On the bamboo-shoot topology of certain inductive limits of topological groups

By

Takashi Edamatsu

§0. Introduction

Let $\{(G_n\tau_n), \phi_{n+1\,n}\}_{n \in N}$ be an inductive system of topological groups G_n with topology τ_n , each $\phi_{n+1\,n}$ being a continuous homomorphism of G_n into G_{n+1} . Put $G = \lim_{n \to \infty} G_n$ and $\tau_{ind} = \lim_{n \to \infty} \tau_n$. N. Tatsuuma—H. Shimomura—T. Hirai [2] showed by two counter examples that τ_{ind} is not necessarily a group topology for G. They also showed that if the given inductive system fulfils the "PTA-condition", there exists for G the finest group topology that makes every canonical map ϕ_n of G_n into G continuous. Such a topology is, of course, coarser than τ_{ind} . They called such a topology the bamboo-shoot topology for G, denoted by τ_{BS} , and gave a τ_{BS} -neighbourhood base at the unity e of G as the collection of all sets

$$U[k] = \left(\int_{n > k} \phi_n(U_n) \phi_{n-1}(U_{n-1}) \cdots \phi_k(U_k) \phi(U_k) \cdots \phi_{n-1}(U_{n-1}) \phi_n(U_n) \right)$$

with k = 1, 2, ... and U_j 's each of which runs over symmetric neighbourhoods of the unity e_j of (G_j, τ_j) , $j \ge k$. Here the PTA-condition is a moderate one and stated as follows:

(0.1)
$$\forall n, \forall U, \exists V \subseteq U, \quad V = V^{-1}, \quad \forall m > n, \forall W, \exists W',$$

 $W'\phi_{mn}(V) \subseteq \phi_{mn}(V)W,$

where U, V (resp. W, W') denote neighbourhoods of the unity e_n of G_n (resp. e_m of G_m) and $\phi_{mn} = \phi_{mm-1} \circ \cdots \circ \phi_{n+1 n}$. For instance, any inductive system consisting of locally compact Hausdorff groups fulfils this condition and in this case τ_{ind} happens to coincide with τ_{BS} . τ_{BS} in general seems to be a topological- group-theoretic analogue of the locally convex inductive topology of the inductive limit of locally convex vector spaces (see Propositions 3.1 and 3.2 in [2]).

Now let us bring an inductive system of Banach algebras A_n $(n \in N)$ with the limit algebra $A = \lim_{n \to \infty} A_n$ (in algebraic sense). Let τ_{lct} denote the locally convex inductive topology of A as the inductive limit of Banach spaces A_n . In an appropriate circumstance this system yields an inductive system of topological

Communicated by Prof. T. Hirai, April 26, 1999

Revised July 6, 1999

groups $G(A_n)$ having G(A) as its limit group, where each $G(A_n)$ consists of all invertible elements in A_n and inherits the norm topology and G(A) consists of all invertible elements in A. In the present paper we study the topology τ_{BS} of G(A)and shows that τ_{BS} is just identical with τ_{lct} relativized to G(A) (Theorem 1). We shall also obtain a similar result for another circumstance of A_n 's (Theorem 2). Our treatment yields as a special case, in particular, the result obtained in A. Yamasaki [3] for the inductive system of toplogical groups $GL_n(C(X, \mathbb{C}))$, X being a compact Hausdorff space (for details see Example 5 below). Moreover it will be shown that for the inductive systems of topological groups dealt with in the present paper the topology τ_{ind} gives a group topology only when all A_n are finitedimensional. This fact enables us to produce abundance of elementary examples for which τ_{ind} is not a group topology. Here we shall use the following criterion theorem due to Yamasaki [3].

Theorem Y. For the system $\{(G_n\tau_n), \phi_{n+1\,n}\}_{n \in \mathbb{N}}$ suppose that each $(G_n\tau_n)$ is first countable and that each $\phi_{n+1\,n}$ is a topological isomorphism of $(G_n\tau_n)$ onto a closed subgroup of $(G_{n+1}\tau_{n+1})$. (The PTA-condition is not assumed.) Then, τ_{ind} is a group topology for G if and only if one of the following two conditions is fulfilled with some $n_0 \in \mathbb{N}$:

- (C₁) Each $(G_n \tau_n)$ $(n \ge n_0)$ is locally compact;
- (C₂) Each $\phi_{nn_0}(G_{n_0})$ $(n \ge n_0)$ is open in $(G_n \tau_n)$.

§1. Preliminary: Strict inductive limits of Banach algebras

Let

(1.1)
$$(A_1 \parallel \parallel_1) \xrightarrow{\psi_{21}} (A_2 \parallel \parallel_2) \xrightarrow{\psi_{32}} (A_3 \parallel \parallel_3) \xrightarrow{\psi_{43}} \cdots$$

be a strict inductive system of Banach algebras over C (or R), each $\psi_{n+1 n}$ being assumed to be a norm-preserving algebra isomorphism into. Let $A = \varinjlim A_n = \bigcup \psi_n(A_n)$ be its limit algebra in algebraic sense, ψ_n being the canonical imbedding isomorphism of A_n into A, and τ_{let} be the locally convex inductive topology for Aas the inductive limit of Banach spaces. As known from the theory of locally convex vector spaces ([1]), the following hold: (i) The space $(A \tau_{let})$ is Hausdorff and complete; (ii) τ_{let} induces the norm topology of each $\psi_n((A_n \| \|_n))$, that is, each $\psi_n((A_n \| \|_n))$ is a closed topological vector subspace of $(A \tau_{let})$; (iii) A subset of Ais τ_{let} -bounded if and only if it is a bounded subset of some $\psi_n((A_n \| \|_n))$. In the sequel each $(A_n \| \|_n)$ and its ψ_n -image in A are identified and every $\| \|_n$ is denoted by $\| \|$.

Now, for each decreasing sequence ε : $\varepsilon_1 > \varepsilon_2 > \cdots > 0$ of positive numbers, define a seminorm $\| \|_{\varepsilon}$ on A as

(1.2)
$$||a||_{\varepsilon} = \inf\left\{\sum_{k} ||a_{k}||/\varepsilon_{k}; a_{k} \in A_{k}, a = \sum_{k} a_{k} \text{ (finite sum)}\right\} \quad (a \in A),$$

and put

Bamboo-shoot topology

(1.3)
$$U_{\varepsilon} = \{a \in A; \|a\|_{\varepsilon} < 1\}$$
$$= \left\{ \sum_{k} a_{k} \text{ (finite sum)}; a_{k} \in A_{k}, \sum_{k} \|a_{k}\|/\varepsilon_{k} < 1 \right\}.$$

Lemma 1. The family $\{U_{\varepsilon}\}_{\varepsilon}$ gives a neighbourhood base at 0 in $(A \tau_{lct})$.

The routine verification of this lemma is omitted. Note that in this lemma the sequences ε may be confined to such ones that $\sum_{k=1}^{\infty} \varepsilon_k < 1$.

Remark 1. It is easy to see that in finding the infimum in (1.1) the decomposition $a = \sum_k a_k$ ($a_k \in A_k$) of each $a \in A$ may be confined to such ones that $k \leq \min\{n; a \in A_n\}$ and non-zero a_k corresponding to each of such k appears at most once.

Lemma 2. $U_{\varepsilon}U_{\varepsilon} \subseteq U_{\varepsilon}$ holds if $\varepsilon_1 < 1$.

Proof. Let $a, b \in U_{\varepsilon}$. Choose their finite decompositions $a = \sum_{k} a_{k}$ $(a_{k} \in A_{k})$, $b = \sum_{l} b_{l}$ $(b_{l} \in A_{l})$ such that $\sum_{k} ||a_{k}|| / \varepsilon_{k} < 1$, $\sum_{l} ||b_{l}|| / \varepsilon_{l} < 1$. Putting $n(k, l) = \min\{n; a_{k}, b_{l} \in A_{n}\}$, we have $ab = \sum_{k, l} a_{k}b_{l} = \sum_{j} \sum_{n(k, l)=j} a_{k}b_{l}$. Hence

$$\begin{aligned} \|ab\|_{\varepsilon} &\leq \sum_{j} \left\| \sum_{n(k,l)=j} a_{k} b_{l} \right\| / \varepsilon_{j} \\ &\leq \sum_{j} \sum_{n(k,l)=j} \|a_{k}\| \|b_{1}\| / \varepsilon_{k} \varepsilon_{l} \qquad (\text{since } \varepsilon_{k}, \varepsilon_{l} \leq \varepsilon_{j} < 1) \\ &= \sum_{k} \|a_{k}\| / \varepsilon_{k} \sum_{l} \|b_{l}\| / \varepsilon_{l} < 1. \end{aligned}$$

This proves the assertion.

Lemma 3. The limit algebra A becomes a topological algebra with respect to τ_{lct} , that is, the multiplication is jointly continuous w.r.t. τ_{lct} .

Proof. Given any $a, a' \in A$ and U_{ε} . Choose $U_{\varepsilon'}$ with $\varepsilon'_1 < 1$ so that $U_{\varepsilon'} + U_{\varepsilon'} = U_{\varepsilon}$ and $\alpha \in (0 \ 1)$ so that $\alpha a \in U_{\varepsilon'}$, $\alpha a' \in U_{\varepsilon'}$. Then, for the sequence $\varepsilon'' = \alpha \varepsilon'_1 > \alpha \varepsilon'_2 > \cdots > 0$, we have $U_{\varepsilon''} = \alpha U_{\varepsilon'}$ and so $aU_{\varepsilon''} = \alpha aU_{\varepsilon'} \subseteq U_{\varepsilon'}^2 \subseteq U_{\varepsilon'}$ by Lemma 2. Similarly $U_{\varepsilon''}a \subseteq U_{\varepsilon'}$, $a'U_{\varepsilon''} \subseteq U_{\varepsilon'}$. Hence

$$(a + U_{\varepsilon''})(a' + U_{\varepsilon''}) \subseteq aa' + U_{\varepsilon'} + U_{\varepsilon'} + U_{\varepsilon''}$$
$$\subseteq aa' + U_{\varepsilon} \qquad (\text{since } U_{\varepsilon''} \subseteq U_{\varepsilon'}).$$

This proves the joint continuity under question.

Lemma 4. The algebra A has identity e if and only if, for some $n_0 \in N$, each A_n $(n \ge n_0)$ has identity e_n and $\psi_{n+1,n}(e_n) = e_{n+1}$ holds. In this case $e_n = e$ $(n \ge n_0)$ holds under the identification of A_n and $\psi_n(A_n)$.

Proof. Since $A = \bigcup A_n$, the "only if" part is obvious. Conversely, by assumption, $\psi_{n+1}(e_{n+1}) = \psi_{n+1}(\psi_{n+1,n}(e_n)) = \psi_n(e_n)$ $(n \ge n_0)$. Hence, putting $e = \psi_n(e_n)$ $(n \ge n_0)$, we have the identity of A.

§2. Results for the case of A with identity

As is well known, the invertible elements of a Banach algebra \mathfrak{A} with identity e make a Hausdorff topological group, which is open in \mathfrak{A} , by inheriting the norm topology of \mathfrak{A} . In particular each element e + a for $a \in \mathfrak{A}$ s.t. ||a|| < 1 has the inverse $(e + a)^{-1} = e - a + a^2 - \cdots$.

Now bring the strict inductive system (1.1) of Banach algebras A_n and its limit topological algebra $(A \tau_{lct})$. In this section we assume that A has identity e, namely, by transfering to a cofinal subsystem if necessary, that all A_n $(n \ge 1)$ have a common identity e and each ψ_{n+1n} maps e to e (Lemma 4).

- Notation. $G(A_n)$: the topological group consisting of all invertible elements of A_n inheriting the norm topology of A_n .
 - G(A): the group in algebraic sense consisting of all invertible elements of A.

Proposition 1. The group G(A) is open in $(A \tau_{let})$ and becomes a topological group inheriting the topology τ_{let} of A. The family $\{e + U_{\varepsilon}; \sum_{k=1}^{\infty} \varepsilon_k < 1\}$ gives a neighbourhood base at e of this topological group.

Proof. Given a neighbourhood $e + U_{\varepsilon}$ of e in $(A \tau_{lct})$, where $\sum_{k=1}^{\infty} \varepsilon_k < 1$. If $a \in U_{\varepsilon}$, there is a finite decomposition $a = \sum a_k \ (a_k \in A_k)$ s.t. $\sum_k ||a_k|| / \varepsilon_k < 1$. Hence $||a|| \leq \sum_k ||a_k|| \leq \sum_k \varepsilon_k < 1$. Therefore the inverse $(e+a)^{-1} = e-a+a^2 - \cdots$ exists in those A_n to which a belongs. Thus $e + U_{\varepsilon} \subseteq G(A)$. Now let $a \in \frac{1}{3} U_{\varepsilon} \ (= U_{(1/3)\varepsilon} \subseteq U_{\varepsilon})$. Then $a^n \in \frac{1}{3^n} U_{\varepsilon} \ (n = 1, 2, \ldots)$ by Lemma 2 and so $||\sum_{n=1}^{\infty} (-a)^n||_{\varepsilon} \leq \sum_{n=1}^{\infty} ||a^n||_{\varepsilon} \leq \sum_{n=1}^{\infty} \frac{1}{3^n} < 1$. Hence $\sum_{n=1}^{\infty} (-a)^n \in U_{\varepsilon}$. Therefore $(e + \frac{1}{3} U_{\varepsilon})^{-1} \subseteq e + U_{\varepsilon}$. Since ε is arbitrary, this shows that the invertion operation in G(A) is τ_{lct} -continuous at e. Next, for any $b \in G(A)$ and any neighbourhood $b^{-1}(e + U_{\varepsilon})$ of b^{-1} , we have $((e + \frac{1}{3} U_{\varepsilon})b)^{-1} \subseteq b^{-1}(e + U_{\varepsilon})$. This proves that the invertion is τ_{lct} -continuous at b. In view of Lemma 3 the verification is now complete.

Since each $\psi_{n+1\,n}$ maps *e* to *e*, it is obvious that the inductive system (1.1) of Banach algebras gives rise to the inductive system

(2.1)
$$G(A_1) \xrightarrow{\psi_{21}} G(A_2) \xrightarrow{\psi_{32}} G(A_3) \xrightarrow{\psi_{43}} \cdots$$

of topological groups and that $\varinjlim G(A_n) = \bigcup G(A_n) = G(A)$ holds as set. More generally suppose that there is given a topological subgroup G_n of each $G(A_n)$ so that $G_n \subseteq G_{n+1}$. Then the system (2.1) further gives rise to an inductive system

$$(2.2) G_1 \xrightarrow{\psi_{21}} G_2 \xrightarrow{\psi_{32}} G_3 \xrightarrow{\psi_{43}} \cdots$$

of topological groups. Needless to say, (2.1) is included in (2.2) as a special case.

Proposition 2. The system (2.2) fulfils the PTA-condition.

Proof. We check (0.1) for this system. For any *n* and any neighbourhood *U* of *e* in G_n we can choose a symmetric neighbourhood *V* of *e* in G_n so that $V \subseteq U \cap \{e + a; a \in A_n, ||a|| < 1/2\}$. Given any m > n and any neibourhood *W* of *e* in G_m . Take $\delta > 0$ so that

$$\{e+a; a \in A_m, \|a\| < \delta\} \cap G_m \subseteq W,$$

and put

$$W' = \{e + b; b \in A_m, ||b|| < \delta/4\} \cap G_m.$$

Then, for $v \in V$ and $w' = e + b \in W'$, we have $w'v = v(v^{-1}w'v) = v(e + v^{-1}bv)$ and $||v^{-1}bv|| \le ||v^{-1}|| ||b|| ||v|| < \delta$ (since $||v^{-1}||$, ||v|| < 2). Hence $w'v \in vW$ which implies $W'V \subseteq VW$.

To get the main results of the paper (Theorems 1 and 2 below) we set here the following technique

Lemma 5. Let *H* be a subgroup of G(A). Assume that for each $k \in N$ and each neighbourhood O_n of 0 in $A_n(n \ge k)$, there can be chosen a neighbourhood Q_n of 0 in each A_n $(n \ge k)$ so that $\{\bigcup_{n\ge k} (Q_k + \cdots + Q_n)\} \cap H' \subseteq \bigcup_{n\ge k} \{(O_k \cap H') + \cdots + (O_n \cap H')\}$, where H' = H - e. Then, for the system (2.2) with $G_n = G(A_n) \cap H$, the topology τ_{BS} of its limit group $\lim_{n \to \infty} G_n = \bigcup_{n \to \infty} G_n = H$ coincides with the topology τ_{lct} of $\lim_{n \to \infty} A_n = A$ relativized to H. (Hence, in this case, a τ_{BS} -neighbourhood base at e in *H* is given by $\{(e + U_e) \cap H; \sum_{k=1}^{\infty} \varepsilon_k < 1\}$ (see Proposition 1)).

Proof. (This proof was suggested by Prof. H. Shimomura.) Since τ_{lct} relativized to H is a group topology by Proposition 1, it is coarser than τ_{BS} . We prove the converse. Given any τ_{BS} -neighbourhood $U[k] = \bigcup_{n \ge k} U_n U_{n-1} \cdots U_k U_k \cdots U_{n-1} U_n$ of e in H, where each U_j is a neighbourhood of e in G_j (see §0). Since each $G(A_j)$ is open in A_j , we can choose a neighbourhood O_j of 0 in A_j $(j \ge k)$ so that $U_j \supseteq (e + O_j) \cap H = e + (O_j \cap H')$. Then, obviously, $U[k] \supseteq \bigcup_{n \ge k} U_k \cdots U_n \supseteq \bigcup_{n \ge k} \{e + (O_k \cap H') + \cdots + (O_n \cap H')\}$. Therefore the assumption of the lemma enables us to choose a sequence ε : $\varepsilon_1 > \varepsilon_2 > \cdots > 0$ so that $\sum_{l=1}^{\infty} \varepsilon_l < 1$ and $U[k] \supseteq \bigcup_{n \ge k} \{e + (Q_k + \cdots + Q_n) \cap H'\}$, where $Q_j = \{a \in A_j; \|a\| < \varepsilon_{j-k+1}\}$ $(j \ge k)$. Now suppose $a \in U_{\varepsilon} \cap H'$. Then $a = \sum_{l=1}^{N} a_l$ and $\sum_{l=1}^{N} \|a_l\|/\varepsilon_l < 1$ for some N and $a_l \in A_l$. Hence $a_l \in Q_{l+k-1}$ and $a \in (Q_k + \cdots + Q_{N+k-1}) \cap H'$. Thus after all $(e + U_{\varepsilon}) \cap H \subseteq \bigcup [k]$, which completes the proof.

Theorem 1. The topology τ_{BS} of $G(A) = \varinjlim G(A_n)$ coincides with τ_{lct} relativized to G(A).

Proof. Since G(A) is open in (A, τ_{lct}) , the assumption of the lemma 5 is fulfilled for H = G(A).

Indeed, $(G(A) - e) \cap A_j$ is open in $A_j(\forall j)$ and therefore, for given O_j 's $(j \ge k)$ in Lemma 5, one can take $O_j \cap H' = O_j \cap (G(A) - e)$ as Q_j 's.

Takashi Edamatsu

Proposition 3. The topology τ_{ind} for $G(A) = \varinjlim G(A_n)$ is a group topology (namely, $\tau_{ind} = \tau_{BS}$ holds) if and only if all A_n are finite-dimensional.

Proof. Each $G(A_n)$ is first countable and closed in $G(A_m)$ (m > n). But it is not open in $G(A_m)$. In fact, A_n is not open in A_m because A_m is connected and A_n is closed in it. Therefore, for any $\delta \in (0 \ 1)$, there can be chosen $a \in$ $A_m \setminus A_n$ s.t. $||a|| < \delta$. Then $e + a \in G(A_m) \setminus G(A_n)$. Therefore e is not an interior point of $G(A_n)$ in $G(A_m)$ and so $G(A_n)$ is not open in $G(A_m)$. Thus, by Theorem Y in §0, the following equivalency obtains: τ_{ind} is a group topology \Leftrightarrow every $G(A_n)$ is locally compact $(n \ge \exists n_0) \Leftrightarrow$ some closed ball $\{e + a; ||a|| \le \delta < 1\}$ in A_n is compact $(n \ge \exists n_0) \Leftrightarrow$ every A_n is finite-dimensional.

Remark 2. The norms of A_n 's altogether define obviously a norm on $A = \bigcup A_n$ and A becomes a normed algebra (incomplete). G(A) is a topological group by this norm topology relativized, denoted by τ_{norm} , as well. One has $\tau_{\text{norm}} \leq \tau_{\text{BS}}$ and the equivalency $\tau_{\text{norm}} = \tau_{\text{BS}} \Leftrightarrow \exists n_0, \forall n \geq n_0, A_n = A_{n_0}$. This equivalency can be checked easily by the completeness of $(A \tau_{\text{lct}})$, Baire's category theorem and the definition of the topologies of G(A).

Example 1. Let $X = \prod_{n=1}^{\infty} X_n$ be the product space of compact Hausdorff spaces X_n and $C(X, \mathbb{C})$ be the Banach algebra consisting of all \mathbb{C} -valued continuous functions on X equipped with the uniform norm. For each n let A_n be the Banach subalgebra of $C(X, \mathbb{C})$ consisting of the functions depending only on the variables $x_i \in X_i$ $(i=1,\ldots,n)$. Then a strict inductive system $A_1 \rightarrow A_2 \rightarrow A_3 \rightarrow \cdots$ of Banach algebras is obtained, where each \rightarrow is the natural imbedding. All A_n and $A = \lim_{n \to \infty} A_n = \bigcup A_n$ have the constant function 1 as the common identity and each $\rightarrow \text{ maps } 1$ to 1. Thus the above results apply to this system. Note that each $G(A_n)$ is the totality of never-vanishing functions in A_n . It is easily seen by Proposition 1 that τ_{BS} for G(A) is strictly finer than the norm topology of $C(X, \mathbb{C})$ relativized to G(A). Proposition 3 shows that $\tau_{ind} = \tau_{BS}$ holds if and only if every X_n is a finite set.

Example 2. Given an inductive system $H_1 \rightarrow H_2 \rightarrow H_3 \rightarrow \cdots$ of Hausdorff groups H_n , where each \rightarrow is a topologically isomorphic imbedding. Let $M_0(H_n)$ be the usual Banach algebra formed of all bouded complex Radon measures on H_n . For each $\mu_n \in M_0(H_n)$ define $\mu_{n+1} \in M_0(H_{n+1})$ by $\mu_{n+1}(B) = \mu_n(B \cap H_n)$, B being Borel sets of H_{n+1} . Now take a sequence of compact subsets K_l of H_n s.t. $\mu_n(\bigcap_{l=1}^{\infty} K_l^c) = 0$. The Borel structure on $K = \bigcup_{l=1}^{\infty} K_l$ induced from H_n and that induced from H_{n+1} coincide. Furthermore, for any real Radon measure μ on a completely regular space X, one has $\|\mu\| = \sup\{\mu(B) - \mu(B^c); B \text{ is a Borel set of } X\}$. Hence $\|\mu_n\| = \|\mu_{n+1}\|$ follows. Thus each $M_0(H_n)$ is imbedded into $M_0(H_{n+1})$ by identifying each μ_n with μ_{n+1} , and a strict inductive system $M_0(H_1) \rightarrow M_0(H_2) \rightarrow$ $M_0(H_3) \rightarrow \cdots$ of Banach algebras is obtained. Here each $M_0(H_n)$ has the Dirac measure δ_e as identity (e denoting the common unity of all H_n), which is mapped to $\delta_e \in M_0(H_{n+1})$ by \rightarrow . Thus the preceding results apply to this system. Proposition 3 shows for $\varinjlim G(M_0(H_n)) = G(\varinjlim M_0(H_n))$ that $\tau_{ind} = \tau_{BS}$ holds if and only if every H_n is a finite group.

§3. On the case of A without identity

It is essentially the following two cases that $A = \varinjlim A_n$ has not identity (Lemma 4):

Case 1. No A_n has identity.

Case 2. Every A_n has identity e_n but there exist infinitely many *n* such that $\psi_{n+1,n}(e_n) \neq e_{n+1}$.

In either cases we introduce a new strict inductive system of Banach algebras with identity. That is, adding a formal common element \tilde{e} to all A_n and A, we make the direct sums of vector spaces $\tilde{A}_n = A_n + C\tilde{e}$, $\tilde{A} = A + C\tilde{e}$ and define the multiplication in them by

$$(a_n + \alpha \tilde{e})(b_n + \beta \tilde{e}) = (a_n b_n + \alpha b_n + \beta a_n) + \alpha \beta \tilde{e} \qquad (a_n, b_n \in A_n, \alpha, \beta \in C)$$

and similarly for A. Then A_n , A become algebras with identity \tilde{e} . Further each $\tilde{A_n}$ becomes a Banach algebra by the norm $||a_n + \alpha \tilde{e}|| = ||a_n|| + |\alpha|$. Through this procedure the strict inductive system (1.1) of Banach algebras A_n is extended uniquely to a strict inductive system

(3.1)
$$\tilde{A}_1 \xrightarrow{\tilde{\psi}_{21}} \tilde{A}_2 \xrightarrow{\tilde{\psi}_{32}} \tilde{A}_3 \xrightarrow{\tilde{\psi}_{43}} \cdots$$

of Banach algebras \tilde{A}_n . Here each $\tilde{e} \in \tilde{A}_n$ is mapped to $\tilde{e} \in \tilde{A}_{n+1}$ by $\psi_{n+1,n}$. It is of course that the limit algebra of this system coincides with \tilde{A} . \tilde{A} is endowed with the locally convex inductive topology, denoted by $\tilde{\tau}_{lct}$, of this system. \tilde{A} is then a topological algebra by Lemma 3. In this section we intend to apply the preceding results to the system (3.1)

Lemma 6. $\tilde{\tau}_{let}$ for $\tilde{A} = A + C\tilde{e}$ coincides with the product topology of τ_{let} for A and the usual topology of $C\tilde{e}$ ($\cong C$).

Proof. The seminorms $\| \|_{\varepsilon}$ generating τ_{lct} are extended to the seminorms $\|a + \alpha \tilde{e}\|_{\varepsilon} = \|a\|_{\varepsilon} + |\alpha|$ on the space $\tilde{A} = A + C\tilde{e}$. Let $\tilde{\tau}$ denote the stated product topology. Obviously $\tilde{\tau}$ is generalized by these extended seminorms. On the other hand, $\tilde{\tau}_{\text{lct}}$ is generalized by the seminorms

$$\|a + \alpha \tilde{e}\|_{\tilde{k}} = \inf \left\{ \sum_{k} \|a_{k} + \alpha_{k} \tilde{e}\|/\varepsilon_{k} \text{ (finite sum)}; \right.$$
$$\sum_{k} a_{k} = a \ (a_{k} \in A_{k}), \sum_{k} \alpha_{k} = \alpha \left. \right\}$$

each of which is another extention of $\| \|_{\varepsilon}$ on A. Here we have $\|a + \alpha \tilde{\varepsilon}\|_{\varepsilon}^{2} \ge \|a\|_{\varepsilon} + \varepsilon_{1}^{-1} |\alpha|$ since $\sum_{k} |\alpha_{k}|/\varepsilon_{k} \ge \sum_{k} |\alpha_{k}|/\varepsilon_{1} \ge |\alpha|/\varepsilon_{1}$, and conversely $\|a + \alpha \tilde{\varepsilon}\|_{\varepsilon}^{2} \le \|a\|_{\varepsilon}^{2} + \|\alpha \varepsilon\|_{\varepsilon}^{2} = \|a\|_{\varepsilon} + \|\varepsilon\|_{\varepsilon}^{2} |\alpha|$. Hence the assertion follows.

Takashi Edamatsu

Now let us consider the topological subgroups

(3.2)
$$\tilde{G}_n = (A_n + \tilde{e}) \cap G(\tilde{A}_n), \qquad \tilde{G} = (A + \tilde{e}) \cap G(\tilde{A})$$

of each $G(\tilde{A}_n)$ and $G(\tilde{A})$. Here note that $G(\tilde{A}_n) = (\mathbb{C} \setminus \{0\})\tilde{G}_n$, $G(\tilde{A}) = (\mathbb{C} \setminus \{0\})\tilde{G}$ and $\tilde{G}_n = G(\tilde{A}_n) \cap \tilde{G}$. Recall that an element *a* of an algebra \mathfrak{A} , having identity or not, is quasi-invertible by definition if there exists $b \in \mathfrak{A}$ s.t. a + b + ab = a + b + ba = 0. Let $qi(A_n)$ (resp. qi(A)) denote the totality of quasi-invertible elements in A_n (resp. A). Then it is evident that

(3.2')
$$\tilde{G}_n = \tilde{e} + qi(A_n), \qquad \tilde{G} = \tilde{e} + qi(A).$$

The system (3.1) induces an inductive system

(3.3)
$$\tilde{G}_1 \xrightarrow{\tilde{\psi}_{21}} \tilde{G}_2 \xrightarrow{\tilde{\psi}_{32}} \tilde{G}_3 \xrightarrow{\tilde{\psi}_{43}} \cdots$$

of topological subgroups of $G(\tilde{A}_n)$'s, which fulfils the PTA-condition by Proposition 2. Its limit group $\lim_{n \to \infty} \tilde{G}_n = \bigcup_{n \to \infty} \tilde{G}_n$ coincides with \tilde{G} .

Theorem 2. Suppose A has not identity. The set qi(A) is open in $A = \varinjlim A_n$ bearing τ_{lct} . The bamboo-shoot topology, denoted by $\tilde{\tau}_{BS}$, on the limit group $\tilde{G} = \tilde{e} + qi(A)$ is induced from τ_{lct} for A. That is, a $\tilde{\tau}_{BS}$ -neighbourhood base at \tilde{e} in \tilde{G} is given by $\{\tilde{e} + U_{\varepsilon}; \sum_{k=1}^{\infty} \varepsilon_k < 1\}$, where each U_{ε} is the same as in (1.3).

Proof. $\tilde{e} + qi(A) = (\tilde{e} + A) \cap G(\tilde{A})$ (see (3.2), (3.2')), and $G(\tilde{A})$ is open in $(\tilde{A}, \tilde{\tau}_{lct})$ by Proposition 1. Therefore, in virtue of Lemma 6, it is evident that qi(A) is open in (A, τ_{lct}) . The remaining assertion of the theorem just means that $\tilde{\tau}_{BS}$ coincides with $\tilde{\tau}_{lct}$ relativized to \tilde{G} . So our task is to show that for the subgroup $H = \tilde{G} = \tilde{e} + qi(A)$ of $G(\tilde{A})$ the assumption of Lemma 5 is fulfilled. Given any $k \in N$ and any neighbourhood \tilde{O}_j of 0 in \tilde{A}_j $(j \ge k)$. It is obvious that the set $\tilde{O}_j \cap H' = \tilde{O}_j \cap qi(A)$ is open in A_j . Hence, as Q_j 's in Lemma 5, the sets $C\tilde{e} + (\tilde{O}_j \cap qi(A))$ (say) can be taken.

Proposition 4. The inductive topology for \hat{G} as the limit of (3.3), denoted by $\tilde{\tau}_{ind}$, coincides with $\tilde{\tau}_{BS}$ if and only if all A_n are finite-dimensional.

Proof. The verification goes in parallel with the proof of Proposition 3. We have only to replace $G(A_n)$ and e there by \tilde{G}_n and \tilde{e} .

Here we give an example belonging to Case 1 above.

Example 3. Bring the inductive system of Hausdorff groups H_n in Example 2 but assume that every group H_n is infinite and discrete. Let H denote the limit group of this system bearing the bamboo-shoot topology, i.e., the discrete topology. For each n, consider the commutative Banach algebra $C_0(H_n)$, with uniform norm, of all C-valued functions on H_n vanishing at infinity. It is obvious that each $C_0(H_n)$ can be imbeded in $C_0(H)$ by regarding each $f \in C_0(H_n)$ as the function in $C_0(H)$ s.t. $f \equiv 0$ on $H \setminus H_n$. Thus a strict inductive system $C_0(H_1) \to C_0(H_2) \to C_0(H_2)$

 $C_0(H_3) \to \cdots$ of Banach algebras without identity is obtained. It is obvious that $\lim_{\tilde{e}} C_0(H_n) = \bigcup C_0(H_n)$ is dense in the Banach algebra $C_0(H)$. Hence the role of \tilde{e} must be played by the constant function 1 on H. For this system one has $\tilde{G} = 1 + \{f \in C_0(H); \operatorname{Range}(f) \not = -1\}$. By Theorem 2 $\tilde{\tau}_{BS}$ for \tilde{G} is induced from τ_{let} for $C_0(H) = \lim_{\tilde{e}} C_0(H_n)$. Furthermore Proposition 4 shows that $\tilde{\tau}_{ind}$ differs from $\tilde{\tau}_{BS}$ for the present case because every H_n is an infinite group and so $C_0(H_n)$ is infinite-dimensional.

Now let us consider Case 2. (Note that in this case each A_n has identity e_n but (2.1) never gives an inductive system of groups because $\psi_{n+1,n}(e_n) \neq e_{n+1}$ for infinitely many n.) In this case we have equivalency $a \in qi(A_n) \Leftrightarrow e_n + a \in G(A_n)$. Hence $qi(A_n) = G(A_n) - e_n$ and so, by (3.2'),

$$(3.2'') \qquad \qquad \tilde{G}_n = G(A_n) + (\tilde{e} - e_n).$$

Here note that $\tilde{e} - e_n$ is an idempotent element of A_n and therefore it makes a single group contained in \tilde{A}_n

Proposition 5. Suppose each A_n has identity e_n but A does not. Then each \tilde{G}_n is given by (3.2") and topologically isomorphic to the direct product of $G(A_n)$, which inherits the norm topology of A_n , with the single group $\{\tilde{e} - e_n\}$ in \tilde{A}_n . (Hence $\tilde{G} = \bigcup \{G(A_n) + (\tilde{e} - e_n)\}$.)

Proof. Since $a(\tilde{e} - e_n) = (\tilde{e} - e_n)a = 0$ for $a \in A_n$, the assertion is obvious.

Example 4. Let $H = H_1 + H_2 + H_3 + \cdots$ be an orthogonal sum of countably many Hilbert spaces. Put $H^{(n)} = H_1 + \cdots + H_n$ for each *n* and consider the usual Banach algebra $B(H^{(n)})$ formed of all bounded linear operators on $H^{(n)}$. Each $B(H^{(n)})$ has identity $I^{(n)}$. By identifying each $T^{(n)} \in B(H^{(n)})$ with $T \in B(H)$ s.t. $T = T^{(n)}$ on $H^{(n)}$, and = 0 on $H^{(n)\perp}$ in *H*, a strict inductive system of Banach algebras $B(H^{(n)})$ is obtained which belongs to Case 2. Note that $B(H^{(n)})$ is identified with $P^{(n)}B(H^{(n)})P^{(n)}$ as Banach space, $P^{(n)}$ denoting the projection of *H* onto $H^{(n)}$. $\varinjlim B(H^{(n)})(=\bigcup B(H^{(n)}))$ is strongly dense in B(H) because $P^{(n)}TP^{(n)}$ converges strongly to *T* for every $T \in B(H)$. Hence the role of the common identify \tilde{e} for this system must be played by *I*, the identity operator on *H*. Therefore, by (3.2''), $\tilde{G}_n = \{T \in G(B(H)): T \mid H^{(n)} \in G(B(H^{(n)})), T = I$ on $H^{(n)\perp}\}$, where G(B(H)) denotes the totality of regular elements in B(H). Proposition 4 shows for $\tilde{G} = \bigcup \tilde{G}_n$ in this case that $\tilde{\tau}_{ind} = \tilde{\tau}_{BS}$ holds if and only if all H_n are finite-dimensional.

Example 5. Let Λ be a Banach algebra over C (or R) with identity e, and $M_n(\Lambda) = \{a = (a_{ij})_{ij=1\cdots n}; a_{ij} \in \Lambda\}$ be the full matrix-algebra of *n*-th order with elements in $\Lambda(n = 1, 2, \ldots)$. Each $M_n(\Lambda)$ has identity $I_n = \begin{bmatrix} e \\ & \cdot \\ & e \end{bmatrix}$. Let Λ^n

be the product Banach space of *n* copies of Λ , the norm of which is defined by $||b||_n = \max_l ||b_l||$ $(b = (b_1, \dots, b_n) \in \Lambda^n)$, and $B(\Lambda^n)$ be the Banach algebra formed

Takashi Edamatsu

of all bounded linear operators on Λ^n . Then it is easy to see that each $M_n(\Lambda)$ is a Banach subalgebra of $B(\Lambda^n)$. By identifying each $a = (a_{ij}) \in M_n(\Lambda)$ with $\begin{bmatrix} a \stackrel{:}{:} 0\\ \cdots\\ 0 \stackrel{:}{:} 0 \end{bmatrix} \in M_{\infty}(\Lambda) \text{ a strict inductive system of Banach algebras } M_n(\Lambda) \text{ is obtained}$

which belongs to Case 2. Put $M(\Lambda) = \lim M_n(\Lambda) (= \bigcup M_n(\Lambda))$. It is obvious that the role of the common identity for $M_n(\Lambda)^{\sim}$ and $M(\Lambda)^{\sim}$ is played by the matrix

$$I = \begin{bmatrix} e & & \\ & e & \\ & & \ddots \end{bmatrix}$$
. By (3.2") we have $\tilde{G}_n = \left\{ \begin{bmatrix} a & & 0 & & \\ & \ddots & \ddots & \\ 0 & & e & \\ & & \ddots & \end{bmatrix}$; $a \in \operatorname{GL}_n(\Lambda) \right\}$, where

 $GL_n(\Lambda) = G(M_n(\Lambda))$. As to a $\tilde{\tau}_{BS}$ -neighbourhood base at I in $\tilde{G} =$ $\lim_{n \to \infty} \tilde{G}_n$ (= $\bigcup_{n \to \infty} \tilde{G}_n$), denoted by GL(Λ), Theorem 2 applies. Proposition 4 shows that $\tilde{\tau}_{ind} = \tilde{\tau}_{BS}$ holds if and only if Λ is finite-dimensional. The case of $\Lambda =$ $C(X, \mathbb{C})$, X being a compact Hausdorff space, was treated in Yamasaki [3] in a direct manner. (Of course $C(X, \mathbb{C})$ represents for all commutative C^{*}-algebras with identity.)

§ Appendix

Let H_n (n = 1, 2, ...) be Hausdorff groups satisfying the first countability. Put $G_n = H_1 \times \cdots \times H_n$ and let $\psi_{n+1,n}$ be the canonical imbedding of G_n into G_{n+1} . For the inductive system $\{G_n, \psi_{n+1n}\}_{n \in \mathbb{N}}$ of topological groups thus obtained, it is easily seen by Theorem Y that τ_{ind} is a group topology for $G = \lim G_n$ if and only if all H_n are locally compact, or all but a finite number of H_n are discrete. The first counter example given in [2] is just the case $H_1 = Q$, $H_n = R$ $(n \ge 2)$, which satisfies neither of these requirements.

> COLLEGE OF SCIENCE AND TECHNOLOGY NIHON UNIVERSITY PRESENT ADDRESS: SHIN-SHIRAOKA 1-24-4. SAITAMA PREF., JAPAN 349-0212

References

- [1] H. H. Schaefer, Topological vector spaces, Springer, New York, 1971.
- [2] N. Tatsuuma, H. Shimomura and T. Hirai, On group topologies and unitary representations of inductive limits of topological groups and the case of the group of diffeomorphisms, J. Math. Kyoto Univ., 38 (1998), 551-578.
- [3] A. Yamasaki, Inductive limit of general linear groups, J. Math. Kyoto Univ, 38 (1998), 769-779.
- [4] L. Natarajan, E. Rodrigues-Carrington and J. A. Wolf, Locally convex Lie groups, Nova J. Algebra and Geometry, 2 (1993), 59-87.

Added in proof. Corollary A.11 in Appendix of [4] asserts that every strict inductive limit of topological groups is a topological group w.r.t. τ_{ind} . I am afraid this assertion, however, runs counter to the examples given in the present paper and [2].