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A note on global existence of solutions to nonlinear
Klein-Gordon equations in one space dimension

By

Soichiro KATAYAMA

1. Introduction

We consider the Cauchy problem for nonlinear Klein-Gordon equations

(1.1) { (O Du = F(u,up, ty, Uy, Uyy) in (0,00) xR,

u(0,x) =¢ef(x), u(0,x)=¢egy(x) for xeR,

where [ =07 — 63 u, = (0/0)u, u, = (0/dx)u, etc. We suppose that the non-
linear term F is a smooth function in its arguments around the origin and satisfies

(1.2) F() = O(|A") near 2 =0

with some integer m > 2, where A = (u, u;, Uy, Uy, Uxc). For simplicity, we assume
that f,ge C°(R). ¢ is a small positive parameter.

There are many studies on global existence of solutions to this type of
equations, and here we recall some known results briefly. For n-space dimen-
sional cases with nonlinear terms of mth degree as in (1.2), Klainerman—Ponce
([11]) and Shatah ([15]) showed that if n(m — 1)2/(2m) > 1, then there exists a
unique global solution, provided that ¢ is sufficiently small. This condition means
that m >4 when n=1, m >3 when n=2,3.4 and m > 2 when n > 5. For the
case n = 3,4 and m = 2, Klainerman ([9]) and Shatah ([16]) proved independently
the global existence of the solution for small &. Klainerman used the ‘“‘method of
invariant norms’’ to get a decay estimate of the solution, which was first found to
be useful in the study of nonlinear wave equations (see [8]). On the other hand,
Shatah used the method of normal forms to eliminate the quadratic parts of the
nonlinear terms and got the sufficient decay estimate. When n =2 and m = 2,
Georgiev—Popivanov ([4]) and Kosecki ([12]) proved the global existence of the
solution, assuming that the quadratic parts of the nonlinear terms satisfy certain
special conditions. For general nonlinear terms with m =2 in two space
dimensions, Simon-Taflin ([17]) and Ozawa-Tsutaya—Tsutsumi ([14]) proved the
global existence for small & and showed that the solution approaches a free
solution as 7 — +oo. In [14], they combined the methods of normal forms and of
the invariant norms to get the result.
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When n =1 and m =3, Yagi ([18]) showed that if F = ¢ F; in (1.1), where
(1.3) Fy = 3uu? — 3ui® —

and ¢; € R is a constant, then there exists a global solution for small ¢, and that
the solution approaches a free solution as r — +oo0. Recently, Moriyama ([13])
proved the same result when F is a homogeneous polynomial of degree 3 which
can be written as F =Y/ | ¢;F;, where Fy is as in (1.3),

(1.4) F = 3u,2ux — ui — 3uuy + 6unigy,

(1.5) F3 = uuytyy — tluy + u,zux + 2uu iy,

(1.6) Fy = (u,2 — uf — uz)un — 2uu_3,

(1.7) Fs = (u,2 — uf — uz)u,x — 2uuuy,

(1.8) Fe = 11,3 — 311(%14, — 3uPu, — Uiy,

(1.9) F= u,uf + utt Uy + 2un g,

and c;eR (i=1,...,7). In the proof, he used the normal forms to eliminate the

cubic terms. Unfortunately, though the normal form to eliminate quadratic parts
of the nonlinear terms for the nonlinear Klein-Gordon equations is always regular
transformation, the transformation to eliminate cubic parts may be singular in
general. He showed that the transformation is regular if and only if F is a linear
combination of F\...., F; for the quasi-linear case. His proof of this fact suggests
us that these nonlinear terms can be eliminated by transformation with poly-
nomials.

In this note, we will show that Fy,.... F; can be actually eliminated by simple
transformation. Then, it is easy to see that this transformation is compatible with
the invariant norm method of Klainerman, and so we can easily show the same
result as Moriyama’s also when the nonlinearity involves not only the linear
combinations of Fi,..., F;, but also terms satisfying the strong null condition (see
Georgiev [2]; see also Christodoulou [1] and Klainerman [10]) as well as terms of
higher degree (especially, of degree 4). Our approach is similar to that of Kosecki
[12]. Precisely we assume
(H) F(A) can be written as follows:

10

F(2) = ciGi() + N(4) + H(4)
i=1

in some neighborhood of A = (u,u, uy, 1. tty) =0, where ¢;eR (i=1,...,10)
and
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(i) G; (1 <i<10) are defined by
G (A) = u(—u? + 3u? — 3u?),
Gao(2) = u(=3u® + u? — 1) + 2u(uinx — Uxliyy),
G3(A) = up(—1? + u? — u2) + 2u(ugttyy — Uty

Gy(A) =u’ — 2uluyy — 3uu,2 + 211,2uxx = Uty — u(U;, — U,

Gs(2) = (—u? + u? — u¥)u — 2uuuy,
Ge(A) = —uuf. + 2wy (gt — Ugliyy) + u(u,z_\. — u_%x),

G;(4) = 3utu, — Guu gy, — u,3 - 3u,(u,2x - uﬁx),

2 2 2 2
Gs(1) = u'uy — 2utuyx — 2ty — U Uy — Ux(Uf, — Uy, ),

Go(A) = 2uusuy, — u,ui + u,(u,z)C — uf(x),

Gio(A) = —ui + 3ux(u,2x — u? ),

XX

(i) N is of the form

N(A) = Pi(A) (ugupx — thxtixy + ttty) + Po(A)(Uethyx — Uxliyy)

+ P3(A) (upy — 3 + uttx)

with P;(1) (i =1,2,3) which are homogeneous polynomials of degree 1,
(iii) H(A) is a smooth function of degree 4, i.e., H(A) = O(|A]*) near 4 =0.

Our main result is the following:

Theorem 1.1. Suppose that F(A) satisfies the assumption (H). Then, for any
given integer k > 15 and any f,ge C{(R), there exists a positive constant gy such
that for any ¢ € (0,&), the Cauchy problem (1.1) admits a unique classical solution
ue C*([0,00) x R).

Moreover, the solution u(t,x) has a free profile, ie., there exists (uio(x),
up(x)) € H**'(R) x H*(R) such that

(1.10) l(u— Ut ) gy + 10 — U ), )| gy — 0 as 1 — +oo,

where U, (t,x) is the solution to the Cauchy problem for the linear Klein-Gordon
equation (O + 1)v =0 with initial data v(0,x) = uyo(x) and v,(0.x) = uyi(x).

Remark 1.2. (i) G; (i=1,...,10) are linearly independent as polynomials
with variables in A = (u, u;, ty, s, Uxx). Let A be the set of homogeneous poly-
nomials of degree 3 with variables in A, and let A be the subset of A, whose
elements are given by Z,li), ¢iGi(A) + N(A), where N is as in (H). Then we can
show that dim A = 21, though dim A = 35.
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If we restrict our attention to the quasi-linear case, we can verify by
straightforward calculations that

span{Gl, Gy, G3, Gy + Gg, Gs,G7 + 3Gy, 3G + G]()} = span{Fl. .. .,F7},

where Fy,....F; are as in (1.3)—(1.9). In fact, we have F| = G, F» = (3G; —
3Gy — Gio)/2, F3=(G3y—3Gs — G)/4, Fs= (G +Gs+ Gs)/2, Fs=Gs, Fg=

(3G2 + G+ 3G9)/2 and F; = (—Gz -G — 3G9)/4
(if) If F is semilinear and satisfies (H), the cubic part of F is of the form
clu(—u2 + 3u,2 - 3uf) + (cou, + (‘3u,‘.)(—3u2 + u,2 - uz)

X

with constants ¢;e R (i =1,2,3).

(iii) Recently, Yordanov ([19]) proved that if fiooo f(x)g(x)dx > 0, then (1.1)
with F = u?u, +au® (a = const) has no global (classical) solution for any & > 0.
His proof is also valid for (1.1) with

F= urzux + HI (u) + HZ(u,\‘)u,\'x + H3(u, Upy Ux, Upy, uxx)u.\'a

where H| = O(|u?), Hy = O(|juy|), Hy = O(Ju|* + |u|* + [ux]* + |urx)® + |txx|?) and
H; > 0. Especially, we can see that for some f and g, (1.1) has no global solution
if F is of the form F = u?u, + bu*u, + cu} with non-negative constants b and c,
while there always exists a global solution for small data when b = —3 and ¢ = —1,
according to (ii).

2. Transformation with polynomials and some preliminaries

First, we will find some transformation to cancel Y.°, ¢;Gi(4). For that
purpose, let ¢(u,u,,ux) be a homogeneous polynomial of degree 3 in its arguments
and suppose that u satisfies ([J+ 1)u = F. Then, simple calculations give us

(2.1)  (O+ Dg(u, ur, ux)
=¢+¢,0u+ ¢, 0w+ ¢, Ouy + (15,,’,,(u,2 — ui)

+ 20, (Uithy — txtire) + 24, (et — Uxlixx)

F G, (Ul — 1) + 20, o (lhix — Uiethr) + BPu, s (i — U2
Substituting the relation u, = uy, —u+ F into (2.1), we get
(2:2) (O + Dpu, ur, ux)

=¢—du—du — ¢, ux
- B (07— 143) + 2y, (et — sty — )

+ 2¢u,u,(ulufx - uxuxx) + ¢u,,u,(u)2(x + uZ = 2uuyy — utzx)

+ 2¢u,,u,(_uub\‘) + ¢uv\.,u\.(urzx - ui\') + R7
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where
(23) R=¢,F+¢,F + ¢, F+24,,uF
+ @y o (F? + 2uF — 2uF) + 29, , unF.

Here we remark that when F = F(4), 4 = (u, uy, uy, tx, ix) and F = O(|/1|3) near
A =0, then R can be regarded as a function of

A= (14, Uy, Uy Uy Uy Up Uxxx)
and R(Z) = O(|4]°) near A =0. Since we have assumed that ¢ is a homogeneous
polynomial of degree 3, ¢ can be represented as follows:
(2.4) ¢ = b + byuPu, + byuPu, + b4uu,2 + bsuu,u,
+ b6uuf + b7u,3 + bgu,zu,\- + bgu,uf + bmuf.
with constants b; (i =1,...,10). Substituting (2.4) into (2.2), we get

10
(2.5) (O+1)g-R=2)_bG,

i=1

When F satisfies (H), choose b, = ¢;/2 for i=1,...,10 and we obtain

(2.6) (O+ D)(u—¢)=N() + H(A) — R(A).

The cubic part in the right-hand side of (2.6) is N(4), but we can expect an
extra decay with respect to time from N(A), because it satisfies the strong null
condition. To explain this, following Klainerman [9], we introduce

(27) Z, = 10, + x0,, Z, =0, Z3 = 0,.

With multi-index a = (o1, 22, 23), we write Z* = Z"Z3*Z3*. One can easily check
that [0+ 1,Z;] =0 holds for i =1,2,3. .

For any sufficiently smooth function v(z,x) and non-negative integer k, we
define

(2.8) o(t, ), = D 1Z%0(1, %))
|| <k
and
(2.9) o)l , = 1o, e, = e el Lrry for 1 < p < +oo.

Let u be a solution to ((J+ 1)u=F. Then we get
(2.10) Upldx — Uy + Ully = Uy — Uty + UeF = Q(u, u;) + uF,
(2.11) Upllex — Uxlhe = QU uy),

(2.12) u,z_\. — ufx + uuy = u,zx — Uyllsx + U F = Q(uy, u;) + uyxF,
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where Q(U, V) = UV, - U,V,. Using Z|, we can write

1
o(U, V)Z;(U:(ZIV)—(ZlU)Vl), t#0
and we also have

Z°QU.ry= % C;,0Z'v.Z7V),
[Bl+17I=l

where Cf, are appropriate constants. Therefore we obtain (see Georgiev [2]
Klainerman [10] and also Katayama [6], [7]):

i}

Lemma 2.1. Suppose that u satisfies (O + )u=F and that F(1) = O(|4]*)
near A=0. Let k (=0) be an integer, and let N(1) be as in (ii) of (H). If
|u(t, %) ejo42 < 1. then we have

(2.13) IN) (1 2)] < Cef (1407 ult, ) g2 (08 Xy + 18 (8, X) i)

- a2 g2 (e )+ [ (2 3) ey )}

where u' = (u;,uy), [m] denotes the largest integer which does not exceed m, and Cy
is a positive constant depending on k.

Here we remark that the left-hand sides of (2.10) and (2.12) are concerned with the
unit condition introduced by Kosecki ([12]).

We conclude this section with the following decay estimate due to Hérmander
[5] (see also Georgiev [3]):

Lemma 2.2. Let u be a solution to ((J+ 1) u=F in (0,00) x R with initial
data 0. Suppose that supp F(t, -) < {|x| <t + p} for any t = 0 with some positive
constant p. Then we have

00
214) (414D <CY Y7 sup (1 )IZ7F(s, )y,
J=0 |o| <3 se(0,N1

where I = [0,2],1; = [2/7',2/"1] (j > 1) and C is a positive constant.

3. Proof of Theorem 1.1

Now we are ready to state the proof of Theorem 1.1. Because we have the
local existence theorem, what we have to do is to get some a priori estimates. Let
u(t, x) be a solution to (1.1) for 0 <t < T with F satisfying (H). We define

(3.1)  Ex(T:u)= sup {sup((l+r+|x|)'“|u(t.x)|.k/2,+3>+||u(t,-)uk,z

0<t<T | xeR

+ N’ (6 g2 + (L) (Nea(t, )y + (2, ')||k+z,z)}»
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where u’ = (u,,uy), 0 <u<1/2 and k is an integer >15. In order to get the
global existence, it suffices to prove

Proposition 3.1. For any ¢ (<1) and M (<), E(T u) < M implies

Ei(T:u) < Ce(e+ M?),

where Cy is a positive constant depending on k, but independent of T >0, M (<1)
and ¢ (<1).

Once we get this proposition, if we choose sufficiently small M and g to satisfy

| M
CiM? < 7 Cuto < and  E;(0;u) < M,

it follows that Ex(T;u) < M implies Ex(T;u) < M /2 for any ¢ < &. Then, by the
continuity arguments, we can show that Ei(f;u) < M holds as long as the solution
u(t,x) exists, provided that ¢ <g. The global existence of the solution follows
immediately from this a priori estimate and the local existence theorem.

Proof of Proposition 3.1. We assume that Ey(7T:u) < M. From (2.6) we
have
(3.2) (O+1)Z*(u~¢) = Z(N(2) + H(2) — R(4))

for 0<t< T and for any multi-index «, where ¢ and R are as in (2.4) with
bi =c¢;/2 and in (2.3) respectively. In the following we write Cy for various
constants which are independent of T, M and ¢ but may change line by line.

Let « be a multi-index with |o| < [k/2] +3. Applying Lemma 2.2 to (3.2), we
get

(33) (414 1x) "2 = @) (1%l

< Cre + G sup (1 +){IZ'N(A)(s. .2

o
7=0 p<lkj21+6 s€(0.407
+IZPH ) (s g2 + IZPRAN (s, )l )-

Observing that H(4) = O(|A]*), by Lemma 2.1 and the assumption we get

(34) NZIN@) (s, e + 1ZPH ) (s )2

< Ce{ (149" N e 2162112, (e e og47.2 + 1 ()l g 2147.2)
3 /
+ ”u(s)”[([k/2]+6)/2]+2,oo(”“(s)”[k/2]+6,2 + [lu (S)||[k/2]+7,2)}
< Ce(145)7*M> for |B| <[k/2)+6 and 0 <s< T.

Here we used [B2¢] +2 < [k/2]+3. [k/2)+7 <k for k=13, Since R(})=
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O(|A]°), we have
(3.5) ||ZﬂR(/~1)||L2 = C/\'“u(s)”ft[k/z]+6)/2]+3,oo(“”(s)||[k/2]+6,2 + ||“l(5)||[k/2]+8,2)
< C(1+s5)72M°  for |f| <[k/2]+6 and 0<s<T,

because [‘i%]i"] +3<[k/2]+3 and [k/2]+8 <k hold for k >15. Summing

up, we obtain
(3.6) (1 1+ )21 = ) (1, )| oy

o0
< Cx €+Z sup (l+s)_'/2M3
=0 selo. 7Ny

SCk<e+M3< Zj: (14277 |/2)>

<Cile+M?) for0<t<T.

Next, let |a| <k in (3.2). Applying the energy estimate for ([J+1), we
obtain

BT M= ez M= 80 lls
<ot [N+ IHIo + 1RO )G s .
Again from Lemma 2.1, we have
(8)  INDG s + IHOO)
< Gl 9 ) 105 g1 2 + 109 )

+ Ck||“(S)||§(/2]+2,m(||“(~V)||k,z + 1 () lkr1,2)

< C(1+9)" M for0<s<T.
Since R(A) = O(|4]’), Holder’s inequality gives us
(3.9) IRk < CulluCs) 213,00 () e 2 + 12" ()lis2,2)
< C(1 45" *M° for 0<s<T.

From (3.7)-(3.9) we obtain
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(10 = B+ 1= 8Ol < G (544 [ 1497 as)
< Ck<8 + M3 Joo(l —}-S)#_yzds)
0

< Cile+M?} for0<t<T,

since p—3/2 < —1.
Finally, let |¢| <k +2. From (l.1), we have

oF

o oF o 2—a
(3.11) (O+ 1)z u—%a,axz u auxxaxz u
= Z°F — a—Fa,axzau _oF AT
Ouyy Oty

From the commutative properties of d,,0, and Z; (i = 1,2,3), we can estimate the
L?-norm of the right-hand side of (3.11) by

Cillu(t, ')||[2(k+z)/21+2,w(||“(fs s,z + [l (2, Mis2,2)-

Because [542] +2 < [k/2] + 3, this is bounded by Ci(l + N*'M3 for 0<1<
T. Therefore, applying the energy inequality for the equation of the form

(O + )0 — (6, )8,0,0 — 1(t, %)0% = (1, x)

to (3.11) with v = Z*u, we obtain

t
(3.12) Nt M2 + 16’8 iy < Ck (8+ M? Jo(l +5)ﬂ_1d3)

3
< Ci(1 +t)”<£+£>
U
for 0 <t1<T.

Now, since |¢| = O(|u|® + |u'|*), Holder’s inequality and Sobolev's embedding
theorem imply that

(3.13) |62 ) e jar43 < Cilult ) sagany o 108 X) oy s
< Cellu(r, ')||[2k/2]+3,oo||u(f» /24,2
<G(l+0"'M>  for0<1<T,

and

(3.14) 8Ok, + le" (Dllk.» < Ck||”(’)||[2[k/2]+2,oo(”“(t)”k,z + [t (D)lles1,2)

<GM1+0)" "' <M?  for0<i<T.
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Therefore from (3.6), (3.10), (3.12), (3.13) and (3.14), we obtain

(3.15) Ex(T;u) < Cr(e + M?).

This completes the proof of Proposition 3.1.

Now we prove the existence of a free profile. Since the solution u(t,x)
satisfies Ex(oo;u) < M, we can show as in the proof of Proposition 3.1 that

(O+1)(u—¢) = N(A) + H(A) — R(Z)

and
(3.16) I(N(2) + H(A) = Rt )l ewy € L' (0, 0).
Therefore, there exists (uio(x),uy1(x)) € H**'(R) x H¥(R) such that

(e = @) = U)(t, Il gerr + [10:((u = §) = Us)(t, )l e — 0

at t — +oo, where U, (¢,x) is as in Theorem 1.1. Since we can see from (3.14)
that

A, Mg + 10BN I gr < M1+ 0)* >0
as t — 400, we obtain
(= UL, e + 10:(u = Ui )(t, )llgx — 0

as t — +o00. This completes the proof of Theorem 1.1.
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