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Complements of resultants and homotopy types

By
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§ 1. Introduction

F or K = R o r  C, we denote by Qrn ) (K ) the  space consisting o f all n-tuples
(p i (z), , p n (z)) e K[z]n o f  K-coefficients monic polynomials o f  degree d  such
that p i (z) = p 2 (z) = • • • = p(z) = 0 have no common real roots (but may have
common complex roots). This space has an  interesting topology and it has been
studied from many different points of v iew . A . Kozlowski and the author already
determined its homotopy type explicitely ([8]) except for the case (K,n) = (R, 3).
I n  this paper we shall investigate its homotopy ty p e  fo r  th is c a s e . F o r  this
purpose, le t  u s  consider th e  m ap j rn) 0 0 (R ) D

1n12
Rpn-1 Q s n - 1  which is

defined by

.d { [ p i ( t )  : • • : p„(0] if  t e R
J(n)(P] (z), • • • Pn(z))(t) = [1 : 1 : : 1] if t = oo

for (p i (z), , pn (z)) e Q(dn ) (R) and t SI = R U oo, where [d12 denotes the number
modulo 2 .  Here, we shall call a map f : X  —> Y as a  homotopy equivalence (or
homology equivalence) up to dimension d, if the induced homomorphism f t  : ni (X)

nj ( Y) (or f : 111 (X, Z) — + Y, Z)) is bijective when j G d  and surjective when
j = d. I n  [8] we already obtained the  following homological informations.

Theorem 1 .1  ([8]). ( 1 )  The m ap .41
3 ) : 0 ) (R) —> S2S 2  i s  a  homology equiva-

lence up to dimension d.

(2) H i(0 )(R ), Z )  =  Z  f  j=0 ,1 ,2 ,...,d

Let RRatd(2) denote the  space consisting of a ll triples (p i (z), p2 (z), p3 (z)) E
R[z] 3 o f  monic real coefficients polynomials of degree d  such that p i (z) = p 2 (z) =
p 3 (z) = 0 have no common roots. Note that RRatd(2) 0 ) (R ) and each p =
(p i (z), p2 (z), p3 (z)) E RRatd(2) uniquely determines th e  map p : S 1 —> RP2  i n  a
natural w a y .  However, since this is dense  in  Q[d ]2 RP2 b u t  is not closed in
Qm2 RP2 , w e  sh a ll s tu d y  t h e  closure ratd(2) = RRatd(2) Q [ d 12RP2 . Then
recently J . Mostovoy obtained the  following interesting result in  [16].
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Theorem 1.2 (Mostovoy, [101). The natural inclusion map

ratd(2) R d i2 RP 2 ( 2 S 2

is  a homo topy equivalence up to dimension d.

It is known that there is a  homotopy equivalence rata(2) 0 1 (R), and we
also obtain

Theorem 1.3. The m ap  f(13) : Q(6) (R) QS 2 is  a homotopy equivalence up to
dimension d.

It follows from theorem 1.1 that the above homotopy stability dimension is
best possible. Moreover, we may regard the s p a c e  0 ) (R) as a finite dimensional
model for the infinite dimensional space S2S 2 . However, we can only know its
low dimensional information and we would like to investigate the homotopy type
of it explicitely. This is the main purpose of this paper and we shall prove the
following 2 results:

Theorem A .  T here  is  a hom otopy  equivalence n 2m- 1- 1(R ) S I x  jm (s2s 3) ,
(3 )

where J„,(S2S 3 ) = s 2  U e4 U • • • U e 2 ( m - 1 )  U e2 " Q S 3 denotes the m -th stage Jam es
filtration of  52S 3 ([7]).

Theorem B .  There is a homotopy equivalence E  n 2m (R )(Q  s2 )[2 m ] w h e re
(3 )

denotes the reduced suspension and X [d] denotes the d dimensional skelton of a
CW  complex X .

Remark. If d  is an even integer, the fundamental group action of Qt1
31 (R) is

non-trivial for higher dimensional homotopy groups and it m ay be not easy to
classify its homotopy type directly.

It is easy  to  see the following 2 results by using theorem A.

Corollary C .  T he univ eral covering o f  th e  space  n 2 m+] (R )  is homotoPY
(3 )

equivalent to J„,(f2S 3 ).

Corollary D. T here is a ring  isomorphism

H * (0 ';+ 1 (R), Z) = E[xi] F[y2, Y4 , •  •  •  •  Y2,71/(Yi •  y1: i 2(m+  1 ) ]

where E[x ] ] and T[y 2 , . . . ,  y 2 1
] denote the exterior algebra over Z  generated by x ]

and the divided polynomial algebra over Z  generated by  y 2 , . . . ,  y 2,„ respectively.
Here lx 11= 1 and

The main method of this paper is to use the results given in [4] and [8], which
are obtained by Segal's scanning method ([4], [1 1]) an d  by  the computations of
spectral sequences ([8], [13]). Moreover, we shall also give the independent proof
of theorem 1.3, and so  w e do not need theorem 1.2 in  this paper.

The plan of th is  p ap e r is  a s  fo llow s. In  § 2 , w e shall recall the general

1Y2i1 = 4
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properties of n i  action on hom otopy groups and in §3, we shall give the proof of
theorem 1.3. Finally in  § 4 , we shall prove theorems A  a n d  B.

Acknowledgements. T h e  a u th o r  is  in d e b te d  to  M .  A .  G u e s t and  A .
Kozlowski for numerous helpful conversations concerning configuration spaces and
their stability. The author was partially supported by a  grant from the Ministry
of Education o f Japan.

§ 2. Basic principle of the homotopical stability

Recall several properties o f  n i  actions on hom otopy groups.

Definition. L e t  X  be a connected space. Then the space X  is called n-simple
when ni (X ) acts trivially on m (X ) for any 1 j  n .  In particular, a space X  is
called simple when X  is  n-simple for any n >  1.

Since ni (X ) action on ni (X ) is given by the conjugation, a connected space X
is 1-simple if  a n d  on ly  i f  mi (X )  is  a b e lia n .  It is know n that any connected
H-space is s im p le . Moreover, if X  is n-simple and Y  is simply connected, X  x  Y
is n -s im p le . For example, if X  is a  H-space and Y  is simply connected, X  x  Y is
simple.

Lemma 2.1. L et n,m  > 1 be integers and le t  f : X  Y  he  a continuous m ap
such that .1:: m(X) —+ mi ( Y ) is surjective for any  j < m .  Then if  X  is n-simple, Y
is min(n,m)-simple.

P ro o f  L et k  = m in(n ,m ) a n d  le t 1 j 15_ k be any integer. It suffices to
prove that ni( Y ) action on ni ( Y ) is trivial. L e t  y 1 E n i ( Y ) and  ni ( Y) be any
elem ents. Since f * :n s (X ) m , ( Y )  i s  surjective for s  = 1 o r  s  =  j ,  there  are
elements x1 E ni (X ) and x c m1 (X ) such that, y i =  f ( x i )  and y =  f , ( x ) .  Since the
diagram

n i(X ) x  m(X )

m(X)

yi =  f , (x l )  •  f . (x )=  f . (x lis commutative,

mi(Y ) x  ni(Y )

71(Y )

• x) =f ( x )  = y . H e n c e  n i ( Y)
action on ni ( Y) is trivial.

The following lemma is well-known and  w e om it the proof.

Lem m a 2.2. L e t  f : X Y  be a hom ology  equivalence up to dimension d.
Then if  X  and Y  are both (d — 1)-simple, then the m ap f  is a homotopy equivalence
up to dim ension d.

Corollary 2.3. L et n, d > 1 he integers and  le t f  : X Y  be a hom ology
equivalence up to dimension d. If  X  is n-simple, the m ap f  is a homo topy equivalence
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up  to  dimension D(n; d), where

n + 1  ( i f  n < d )D(n; =  d ( i f  n > d)

P ro o f  Let k  = min(n, d ) .  From lemma 1.1, Y is k-simple. If k  < d — I,
then k = n < d  and it follows from lemma 2.2 that f  is a homotopy equivalence up
to dimension k  + 1 = n + 1. If k  > d, then n > d  and it follows from lemma 2.2
that f  is a homotopy equivalence up to dimension d.

§ 3. Spaces 0 ) (R) and their homotopy stability

In this section, first recall several results which were already obtained in
[8]. F o r  this purpose, recall the definition of stabilization map 5d : Qc(13 ) (R) —>
Q c(13 - (R ).

Definition. Let Qt1
3 ) (1z1 < d) denote the subspace of Qt/3 ) (R) consisting of all

triples (p i (z), p2 (z), p3 (z)) E 0 ) (R) such that, for each 1 j  3, any root a E C

of p(z ) =- 0  satisfies the condition loci < d .  Then w e can identify 0 ) (R)
Qt(13)(1z1 < d). Let us choose 3 mutually distinct real numbers al, a2, a3E R such
that Iciti l> d  for each 1 < j  3. Then define the stabilization map s : 0 1 (R)

(R) by

Qc(1
3)Q t 1

3) (1z1 < d)  (R)

(Pi (z), P2(z), P3(z)) — > ((z —  al )Pi (z), (z — a2)P2(z), (z — a3)P3(z))

Then recall the following result:

Proposition 3.1. (1) Sd : 0 ) (R) —> Q(
d
3V (R) is a  homology equivalence up to

dimension d.
(2) (sd),, : ni( 0 ) (R)) rci(QV  (R)) Z is  bijective.
(3) T he m aps j r3) induces a  homotopy equivalence

j  =  lirn d

) •
Q ) ( R) g2 S 2

d— ■ co (3c c  

P ro o f  The assertions (1) and (3) follows from [8] and it suffices to prove
(2). Analogous method given in appendix of [3] easily proves that m i (0 ) (R)) is
abelian. Consider the commutative diagram

(sa).
7 rt (0 ) (R )) MI (Qr3j 1 (R))

h ,{. '_ h' 1_'-'
Z  =  I - I 1 ( Q r3 ) (R), Z) -- 

( s d )  #--  HI (Qr31-1 (R), Z) = Z-,
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Note that h and h ' are isomorphisms by Hurewicz theorem . If d > 2, since sd  is a
homology equivalence up to dimension d  by (1), (sd) 0  i s  bijective. Similarly if
d = 1, (s i ) is  surjective. However, since H ] (0 3) (R), ( Q 3 )  ( R ) ,  Z )  Z ,
(si ) 0  i s  a l s o  bijective. Therefore (sd),, : 7r] (0 (

1
3) (R)) (Q(d3v (R)) Z  is

bijective for any d.

Remark. Define the  map yi : S I —> 03 ) (R ) by

yi (e i g ) = (z  + cos 0, z + sin O, z) for e i0  e S t =  f a e C :  H  = 11.

F or d  2, le t yd  : S I —> Qt1
3 ) (R ) be the composite of maps

S I j - > 0 3) (R) 0 3 )(R ) s > 051 (R) Q (R )

Then it is easy to see that yd  i s  the  generator o f Tr] (0 ) (R)) = Z.

Lemma 3.2. There is a  homotopy equivalence (R)(3) 3 X  Xm  f o r some
simply connected space X„„.

Remark. Mostovoy proves i n  [10] that there is a  homotopy equivalence
rat2,n + 1(2) S 1 x  Xm  fo r some simply connected space Xn i . Since it is known that
ratd(2) 0 (

1
3) (R), the result easily follows. However, here we shall give another

proof, which is inspired by the  discussion with A . Kozlowski.

P ro o f  Denote by Q(dn ) th e  space consisting of all n-tuples (p i (z), . ,  p n (z)) E
R[z] n  o f  real coefficients polynomials satisfying the  following 3 conditions:

(1) max{deg p k (z) : 1 < k < n} < deg p n (z).
(2) pn (z ) is  a  monic polynomial of degree d.
(3 )  Pi (z) = • • • = (z) =  0  have no common real roots.

Then there is a homeomorphism Qrn) (R) 0 1
n ) and  it suffices to show that there is

(237,...,., —a  homotopy equivalence Q +1 3 1 X X„, for some simply connected space Xm .
F or this purpose, define the free S  action on 0 37 ] b y  the rotation

Q2 - ± ' x  SI
(

3
)

((Pi, P2, P3), e l ° ) (p  cos 0 — p2 sin 0 , p ] sin 0 + p 2  c o s  , p 3 )

0 37- 3,7Note that there is a fibration S I 4 0 / s i  _  X„,. It follows from the
definition of the above action that the map y: S I —> 0 7 "  can be given by y(e°)
= (z + cos 0, z + sin 0, z(z 2 +  1 )m ). Since the map y is homotopic to a generator of
7r] (037 1 ), X2m+1 is simply connected. Next we would like to define the map R :
Qd

) —> S ] such that Roy = id : SI — > S'. If  such a  map R exists, the assertion(3
easily follows.

L e t (p i (z), p2 (z), p3 (z)) E 017+ 1 be any elem ent. Because p 3 (z) e R[z] is  a
monic polynomial of degree 2m + 1, it is expressed as

nan+1
(3 )
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p 3 (z) =11(z — oci ) • g(z)
i=1

each oci  e R, a  <  a 2 • •• < cq <  o t i ,  and
where

g(z) e R [  is  a  monic polynomial such that it has no real roots.

Let us consider the product

(3.3) Ri(PI,P2,P3) =11031(00 +ip2(c(j)P e C* (where E• — ( — W - 1 )

Since the product (Pi (oci-1) + iP2(af-i)r (Pi(ott) + iP2(at)Y .-I =  1 if  oci -1 = oci ,  the
n2m+map R 1 : Q (

2
3m) +I —> C* is well-defined and continuous. Define the map R :

 ( 3 )

—+ S i b y  R(p i , p2 , p3 ) = R i(p i , p3 )11R1 (p i , p 2 , p3 )I. A  d ire c t computation
shows that Roy  = id : S I —> S I . This completes the proof.

Remark. The above proof is failed if d is an even integer. The main reason
is that if d is an even integer some monic polynomial f (Z ) c R [z] does not have any
real roots. So R I is not well-defined when d is even.

Corollary 3 . 4 .  If d = 2 m  1 , then Q ')'± i  (R ) is simple.

Corollary 3.5. If d = 2m, then the space Q ( R )  is (2m — 1)-simple.

P r o o f  From the above corollary 3.4, Qç'; -  I (R ) is  s im p le . Since the sta-
bilization map 0 .Ç;- 1 (R) O ( R )  is a  homology equivalence up to dimension
(2m — 1), the assertion follows from lemma 3.1.

Although theorem 1.3 can be obtained by Mostovoy's theorem 1.2, we give
independent proof of it.

Proof of theorem 1.3. Consider the stabilization map sd : 0)(R) —> Q c(13-j i (R)•
It follows from (3.4), (3.5) that both spaces V (

1
3 ) (R ) and Q I (R ) are (d — 1)-

sim ple. Recall that (from  (3 ) of proposition 3.1) the maps j (̀
1
3 ) induces the

homotopy equivalence

j : lim  V 6 )(R ) 2 S2

d—, 00

Hence the map jr3 ) i s  a  homotopy equivalence up to dimension d.

§4 . H om otop y  types

In this section, we give the proofs of theorems A and B .  For this purpose, note
the following results:

Lemma 4 . 1 .  Let Xrdl denote the d-skelton of a CH/ complex X. Then there is
a  homotopy equivalence (QS 2 ) [2 'n + 1 ]S i x J„,(S2S3).
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P ro o f  Since there is a homotopy equivalence QS 2 S I  x S2S 3 , this is clear.

Corollary 4 . 2 .  T he space (S2S2 ) 2 m + 1 1S I x  Ji n (S2S3 )  is simple.

Now we can prove theorem A.

Proof of  theorem A. It follows from the cellular approximation theorem that
there is a cellular map f d  :  0 ) (R) QS 2 such  that f d  i s  homotopic to  j t1

3) .
Consider the case d = 2m + 1. Since f  m n 2 M + i  ( R ) [2 1 1 1 + 1 ]) (s 2 s2)[2M +1]

2  +1 (3) define
the map g2,n+1 Q (237 1  (R) [2m+ I (1•25.2 ) [2m+ I by the restriction

g2m+1 .f2m+1
n2m+l (R)[2m+1] n2m+ 1 (R)[2m+1] (Ds2)[2m+1]

I V(3) k • V( 3 ) k

However, since I i i ( 0 .;Ir l (R ))  =  0  for any j  > 2m + 2 and (S2S 2 )I2 m + 1 1 i s  simple,
using the obstruction theory, the  map g2m + 1  extends to the  map

g 2 m + )  :  0 3 7 1 (R ) (g2s2)[2m+ii

Consider the homotopy commutative diagram

(4.3)

n 2m+1 (R )
v( 3 ) \

u

n 2m+1 ( R ) [2m+11
(3 )

n

42nH-I (g2s2)[2m+1]

g2n1+1 (Qs2)[2m+1]

n

2,n+
J 

( 3 )07+ 1 (R) OS2

If j  < 2m , the above diagram induces the commutative diagram

H3 (07+ 1  (R), Z)

i*

(42.0. ,  H i  (( 2 s 2) [2m+ 11, z)

(4.4) (R) [2m+1] , z )   H i  ( ( s 2 s 2 )  2m ± ii z )

Hi (Qçr l (R), Z)
i • r)1+ 1 ) ,,

11:1 (  Q S 2 , Z)

where vertical homomorphisms are all isomorphisms. Since (4 37 1 )* i s  bijective
b y th eo rem  1.1, t h e  induced hom om orphism  (g2,„+ 1 )  H

J  (Q 2 n1+1 (R), Z)* (3)
( ( p 5 2 ) [2 m + 1 1 , Z )  is  bijective when j  < 2m.

Similarly, when j  =  2m  +  1 , th e  diagram  (4 .3) induces the commutative
diagram
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Z = H21 + (0')1± 1 (R)'
(g2m+1).

z )  = zz )
H 2 , , , ±1((f2s 2 ) [2m+11,

surjective

(4.5) Z  =  H 2ni+I(O Ç rl (R ) [2m+i] z )H 2 1 „ + 1( (o s 2 ) [2m+11 ,z ) = z
surjectiveti. surjective

(4 3”),-Fi ).
Z) H21+1(S2 S 2 ,Z  =  H 2 1 + 1 ( 0 ; r 1 (R ), Z )  =  Z

surjective

Since ( j ')•  Z  =  H 2 m + 1
2 m 4( Q ( 2 3 7 1 ( R ) ,  Z) —* H2m+1 (OS 2 , Z )  =  Z is surjective by(3 ) *  

proposition 3.1, it  is  bijective. By the  same reason, induced homomorphisms

i, ,  : Z = 1-12m+1 (07 1
(R ) [2m+

Z  =  1 -12,„+1((g2S 2 )

J
i l ,  — H2

, [2m+1] ,

L) 2> m+I(0 7 + 1  (R ), Z) = Z

Z ) 1 * H21+1( 0 , 9 2 , Z )  =  Z

a r e  a lso  isom orphism s. H ence from  th e  d iagram  (4 .5 ), th e  induced homo-
morphism (g 2 m + 1 )* : W O i(R) , z ) H i  (( s 2s2)[2m+11 , Z )  is  an  isomorphism for
j  = 2m  + 1. Therefore, the induced homomorphism (0 21, ± 1 ) * : 1-1J(0;1;±1 (R), Z ) — >--
H i  (( 25 2)[21h1-{- 1] , Z )  is  bijective for any j  < 2m + 1.

However, since H i (0 ) (R), Z ) =  1-1j ((f2S 2 ) [ 2 m + 1 ] , Z )  =  0  fo r  any  j  > 2m + 2
by  theo rem  1.1, (02m-Ft )* : Iii( O r l (R ) ,  Z ),= .-  

H1.((s2s2)[2m+1], Z )  i s  a n  isomor-
phism for any integer j.

Note that (QS 2 ) [2 m + 1 1 .-_-_.' S i X  Jm (S2S 3 )  and 0')
1+I (R ) are  sim ple . Hence, by

the W hitehead theorem , ,d 2 m +1  i s  a  homotopy equ iva lence . T hus there  is  a
homotopy equivalence

m+i (R)\ (0s2)[2m+1] SI x  j ni (g2s3)
3 ) 

Next consider the homotopy type of 0 ( R ) .  However, since it is not simple,
it seems difficult to classify its homotopy type explicitely. So we shall consider its
single suspension.

Lemma 4.6. There are  cofibre sequences

{

(a) 07- 1 (R ) s2
-

1> OÇ;(R) i > Si'"

(b) ( Q S 2 ) [ 2 m - I ]  — ) (S 2S 2 ) [2m]   q  > S 2'n

P r o o f  Since the proofs are similar, we only give the proof of (a). L e t  C„,
denote the mapping cone of the  m ap s2,„_1. Then from theorem 1.1, note that

z  if ./ 2 mHi( Cm, Z) 0  if 2ril
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Since ni (52m -1 ) is bijective from (3.1), Cm  is simply connected. Hence there is a
homotopy equivalence C m  s2 in

Now we can prove theorem B.

Proof  o f  theorem B. Consider the com m utative diagram

s b n zo rri ( R ) ES2,, EQ 1; (R)

1E-42,—I

s2 m z (g 2 s 2) [2m- I] E (Q s2 ) [2- ]

where h o riz o n ta l sequences a r e  co fib re  sequences. H ence there is a  map
h2 m  : 0(R) —> (S 2 S 2 )F2 m 1  such that th e  diagram

s2
.

S2en — I L'Q')'(R)

        

s2171 z  ( 1- 2 s 2 )[2m-1] (Q s 2)Pm ]

is hom otopy co m m u ta tiv e . Since /0 2 1 _ 1 i s  a  hom otopy equivalence and
2 Q ( R )  a n d  E(QS 2 ) {2m ] a r e  simply connected, h20 1 i s  a  homotopy equivalence.
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