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Odd generators of the mod 3 cohomology of finite
H-spaces

By

Yutaka HEmMI and James P. LIN

Abstract

In this paper we derive a formula about the action of 2' on the odd generators of the mod 3
cohomology of a finite simply connected mod 3 H-space with associative mod 3 homology. This
formula will be used in a subsequent paper to classify all possible cohomology rings that can occur as
the mod 3 cohomology of such H-spaces. ’

0. Introduction

In this paper we study mod 3 finite H-spaces whose mod 3 homology is
associative. The mod 3 cohomology of these spaces has been studied by many
authors [1, 2, 5, 3, 9]. In particular, there are formulas relating the action of the
Steenrod algebra on the even degree algebra generators.

However, very little is known about the action of the Steenrod algebra on the
odd degree generators. Only in special cases where the H-space has no even
algebra generators or when the finite H-space is homotopy associative, do we have
any kinds of results. [13]

In this paper we derive results about certain odd degree generators in the
general case of an associative homology ring. Notice that an odd sphere localized
at the prime three is an H-space with associative mod 3 homology, so it is possible
to have a cohomology generator in any odd degree that does not lie in the image
of a Steenrod operation and is annihilated by any Steenrod operation.

One of the results we derive is:

Main Theorem (Theorem 5.1). Let X be a finite simply connected mod 3 H-
space with H,(X;F3) associative. If x € QH®*3(X) and 2*"*'x € im #? and 18n+
16 is not the degree of a transpotence element of H*(QX) then ?'c*(x) €im P2

The proof of results of this kind involves using a third order operation that is
motivated by work of Zabrodsky [13]. Third order operations involve lifting into
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a three-stage Postnikov system. Here lies much of the difficulty in the proofs.
Instead of lifting our H-space X into the third stage, we lift P3;QX, the third
projective space of the loop space.

The three-stage Postnikov system E; contains an element with nonassociative
coproduct. In particular there is an element

ve H*(Ei; F3)
with
A =u(P'u)@P'u+2'u@u(P'u) + (P uWu@u+u® (Pu)u

where u e H®3(E|; F3).

We construct new invariants to study obstructions to preserving this coproduct.

In the process of proving the theorems we also calculate the cohomology of
the projective spaces Px(Q2X) for X a finite mod 3 H-space.

In a subsequent paper, results of this type will be used to give a complete
classification of the the mod 3 cohomology rings of finite mod 3 H-spaces with
associative mod 3 homology.

The reader may ask what is special about the prime three? Shouldn’t one be
able to obtain analogous results for all odd primes? We note that for primes p
greater than three and all n, there is an H-space B,(p) with H*(B,(p);F,) =
A(Xon41, Xons2p-1) With P'Xoui1 = Xon42p-1. S0 P'a*(x2041) is not in the image of
2?. So the Main Theorem is not true for primes greater than three. How-
ever, we might guess that some extra homotopy associativity assumptions are
needed.

The main problem seems to be the problem of lifting the mod p H-space
or an appropriate projective space through p-stages of a Postnikov system. In
Zabrodsky and Harper’s original papers [3] they employ power space technology
and the assumption that the H-space only has a few odd generators. Current
developments in lifting theory allow us to lift to a third stage, but to lift to higher
stages poses several problems in need of further study.

In section 1 we provide an outline of the proof so the reader has an over-
view of the ideas and strategy. Throughout the entire paper the symbol X will be
used to denote a simply connected mod 3 finite H-space with associative mod 3
homology.

All spaces will be connected and basepointed. All homotopies will respect
the basepoint. All homologies and cohomologies will be of finite type. Unless
otherwise specified, the coeflicients for homology and cohomology will be the field
F;.

1. Outline of the proof

The proof of the theorem can be divided into the following steps.
Step 1. There exists a three-stage Postnikov system
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v

QK, . E K(18n+17)
J’ll
QK, -2, E, K,
wi
l‘lo
K — K,

wo

of H-spaces. All maps are H-maps except v. ve H'®*+'7(E|) has reduced
coproduct

A =uP'u)@P'u+ P u@uP'u) + (P’ )u @ u+u® (P*u)u

where u e H3(E). See chapter 2.
Step 2. Since H.(X) is associative, there exists an even ./(3) sub-Hopf
algebra B with induced map

0B — QH(X)

is isomorphism in even degrees.

If R={xeH*(X)|dxe B® H*(X)}, then R is an ./(3) coalgebra and
algebra generators of H*(X) have representatives in R. Further R°¥ has no
decomposables.

Step 3. Suppose xe€ QH**3(X), y e QH"¥"2(X) satisfy

207 % = P,
If x, y € R represent X,y then
23 x — P2y = 0.
This produces a commutative diagram (2.5)
Ey
s
X — K
Step 4. X is filtered by projective spaces
2QX S PhRXc .- cPhQX<c ---c X

and the multiplication u: X x X — X is “filtered” because there are maps Hik:
PQX x PQX — P;j ;22X such that we have a commutative diagram
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IOX x Tx 2 pox

J J

POX x PQX 24 p0X

| |

X x x 4, x

where the vertical maps are the inclusions.
Step 5. We have

Ey

5 |
i(3)

P3QX —— X—f-»K

By altering f)i(3) by elements in the fibre, we can produce a commutative
diagram

E,
- q1
ﬁ J’
i Bo
1‘10
P3RQX —— K
fi(3)

H*(P3QX) is computed in terms of H*(X). (Theorem 3.4)
Step 6. Using step 4, we can define maps

(X)L, orp,0x

XN, ory MLy

such that the induced cohomology map satisfies (ry7y)" = (4 ® 1)4.
Given maps

Pox Ly
xhy
we define maps
(zox)™ 29, y

3 Di(h)
—

x» Y
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If Y=K(F,,n) then D3(h)*(in)=(4 @ 1)4h* (i), and if g=hi(3) then c3(g)"(in) =
(6*®0*®35*)(4®1)4h*(i,). (Lemma 4.2)
Step 7. There is a commutative diagram

|
A qi
a(f)

0

ot |

PR . |

(zQx)"

a(f)

Step 8. Given ve H®+!(E|), we have

a3(vf)) = ves(fy) + Da(v)g

for some map ¢. (Theorem 4.4) We remark that this derivation formula is by
no means obvious. In fact several references claim that Dy = gDy + Dy(say) for
the H-deviation. This formula does not hold in general. In the proof of the
formula for c3(vf;) it should become apparent why the formula for D, does not
hold in general.

Step 9. The formula for c3(vf;) is used to prove the Main Theorem.
(Theorem 5.1)

2. Construction of the Postnikov system

In this section we construct a three-stage Postnikov system. The second
stage will be an infinite loop space but the third stage will not even be
homotopy associative. The third stage will be the fibre of a map with nontrivial
As invariant. There will be a cohomology class in the third stage with a
nonassociative coproduct.

With only minor modification we are building the Postnikov tower described
in [13]. The modification is that our first k-invariant is different to allow for an
argument using downward induction on the degree. We recommend that the
reader look at [13] for details.

To streamline our notation, all coefficients will be assumed to be F; unless

otherwise specified. The symbol K(n,n,...,n;) will be used to denote
k
[T &(Fs.n)
i=1

a product of Eilenberg MacLane spaces in degrees nj,na,...,n.

Recall that a map between Eilenberg MacLane spaces is determined by its
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value on the fundamental cohomology classes. We now define Ej, the second
stage of our Postnikov tower. Let n be a positive integer.

Define wy : K(6n+3,18n— 1) - K(18n+ 7) by

we (1gn+7) = 22" igyys — Pirge .

Then let Ey be the fibre of wy. Note that wy is an infinite loop map, so Ey is
an infinite loop space.

Further

9193!&1 — 2P3n+2 (21)

and 2'2? =0, so

P'wi (i1gny7) = 0

We have a diagram

K(18n+6) — 2, E, il K(18n + 10)

lqo

K(6n+3,18n— 1) —— K(18n+7)
Wo

By (2.1) Bwy : K(6n+4,18n) — K(18n + 8) has

P (Bwo)* (irgnss) = P' 2P ignis — Plirgn)

_ 2, 3
=P lonya = igy g

If follows that there is an element [5, 13]
wi : Ey — K(18n + 10)
with
(w1J0)" (hignt10) = P irgnss

wi(i1gn+10) is a transpotence element and has nonzero A3 obstruction.
Further, by altering w, by elements in imgj, we may choose w; so that

22w} (irgns10) = 0.

In fact, We have the following homotopy commutative diagram by a similar
method as in [13].
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K(18n + 6) K(18n + 10)

Jo wi \
h W
-

Ey —————— Ej = fiber of 23+2 K(18n +18)

90 o l‘?o

K(6n+3,181—1) — "%, K(6n+3) d Eo = fiber of #?
wo 29p3n+2 /
K(18n+7) K(18n+11) K(18n+19)
2! p?

By construction, 22w} (i1gns10) € ker jg N PH'3+18( ). So
Prw) =~ Wh.

It suffices to construct w, h so that wh is null homotopic.
We have

Eo~K(6n+3)x K(18n+10)  as H-spaces by [13]
and
W*(i1gnt1s) = 2@ 1 + 1 ® Pitgay 0,

where z e PH*(K(6n+ 3)). Altering g by §yz and w by z, the diagram remains
commutative and

a g 2.
W*(i18nt18) = 1 @ P%i18n+10-

Now consider Q2Ey~ F, x K(6n+1), where Fy is the fibre of WZ:K(l8n—3) —
K(18n +5)

K(18n+4)
i
Fy
i

92
K(18n —3) ——— K(18n+5)
Then
(0*)2h* (i18n+10) = 70 ® 1 + 1 @ tigny1 € PH* (2 Ey),

where i (yy) = Pliignyia, yo € PH*(Fy), a e o/ (3).
Hence ij(2%y,) =0, so

yz)’o = ra(éimn-z),
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where 6 € #/(3) with degd =19. We may assume J is a sum of admissible
operations. Since there are no admissibles in degree 19, dijg,—3 =0, so

P2y = 0.
Changing /i by qg(aiens3), We may assume (a*)zh*(ilgnHO) =7y ®1 and
P2h* (irgne10) € PH'®" '8 (Ep) Nker(a*)?.

Further, 22h*(i13,+10) is not decomposable since H®"*6(Ey)=qsH%+%(K(6n+3))=
0.

Now (c*)%: QH"8"+18(E)) — PH'"*18(Q?Eg) is monic, so 2%h*(iigns10) = 0
and wh is null homotopic. Hence we may choose w; so that

P*w; (irgn10) = 0.

Let E; be the fibre of w;.

K(18n+9) — E

l"‘

Then by [13] there exists an element v e H'8+!7(E|) with
A1 -1®A)dv=P* u@®u®u)  where u = q;qg(isns3)-
By [13] we have
Av=u(P'u)® P'u+P'u@u(P'u) + (PWu® u+u® (P*u)u. (2.2)

and Jji(v) = Piignts.
It follows that
ARNAv=uR P'u®@P'u - P'u@u® 2'u
+2URQuAU—u® Pu@ u. (2.3)

We have the following three-stage Postnikov system

K(18n +9) d Ei ° K(18n+17)
Jrql
K(18n+ 6) L Eo K(18n + 10)

Wy

lqo

K(6n+3,181—1) —— K(181+7)
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Recall if X is a finite H-space with H,(X;F3) associative, we have the
following results.
There is an /(3) subHopf algebra B < H*(X) with the induced map

0B — QH*(X)

an isomorphism in even degrees. Further ¢*(B) =0 where ¢* is cohomology
suspension.

If R={xeH*(X)|dxe B® H*(X)}, then R is an 2/(3) coalgebra and the
induced map

R — H*(X) - QH*(X)

is an isomorphism in odd degrees. Therefore every odd generator has a repre-
sentative in R, and there are no odd decomposables in R.

Now suppose x € R%*3 and y e R'8"! satisfy 22>+ x = 22y + d where d is
decomposable. Then since d = 22**!'x — #?y e R'®+7 we must have d = 0.

So 223t x = P?y.

Hence 223 Ax = #?4y. Let

Jx:be@)r,- for b,'EB, r,-eR
dy=>) bj®r] for bjeB, reR

Then 223! S bir; = P23 birl.
Let x=x+> biri, y=y+> bjrl. Then

2+ % = P2y, (2.4)
We also note that
A% and Ay lie in I(B)H*(X)® H*(X)+ H*(X) ® I(B)H*(X).

Hence if X L K(6n+ 3,181 — 1) satisfies f*(igns3) = %, f*(i1gn_1) = 5, we
have a lifting

Ey —2 K(18n+ 10)

[ l"“ (25)
X - K(6n+3,18n—1)

3. Lifting to E,

We currently do not know how to lift X up to E;. However, the H-space X
is filtered by projective spaces

ZQX cPhQXc - csPRX<c--- cX. (3.1

We denote i(j) : P;2X — X to be the composition of the inclusions. The goal of
this chapter will be to show there is a commutative diagram
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E

S
Ey (3.2)

a

P3RX — X — K
i(3) f

Note that f; is not necessarily fyi(3).

There are several advantages to this approach. First, H*(P;QX) has at
most three fold nonzero cup products, so many decomposables in H*(X) vanish
when we map them into H*(P3QX). Second, the multiplication u: X x X — X
is “filtered” in the following sense. There exists a commutative diagram

M

2OQX x XQX —— PQX
ixl i

M

P,RX x XQX —— P3QX

(3.3)
Hj k

PQX x PQRX —— P 02X

i(j)xi(k) i(j+k)

X X X —_— X
u
for 1 <j, 1 <k. The vertical maps are the inclusions of (3.1). The inclusion
QX 5 X of (3.1) induces cohomology suspension, so understanding the K i Will
allow us to control

(uex &) = (6" @a*)4: H'(X) — H*(QX) ® H* (QX).

In this chapter we construct diagram (3.2). In chapter 4 we show how (3.2) can
provide us with information about the action of the Steenrod algebra on H*(2X).
Third, if Y : X — X is y(x) = x2, we have a commutative ladder

QX € PQX € - € PQX < --- S X
sy l lmw lhrzw l-/z
QX < P,QX < c PQX < - S X

We will show that P3QX is a space with

(PsQY)" : H'(P3QX) — H*(P3QX)
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has properties similar to that of a power space. That is ¢ = [(P3Q|p)3 ']* induces
multiplication by two for some ¢ >0 on some of the algebra generators and
H*(P3QX) splits as the direct sum of eigenspaces with respect to ¢.

From chapter 2, (2.5) we have a commutative diagram

Ey —2 K(18n+ 10)

% Jqo
i(3)

P3QX — X T» K
Note that wy f, € H'3*10(Xx).
By [9], all even generators of H*(X) lie in degrees congruent to 2mod 6. So
wo fy is decomposable in H*(X).

It will be useful to compute H*(P3QX). Recall that for each integer j > 0,

there are cofibration sequences
PQX — Pa0X 2 (zox)V D, spox.

These sequences induce exact triangles

_ i(3)"
—

H (QXx L 5 (PR2X) NI & S (P3QX) H*(X)
H (QX)®2 H (Qx)®?
We have a short exact sequence
a 7> ®3
0<—imi§<—H*(P3QX)<LH.(Q—X) —0. (3.4)

m f3;

Further fj03 =di =A®1 - 1®4 [11]. B3(i})”" represents the differential d; in
the Eilenberg Moore spectral sequence.
For X a finite H-space, we have the Borel decomposition

" F3y,‘..,y
H (X);A(xl,...,x/)®3[fll—3—f).
y] w"vyk

By [9], we may assume y; = B 1P x; where degree x = 2s; + 1, for j =1,...k.
Then by [7], we have the following coalgebra decomposition

H*(QX) = I'i[o"(x1)...,07(x)] ® I'o* (Xk41), - - -, 07 (x7)]
® I'[p3n (31)s- - 035 (i)

I'; is a divided coalgebra truncated at height three. ¢;,(y,) is the transpotence
element related to y, truncated at height 3%.
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In the Eilenberg Moore spectral sequence with
= COtOI‘H'(_QX)(Fg,, F3) and Ey,=GrH*(X)

we have by [8]

dyse-1[035 (¥5)] =3 Z( )[U ()]0 (x5)* =] € Ey;35)-1 (3.5)
These are the only differentials in the spectral sequence. We conclude
B3 (i)
is trivial and
imp; =impja; =imd, = (A®1 - 1@ 4)H (2X)®?

Since Cotor},.(gx)(F3,F3) = kerd,/imd; we can find a vector space summand S
such that

H* (QX ®3
i(T[)’z*)_ ~ Cotorf,.(m,)(F3, F;)®S

According to Adams, [8] if FC*(22X) is the cobar construction on the cochains

C*(QX), then [8, p. 143]
H*(FC*(QX)) is isomorphic as algebras to H*(X).
Then let
xi=i(3)"(xi),  yi=iB) (), G5Er) = e ().

We say an element in the cobar construction has weight j if it is represented by a
linear combination of terms of the form [u]---|u].

Theorem 3.1.

A(x], .. x)) @ A(tyy, ..., ty) @ Fsly, ..., vl

H*(P3QX) =~
(Ps2X) elements of weight > 4

® 3(S)

xi, ty; have weight 1 and lie in odd degrees. y; have weight two and lie in
even degrees. The x],ty;, y. may be chosen to be eigenvectors of ¢ = [(P391//)3]*.

Further of(S) splits into a direct sum of eigenspaces of ¢.

Proof. By [8] y! are represented in the cobar construction of elements

> % < 3) [0 (xi) o (x:)* ™)

so they have weight two. x/ and ry, are represented by [6*(x;)] and [p;5(y;)] so
they have weight 1. The product structure in FC*(2X) is given by juxtaposition,
so the product of a weight j and weight k element has weight j+ k.
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Cotor;’i,.(gx)(Fg,Fg) consists of elements of weight three.

Since they map monomorphically to H*(P;QX) by (3.4), we have nonzero
weight three products. Since

o*(x;) #0, a*(xi) = ifizi(3)" (x:), so x; #0.

By (3.5) ty;#0. Any nonzero weight two elements map nontrivially to H*(P,2X)
by i;. Any weight three elements lie in o Cotor;,,.(gx)(F3,F3).
Thus, we have the algebra decomposition described in the proposition.
Note if xe R and ¢ : X — X is the squaring map, then y is the composition

vxSxxxbx.
Hence y*(x) = 2x + _ b;r; where Ax = Y b; ® r; for b; € B, r; € R. It follows that
v [x+ > bm] =2x+ Y biri+ Y Y (b)Y (r)
=2x+Zb,-r,-+4Z biri+d
=2x+22 biri +d

where d is three fold decomposable in I(B)H*(X). Hence i(3)"(d) =0 since
i(3)"(d) has weight greater than three.
Now we have a commutative diagram

H(P,X) <2 H+(x)

l(Pz-Q'l/)' llﬂ'

H (PyQX) o H*(X)
1

So i(3)*[x+ > b;r;] is an eigenvector with respect to (P3Qy)".

So applying this process to x;, y; € H*(X) and then applying i(3)*, we may
assume x;, y; are eigenvectors of (P3Qy)*. This process alters the original x/, y!
by weight three elements, so since any product with a weight three element is trivial
in H*(P32X), this does not change the algebra decomposition of H*(P;QX).

Now consider the ry;. We have the following commutative ladder

HY(QX) ' H'(P,QX) —— H*(P,QX)

l(f?d/)* l(P:QVI)' J/(PJQW)'

H*(QX) —— H'(P,QX) —— H*(P3QX)

with  i1i5(1y;) = ¢34(y;) € PH*(QX). Hence  (y)'[93:(y)] = 2034 (y;)  so
iF(P2Y) (i3 (ty;)) = 2035 (y;) = i (2i5(ty;)). We have an exact triangle
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H(QX) 1 H*(P,QX)
\ /A
" (QX)®*

and imoj is in even degrees since H*(2X) is even dimensional [9].
Therefore if is monic in odd degrees and

(P2 2y)" (i3 (ty:)) = 245 (ty;)

=iy (P3Qy)" (ty;).

So z = (P3Qy)"(ty;) — 2ty; € ker i}.
We have an exact triangle

i

H*(P,QX) <= H*(P,QX)
¢ /5 5
H (QX)® H (QXx)®*
So z=oa3(w). By (3.5) B5(ty;) =0, so
Bi) =0 or  Bi(ai(w) = di(w) = 0.
So we may consider
{w}e Co_tor;,.(gx)(Fg, F3)

which is generated by three fold products of primitives and two fold products of
primitives and elements of the form

(3 ) o)

So «3(w) is a sum of three fold products of odd degree generators and two fold
products in the ideal generated by y{,...,y,. We have

H(©QX)® 2 H*P:QX)

l(ﬂw)‘m l(mw

H (QX)® —— H'(P:QX)
%
commutes and H*(QX) is a direct sum of eigenspaces of (2y)", so the same holds
true for H*(QX)*®* with respect to (Qy)"®>.
Hence oj(S) splits into a direct sum of eigenspaces. So z =z +2z; where
(P32y)*(z;) = 2'z;. Following [6, p. 408], we have

(P3y)*(ty;,) = 2ty; + 21 + z2.
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Let

1y, =1tyi— %22-
Then

(P3y)"(iy;) = 20y, + 21

and

(P3y)* (iy;) = 21y;.

So by changing ty; by elements in imaj we can make ty;, an eigenvector of
(P3Qy)*". Since products with elements of imaj is trivial in H*(P;QX), we
retain the same algebra decomposition.

Corollary 3.2. H'"$+10(P,QX) is spanned by two fold products of the x!s and
ty;s.

Proof. By [9], QH®*"(X) is concentrated in degrees congruent to 2mod 6.
So QH'¥+19(P;QX) = 0. So H"™*!1%(P;QX) consists of decomposables of weight
less than or equal to four. Since y/s have weight two, and are even dimensional,
all two fold products of the y/ are zero, and the product of a y/ with two odd
generators is also zero, because they have weight four.

By Theorem 3.1 and (2.4), i(3)"(x), i(3)"(p) are eigenvectors of ¢ =
[(P;Ql//)3]*. So if g : K — K is a squaring map, we have a commutative diagram

pox 29 k

«:l 1«»;

P3QX —— K
fi(3)
Proposition 3.3. There exists a lifting f;, : PyQX — Ey such that for some
integer t >0

Pox . K

l(mw)" l(%)"

PQX —— E
b

commutes, where @, is the squaring map in Ey.

Proof. The proof follows the proof in [6, Prop. A, see 48.2]. The only
difference is that H*(P3£2X) has generators in a;(S) that are not eigenvectors with
eigenvalue two.

In the original definition of power space, the self map induced multiplication
by a fixed 1 € F3 on the module of indecomposables. The main use for this fact is
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that H*(P3Q2X) split into a direct sum of eigenspaces. This fact still holds true
but some elements of a;(S) may be eigenvectors with eigenvalues two or one.

Theorem 3.4. There exists a lifting fy : PQX — Ey with wy fo null homotopic.
So there is a commutative diagram

E,

l

L/ E

g

P3QX —— K
Ji(3)

_ Proof. By Proposition 3.3, we have a lifting f, that is a power lifting. Since
Jfo and fyi(3) both lift fi(3), we have

fo=£i(3) + JoD
where

D: P3QX — K(18n + 6).
Since QH'3"+6(X) =0, we have by Theorem 3.1
D*(i) = B+ a3(y)
where fe A(x{,...,x;) ® A(ty,,...,ty,) and ye S. So
o (1) = i3)" S wi (i) + 2B + 2105 ().
Since i;a; =0, we have
i3fo wo (i) = i(2)" f5'wi (1) + 2155 (). (3:6)

We also have a commutative diagram

PQX —, pox -2 (zox)"

l(Ple//) lpzﬂ‘l/

PQX — P3QX
By Proposition 3.3 and the fact that w{(i) is primitive
[(P220)* 135 fy w (i) = 5./ [(90)* 1" wo (i)
= 2i3 fy'wg (i)
= [(P229)’ 1"i(2)" fy wi (i) + 2" [(P22u) " i3 (B)

= i3 fo wo (i). (3.7)
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The last equality follows because f and f;wg(i) are two fold products of eigen-
vectors of [(P3Qy)*]" and 22 = 1 mod 3.
By (3.7), (3.6) we have

i3 fowe (i) =0 =i(2)" fyws (i) + 2i5 ().
So
i(2)" fows (i) = 2'[-i3(B)). (3.8)

If we alter f,i(3) by f, we obtain a new lifting f; : P;Q2X — E; defined by the
composition

Soi(3),—jo(B)
_—

fo: P3QX —— P3QX x P;QX Ey x Ey —— Ey.

Then
f(;wé‘(i) =i(3)" fyws (i) — 2'B.
By Corollary 3.2 ﬂ,w{;(i) is a two fold product in
A=A(x],...,x;) ® A(ty,,...ty;).
Hence since iJ : H*(P3QX) — H*(P,2X) is monic on two fold products in A4, and
i3 fowo (i) = 0

by (3.8), we have fo*w(’;(i) =0. So wof, is null homotopic.

4. Iterated reduced coproducts

In this chapter we define maps that induce the iterated reduced coproduct
(A®1)4. We will develop an obstruction theory which measures when a map
between H-spaces preserves the iterated reduced coproduct. We generalize this
obstruction theory to maps of the three-fold projective space into an H-space.

Let (Y,u) be an H-space. For I <i<j<3let p;: Y x¥YxY >YxY
be the projection to the ith and jth factor for i < j. Define y, : Z(Y x ¥ x ¥) —
2Y by

Py = 2(u(u x 1)) = Zu(piy) — Zu(pi3) — Zu(pys)
+2p+2p,+2p,

where p;: Y x Y x Y — Y is projection on the ith factor. Note addition and
subtraction of maps is defined since [2(Y x Y x Y),XY] is an algebraic loop.
We have

Proposition 4.1. (a) y} : H (Y) - H (Y)®? satisfies

7y =(4®1)4.
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(b) yy factors

oy s zy

\ . %

Proof. This follows from the definitions.

If 7y : Y3 — QXY is adjoint to yy and 7y : ¥} — QXY is adjoint to ¥y,
then we have a commutative diagram

3 M, ory

\/

For X an H-space we can define an analogous map
Iy : 2(ZQX)} - ZPQX.

Let 2QX i»PZQX =, P3;QX be the inclusions and let p,: (ZQX)* —
2QX be the projections on the ith factor. Then we define

Ox = Zpy (1 x 1) = Ziopy (pra) — Ziapy 1 (P13)
— Zippy | (p23) + Ziir py + Ziaiy py + Zhpi p3. (4.1)
By (4.1), 6y induces éy : Z(ZQX )"3 — 2P3QX. We have a commutative diagram

I(zex)?} 2, rpox

\

2(zx)™

If &y is adjoint to dy, &y adjoint to dy, we have

(X)) =, QrPQX

AN

zex)"

Now suppose we are given a map f:X — Y between H-spaces, (X,uy)
and (Y,uy). If Z is an H-space, define rz:QXZ — Z by rz[z;,...,z] =
(---(z122)z3...)z; where [z|,...,z,] is the point of the James reduced product space
J(Z). See [12].

Consider the diagram (not necessarily commutative)
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X3 ™, ooy ™,

Jf” ngf lf

Y8 — QY — 5 Y

iy ry

where ry and ry are the retractions. We define Di(f): X" — QXY to be
(22 )iy —fiy(f"?) and D3(f): X** = Y to be

Ds(f) = ryDi(f).

Now suppose we are given a map f: P3QX — Y where both X and Y are
H-spaces.
Consider the diagram

éx
—_—

(zex)™ QIPQX
l(ﬁzil ) ‘[sz
Y — QXY ——
ny ry

Define c3(f) : (ZQX)™ = Y to be

es(f) = rvl(QZf)Ex — iy (fiir)"™):
Lemma 4.2. (a) If f: X — K(F,,n) for p a prime then
Ds(f)"(in) = (4@ 1) A" (in)
and
e3(fi(3))"(in) = (6" ® 0" @ a™) (A ® )AS " (in).
(b) If g: P3QX — K(F,,n) then
¢3(9)" (i) = 69 (in)

where Sx is defined in (4.1).

€ If @, :Z(ZQX)"?* - ZP,QX and

o1 : Z(P2QX AEQX) — EP3QX

are the Hopf constructions applied to ;| and p,, then c3(g)"(iy) =
(a7 ® )(f5 1)g" (in)-
Proof. If K = K(F,,n)

zex)® 2, orpP,0x

(giai )™ l 19[9

K¥ — QK —— K
Nk rK



638 Yutaka Hemmi and James P. Lin

Since (rxiig)"(in) = 0, we have

c3(g) ~ rx(REg)éy
(rk(Q29)) (i) = g"(i) € H (P3QX) < H'(QZP;2X)

and é_;g*(i) = 5;g*(i). Here we are suppressing isomorphisms due to suspension.
(c) is proved since
Oxg" (in) = (&1, ® D)3 19" (in)-
We want to investigate how ¢3 and D3 behave with respect to composition of

maps.
Suppose g: Y — Z is an H-map. Then Ds(g) is trivial.

Proposition 43. If f: X — Y and g: Y — Z is an H-map then D3(gf) =
gD3(f). If h:P3QX — Y, and g: Y — Z is an H-map, then c3(gh) = gci(h).

Proof. We have a diagram
X ", orx

(f)“l lozf

YyBd Loy .,y

" J JQ&J lg

Y AS I ENN 3/ 4 4

rz

Ds(gf) = rzlQZ (9 iy — iz(a/)™]
~ rz[QZg(QZ )iy — (QEg)iy ()" + 2y () — 72(9)" ()]
~ rz(QZ)(QE )iy — Ay ()] + rzl(QZ )iy () = 712(9) ()]
~ gDsy(f) + Da(g)(f)" since rz(QXg) = gry if g is an H-map
~ gD;(f) since D3(g) >~ *.
The proof for c3(gh) is analogous.

Returning to our diagram (3.27),

P3QX —— K
fi(3)
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since qo,q1 are H-maps, we can apply Proposition 4.3 to get a commutative
diagram

E,

J‘ll
as(f)

Eo

. qdo
c3(fo) J,

ZeX)® —— K
o3(fi(3))
We have ¢3(fi(3))" (igns3) = (6* ® 6* ® 0*)(d ® 1)42x = 0 since (A ® 1)dxe B®
B® R and ¢*(B) = 0. Similarly ¢3(fi(3))"(i18n—1) =0, so ¢3(fi(3)) is null homo-
topic and c3(f,) factors through the fibre K(18n + 6):

K(18n+ 6)

5% Jjo

(z2x)” — E
a3(f)
But é3(f;) € H'86((ZQX)") = [H™(2X)®*])"** = 0 since A" (QX) is even di-
mensional by [9].
Therefore c3(fy) =~ *, so c3(f;) factors through the fibre

K(18n+9)

'-:V ljl

(ZQX)A:; () El v

K(18n +17)

We now want to study c3(uf;). Recall v is not an H-map.
Now suppose g: Y — Z is not an H-map. Then rz(2Xyg) is not homotopic
to gry.
If J(Y) is the James reduced product space, then let D'(g) : J(Y) — Z be the
map with
D'(g) + gry = rz(2Zg).
Then D'(g)|y = * and we have a map D(g):J(Y)/Y — Z with

Jr) 29 z

\ /)(g)
J(Y)Y

By definition J,(Y)/Y = YA Y and D(g)|/2(Y)/Y is the H-deviation of g.
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If Z = K(F,,n) then

H'(J(Y)/Y)= ,C;Bz H*(Y)®
and D(g)*(i) is the sum of all the iterated reduced coproducts
SA1I® - ®1)--- dg*(i).
Now we have the following diagram (not necessarily commutative)

zox)® 2, orp0x

I

EMY . oxE, L g

()" J J/ Qv Jv v

K" — QYK —

fix K
Here we let K = K(18n+17) and ¢ = (f;i2i;)"*. Then
e3(of) = re(QE0)(R2f)Ex — riiig(v) 9

C3(fl) =TrE (Qzﬁ)éX - rEI’_]E|¢

4.2)
Ds(v) = rx(2Z0)ig, — riciig (v)
D'(v) = rg(QZv) — vrg, : QXE) — K.
First we note that
ves(fy) = o, (Q2f)éx — vre g, 0. (4.3)

To see this note that for maps ¥, : 4 — E|

v(Y) — ¥2) = vy — vy + Do(¥y,¥5)

where D, : EAE — K is the H-deviation. If Y, = rg, (2Zf))¢x, Yy = re,ng ¢, we
have

DXi)=dv=uP'u® P'u+P'u@uP'u+ (Pu0)u @ u+ u® (P2u)u.
Now
Yi(w)=(0"®c*®a*)(4®1)4(x) =0
W3(u) =" (4®1)du=0.
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So we have D,(i,,) is null homotopic. This proves (4.3).
e3(uf)) = rk(QZo)(QEf))Ex — rdig (v) o
~ [rg(QE0)(RZf,)Ex — rk(QZ0)iig, 9]
+ [rk(QZ0)ig, @ — rxiig (v) o)

= (D'(v) + vrg, )(R2f,)Ex — (D'(v) + vrg, )75, ¢ + D3(v)p

~ D'(v)(Q2f,)éx — D' (v)iig, 0 + ves(f1) + D3(v)p. (4.4)
The last equivalence follows from (4.3).
Theorem 4.4. c3(vf)) ~ ves(f) + D3(v)p where ¢ = (fiiaiy)™.
Proof. 1t suffices by (4.4) to prove

0= D'(0)(R2,)éx — D' ()g,9

is null homotopic.
Let’s review some facts about H*(2XY). We have with field coefficients

H*(QXY)=@ H* (V)%

i>0

If f:Y— Z is a map, then

(QZf)" : H'(QXZ) —» H*(QXY)

satisfies
(-sz)*hi'(z)@" = (f*)®i-

Since H,(2XY) as an algebra is the tensor algebra on H,(Y), we can dualize
this to describe the coalgebra structure on H*(QXY) =3P, , H*(Y)®

We denote a1 ® -~ ® ay € H*(Y)® < H*(QXY) by [a1]. .. |a.

Then the coproduct 4: H*(QXY) - H*(QXY)® H*(2ZXY) is defined by

k=1
dlar|...|lax] = [a1] ... |a] ® 1 +Z[a1|...|a,~]® [@is1] .- ak]
i=1
+1® [a]...|ak]- (4.5)
By (4.2), (4.5) and (2.2), (2.3),

D'(v)' (i) = (P w)|2"u] + 2 ulu(2 ) + [(PPu)ulu] + [ul(Pu)u]

+ [P u|P U] — [P ulu|P U] + [P ululu) — [u| P ulu).
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0 may be described as the following composition of maps

5 D'()(QEA)Ex, D (v)ig, 0

zex)” L (zex)V) K x K5 K.
So

0"(i) = & (QZf)"D'(v)' (i) — 9775, D' (0)" (0)-
Note that D’(v)(QZXf,) factors

ezpaex) 22 orxg, 29

lgz,'(s) -

Qrx
since f, (1) = i(3)*(%)
h*(i) = [%(P'%)|P %] + [P %|x(P' %)) + [(P2%)%|x] + [(2?%)%]
+ [%]2'%|2' 3] — [2' x| P ] + [P2%|x|%] — [x|P2%|3].

If u: X x X — X is multiplication on X, ug : K x K — K is the multiplication
on K. Let

g1 =QZpu(ux1)
g2 = —QZu(py,)
g3 = —QZu(p3)

ga = —QZpu(py3)

gs = QXp,
gs = QX p,
g1 = QX ps.

Let ki,...,k; be the analogous maps for K. Let

g{ 292#2,1(111,1 x 1)

gy = —QZiyu (p12)
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g; = _QZi?-/‘l,l(pl})
9s = —QZiu (py3)
gs = Qi p,
g¢ = Qi1 p
g7 = Qi1 p;.
We have the following commutative diagram

H*(K)

lD’(v)'

H*(QZE))

©@zfy

H*(QIP,QX)  ———  H*(QZX)

E4(RZ£) D' (v) H*(QZP3QX)®7 - H*(.QEX)®7 (4.6)

(9))"®®(97) 9;®®g;

H*(QZ(2QX))®"  —— H*(Qz{)ﬁ))@’ N

H*(QZ(ZQX)) —— H*QX(X?)

H*((2QX)*) — H*(X?)

(exexe)”

Now AxeI(B)H*(X)® H*(X)+ H*(X)® I(B)H*(X) and ¢*(B) =0. So all
terms in nyh*(i) that involve elements in B will go to zero in

(6 ®a* ®a*)nyh* (i) = E(QES,) D' (v)*(i).
So we can treat x like it is primitive in computing
Ex(QZf) D' (v)" ().

¢*ng, D'(v)" (i) is computed by the following diagram
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H*(K)

D'(v)’

H*(QZE))

H*(QE)®

K@@k

H | HY(QZ(E)® 4.7)

H*(QZ(EY))

H*(E})

0

H*((2QX)%)
Comparing (4.6) and (4.7) we get
Ex(RZf))'D'(v)(i) = 9*ng, D'(v)" (i)-
Passing to the smash products we get
Ex(QE11)'D'(0)" (i) = 9713, D' ()" (1)
Hence 6 is null homotopic.
Corollary 4.5.
e3(0f)) (hgn17) = P263(f) (irsnis) — P2 @z @ P2+ 2@ P2 22
+9’22®z®z—z®gﬂz®z

where z = g*(x).

Proof. This follows from (2.3), Lemma 4.2(a) and (f,ii))* (1) = 6*(%) = z.

5. Steenrod actions on finite H-spaces
We now prove the Main Theorem.

Theorem 5.1. Let x € QHO*3(X) with #¥ '3 eimP?. Suppose there are
no transpotence elements in H'®"*19(QX). Then ?'c*(x) e im 22
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Proof. We may choose x € R%"+3 and y e R'8~! with x representing x and
23+ x = #?y. Hence by (2.4) 22%+'x = #%). By Theorem 3.4, we have a
commutative diagram

E —— K(18n 4 17)

|

fi E,

l

P3QX — K

By Corollary 4.5
c3(0f))" (iigne17) = P2E3(£1)" (18n49)
—9'z®z®glz+z®9]z®g’12

+9’22®z®z—z®9’22®z
e PH*(QX)®? + 22 (H*(QX)®?)

for z = o*(x).
If #'z¢im %% we can choose s H,(2X) with

(5,P'2y=1 and sP?=0.
Note that since z and 2!z are primitive s and s#! are indecomposable, then
Rs®sP —sP' ®s®s,c3(0f) (1snr17))
=RsRs?' —sP' @s5® s,
P2(f)' () -2 ®:02'2+:02': 0 2'z2)
=-1L (5.1)
So

e3(vf1)" (ingns17) # 0.
But by Lemma 4.2(c)
e3(0f))" (i) = (&) ® Dtz 1 (v/,)" (i)
So
G®s@®s2? —s2' @s®s, (], ® Vi3, (vf1)" (i)
= i1, (i), ® (s @5 ® 5P —s2' @5 ®5),0f (i)

We have {s,2'6*(x)> =1 implies 0.(s) # 0 and o,(s?') # 0.
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By (3.3), we have commutativity of the diagrams

zex)"?t LY spox

S(ene) j lﬂm

(xAx) L. zx

I(P2X AZQX) 2 rpQXx

Z(i(2)ne) J lzim

(X AX) £, zx
If (uf})*(i) = i(3)*(y), for y e H*(X). Then by Lemma 4.2(a)
a3(vf})’ () = (6" ® 6™ @ ") (A ® 1)4(y)
(5®s@P's —sP' @s®s,¢3(vf)) (i)
=(m(m, ®1)(6. ® 0. ®)(SRsRsP' —sP' ®5®35),7)
= (0.(5)(0.(5)2") = (0:(5)2")ou(5), 7D
—0 since a.(s)> =0 by [4].

Therefore (vf})*(i) ¢ i(3)"H*(X).

By Proposition 3.1, and for degree reasons (uf;)*(/) must have nonzero
summands of the form (ry;)y; +«3({). Further c3 is additive by Lemma 4.2c.

But since y; = i(3)"(y;) and y; € B, we have uf (43, ® 1)(yj) = 0. Similarly
(i, ®1)(ty;) =0. So e3((1y;)y;) =0.

Finally c¢3(af({)) is a sum of permutations applied to { by [4]. ( lies in a
vector space complementary to PH*(QX)®*/imd; by Proposition 3.1.

S0 {s® s @ sP! —sP! ®s®s,c5(a30)> =0.

We conclude

$Rs®sP —sP' @s® s, c3(vf)) " (i)> = 0.

This contradicts (5.1) and proves the theorem.
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