \leq m_{3}} w_{r}\left(h_{m_{1}, m_{2}}\left(\alpha_{n}\right)-h_{m_{1}, m_{2}}\left(\alpha_{n+1}\right)\right) \geq m_{2}
\end{aligned}
$$

Now we let m_{3} go to infinity and deduce from the fact that $h_{m_{1}, m_{2}}\left(\alpha_{m_{3}}\right) \xrightarrow{w_{r}}$ $h_{m_{1}, m_{2}}\left(z_{r}\right)$ and $h_{m_{1}, m_{2}}\left(\alpha_{m_{2}}\right)=\alpha_{m_{1}}$ for all m_{2} that

$$
w_{r}\left(\alpha_{m_{1}}-h_{m_{1}, m_{2}}\left(z_{r}\right)\right) \geq m_{2} .
$$

Therefore we see that we can approximate $\alpha_{m_{1}}$, in the valuation w_{r}, as well as we want with polynomials $h_{m_{1}, m_{2}}\left(z_{r}\right) \in \mathbf{Q}_{p}\left[z_{r}\right]$. Thus the topological closure of $\mathbf{Q}_{p}\left[z_{r}\right]$ in B_{r} contains all the α_{n}, so it contains all the fields $\mathbf{Q}_{p}\left(\alpha_{n}\right)=\mathbf{Q}_{p}\left[\alpha_{n}\right]$ so it contains $\overline{\mathbf{Q}}_{p}$ and hence it equals B_{r}. This finishes the proof.

Now that we have constructed generating elements z in $B_{d R}^{+}$one naturally might wonder if these elements could be also used to generate the modules of differential forms (see section 1). Let us fix some integer $n \geq 2$ then as shown in [I-Z], $d^{(n-1)}$ induces an $\mathcal{O}_{\mathbf{Q}_{r}}$-linear homomorphism $d^{(n-1)}: J_{n} \rightarrow \Omega^{(n-1)}$, which is continuous with respect to w_{n} on J_{n} and the discrete topology on $\Omega^{(n-1)}$ and surjective. Therefore if $z \in B_{d R}^{+}$is a "generating element" then any element in $\Omega^{(n-1)}$ will have the form $d^{(n-1)}\left(P\left(\theta_{n}(z)\right)\right)$ for some polynomial $P(X)$ with coefficients in \mathbf{Q}_{p}. This doesn't mean, however, that $d^{(n-1)}(z)$ generates $\Omega^{(n-1)}$ as an $\mathcal{O}_{\bar{K}}$ module. Actually we know that this is impossible since $\Omega^{(n-1)}$ is p divisible. What happens is that the coefficients in the above polynomials $P(X)$ have larger and larger powers of p in their denominators. Therefore if one wants to generate $\Omega^{(n-1)}$ in terms of $\theta_{n}(z)$ one needs to use a sequence of polynomials in $\theta_{n}(z)$ such that no finite power of p will annihilate all their differentials.

4. An orthonormal basis for $\boldsymbol{B}_{\boldsymbol{n}}$

Let us fix an $n \geq 1$ and a "generating element" $z \in B_{n}$ over \mathbf{Q}_{p} (we recall that such an element has the property that $\mathbf{Q}_{p}[z]$ is dense in B_{n}). Such an element exists by Theorem 3.1, and actually can be chosen such that $\eta_{n}(z)$ is a "generating element" of \mathbf{C}_{p}. Moreover we may suppose that $w_{n}(z)>0$ (if not we just multiply z by a suitable power of p). For any $m \geq 1$ we define

$$
\delta(m, z):=\sup \left\{w_{n}(f(z)) \mid f \in \mathbf{Q}_{p}[X], \text { monic, } \operatorname{deg} f \leq m\right\}
$$

We have

Lemma 4.1. $\delta(m, z)$ is an integer for all m.
Proof. It would be enough to show that $\delta(m, z)$ is finite. Suppose not, then from the inequality $w_{n}(f(z)) \leq v\left(f\left(\eta_{n}(z)\right)\right)$ we deduce that

$$
\sup \left\{v\left(f\left(\eta_{n}(z)\right)\right) \mid f \in \mathbf{Q}_{p}[X], \text { monic, } \operatorname{deg} f \leq m\right\}=\infty .
$$

As \mathbf{Q}_{p} is locally compact, there exists a Cauchy sequence of polynomials of degree at most $m,\left\{f_{k}(X)\right\}_{k \in \mathbf{N}}$, such that $v\left(f_{k}\left(\eta_{n}(z)\right)\right) \rightarrow \infty$ as $k \rightarrow \infty$. The \mathbf{Q}_{p}-vector space of polynomials of degree at most m is complete so let us denote by $f(X):=\lim _{k \rightarrow \infty} f_{k}(X)$. Then $f\left(\eta_{n}(z)\right)=0$ and so $\eta_{n}(z)$ is algebraic of degree at most m over \mathbf{Q}_{p}. This contradicts the fact that $\eta_{n}(z)$ is a generating element of \mathbf{C}_{p}.

For each $m \geq 1$ let us choose $f_{m} \in \mathbf{Q}_{p}[X]$ monic of degree at most m such that

$$
\delta(m, z)=w_{n}\left(f_{m}(z)\right)
$$

We'll call the polynomials f_{m} "admissible". We have the following
Lemma 4.2. $\operatorname{deg}\left(f_{m}\right)=m$.
Proof. The proof follows easily from the fact that

$$
\delta(m+1, z)>\delta(m, z), \quad \text { for all } m
$$

This relation follows from the more general inequality: for all $m_{1}, m_{2} \geq 0$ we have $\delta\left(m_{1}+m_{2}, z\right) \geq \delta\left(m_{1}, z\right)+\delta\left(m_{2}, z\right)$ and the fact that $\delta(1, z) \geq w_{n}(z)>0$.

In order to prove this formula let us see that

$$
w_{n}\left(f_{m_{1}+m_{2}}(z)\right) \geq w_{n}\left(f_{m_{1}}(z) \cdot f_{m_{2}}(z)\right) \geq w_{n}\left(f_{m_{1}}(z)\right)+w_{n}\left(f_{m_{2}}(z)\right) .
$$

Let now $\left\{f_{m}(X)\right\}_{m}$ be a sequence of "admissible" polynomials, and for each $m \geq 1$ we define $r_{m}:=w_{n}\left(f_{m}(z)\right)$ and $M_{m}(z):=f_{m}(z) / p^{r_{m}}$. We set $M_{0}(z):=1$. Then we have

Corollary 4.1. If $m_{0} \geq 1$ then $\left\{M_{0}, M_{1}, \ldots, M_{m_{0}}\right\}$ is a basis for the \mathbf{Q}_{p}-vector space of polynomials of degree less than or equal to m_{0} with coefficients in \mathbf{Q}_{p}. The main result of this section is

Theorem 4.1. $\left\{M_{m}(z)\right\}_{m \geq 0}$ is an integral, orthonormal basis of B_{n}, as a Banach space over \mathbf{Q}_{p}. More precisely:
i) For any $y \in B_{n}$ there exists a unique sequence $\left\{c_{m}\right\}_{m \geq 0}$ in \mathbf{Q}_{p} such that $c_{m} \xrightarrow{b} 0$ and $y=\sum_{m} c_{m} M_{m}(z)$.
ii) Let $y \in B_{n}, y=\sum_{m} c_{m} M_{m}(z)$, with $c_{m} \in \mathbf{Q}_{p}$ for all $m \geq 0$ and $c_{m} \xrightarrow{v} 0$. Then $w_{n}(y)=\min _{m} v\left(c_{m}\right)$.
iii) For all $y \in B_{n}, w_{n}(y) \geq 0$ if and only if $y=\sum_{m} c_{m} M_{m}(z)$ with $c_{m} \in \mathbf{Z}_{p}$ for all $m \geq 0$ and $c_{m} \xrightarrow{v} 0$.

Proof. Property iii) obviously follows from i) and ii). Let us first prove ii). For this let us consider a finite sum: $y=\sum_{m=0}^{N} c_{m} M_{m}(z)$, with $c_{m} \in \mathbf{Q}_{p}$ for
all m. Let m_{0} be the largest index k such that $\min \left\{v\left(c_{m}\right)\right\}=v\left(c_{k}\right)$. We claim that:

$$
w_{n}\left(\sum_{m=1}^{m_{0}} c_{m} M_{m}(z)\right)=v\left(c_{m_{0}}\right) .
$$

Obviously we have that the right hand side is less than or equal to the left hand side. Let us suppose that the inequality is strict. Then we have

$$
w_{n}\left(\sum_{m=1}^{m_{0}} \frac{p^{r_{m_{0}}}}{c_{m_{0}}} c_{m} M_{m}(z)\right)>r_{m_{0}}=\delta\left(m_{0}, z\right)
$$

But, $\sum_{m=0}^{m_{0}} \frac{p^{r m_{0}}}{c_{m_{0}}} c_{m} M_{m}(z)$ is a monic polynomial of degree m_{0} in z, so the above inequality contradicts the definition of $\delta\left(m_{0}, z\right)$. So the claim follows. On the other hand one has

$$
w_{n}\left(\sum_{m=m_{0}+1}^{N} c_{m} M_{m}(z)\right)>v\left(c_{m_{0}}\right)
$$

so

$$
w_{n}\left(\sum_{m=1}^{N} c_{m} M_{m}(z)\right)=v\left(c_{m_{0}}\right)
$$

Therefore ii) holds true for finite sums, so also for sums of the form $\sum_{m \geq 0} c_{m} M_{m}(z)$, where $c_{m} \xrightarrow{v} 0$. Thus ii) is proved.

Now let us prove i). Let $y \in B_{n}$ and as z is a "generating element", we have a sequence of polynomials $P_{m}(X) \in \mathbf{Q}_{p}[X]$, such that

$$
P_{m}(z) \xrightarrow{w_{n}} y .
$$

Let $k_{m}:=\operatorname{deg}\left(P_{m}(X)\right)$. By Corollary 4.1 each $P_{m}(z)$ can be written $P_{m}(z)=$ $\sum_{j=0}^{k_{m}} c_{m, j} M_{j}(z)$ such that $w_{n}\left(P_{m}(z)\right)=\min _{j} v\left(c_{m, j}\right)$ from the above discussion. As the sequence $\left\{P_{m}(z)\right\}_{m}$ is Cauchy in w_{n}, for each j, the sequence $\left\{c_{m, j}\right\}_{m}$ is Cauchy in v (as $\left.w_{n}\right|_{\mathbf{Q}_{p}}=v$), so let us define $c_{j}:=\lim _{m} c_{m, j} \in \mathbf{Q}_{p}$. Moreover we claim that $v\left(c_{j}\right) \rightarrow \infty$. To see this let us fix $\varepsilon>0$ and fix also m_{ε} such that $w_{n}\left(P_{m_{\varepsilon}}(z)-y\right)>$ $\frac{1}{\varepsilon}$. For all $j>\max \left(m_{\varepsilon}, k_{m_{\varepsilon}}\right)$ fixed, let m be big enough such that $w_{n}\left(P_{m}(z)-\right.$ $\left.P_{m_{\varepsilon}}(z)\right)>\frac{1}{\varepsilon}$, so we have $v\left(c_{m, j}-c_{m_{\varepsilon}, j}\right)>\frac{1}{\varepsilon}$. So we get (letting m go to infinity) $v\left(c_{j}-c_{m_{\varepsilon}, j}\right)>\frac{1}{\varepsilon}$ and $c_{m_{c}, j}=0$ as $j>k_{m_{\varepsilon}}$. This proves the claim. So it now makes sense to consider

$$
\tilde{y}:=\sum_{m=0}^{\infty} c_{m} M_{m}(z) \in B_{n} .
$$

From the construction of \tilde{y} we have $P_{m}(z) \xrightarrow{w_{n}} \tilde{y}$, so $\tilde{y}=y$. The uniqueness statement of i) follows easily from ii).

Remark 4.1. If in Theorem 4.1 we consider z as a "generating element" of B_{n} over K (let us recall that $K=\mathbf{Q}_{p}^{u r}$) then the same construction gives an integral, orthonormal basis of B_{n} over \hat{K}.

5. Metric invariants for elements in $B_{d R}^{+}$

Although the topology in $B_{d R}^{+}$does not come from a canonical metric, the $B_{n}{ }^{\text {'s }}$ do have canonical metric structures. This shows us a way to obtain metric invariants for elements in $B_{d R}^{+}$, by sending them canonically to any B_{n} and recovering various metric invariants from those metric spaces.

For example, one may consider for any Z in $B_{d R}^{+}$the invariants $\delta_{n}(m, Z):=$ $\delta\left(m,\left(\theta_{n}(Z)\right)\right)$.

We mention that at level $n=1$ (i.e. in \mathbf{C}_{p}) one knows a lot more about these admissible sequences than we presently know in B_{n}, for $n>1$, or in $B_{d R}^{+}$. More details can be found in [P-Z] and [A-P-Z]. Can any of those results be obtained at higher levels or in $B_{d R}^{+}$?

In [A-P-Z] it is proved that one can separate the conjugates of Z from the nonconjugates using certain metric invariants. Let us recall how this is done: for any Z in $\mathbf{C}_{p}-\overline{\mathbf{Q}}_{p}$ the sequence $\{\delta(m, Z) / m\}_{m}$ has a limit $l(Z)$ in $\mathbf{R} \cup\{\infty\}$. Now we take a "distinguished" sequence $f_{m}(X)$ for Z (this is canonically a subsequence of what we called in this paper an "admissible" sequence of polynomials for Z, see [A-P-Z]) and define for any y in $\mathbf{C}_{p}, \quad l(y, Z):=\lim _{m} \sup v\left(f_{m}(y)\right) / m$. Then $l(y, Z) \leq l(Z)$ for any y in \mathbf{C}_{p} and this holds with equality if and only if y and Z are conjugate. This provides us with a metric characterization for the set of conjugates of Z, as the set of zeros of the function $f(y)=l(Z)-l(y, Z)$. What will be the analogous result at higher levels or in $B_{d R}^{+}$?

From the proof of Lemma 4.2 it follows easily that for any z in B_{n} the sequence $\{\delta(m, z)) / m\}_{m}$ has a limit, say $l(z)$. Now if Z is in $B_{d R}^{+}$we get a sequence of metric invariants for Z, given by $l_{n}(Z):=l\left(\theta_{n}(Z)\right)$. What can be said about this sequence?

Since w_{n} is dominated by w_{n-1} it is clear that $\delta\left(m, \theta_{n}(Z)\right) \leq \delta\left(m, \theta_{n-1}(Z)\right)$ for any m, n and Z. Therefore one has: $l_{1}(Z) \geq l_{2}(Z) \geq \cdots \geq l_{n}(Z) \geq \cdots$

The questions concerning metric characterizations for the set of conjugates is particularly interesting for generating elements, for the following reason: If we define for any Z in $B_{d R}^{+}$(or in some B_{n}) $C(Z):=\{\sigma(Z) \mid \sigma \in G\}$, where as always $G:=\operatorname{Gal}\left(\overline{\mathbf{Q}}_{p} / \mathbf{Q}_{p}\right)$ we have a continuous surjective map from G to $C(Z)$ given by $\sigma \rightarrow \sigma(Z)$. Now if Z is a generating element in $B_{d R}^{+}$(or in B_{n} respectively) then the above map is one-to-one and moreover it is a homeomorphism. So one can view G as lying inside $B_{d R}^{+}$via the orbits $C(Z)$ of these generating elements.

Another class of invariants can be obtained in the following way. We take an admissible sequence of polynomials $\left\{f_{m}(X)\right\}_{m}$ for an element $z \in B_{n}$ and consider the sequence $\left\{w_{n}\left(f_{m}^{\prime}(z)\right)\right\}_{m}$. In the definition of admissible sequences the derivatives $f_{m}^{\prime}(X)$ played no role and so we have no reason to expect that the
numbers $w_{n}\left(f_{m}^{\prime}(z)\right)$ are independent of the admissible sequence considered. The following result might then come as a surprise.

Proposition 5.1. Let z be a "generating element" of B_{n}, for some $n \geq 1$. There is an infinite subset $\mathscr{M}=\mathscr{M}(z)$ of \mathbf{N} such that the sequence $\left\{w_{n}\left(f_{m}^{\prime}(z)\right)\right\}_{m \in \mathscr{M}}$ is independent of the particular admissible sequence $\left\{f_{m}(X)\right\}_{m}$ considered.

Remark 5.1. If Z is a generating element of $B_{d R}^{+}$then for any n we get a sequence of invariants for Z, namely:

$$
\delta_{n}^{\prime}(m, Z):=w_{n}\left(f_{m}^{\prime}\left(\theta_{n}(Z)\right) \quad m \in \mathscr{M}\left(\theta_{n}(Z)\right)\right.
$$

Here the sets $\mathscr{M}\left(\theta_{n}(Z)\right)$ might be different for different n 's.
Proof. Let us fix an admissible sequence $\left\{f_{m}(X)\right\}_{m}$ for z. We claim that the sequence $\left\{b_{m}\right\}_{m}$ defined by

$$
b_{m}:=w_{n}\left(f_{m}^{\prime}(z)\right)-w_{n}\left(f_{m}(z)\right) \quad \text { for all } m
$$

is not bounded from below. Suppose not, and let $b \in \mathbf{Z}$ be a lower bound for the sequence $\left\{b_{m}\right\}_{m}$. Let us first observe that the b_{m} 's are unchanged if we replace in their definition the $f_{m}(X)$'s by the $M_{m}(X)$'s (the M_{m} 's are defined in section 4). So we have

$$
w_{n}\left(M_{m}^{\prime}(z)\right)=b_{m} \geq b \quad \text { for all } m
$$

Then the derivative with respect to z gives us a \mathbf{Q}_{p}-linear operator

$$
\frac{\partial}{\partial z}: \mathbf{Q}_{p}[z] \rightarrow \mathbf{Q}_{p}[z]
$$

which is continuous since it is bounded on the orthonormal basis $\left\{M_{m}(z)\right\}_{m}$ by the assumption. Since $\mathbf{Q}_{p}[z]$ is dense in B_{n}, the operator $\frac{\partial}{\partial z}$ has a unique extension to a continuous, \mathbf{Q}_{p}-linear operator $\Psi: B_{n} \rightarrow B_{n}$. Clearly Ψ is a derivation of B_{n}, which is trivial on \mathbf{Q}_{p}. We now look at its restriction to $\overline{\mathbf{Q}}_{p}$. If $\alpha \in \overline{\mathbf{Q}}_{p}$ and $P_{\alpha}(X)$ is its minimal polynomial over \mathbf{Q}_{p}, then we have:

$$
0=\Psi\left(P_{\alpha}(\alpha)\right)=P_{\alpha}^{\prime}(\alpha) \Psi(\alpha) .
$$

Since $P_{\alpha}^{\prime}(\alpha) \neq 0$ it follows that $\Psi(\alpha)=0$. So Ψ is trivial on $\overline{\mathbf{Q}}_{p}$ and by continuity it is trivial on B_{n}. But this is a contradiction with the fact that $\frac{\partial}{\partial z}$ is non-trivial on $\mathbf{Q}_{p}[z]$. This proves the claim. Now let \mathscr{M} be the infinite set of those indices m for which we have:

$$
\min \left\{b_{j} \mid 0 \leq j \leq m-1\right\}>b_{m}
$$

Our second claim is that for any other admissible sequence of polynomials $\left\{g_{m}(X)\right\}_{m}$ for z, we have

$$
w_{n}\left(g_{m}^{\prime}(z)\right)=w_{n}\left(f_{m}^{\prime}(z)\right) \quad \text { for all } m \in \mathscr{M} .
$$

In order to prove our second claim, let us denote by $\left\{G_{m}(z)\right\}_{m}$ the orthonormal
basis of B_{n} over \mathbf{Q}_{p} obtained from $\left\{g_{m}(X)\right\}_{m}$. Let $m_{0} \in \mathscr{M}$. Since

$$
\frac{g_{m_{0}}(X)}{G_{m_{0}}(X)}=\frac{f_{m_{0}}(X)}{M_{m_{0}}(X)}
$$

we are done if we prove that $w_{n}\left(G_{m_{0}}^{\prime}(z)\right)=w_{n}\left(M_{m_{0}}^{\prime}(z)\right)$. At this point we use the basis $\left\{M_{m}(z)\right\}_{m}$ to write

$$
G_{m_{0}}(z)=\sum_{j=0}^{m_{0}} c_{j} M_{j}(z)
$$

with $c_{j} \in \mathbf{Q}_{p}$. As $w_{n}\left(G_{m_{0}}(z)\right)=0$ (by the construction of the G_{m} 's) we get from Theorem 4.1 iii) that $c_{j} \in \mathbf{Z}_{p}$ for all $0 \leq j \leq m_{0}$. Moreover looking at the leading coefficients of $G_{m_{0}}$ and M_{j} we get that $c_{m_{0}}=1$. We have

$$
G_{m_{0}}^{\prime}(z)=\sum_{j=1}^{m_{0}} c_{j} M_{j}^{\prime}(z)
$$

Now for any $j<m_{0}$ we have

$$
w_{n}\left(c_{j} M_{j}^{\prime}(z)\right)=v\left(c_{j}\right)+w_{n}\left(M_{j}^{\prime}(z)\right) \geq w_{n}\left(M_{j}^{\prime}(z)\right)=b_{j}>b_{m_{0}}=w_{n}\left(M_{m_{0}}^{\prime}(z)\right) .
$$

Therefore

$$
w_{n}\left(G_{m_{0}}^{\prime}(z)\right)=w_{n}\left(M_{m_{0}}^{\prime}(z)\right)
$$

This proves the Proposition.

> CICMA (McGILl University and Concordia University), Department of Mathematics,
> 805 Sherbrooke West, Montreal,
> QC, Canada, H3A 2K6
> e-mail: iovita@scylla.math.mcgill.ca
> Institute of Mathematics of the Romanian Academy,
> P.O. Box 1-764,
> 70700 Bucharest, Romania
> Massachusetts Institute of Technology,
> Department of Mathematics,
> 77 Mass. Avenue, Cambridge, MA 02139, USA.
> e-mail: azah@math.mit.edu

References

[A-P-Z] V. Alexandru, N. Popescu and A. Zaharescu, On the closed subfields of \mathbf{C}_{p}, Journal of Number Theory, 68-2 (1998), 131-150.
[C] P. Colmez, Théorie d'Iwasawa des Représentations de de Rham d'un corps local, preprint, 1996.
[C-G] J. Coates and R. Greenberg, Kummer Theory of Abelian Varieties, Invent. Math., 126, no 1-3 (1996), 129-174.
[Fo] J.-M. Fontaine, Sur certains types de représentations p-adiques du groupe de Galois d'un corps local; construction d'un anneau de Barsotti-Tate, Ann. of Math., 115 (1982), 529-577.
[F-C] J.-M. Fontaine, Le corps des Périodes p-Adiques (avec une appendice par P. Colmez), Astérisque 223 (1994).
[I-Z,1] A. Iovita and A. Zaharescu, Completions of r.a.t-Valued fields of Rational Functions, Journal of Number Theory, 50-2 (1995), 202-205.
[I-Z] A. Iovita and A. Zaharescu, Galois theory of $B_{d R}^{+}$to appear in Compositio Mathematica.
[P-Z] N. Popescu and A. Zaharescu, On the Structure of Irreducible Polynomials Over Local Fields, Journal of Number Theory, 52-1 (1995), 98-118.

[^0]: Communicated by Prof. K. Ueno, November 25, 1997
 Revised September 22, 1998

