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§1. Introduction

For K=R or C, we denote by QZ‘,‘)(K) the space consisting of all n-tuples
(pi(2),...,pu(2)) €K[z]" of K-coefficients monic polynomials of degree d such
that p,(z) = py(z) =--- = p,(z) =0 have no common real roots (but may have
common complex roots). This space has an interesting topology and it has been
studied from many different points of view. A. Kozlowski and the author already
determined its homotopy type explicitely ((8]) except for the case (K,n) = (R,3).
In this paper we shall investigate its homotopy type for this case. For this
purpose, let us consider the map j(d”) : Q&)(R) — Q[,,]ZRP"‘1 ~ Q8" ! which is
defined by

(pi(6):---:p,(1)] ifreR

(@) = { 0O TR

for (p,(2),-..,p.(2)) € QE’H)(R) and te€ S' = RU oo, where [d], denotes the number
modulo 2. Here, we shall call a map f: X — Y as a homotopy equivalence (or
homology equivalence) up to dimension 4, if the induced homomorphism f, : 7;(X)
—m(Y) (or f, : H(X,Z) — H;(Y,Z)) is bijective when j < d and surjective when
Jj=d. In [8] we already obtained the following homological informations.

Theorem 1.1 ([8]). (1) The map j(‘g) : Qé)(R) — Q52 is a homology equiva-
lence up to dimension d.

7 if j=0,1,2,...,d
0 otherwise

@) HI(QY)(R). Z) = {

Let RRat,(2) denote the space consisting of all triples (p,(z), p,(z), p3(2)) €
R[z]? of monic real coefficients polynomials of degree d such that P1(2) = py(2) =
P3(z) = 0 have no common roots. Note that RRat,(2) Qé)(R) and each p =
(p1(2), p2(2), p3(2)) € RRaty(2) uniquely determines the map p:S! — RP? in a
natural way. However, since this is dense in Qld]ZRPZ but is not closed in
Q[d]ZRPz, we shall study the closure rat;(2) = RRat,(2) < Q[d]zRPZ. Then
recently J. Mostovoy obtained the following interesting result in [10].
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Theorem 1.2 (Mostovoy, [10]). The natural inclusion map
raty(2) = Qi RP? ~ Q5?

is a homotopy equivalence up to dimension d.

It is known that there is a homotopy equivalence rat,;(2) ~ Q(“3)(R), and we
also obtain

Theorem 1.3. The map j(‘é) : Q(“;)(R) — QS? is a homotopy equivalence up to
dimension d.

It follows from theorem 1.1 that the above homotopy stability dimension is
best possible. Moreover, we may regard the space Q(3)(R) as a finite dimensional
model for the infinite dimensional space 2S5?. However, we can only know its
low dimensional information and we would like to investigate the homotopy type
of it explicitely. This is the main purpose of this paper and we shall prove the
following 2 results:

Theorem A. There is a homotopy equivalence QZ'"“(R) ~ S x J,,(2S3),
where J,,(25%) = s2Ue*U --- Uelm- N Ue? « Q83 denotes the m-th stage James
filtration of 283 ([7)).

Theorem B. There is a homotopy equivalence ), QZ'" ~ (28 where
X denotes the reduced suspension and X9 denotes the d dtmenszonal skelton of a
CW complex X.

Remark. If d is an even integer, the fundamental group action of Q(‘g)(R) is
non-trivial for higher dimensional homotopy groups and it may be not easy to
classify its homotopy type directly.

It is easy to see the following 2 results by using theorem A.

Corollary C. The univeral covering of the space QZ’"“(R) is homotopy
equivalent to J,,(2S?).

Corollary D. There is a ring isomorphism

H* Q%' (R),Z) = EX\] ® I'[yy, ¥av - ol /(3i - yj 1 i+ = 2(m + 1)

where E[x|] and I'|y,, ..., ¥, denote the exterior algebra over Z generated by x
and the divided polynomial algebra over Z generated by y,,...,y,,, respectively.
Here |x1| =1 and |y,| = 2j.

The main method of this paper is to use the results given in [4] and [8], which
are obtained by Segal’s scanning method ([4], [11]) and by the computations of
spectral sequences ([8], [13]). Moreover, we shall also give the independent proof
of theorem 1.3, and so we do not need theorem 1.2 in this paper.

The plan of this paper is as follows. In §2, we shall recall the general
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properties of 7; action on homotopy groups and in §3, we shall give the proof of
theorem 1.3. Finally in §4, we shall prove theorems A and B.

Acknowledgements. The author is indebted to M. A. Guest and A.
Kozlowski for numerous helpful conversations concerning configuration spaces and
their stability. The author was partially supported by a grant from the Ministry
of Education of Japan.

§2. Basic principle of the homotopical stability
Recall several properties of 7 actions on homotopy groups.

Definition. Let X be a connected space. Then the space X is called n-simple
when 71 (X) acts trivially on 7;(X) for any 1 < j <n. In particular, a space X is
called simple when X is n-simple for any n > 1.

Since 7;(X) action on m;(X) is given by the conjugation, a connected space X
is l-simple if and only if m;(X) is abelian. It is known that any connected
H-space is simple. Moreover, if X is n-simple and Y is simply connected, X x Y
is n-simple. For example, if X is a H-space and Y is simply connected, X x Y is
simple.

Lemma 2.1. Let n,m > 1 be integers and let f: X — Y be a continuous map
such that f, : nj(X) — n;(Y) is surjective for any j <m. Then if X is n-simple, Y
is min(n, m)-simple.

Proof. Let k =min(n,m) and let 1 < j <k be any integer. It suffices to
prove that m;(Y) action on m;(Y) is trivial. Let y, en(Y) and 7;(Y) be any
elements. Since f, : 7 (X) — m,(Y) is surjective for s =1 or s=j, there are
elements x; € 71 (X) and x € 7;(X) such that, y, = f,(x;) and y = f,(x). Since the
diagram

m(X) x m(X) 5 7 (Y) x m(¥)

| |
nx) e m(n)

is commutative, y, -y = f,(x;)- f,(x) = fi(x;-x) = f,(x) = y. Hence n(Y)
action on m;(Y) is trivial.

The following lemma is well-known and we omit the proof.

Lemma 2.2. Let f:X — Y be a homology equivalence up to dimension d.
Then if X and Y are both (d — 1)-simple, then the map f is a homotopy equivalence
up to dimension d.

Corollary 2.3. Let n,d > 1 be integers and let f:X — Y be a homology
equivalence up to dimension d. If X is n-simple, the map f is a homotopy equivalence
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up to dimension D(n;d), where

o nt1 (iff n<d)
D(”’d)‘{d (if n>d)

Proof. Let k = min(n,d). From lemma 1.1, Y is k-simple. If k<d -1,
then k = n < d and it follows from lemma 2.2 that f'is a homotopy equivalence up
to dimension k+1=n+1. If Kk >d, then n > d and it follows from lemma 2.2
that f is a homotopy equivalence up to dimension d.

§3. Spaces Qg)(R) and their homotopy stability

In this section, first recall several results which were already obtained in
[8]. For this purpose, recall the definition of stabilization map sy : Qé)(R) —
0L (R).

Definition. Let Qd (|z] < d) denote the subspace of Q(3 (R) consisting of all
triples (p,(z), p2(2), p3( )) € Q(3)(R) such that, for each 1 < j <3, any root « € C
of p;(z) =0 satisfies the condition |¢| <d. Then we can identify Q(3 (R) =

)(|z| < d). Let us choose 3 mutually distinct real numbers a;,a, 23 € R such
that loj| > d for each 1 < j < 3. Then define the stabilization map s, : Q (R)
0% (R) by

>~

ins) - Qé)(|z| <d) —— in;)-](R)
(P1(2), P2(2), p3(2)) = ((z — 1) p1(2), (z = 22) pa(2), (2 — 23) P3(2))

Then recall the following result:

Proposition 3.1. (1) s : Qé)( ) — Qd"‘( ) is a homology equivalence up to
dimension d. _ ~

(2) (sq), : m(Qé)(R)) = nl(QE’;“l(R)) = Z is bijective.

(3) The maps jé) induces a homotopy equivalence

j = lim Jb : lim 0% (R) = QS?

Proof. The assertions (1) and (3) follows from [8] and it suffices to prove
(2). Analogous method given in appendix of [3] easily proves that nl(Qé)(R)) is
abelian. Consider the commutative diagram

(@A ®R) s om0 (R)

I1lz h'j{;

Z = Hi(Qh(R).Z) 2% Hi(QL'(R),Z) = Z
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Note that # and &’ are isomorphisms by Hurewicz theorem. If d > 2, since 54 is a
homology equivalence up to dimension d by (1), (s4), is bijective. Similarly if
d=1, (s1), is surjective. However, since Hi(Q(;(R),Z) = Hi(Q(R),Z) = Z,
(s1)4 is also bijective. Therefore (s4), :m(Q% (R)) — m(Qd“( N=Z s
bijective for any d.

III

Remark. Define the map 7, : S' — Q) (R) by

y1(e”) = (z+cos B,z +sin 0, z) for e? e S' = {aeC: o =1}.

For d 22, let y,: S' — Qf (R) be the composite of maps
' = Qfy(R) == 0 (R) = --- = Q& (R) = 0f)(R)

Then it is easy to see that y, is the generator of m;(Q%,(R)) = Z.

Lemma 3.2. There is a homotopy equivalence Q(23")'+1(R) ~ S!' x X, for some
simply connected space X,,.

Remark. Mostovoy proves in [10] that there is a homotopy equivalence
raty,+1(2) ~ S! x X,, for some simply connected space X,,. Since it is known that
raty(2) ~ Qg)(R), the result easily follows. However, here we shall give another
proof, which is inspired by the discussion with A. Kozlowski.

Proof. Denote by Q&) the space consisting of all n-tuples (p,(z),..., p,(2)) €
R[z]" of real coefficients polynomials satisfying the following 3 conditions:

(1) max{deg p;(z) : | <k < n} <degp,(z).

(2) pn(z) is a monic polynomial of degree d.

(3) pi(z) =---= p,(z) =0 have no common real roots.
Then there is a homeomorphlsm Q ( ) > Q(") and it suffices to show that there is
a homotopy equivalence sz).+1 ~ S ) x X,, for some simply connected space X,.
For this purpose, define the free S' action on Q(zg’)'“ by the rotation

Q(2;7)1+| x S SN Q2m+l

((p1s P2 P3),€7) — (pycosl — p,ysinb, psinf + p,cosb, p;)

Note that there is a fibration S' 2 Q’erl 4 ’"“ /S! = X,,. It follows from the
definition of the above action that the map y: S z — QZ”'Jrl can be given by y(e™)
= (z+cosf,z+sinb,z(z> + 1)™). Since the map y is homotoplc to a generator of
m(QZ'" ), Xom+1 is simply connected. Next we would like to define the map R :
Q(3 — 8! such that Roy=id:S' — S'. If such a map R exists, the assertion
easily follows.

Let (p,(2), pa(2), p3(2)) € Qg’;“ be any element. Because p;(z) e R[z] is a
monic polynomial of degree 2m + 1, it is expressed as
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/
2) =[] ~%)-9(2)
J=1

each ;e R, oy <ap---<oy_; <o, and
where

g(z) e R[z] is a monic polynomial such that it has no real roots.

Let us consider the product
! ji—1
(33)  Ri(p1.p2py) Hp] %) +ipy(%9))” € C* (where ¢ = (~1)'™")

Since the product (py(%-1) +ipa(%-1))7" (py (o) + ipy(e))7 =1 if oy = o, the
map R, : QZ'"+l — C* is well-defined and continuous. Define the map R : Qz’"+l

— S' by R(pl,pppz) = Ri(p1. P2 P3)/|R\(P1, P2 P3)|- A direct computation
shows that Roy =id: S' — S'. This completes the proof.

Remark. The above proof is failed if d is an even integer. The main reason
is that if d is an even integer some monic polynomial f(z) € R[z] does not have any
real roots. So R, is not well-defined when d is even.

Corollary 34. If d =2m+ 1, then Qz'"“( ) is simple.

Corollary 3.5. If d =2m, then the space Q(Zg’)’( ) is (2m — 1)-simple.

Proof. From the above corollary 3.4, Qz’" '(R) is simple. Since the sta-

bilization map QF~'(R) — Q¥'(R) is a homology equivalence up to dimension
(2m — 1), the assertlon follows from lemma 3.1.

Although theorem 1.3 can be obtained by Mostovoy’s theorem 1.2, we give
independent proof of it.

Proof of theorem 1.3. Consider the stabilization map s : Qé)(R) E’;)r' (R).

It follows from (3.4), (3.5) that both spaces Q(3( ) and Q(d;)r‘(R) are (d —1)-
simple. Recall that (from (3) of proposition 3.1) the maps 1(3) induces the
homotopy equivalence

J: lim Q&% (R) = QS?
d—w

Hence the map j(‘g) is a homotopy equivalence up to dimension d.

§4. Homotopy types

In this section, we give the proofs of theorems A and B. For this purpose, note
the following results:

Lemma 4.1. Let X! denote the d-skelton of a CW complex X. Then there is
a homotopy equivalence (28" ~ 81 x J,,(2S3).



Complements of resultants and homotopy types 681
Proof. Since there is a homotopy equivalence 25? ~ S' x 253, this is clear.
Corollary 4.2. The space (25" ~ §1 x J,,(QS3) is simple.
Now we can prove theorem A.

Proof of theorem A. It follows from the cellular approximation theorem that
there is a cellular map f,: Q (R) — Q8?2 such that f, is homotopic to j
Consider the case d = 2m + 1. Smce fom +1(Q2'"+1( R < (@s2)m+l] deﬁne

the map gom+1 : Q(23'31+1(R)[2"7+l] — (282" by the restriction
Pomsl = f2m+l|Q2m+l( )[2m+l] . Q(2£7+I(R)[2m+l] N (‘Qsz)[Zm-H].

However, since Hj(Q(Zér)IH(R)) =0 for any j >2m+2 and (252)?™! is simple,
using the obstruction theory, the map gp,+| extends to the map
me+l . Q(Z;)'-H( ) (QSZ)[2’n+I]

Consider the homotopy commutative diagram

QZ'"H (R) Gamt1 (.QSz)[Z'"H]

T

(43) Q(Z;P)H—l (R)[Zm+l] Gom1 (QSZ)[Z’"“]
IZm—H
I

If j <2m, the above diagram induces the commutative diagram

m (—2m+ )n m
H{(Q% ' (R).Z) 2 Hy((2s%)PY z)

= | i =

m m (-‘/ m+ ). m
(4.4) Hi(of (R z) 2 (st z)
2m+1 U (7‘”),“)' 2
H(QHY(R).Z) ——— H;(QS?.7)

where vertical homomorphisms are all isomorphisms. Since ( j(zg';+l)* is bijective

by theorem 1.1, the induced homomorphism (g, 1), : j(Q(23’;’+‘(R),Z)5>
H;((25%)P"*1 7) is bijective when j < 2m.

Similarly, when j=2m+ 1, the diagram (4.3) induces the commutative
diagram
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m (-m+ ): m
Z=Hy (O (R),Z) % Hy, (@81, 2) =7

surjective I i, -

m nt ( n+ ). m
45)  Z=Hyn (@Y RPN Z2) 2 Hy, (@) Z) = Z

surjective l iy surjective | i/
2m+1 U( 5 2
Z= H2m+](Q(3) ( )7Z) '_"’ H2m+l(-QS ;Z) =7
surjective

Since (1(23’”“) (L= Hz,,,+|(Q2§’)'+'(R),Z)—»Hz,,,+1(QS2,Z):Z is surjective by
proposition 3.1, it is bijective. By the same reason, induced homomorphisms

{ i Z = Hympt (OB (R)P™, Z) 5 Hopt (03 (R). Z) = Z
J

iyt Z = Hypyt (281" 2) 5 H,, 1 (Q52,2) = Z

are also isomorphisms. Hence from the diagram (4.5), the induced homo-
morphism (gay41), : (Q(zg')'“( ),Z) > H;((25%)P™11/Z) is an isomorphism for
Jj=2m+ 1. Therefore, the induced homomorphism (Gy,11), : H;(Q% ™ (R),Z) =
H;((25%)P™11 Z) is bijective for any j < 2m+ 1.

However, since H(Qd (R),Z) = ((QSZ)[zmH] Z)=0 for any j>2m+2
by theorem 1.1, (Gomsr), - H(Q4* (R),Z) S Hy((@5%)P"*,Z) is an isomor-
phism for any integer ;.

Note that (252)2"*! ~ §1 x J,,(2S3) and Q(zg')’“( ) are simple. Hence, by
the Whitehead theorem, g,,,; is a homotopy equivalence. Thus there is a
homotopy equivalence

0F ! (R) 22 (2571 = ST x J,(25%)

Next consider the homotopy type of Q(zg’)’(R). However, since it is not simple,
it seems difficult to classify its homotopy type explicitely. So we shall consider its
single suspension.

Lemma 4.6. There are cofibre sequences

{(a) Q(Z;)v l( ) 2t il Q2m( ) P §2m
(b) (QSZ)[ZMI l] (QSZ)[ZIH] S2,"

Proof. Since the proofs are similar, we only give the proof of (a). Let C,
denote the mapping cone of the map sy,—;. Then from theorem 1.1, note that

Z if j=2m

Hi(Cn2) = {0 if j#2m
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Since 71 (s2m—1) is bijective from (3.1), C,, is simply connected. Hence there is a
homotopy equivalence C,, ~ S?".

Now we can prove theorem B.

Proof of theorem B. Consider the commutative diagram

Zsam-1 m
s . romIR) I row(R)

{ zgz,,,_,l:

S2m Z(QSZ)[z'"_”

<

E(QSZ ) [2m]

where horizontal sequences are cofibre sequences. Hence there is a map
hom = QB (R) — £(25%)P" such that the diagram

is

2Q

(1]
(2]
(3]
(4]
(5]
(6]

[7]
(8]

(9]

s ——  FORT'(R) I OB(R)

= J ):!iz,,,_| J ~ Nom l

S2m 2(932)[2'7’—1] < Z(QSZ)[Z'"]

homotopy commutative. Since Xg,,_, is a homotopy equivalence and

#H(R) and X (252)?" are simply connected, sy, is a homotopy equivalence.
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