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A note on global existence of solutions to nonlinear
Klein-Gordon equations in one space dimension

By

SOiChlr0 KATAYAMA

1. Introduction

We consider the Cauchy problem for nonlinear Klein-Gordon equations

(1:1 + 1)u = F(u ,u ,,u ,,u ,,,u „) in (0, co) x R,
u(0, x) = E f(x), u ,( 0 ,x )  = e g ( x )  for x E R,

where = — ax
2 ,  /41 =  (0/at)u, u, = (O lax )u, etc. W e  suppose th a t the non-

linear term F  is a  smooth function in its arguments around the origin and satisfies

(1.2) F(2) =  0 ( 4 )  near /1 = 0

with some integer m > 2, where /1 = (u,u t , u , , u , , , u „) .  For simplicity, we assume
that f ,g E  C ,3° (R ). c is  a  small positive parameter.

There a re  m any studies on global existence of solutions to  th is  type of
equations, and  here w e recall som e know n results briefly. For n-space dimen-
sional cases with nonlinear terms of m th  degree as in (1.2), Klainerman—Ponce
([111) and Shatah ([151) show ed that if  n(m —1) 2 1(2m ) > 1, then there exists a
unique global solution, provided that e is sufficiently small. This condition means
that nt > 4 when n = 1, m  > 3 when n = 2, 3,4 a n d  in  > 2 when n > 5. For the
case n = 3,4 an d  nt = 2, Klainerman ([9]) and Shatah ([16 ]) proved independently
the global existence of the solution for small e. K lainerman used the "method of
invariant norms" to get a  decay estimate of the solution, which was first found to
be useful in the study of nonlinear wave equations (see [81). O n the other hand,
Shatah used the method of normal forms to eliminate the quadratic parts of the
nonlinear terms and  go t the  sufficient decay estim ate . W hen n = 2  and in  = 2,
Georgiev—Popivanov ([4]) and Kosecki ([121) proved the  global existence of the
solution, assuming that the quadratic parts of the nonlinear terms satisfy certain
special c o n d itio n s . F o r  g en e ra l n o n lin ea r te rm s w ith  m  =  2  i n  two space
dimensions, Simon—Taffin ([171) and Ozawa—Tsutaya—Tsutsumi ([141) proved the
global existence for sm all e ,  a n d  show ed that the solution approaches a free
solution as t + o o .  In [14], they combined the methods of normal forms and of
the invariant norm s to get the  result.
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When n  = 1 and m  = 3, Yagi (181) showed that if F  = c iF i in (1.1), where

(1.3) = 3uul —  3uu —  u 3

and CI c  R is a constant, then there exists a global solution for small e , and that
the solution approaches a free solution as t +co. Recently, Moriyama ([13])
proved the same result when F  is a  homogeneous polynomial of degree 3 which
can be written as F  = E7 c , F „  where F1 is  as in (1.3),

(1.4) F 2  =  3tt u 1 — u 3 — 3u 2 ux  + 6 unturx,

(1.5) F3 = U tix lix x U2 14, Ux 211llititx,

(1.6) F 4  = u2 u2)ux x  - 21411 2„,

(1.7) F 5  = -  u -  1 1 2 )tlix  -  21M  ttlx ,

(1.8) F 6  =  4  -  3 u u , — 3u2 u, — 6uuxutx,

(1.9) F7 = U 1tl 2„ 2UUxti1x

and c, E  R (i = 1 ,..., 7 ). In the proof, he used the normal forms to eliminate the
cubic terms. Unfortunately, though the normal form to eliminate quadratic parts
of the nonlinear terms for the nonlinear Klein-Gordon equations is always regular
transformation, the transformation to eliminate cubic parts m ay be singular in
g en e ra l. He showed that the transformation is regular if and only if F  is a  linear
combination of F1, ,  F 7  for the quasi-linear c a s e .  His proof of this fact suggests
u s  that these nonlinear term s can be elim inated by transformation with poly-
nomials.

In this note, we will show that F 1 , , F 7  can be actually eliminated by simple
transformation. Then, it is easy to see that this transformation is compatible with
the invariant norm method of Klainerman, and so we can easily show the same
result as M oriyam a's a lso  w hen the nonlinearity involves not only th e  linear
combinations of F 1 , ,  F 7 ,  but also terms satisfying the strong null condition (see
Georgiev [2]; see also Christodoulou [1] and Klainerman [101) as well as terms of
higher degree (especially, of degree 4). Our approach is similar to that of Kosecki
[12]. Precisely we assume
(H ) F(À .) can be written a s  follows:

10

F(il) = c1 G1 (2)+ N (.1)+ H ( 2)
t=i

in  some neighborhood of 2 (u, u,, u, u „, u „) = 0, w here ci e  R (i = 1 ........ 10)
and
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(i) Gt (1  < i < 10) are defined by

=  u(—u2  + 3u —

G2(2) = u t (-3u 2  + u —  u x
2 ) +2u(u t ux x  —

G3 (A) = U .1 ( -U 2 ±  u -  U x
2 ) 2U(U1U1 x

G4 (A) = U 3 -  2U 2 Ux x  - 3UU,2 2 1 1 ;u x x  —2u t ux utx  — u(u t
2,—  u x2x ),

G5(A)= (—u 2 + u —  u x
2.)u t x  —2uutux,

G6(A) —uux
2. +2u x (ut u, — u(u,2x — ux

2
x ),

G7 (A) =3u 2 ut — 6uu t ux x  — u; — 3u t (u f
2
x  — ux

2
x ),

G8 (A) = U2 Ux  -  2uu t u , - 2 u u x u„ — uu —  u x (tti
2
x — ux

2
x ),

G9(A)= —2uux u,—  u t u! + u t (  2 u 23 ,

Gto (A) = —ux
3 + 3u x (ut

2
x  — ux

2
x ),

(ii) N  is  of the form

N(A ) = P1(2)(u t ut,—  u x u ,+uux )±  P2(A )(u tu , —  uxutx)

+ P 3 (A)(u,2x  — u.L  + uu ,)

with P,(2) (i = 1, 2, 3) which are homogeneous polynomials of degree 1.
(iii) H(A ) is a  smooth function of degree 4, i.e., H(A ) = 0(1/114 ) near ). = 0.

Our main result is the following:

Theorem 1.1. Suppose that F(A ) satisf ies the assumption (H ) .  Then, for any
given integer k  15 and any  f ,g c C,T (R ), there ex ists a positive constant Co such
that f o r any  e c (0, 80], the Cauchy problem  (1.1) admits a unique classical solution
u C ([0, oo) x R).

M oreover, the solution u(t,x ) has a f ree  prof ile , i.e., there ex ists (u ± o (x),
ti, i (x)) E H 1 (R )  x H k (R ) such that

(1.10) 11(u U+ )(t, • )11H k+I(R ) + 1101(u — U+ )(t, • ) iHk(a) —> 0 as t —> +co ,

where U± ( t ,x )  is  the solution to  the Cauchy problem f o r th e  linear Klein-Gordon
equation  (0+1)v  =0  w ith  initial data v (0,x ) = u + 0 (x ) and v 1(0,x ) = u + i (x).

Remark 1.2. ( i)  G , ( i  =1 ,. . . ,  10) are linearly independent as  polynomials
with variables in A = (u, u t , ux , utx, uxx). Let A  be the set of homogeneous poly-
nomials of degree 3 with variables in A , and let ;1- b e  the subset of A . whose

alelements are given by c, G,(A )+ N(A ), where N  is as in (H ) .  Then we can
show that dim ./1 = 21, though dim A  = 35.
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I f  w e  re s tr ic t o u r  attention t o  th e  quasi-linear case , w e can  verify  by
straightforward calculations that

span{ G I , G2, G3 G4 + G6, G5, G7 + 3G9, 3G8 ±  G 10 =  span{F i , , F7 },

where F 1 , ... , F 7  a re  a s  in  (1.3)—(1.9). In  fac t, w e have F1 = G 1 ,  F2 = (3G3 -
3G8 - G10)/ 2 1  F 3  = (G 3  -  3G8 — Go)/4, F4 ( G 1 +  G4 ± G6)/2 , F5  = G 5 1  F6  =
(3G2 + G 7 ±  3G9 ) /2  and F7  = ( - G 2  -  G 7  -  3G9 )/4.

(ii) If F  is semilinear and satisfies (H ), the cubic part o f F  is  of the form

ciu(—//23 u ,F 3.14 ) + (C214 / ± C3U-k )( - 3/42 +  14 - 1.1x
2 )

with constants ci E R  (i = 1,2,3).
(iii) Recently, Yordanov ([191) proved that if f œ'c o  f  x (x )g(x)dx  > 0, then (1.1)

with F = ttu x  + au 3 ( a  = const) has no global (classical) solution for any c > 0.
H is proof is also valid fo r (1.1) with

F = tt u x  + H (u) + H2(u,)u, + F13(u, u t , ux , u u x x )u ,

where H i =  ° ( le), H2 = 0 (1/4x1), H3 = °(11412 + 1 141 12 lu x 12 lu t y i2 lu x x 12.I )  and
H3 > 0. Especially, we can see that for some f  and g , (1.1) has no global solution
if F  is  of the form F = titt x  + hu 2 ux  + cuil with non-negative constants b  and c,
while there always exists a global solution for small data when b = —3 and c = —1,
according to (ii).

2. Transformation with polynomials and some preliminaries

First, w e w ill find  som e transformation to cancel c iG ,P.) . F o r  that
purpose, let 0(u, u, , 14x) be a  homogeneous polynomial of degree 3 in its arguments
and suppose tha t u  satisfies (11I + 1)u = F .  Then, simple calculations give us

(2.1) (E1 + 1 )0(u, ux)

=  +  O u  Du + Ou , Ou t + qiu , Eu„ + Ou,u(u . u x2 )

+ 20u ,  u , (t1 t Ui t — Ux 1,11x )  + 2 0 u , (14114tx U xtlxx)

Ou„ u, ( 14 t ut2x) ± 2 0 u  u  ( t i ttU tx Utx Uxx Oux, ti, ( 1412x IIA2-x).

Substituting the relation ut ,  = k ,  — u  + F in to  (2.1), we get

(2.2) (0  +1)0(u,u i ,ux )

= O u u  k u t — Ou v ux

+ Ou, u (/4 — uP + 20„, 1 ,(u t ux ,  —  uu t —  ux u ,)

±  20u, u.s.(ututx — uxuxx)+ Ou u ,(ux
2

x + u 2 — 2uux x  — ut
2
x )

+ 2 011„u,( — uutx)+ (fiu,,u,(u12x — + R,
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where

(2.3) R = cOu F  + 0 F t+  2 01i, II, F

„r ( F 2 ±  2u„F —  2uF)+20 ,,,u ,,F.

Here we remark that when F = F(2), Â  = (u,u,,u,,u r x ,u x x )  and F = 0 (12 13 )  near
= 0, then R  can be regarded a s  a  function of

=  (u, u t , ux , zt, ,uxx, urxx,
and R(Â) = 0(1 -2- 15 )  near A =  0 .  Since we have assumed that 0  is a  homogeneous
polynomial of degree 3, 0  can be represented as follows:

(2.4) = b1 u 3 +  b2u2 u, + b3 u2 u, + b4uu,2 +  b5uu t u,

+ b6uuA
2 +  b7/4 + b8uu, + b9 u,u 2 +

with constants b, (i = 10). Substituting (2.4) into (2.2), we get

10
(2.5) + 1)0 — R = bi Gi .

i-_-1

When F  satisfies ( H), choose b, = c,/2 for i = 1,..., 10 and we obtain

(2.6) (D + 1)(u — 0) = N(Â) + H(.1) —

The cubic part in the right-hand side of (2.6) is N(A), but we can expect an
extra decay with respect to  tim e from  N(A ), because it satisfies the strong null
condition. To explain this, following Klainerman [9], we introduce

(2.7) Z , =  tO,„ + x0,, Z 2  =  f3,, Z3 =  ax•

With multi-index c = , a2, a3), we write Z ' =  Z r'Z 2 Z 3
3 . One can easily check

th a t [D + 1, Z,] = 0  h o ld s  for i
For any sufficiently smooth function v(t, x )  and non-negative integer k ,  we

define

(2.8) v(t, x)lk = IZOE12(t, x)i
1.1 k

and

(2.9) II v(t)11k,, = II v( i , ) 11k,,, = II I v(t, • )Ik II um for 1 < p < +00.

Let u  be a solution t o  (0 + 1)u = F .  Then we get

(2.10) utu,, — ux ux x  +  uu, = ut u,„ — ux ut , + ux F = Q (u,u,)±  u x F,

(2.11) u,uxx — uxutx =  Q(u, ux),

(2.12)u 2 2 2— U , v U U ,  =  u  — UttU ., x  t i x ,F = Q (u x ,u ,)+ u x ,F,
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where Q(U , V ) = U, —  U V ,. U s in g  Z 1, we can write

Q (U , V ) = 1  ( U,(Z ,V )—  (Z 1 U)V ,), t5 r 0

and we also have

Z' Q(U , =  E
Ad-Iy1=A

where C
fl" are  appropriate constants. Therefore we obtain (see Georgiev [2],,y

Klainerman [10] and also Katayama [6], 171):

Lemma 2.1. Suppose that u  satisfies (0  +1 ) u  = F  and that F(A ) = 0(121 3)
near A = 0. L et k  ( > 0 )  be an  integer, and le t N (A ) be as  in  ( i i )  o f  ( H ) .  I f
lu(t,X)I[k/2])-2 1, then w e hav e

(2.13) IN (A) ( t , x)Ik Ck{(1 t )  1 t i ( t  x )11(12H-2(1 14 ( t  .X)1 k+1

It i ( t R H-2(1141, x )1 k 114/ (t ,C )1k+1)}

where u ' = (u,, u s ), [m ] denotes the largest integer which does not exceed m , and Ck
is  a positive constant depending on k.

Here we remark that the left-hand sides of (2.10) and (2.12) are concerned with the
unit condition introduced by Kosecki ([12]).

We conclude this section with the following decay estimate due to H6rmander
[5] (see also Georgiev [3]):

Lemma 2.2. L et u  be a solution to (0  + 1 )  u =  F  in  (0, cr.)) x R with initial
data 0. Suppose that suppF(t, • ) c {lx1 t +p} f o r any  t 0 with some positive
co n stan t p . Then we have

00

(2.14) (1 + t+Ix1) 1/2 1u(t,x)1 C E sup (1 + s)I1Z ( )11
1_0 1,1< 3 se[0,0 / i

where h =  [0, 2], /i  = [2 —I
, 2j+ 1 1 (/ > 1 ) and C  is  a positive constant.

3. Proof of Theorem 1.1

Now we are ready to state the proof of Theorem 1.1. Because we have the
local existence theorem, what we have to do is to get some a priori estim ates. Let
u ( t ,x )  be a solution to (1.1) for 0 t  < T  with F  satisfying (H ) .  We define

(3.1) Ek (T  ; u) = sup sup(( + t + lx1){ 1/21u(t, x)111,12]+3) + liu(t, .)lik.2
0<t<T ,ceR

}

+ 11111 (t , • ) Mk,  2 + (
I ± t) — " (1114(t , • )11A+2,2 + 111/( 1, • ) 4+2,2) ,

+ lu '(t,x )1k+I)
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where u' = (u t , u,), 0 <14 < 1/2 and  k  is  a n  integer .15. In  order to  get the
global existence, it suffices to prove

Proposition 3.1. For any  E  ( . 1 )  and M E k (T ;u )  M  implies

Ek(T ; u) C k(E  +  M 3 ),

where Ck is a positive constant depending on k, but independent of  T> 0, M  (< 1 )
and e  (< 1 ).

Once we get this proposition, if we choose sufficiently small M  and eo to satisfy

1
CkM 2 <  -

4
Ckeo a n d  Ek (0; u) < M,

4

it follows that Ek(T;u) < M  implies Ek(T;u) < M/2 for any E  <  C o . Then, by the
continuity arguments, we can show that Ek(t; u) < M holds as long as the solution
u (t ,x ) exists, provided that e  <  e o .  The global existence of the solution follows
immediately from this a priori estimate and the local existence theorem.

Proof  of  Proposition 3.1. W e assume th a t Ek( T; u) M .  F rom  (2.6) we
have

(3.2) +  1)ZŒ (u- 0) = Z'(N(A)+ H(A) -  R ())

fo r 0 < t <  T  a n d  fo r  any  multi-index a, where 0  a n d  R  a re  a s  in  (2.4) with
b, =  c,I2  a n d  in  (2.3) respectively. In  th e  following we write Ck fo r  various
constants which are  independent of T , M  and E, b u t m ay change line by line.

Let a be a multi-index with < [k/2] + 3. Applying Lemma 2.2 to  (3.2), we
get

(3.3) (1 + t + ix1) 1/2 1(u - 0)(t, x)l[k/21+3

CC.

< C e  + Ck E s u p  ( I  +s){11zfiN(A)(s, • ) 11,2
1=0 / 3 , [k/2]+6 [°'

+112 1 1 1/(A)(s, • )I1L2 + IIZ fi R(A)(s,

Observing that H(2) = 0(1)1 4 ), by Lemma 2.1 and  the  assumption we get

(3.4) V flN (A )(s, )42 + Ilz fl f1 (2 )(s , • ) 42

Ck{(1 +s) - i ilu(s)ii(ck/21+6)/2[+2,,(11/4 (s)11[k/2[+7.2 + liu/(s)11[k/2]+7,2)

+ Ilu(s)a[ ‘ [k/2]+6)/2]+2, ( U (S) II [k/2]+6,2 ±  11141 (S) II [k/2]+7, 2 )

<  Ck (l + S) - 3 / 2  M 3 f o r [k/2] + 6 and 0 s <  T.

H ere w e used  [P 2 ]+ 6 ] + 2 < [kI2] + 3, [k /2] + 7 < k fo r k >  13. Since R(Iti) =2
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00.1 5) , we have

(3.5) llZ P R(--)11L2 Cd1U(S)11[1[k/2]+6)/2H-3, cc b/21+6,2 ± Mu '  (s) M [k/2]+8,2)

<  Ck( s )2 M  5f o r  1 1 6 '1  _< [k/2] + 6 a n d  0  s  < T,

because [ k/21 +6] ±  3 < [k/2] + 3 a n d  [k/2] + 8 k  h o ld  fo r  k  15. Summing
up , we obtain

(3.6) (1 + t + 14 1/2 1(tt - (h)(t V)IT  /  \  - /  Ek/2]+3

s u p  (1 + s )  I /2 M
=0 s e A r n i ,

C k + M 3 (1 + E(1 4- 2 1 -1 )-1 1 2 ) )
J=1

Ck(e + M 3 ) for 0 < t < T.

N ext, le t  la  < k  in  (3.2). Applying th e  energy estimate fo r  (El + 1), we
obtain

(3. 7) 11 ( u — 0) ( t , • ) Ilk , 2 + 11 ( u — ( t , • ) Ilk , 2

< c k +  f o
t alN(41k,2 +11 1/(2 )4,2 + llR(A)llk,2)( 8 , • )ds} .

Again from Lemma 2.1, w e have

(3.8) 11 N ( ( s ) 11 k 2 + 11 I I (  ) ( s )  1 k , 2

<_ Ck(1 I llu(s )1I[k/21+2,00 
llu

 (# 11(+1,2 llu '( O lk+1,2)

+ Ckllu(s)4(g+2,00(llu(s)llk,2 llt('(s)lik+1,2)

< Ck (1 + s)P- 3 /2 M 3f o r  0  <  s  < T.

Since R(.1-) = 0 ( ;1- 15 ) , Holder's inequality gives us

(3.9) HR(A)lik,2 Ckllu(s)4t2J+3,00(llu(s)llk,2 + Hu/(s)llk+2,2)

Ck(1 +s)P - 2 M 5f o r  0  <  s<  T .

From  (3.7)-(3.9) we obtain

C

00
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(3. 10) IRu — 0)(t)Ilk,2 + IRu — 0) / (04,2 + M 3 ( 1  ±  S ) P - 3 1 2  dS )
0

<  C k (g  + M 3 ( 1  +  s r -
3 I2 d s)

C k(e -  M 3 ) for 0  <  t <  T.

since 14-  3/2  <  -1 .
Finally, let locl < k + 2. From (1.1), we have

2
(3.11) (0  +  1)ZŒu

aF
ata,,Z Œu ,., „,..zŒ uau, 0 

aF
11.XX

aF 0F
=  Z 'F  a ta ,Z " u  0x2z.u.

au„
From the commutative properties of at ,a, and Z , (i =  1,2,3), we can estimate the
L 2 -norm of the right-hand side of (3.11) by

Ckllu(t, • )11[(k+2)/21+2,-,0(ilu(t , • ) 4+2,2 +11u /(t, - )ilk+2,2)•

Because [ k± 2] +  2  <  [k /2] +  3 , th is is bounded by  Ck (1 + t)P - 1 M 3 f o r  0 <  t <
T .  Therefore, applying the energy inequality for the equation of the form

+ 1)v - y 1 (t, x)ataxv - Y2(t, x)0 x
2 v  =  (t, x )

to (3.11) with v = Z"u, we obtain

(3.12) -)4+2,2+11u/(t, )11k+2 2 Ck(e + M 3 J(1  +  s)' - i d s)

< CA (1 + t)/' (E + M 3
)

11

for 0 <  t <  T.
Now, since 01= O(I/413+1/43), Holder's inequality and Sobolev's embedding

theorem imply that

(3.13) (.t, <  Ck1U(t, X )1 [1c/2]+3)/21+11 11 ( t ,  X )1[k/2]+4

<  Cat/ ( t  •  ) 11 'Ic/2]+3, oo1114 ( t , )11[k/2j+5,2

<  Ck(1 t) i M 3f o r  0 <  t <  T,

and

(3 .1 4 ) 10(t)lik,2+1161Y(t)ilk,2 Ckliti(t)11 /2]+2,,,(11u(t)11k,2

<  CkM 3 (1 + < ckm 3f o r  0 < t< T .
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Therefore from (3.6), (3.10), (3.12), (3.13) and (3.14), we obtain

(3.15) Ek(T; u) Ck(e + M 3 ).

This completes the proof of Proposition 3.1.

Now we prove the existence of a free profile. Since the solution u(t. x)
satisfies Ek( co; u) < M , we can show as in the proof of Proposition 3.1 that

(El + 1)(u — 0) =  N(A ) + H (A) — R(/i)

and

(3.16) 11(N(2) + (2 ) — R())(1, • )11uk(R) 6  L1
 ( 0 ,

 cc ).

Therefore, there exists (u+ 0(x), u+ i(x)) e Hk+ 1 (R) x Hk (R ) such that

11((u — 0) U+)(t, • )1111k+i + liar((u — 0) — U+)(t, • )11Hk +>

at t + co ,  where U± (t, x ) is as in Theorem 1.1. Since we can see from (3.14)
that

110(2)(t, •)11H.-. + Ila1(0(A))(t, •)I1Hk ckm 3 (1 + ty - 1 ,  o

as t + co ,  we obtain

11(u U+)(t, • )11uk+1 + u +)(t, • )HH, o
as t — > +oo. This completes the proof of Theorem 1.1.
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