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Odd generators of the mod 3 cohomology of finite
H-spaces
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Yutaka HEMMI and James P . LIN

Abstract

In this paper we derive a formula about the action of g 1 on  the odd generators of the mod 3
cohomology o f  a  finite simply connected mod 3 H-space with associative mod 3  homology. This
formula will be used in a subsequent paper to classify all possible cohomology rings that can occur as
the mod 3 cohomology of such H-spaces.

O. Introduction

In this paper we study mod 3 finite H-spaces whose mod 3 homology is
associative. The mod 3 cohomology of these spaces has been studied by many
authors [1, 2, 5, 3, 9]. In particular, there are formulas relating the action of the
Steenrod algebra on the even degree algebra generators.

However, very little is known about the action of the Steenrod algebra on the
odd degree generators. Only in  special cases where the H-space has no even
algebra generators or when the finite H-space is homotopy associative, do we have
any kinds of results. [1 3 ]

In this paper we derive results about certain odd degree generators in the
general case of an associative homology ring. N otice that an odd sphere localized
at the prime three is an H-space with associative mod 3 homology, so it is possible
to have a cohomology generator in any odd degree that does not lie in the image
of a Steenrod operation and is annihilated by any Steenrod operation.

One of the results we derive is:

Main Theorem (Theorem 5.1). L et X  be a f inite simply connected mod 3 H-
space with H * (X ;F 3 ) associative. I f .  E QH 6"+3 (X ) and Y 3n+1 E  im 2  and 18n +
16 is not the degree o f  a transpotence element of  H*(S2X) then Yl o-*(x ) E im 2

.

The proof of results of this kind involves using a  third order operation that is
motivated by work of Zabrodsky [13]. Third order operations involve lifting into
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a  three-stage Postnikov system. Here lies much o f the  difficulty in  th e  proofs.
Instead of lifting our H-space X  into th e  third stage, we lif t P3 S-2X , th e  third
projective space of the  loop space.

The three-stage Postnikov system Ei contains an element with nonassociative
coproduct. In  particular there is a n  element

E H * ( E 1 ; F3)

with

A v  u( l u) 0  u  Y l u  0  u ( ' u )  ( 1 2 u)u u  u  0  ( Y 2 u)u

where u E H 6 n + 3 (E i; F3).
We construct new invariants to study obstructions to preserving this coproduct.
In  the process of proving the theorems we also calculate the cohomology of

the projective spaces Pk(S2X ) for X  a  finite mod 3 H-space.
In  a  subsequent paper, results o f this type will be used to give a  complete

classification of the the mod 3 cohomology rings of finite mod 3  H-spaces with
associative mod 3  homology.

The reader may ask what is special about the prime three? Shouldn't one be
able to obtain analogous results for all odd primes? We note that for primes p
greater than three a n d  a ll n , there is a n  H-space B ( p )  with H*(13,(p);Fp ) =
A(x2n + i, x2n + 2p _i) with P 1 x2 1 =  X2n+2p-1 • So Y i a*(x 2 n + i )  is not in the image of

. So the  M ain  Theorem is not true for prim es greater than three. How-
ever, we might guess that some extra homotopy associativity assumptions are
needed.

The m ain problem seems to be the  problem of lifting the mod p  H-space
o r  a n  appropriate projective space through p-stages o f  a  Postnikov system . In
Zabrodsky and Harper's original papers [31 they employ power space technology
and  the  assumption that th e  H-space only has a  few odd generators. Current
developments in lifting theory allow us to lift to a  third stage, but to lift to higher
stages poses several problems in  need o f further study.

In section 1 we provide a n  outline of the  proof so the  reader has a n  over-
view of the ideas and strategy. Throughout the entire paper the symbol X  will be
used to denote a  simply connected mod 3 finite H-space with associative mod 3
homology.

All spaces will be connected and basepointed. All homotopies will respect
the basepoint. All homologies and cohomologies will be of finite ty p e .  Unless
otherwise specified, the coefficients for homology and cohomology will be the field
F3.

1. Outline of the proof

The proof of the theorem  can be d ivided in to  the following steps.
Step I. There exists a  three-stage Postnikov system
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S2K2 E1 >

tql

OK I
Jo Eo

K
wo

K(18n + 17)

K2

K1

o f  H-spaces. All maps a r e  H-maps except y. y  e 1/ 18"+17 (E 1 ) has reduced
coproduct

Av = u(Y i u)C) u u C)u(Y 1u)d- (Y 2 u)u C )u  u  C )(Y 2 u)u

where u c H 6 n+3 (E1 ). See chapter 2.
Step 2. Since H ( X )  is  associative, there exists a n  even .51(3) sub-Hopf

algebra B with induced map

QB —> QH* (X )

is isomorphism in  even degrees.
I f  R = e H*(X)1,61.x e B ®  H * (X )} , then R  is  a n  .51(3) coalgebra and

algebra generators o f  H * (X ) have representatives in  R .  Further R ' d d  h a s  no
decomposables.

Step 3. Suppose .k e QH 6 3 (x ) ,  jr) E QH 18 " - 2  (X )  satisfy

2y3n+1 .g. g)2 .37.

If  x, y e R represent then

2y3n+1 x
 . 1 2 y

 O .

This produces a commutative diagram (2.5)

Eoy  qo

X K

Step 4. X  is filtered by projective spaces

EQX g  P 2 QX g • • P k Q X  g  •  g  X

and the multiplication ,u : X x X — > X  is "filtered" because there are maps ,ui ,k

PJ QX x Pk QX  — + P i+ kS2X  such that we have a commutative diagram
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E Q X  x

PJ Q X  x

X

1,1,1
EQX P2 QX

  

P k Q A  - 4  r i  k S L A

P

 

where the vertical maps are the inclusions.
Step 5. We have

Igo

P3QX X K

By altering f 0 i(3) by elements in the fibre, we can produce a commutative
diagram

P3 QX

H *(P 3 Q X ) is computed in  terms o f H * ( X ) .  (Theorem 3.4)
Step 6. Using step 4 , we can define maps

(EQX)A3 QEP3QX

X" 3 X

such that the  induced cohomology map satisfies (rxlix) * = (z1 C) 1)A.
Given maps

P 3 Q X  Y

h
X —> Y

we define maps

(E.QX) A 3 Y

v A 3  1)3 (
1

)  v
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If Y  =K (Fp ,n )  then D 3 (h )* ( i)=(A Ø  O A * (i n ) ,  and if g =h i( 3 )  then c3(g) * (in) =
(u* a* 0 o- *)(4 0 1)A h* (in ). (Lemma 4.2)

Step 7. There is a commutative diagram

I (II

(E Q x )^ 3

Step 8. Given y e H 184 + 17 (E i ) , we have

e3 (yfi ) = vc3(f i ) + D3 (y)yo

for some map y9. (Theorem 4.4) We remark that this derivation formula is by
no means obvious. In fact several references claim that D af  = g D f  + D p ( f , f )  for
the H-deviation. This formula does not hold in  general. In the proof of the
formula for c3(yf1 )  i t  should become apparent why the formula for D o  does not
hold in general.

Step 9. The formula for c3(yj
1
 ) is  used  to  p rove the M ain Theorem.

(Theorem 5.1)

2. Construction of the Postnikov system

In th is section we construct a  three-stage Postnikov system . The second
stage w ill b e  a n  infinite loop space but the th ird  stage w ill not even be
homotopy associative. The third stage will be the fibre of a map with nontrivial
A 3  invariant. T here w ill be a  cohomology class in  th e  th ird  stage with a
nonassociative coproduct.

With only minor modification we are building the Postnikov tower described
in [131. The modification is that our first k-invariant is different to allow for an
argument using downward induction on the degree. We recommend that the
reader look a t [13] fo r details.

To streamline our notation, a ll coefficients will be assumed to be F3 unless
otherwise specified. The symbol K (ni, n2, . . . ,nk ) will be used to denote

H  K (F 3 ,n i )
i=1

a  product of Eilenberg MacLane spaces in degrees ni n2, . • • , nk •
Recall that a  map between Eilenberg MacLane spaces is determined by its
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value on the fundamental cohomology classes. We now define E0, the second
stage of our Postnikov tow er. Let n  be a positive integer.

Define w0: K(6n + 3, 18n —1) —* K(18n + 7) by

WO* (il8n+7) 2 Y 3n+  I 16n+3 Y 2 1 8 n —l.

Then let E0 be the fibre of w o . Note that 14, 0 is an infinite loop map, so Eo is
a n  infinite loop space.

Further

y 1 y3n+1 2p3n+ 2 (2.1)

and Y l=  0 , so

w 0* (iisn+7) =

We have a diagram

w,
K(18n+ 6)  Eo  K(18n+ 10)

I, go

K(6n + 3,18n — 1) K(18n+ 7)

By (2.1) Bwo : K(6n + 4, 18n) K(18n + 8) has

y  I (B w o )° ( i i8 n + 8 ) y l (2y3n-11 ; n
'6  +4 — 118n)

y3n+2 ; ;3
I6n+4 16n+4'

If  follows that there is an  element [5, 13]

: Eo K(18n+ 10)

with

04 ' . 11 onimn+w) 1 il8n+6

wi'(iisn-kio) is a  transpotence element and has nonzero A 3  obstruction.
Further, by altering w1 by elements in  im 4 ,  we may choose w ] so that

Y 2 WI*  (  il8n+10 ) =  O.

In  fa c t, We have  the  following homotopy commutative diagram by a  similar
method a s  in  [13].
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K(18n + 6) ) K(18n + 10)

f o l
W I I

h 
E0 E 0 =  fiber of 21/3n+ 2

qo 140

proj
K(6n + 3 ,1 8 n  1 )   K(6n + 3) 
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K(18n+ 18)

1 40

>E0 =  fiber of Y 2

Wo

2Y3n+2

K(18n + 7)  K(18n + 11)

 

> K(18n + 19)
442

By construction, Y 2141(i1 8 n + 1 0 ) e ker j i; n PH I 8 n+18 (E 0 ) .  SO

Y 2 1,V1

It suffices to construct h so that Wh is null homotopic.
We have

t o  K (6n + 3) x K(18n + 10) as H-spaces by [13]

and
1i ) * (i18n+18) = Z  0  1 ±  1 0  g l2 i18n+10,

where z c PH* (K (6n + 3 ) ) .  Altering g by 40z  and by z , the diagram remains
commutative and

1;V"(i18n+18) = 1 0 g '2 i18n+10-

Now consider S22 E0 F0x K(6n +1), where F0 is the fibre of Ya :K(18n-3) —)
K(18n + 5)

K(18n+ 4)

io

Fo

ro

go.2

K(18n — 3)o  K(18n + 5)

(o-*) 2 h*(i180+10) = 1 ± 1 ® Ot 16n-F1 E  PH*(Q2E0),

where i° (y 0 ) = 68,2+4, y o e  PH* (Fo ) ,  a e  d (3).
Hence i ( 2 y0) = 0, so

Then

YO ro*A n - 3  ),
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where (5 c  s l ( 3 )  w ith  d e g  =  1 9 .  W e  m a y  assume (5 i s  a  su m  of admissible
operations. Since there are no admissibles in degree 19, Ai = 0, SO

ga yo 0 .

Changing h  by qj(oci6n+3), we m ay assume (o-* ) 2 h * (ii8n+10) = Yo g  1  and

g2h*(il8n+10) c  p H 1 8 n + 1 8 (  ) fl k e r (e ) 2 .

Further, g 2 h* (i18 + 1o )  is not decomposable since H6n+6(E 0 ) _  q  H6n+6 
( K ( 6 n  +  3 ) )  =

0.
N ow  (01 2  Q H 1 8 n + 1 8 ( E 0 ) pll18n+16422*-40,)  is m onic, so  Y 2 h * (iisn+io) = 0

and  iirh is null h o m o to p ic . Hence we may choose w i so that

g)2W1*(il8n+10) = 0.

Let E 1 be  the fibre of w1.

K(18n + 9)

E0 w, K ( 1 8 n  +  1 0 )

Then by [13] there exists an  element y c H i 8 n+17 (E1 ) with

(A 1  —  1  A ) A v  = g 2 (u 0 u O u)w h e r e  u = q; qj(i6n+3)

By [13] we have

A v = u( u) 0  1 u  +  u  0  u ( u) + ( 2 u)ti 0 u + u 0 ( 2 u)u. (2.2)

and j` (v) = 2 118n+9.
It follows that

C)1).61y= u(DY 1u 0 u —  g i u 0  u g l u

, 2 11 ® 1 , 1 0 t 1 - 11 ®  Y 2 21 0  U. (2.3)

W e have the following three-stage Postnikov system

K(18n + 9)

K(18n + 6)

 

ti

 

 K(18n + 17)

qi

> E o  K(18n + 10)
w,

tqo

 

Jo

       

K(6n + 3,18n —  1) — 4  K ( 1 8 n  +  7 )
Wo
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Recall i f  X  i s  a  finite H-space with H,,(X; F 3) associative, w e have the
following results.

There is an .91(3) subHopf algebra B  g  H* (X ) with the  induced map

QB - 4 QH* (X)

a n  isomorphism in  even degrees. Further a* (B ) = 0  where a *  is  cohomology
suspension.

If  R  = f x  E H*(X )1A x  c  B ®  H *(X )} , then R  is an .91(3) coalgebra and the
induced map

R - + H* (X ) - > QH* (X)

is a n  isomorphism in  odd degrees. Therefore every odd generator has a  repre-
sentative in  R , and there a re  no  odd decomposables in  R.

Now suppose x e R 6n+3 a n d  y e R 18 n-
1 satisfy 2Y3n+1 =  1 2 y  + d where d is

, n+ y n+decomposable. Then since d =  2 3 ix  _ e  R 1 8 7 we m ust have d = O.
So 2Y 3n+l x = y.
Hence 2Y 3 '1+14x =  2 A y .  Let

A x  = b, 0 r, for b, B ,  r ,  e R

y  = b: (i) for b: B ,  r :  E  R.

Then 2Y 3n+1 E b,r, =
Let =  x  +  b i r„ =  y  + E b X .  Then

2. 3" k
g a k

We also note that

(2.4)

A X  and zlf; lie in I(B )H* (X) C) H* (X ) + H* (X) 0 1(B )H* (X).

Hence if X  -> K (6n + 3, 18n - 1) satisfies f  * (i6n+3) -= f  *
have a lifting

= ,  we

E0 10)--2 2 -K (1 8 n  +

fo
go (2.5)

K (6n + 3,18n - 1)

3 .  Lifting to  Ei

We currently do not know how to lift X  up to El. However, the H-space X
is filtered by projective spaces

EQX  g P2QX  g. • • •  P J Q X  g  • • • g  X. (3.1)

We denote i ( j )  : PJ Q X  --+ X  to be the composition of the inclusions. The goal of
this chapter will be to show there is a  commutative diagram
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Eo (3.2)

P3 QX I X K
i(3)

N ote that fo is not necessarily f o. i(3).
There a re  several advantages to this approach. First, H *(P 3 Q X ) has at

most three fold nonzero cup products, so many decomposables in  H * (X ) vanish
when we map them into H * (P 3 Q X ). Second, the multiplication p :X  x X  —> X
is "filtered" in  the  following se n se . There exists a commutative diagram

E Q X  x  E Q X  
Pi , i

P2QX

i

 X I I
1.

 1 2

P 2 Q X  x  E Q X  
P 2  I

P3QX

(3.3)

Pi Q X  x  P k Q X  
11,  k  

P.i+k Q X

i(j)xi(k)1 I(J+k)

X  X  X X

fo r  1 < j ,  1 < k. The vertical maps are the inclusions of (3.1). The inclusion
EQX ±> X of (3.1) induces cohomology suspension, so understanding the pj , k  will
allow us to control

[p(e x e)]* = (a* 0  o l d  : H* (X )  —4 H* ( Q
 X )  ® H* (Q X ).

In  this chapter we construct diagram (3.2). In  chapter 4 we show how (3.2) can
provide us with information about the action of the Steenrod algebra on H *(Q X ).

Third, if  tk : X  —4 X  is tJi(x) = x 2 ,  we have a commutative ladder

E Q X  g  P 2 Q X  g P k Q X  g  •  •  •  OE X

EQ1111 IP201,11 I P  k 0 1 11

E Q X  OE P 2 Q X  g g  P k Q X g  X

We will show that P3 QX is a  space with

(P3S20)* : H*(P3QX) H*(P3QX)
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has properties similar to that of a power space. That is yo = [(P3S2i/J) 3 ]* induces
multiplication by two for some t > 0  on some of the algebra generators and
H*(P3S2X ) splits as the direct sum of eigenspaces with respect to v.

From chapter 2, (2.5) we have a commutative diagram

E0K ( 1 8 n  +  1 0 )

./) ,  I go

P3S2 X X K

Note that wofo e  H I8"+1° (X).
By [9], all even generators of H* (X ) lie in degrees congruent to 2 mod 6. So

wofo is decomposable in H* (X ).

It will be useful to compute H*(P3S 2X ). Recall that for each integer j > 0,
there are cofibration sequences

P1 S2X pi+1S2X (ES2X)Ai EPJS2X .

These sequences induce exact triangles

i 43)* *
Ir(S 2 X ) H * (P2S2

;
X )  4—  H *  (P3  S 2  X )  4 - - -  H  (X )

H * (S2 X)° 2 H *  (S2 X)° 3

We have a short exact sequence

;cx H * ( Q X )
°3 

0 i M  i ( P3S2 X )   4—  0.im )6';
(3.4)

Further fi2
*Gq = 1 — 1 A [11 ]. / 3 2* (6 ')  I represents the differential d2 in

the Eilenberg Moore spectral sequence.
For X  a  finite H-space, we have the Borel decomposition

F3 [Y I, •  •  Yk] H* (X ) A(.xl , , xe) 0  3 f i ,,3 fk  •Yi'  •  •  -Ylc

By [9], we may assume yi  =  /31Y six1 where degree x = 2s +  1, for j  = 1, k.
Then by [7], we have the following coalgebra decomposition

H* (S2 X ) F 3 [0 -*  (XI ) • • • • (X/c)] r [ a *  (Xk+ I ), • • • , (x4]

F[Viti (Y 1), V3fk(Yk)]•

173 is a  divided coalgebra truncated at height three. (y,) is the transpotence
element related to ys truncated at height 3fi.
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In the Eilenberg Moore spectral sequence with

E2 = COtOrfp(Qx) (F3, F3) and E. °,  = Gr H *(X )

we have by [8]

I 3 , ,
d i f s - i  [403A (V s)] —

)
2_, i [a *  xs.) 1 1 * 3h 6  E2(3A)-1 (3.5)

These are the only differentials in the spectral sequence. We conclude

*  • *  -132 )  
1

is trivial and

im )5'; = im j3;a; = im di = 0 1  —1 C) 21- )H * (QX)® 2 .

Since CotorH3 *(Qx)(F3, F3) = ker /im di we can find a  vector space summand S
such that

H*(QX)®3 3Cotor i p  ( 0 x )  (F3 , F3 ) C),
imfi;

According to Adams, [8] if FC* (Q X ) is the cobar construction on the cochains
C *(Q X ), then [8, p . 1431

H *(F C * (Q X )) is isomorphic as algebras to H *(X ).

Then let

x; = l(3) * (xi), Y; = i( 3 ) * (Yi), i;(t Yi) = So3A(Yi).

We say an element in the cobar construction has weight j  if it is represented by a
linear combination of terms of the form [ui l  •  I/4

Theorem 3.1.

H *  ( P 3  Q  X )
A(x

;

, , x/
e ) A(ty i , , tyk )F 3  [ y ; , y 'k ] *

a3  (S)
elements o f  weight > 4

x :, ty i h av e  w eight 1 an d  lie  in  odd degrees. y ; hav e w eight tw o and lie  in
even degrees. The x;,ty i , y ; m ay be chosen to be eigenvectors of  ço =[(P 3 Qtli) 3 ]*.
Further c ( S )  splits into a direct sum  of  eigenspaces of  ço.

P ro o f  By [8] y ; are represented in the cobar construction of elements

E ( 3,. )[a*(xi)ila*(xo 3 - 1

so they have weight two. x ; and ty, are represented by [o- *(x,)] and [ç03 x (y ,)] so
they have weight 1. The product structure in FC *(Q X ) is given by juxtaposition,
so the product of a weight j  and weight k  element has weight j + k .
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CotorH
3 . ( Q x )  (F3, F3 )  consists of elements of weight three.

Since they map monomorphically to H* (P3S2X) by (3.4), we have nonzero
weight three products. Since

o- * (  ) 0, o-*(x,) = qi;i(3)*(x 1), so x; O.

By (3.5) tyi O. Any nonzero weight two elements map nontrivially to (P2QX)
by i . Any weight three elements lie in a; CotorH

3 . ( Q x )  (F3, F3).
Thus, we have the algebra decomposition described in the proposition.
Note if x e R and Ii : X —* X is the squaring map, then i  is  the composition

tp : x x x 4  X.

Hence Ir(x) =  2x +  E b,r, where Ax = E b, r ,  for b, E  B, r, e R .  It follows that

[x + E b,r ] =  2x + E b,r, + E  (b,)tr (r,)

= 2x + E b,r, + 4 b,r, + d

= 2x + 2 E b,r, + d

where d  is three fold decomposable in  I (B)H* (X ) .  Hence i(3)* (d) = 0  since
i(3)* (d) has weight greater than three.

Now we have a commutative diagram

H * (P3S2 X) H* (X)

(P30 ) '

H* (P 3 S2 X )  4--  H *  (X )
i(3)*

So i(3)*[x + E bd.,' is an eigenvector with respect to (P3S20)*.
So applying this process to x i , y, e H* (X )  and then applying i(3)*, we may

assume x ;, y ; are eigenvectors of (P 3 ‘2 0 )* •  This process alters the original xi„ y;
by weight three elements, so since any product with a weight three element is trivial
in H*(P3S2X), this does not change the algebra decomposition of H* (P3S2 X).

Now consider the tyi . We have the following commutative ladder

H* (QX)

i ( Q ° *

H*(Q X)

 

H* (P2Q X) H* (P 3 S2 X)

1(P3 QO)'

H* (P3Q X)

   

( P 2 0 111)*

 

H* (P252 X )  4- - -

 

with iri;(ty i ) 3j1(y) e PH* ( Q  X). Hence (f20)*[(p3 4  (y i )] 2v3ii (J )s o
(P20 0) * (iZ (00 ) = 2 403h (JO = q`( 2 i ; ( 0 1;))• We have an exact triangle
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H * (S2 X )  4-- irH *  ( P 2 S2 X)

\ 4 ,

H * X ) ° 2

and im cx; is in even degrees since H* (52X) is even dimensional 
[
9

] .

Therefore it is monic in odd degrees and

(P2(20)*(q(tYi) ) = 2 iI( tY1)

q(P 3 ‘ 70)*(00.
So z = (P 3 S20)*(ty ; ) — 2ty, e ker i .

We have an exact triangle

H* (P2S2 X ) H* (P352 X )

\ 3 ,;

H * (QX)®3H *  ( S 2  X ) ° 4

So z = cq (w ). By (3.5) P t  y i ) = 0 , so

f l(z )= O or PŒ;(0) = dt(w) = O.

So we may consider

{w} e CotorH
3

 ( f 2 x ) (F3, F3)

which is generated by three fold products of primitives and two fold products of
primitives and elements of the form

E ( ) [a* (x) a * (x) 31

So Œ(w) is  a  sum of three fold products of odd degree generators and two fold
products in the ideal generated by ,),Ç, , Yk . We have

H * (S2X)° 3 H *  ( P 3  S 2 X )

t(f2e °3
i(P3okli)*

H * (QX)°3
;  

H* (P3S2 X)
a

commutes and H* (S2 X ) is a direct sum of eigenspaces of (S20)*, so the same holds
true for H*(QX)* ° 3  w ith  respect to (S20)* ® 3 .

Hence oq (S ) splits into a direct sum of eigenspaces. So z = z1 + z2 where
(P3 S20)*(z i ) = 2`z 1 . Following [6, p. 408], we have

(P3Q0) * (tY,) = 2ty, + zi + z2.
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Let

=  tyi

Then

(P3 S2i/J)* (t—y, ) = 26 -,„ + z1

and

(P3ali) 3* (ry,)=2tY,.

So by changing ty, by elements in  im oq we can make ty , an  eigenvector of
(P3Q0) 3 * . Since products with elements of im cit; is  triv ial in  H* (P3S2 X ) , we
retain the same algebra decomposition.

Corollary 3 .2 .  H 18"+ 1° (P352X) is spanned by two fold products of  the x:s and
tyi s.

P ro o f  By [9],  Q H '" (X )  is concentrated in  degrees congruent to 2 mod 6.
SO QHI8n+10 (P352X)= O. S o  H 1 8 "+I°(P3S2X) consists of decomposables of weight
less than or equal to four. Since y:s have weight two, and are even dimensional,
all two fold products of the y',  are zero, and the product of a y ;  with two odd
generators is also zero, because they have weight four.

By Theorem 3 .1  a n d  (2 .4 ), i(3)*(k), i(3) * (5) a r e  eigenvectors o f  yo =
[(P3 ‘20) 3 ]*. So if yoK  : K —› K is a squaring map, we have a commutative diagram

fi( 3 ) r„.
P3 Q A 1 1

P3OX K
f  1(

3
)

Proposition 3.3. T here ex ists a  lifting f o : P3S2X Eo  such  that f o r some
integer t > 0

P3OX E0

I(P3f*) 3 '

P3QX Eo
.fo

commutes, where yoo i s  the squaring m ap in  Eo.

P ro o f  The proof follows the proof in  [6 , Prop. A , see 48.21. The only
difference is that H*(P3S2X) has generators in oq(S) that are not eigenvectors with
eigenvalue two.

In the original definition of power space, the self map induced multiplication
by a fixed A e F3 on the module of indecomposables. The main use for this fact is
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that H*(P3QX) split into a direct sum of eigenspaces. This fact still holds true
but some elements of o q (S )  may be eigenvectors with eigenvalues two or one.

Theorem 3.4. There exists a lifting f o : P3QX Ec, with wofo null homotopic.
So there is a com m utative diagram

P ro o f  By Proposition 3.3, we have a lifting -A that is a power lifting. Since
f o  and f 0 i(3) both lift f i (3 ),  w e have

A = A i(3 ) + ;01)
where

D : P3S2 X —> K(18n+ 6).

Since QHI 8n+6 (X )  0, w e have by Theorem 3.1

D * (i) = fi + Œ;(Y )

where flu A(x;,... , x /
e ) A (ty ,,...,ty k )  and y E S .  So

f *
* (i) = 43)* f 0* wf; (i) + Y 113 + Y l cq(Y).

Since qoq = 0, w e have

iZfo* wô (i) = i( 2 )*f0* wô (i) + i (
1
6). (3.6)

W e also have a commutative diagram

P2f2X P3QX (EQX)^3

1(P20) p3s2ip

P2 ,QX P3 QX

By Proposition 3.3 and the fact that w 4 (i)  is primitive

RP 2QtP) 3 ' ]* i; A* vvi; (i) = 4 4 (0

=  2 i ; f0* wi; (i)

=[(P20t1J) 3 `]*i(2)* fo*14 (i) + , 1 [(P2f2iG) 3 ']*i;(13)

= i;̀  .10* W(*) (3.7)
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The last equality follows because )6 a n d  fo*w j(i) are two fold products of eigen-
vectors of [(P 3‘20) 3 ']* and 2 21  mod 3.

By (3.7), (3.6) we have

iifo*Ivô (i) = =  i ( 2 )t f;ot  w6' (i) + (fl)-

So

i(2 )*f0* ( = E— /3)1 (3.8)

If we alter f0i(3) by fi, we obtain a  new lifting f0  : P 3 QX E0 defined by the
composition

fo  P 3 Q X P3QX x P 3 S2 X f°i(3) '- i°6 6 ) > Eo x E0 Eo.

Then

fo* w(i) = i(3)* fo* )4(0 — fl
By Corollary 3.2 A w ( i )  is  a  two fold product in

A  = ,x'e) A(ty l ,... ty k ).

Hence since i ;  : H*(P3QX) —+ H*(P2QX) is monic on two fold products in A , and

ii.fo* wô(i) =

by (3.8), we have fo
* wj(i) = O. S o  wof o is  n u ll homotopic.

4 .  Iterated reduced coproducts

In  this chapter we define maps that induce th e  iterated reduced coproduct
(.4 1 )A . We will develop an obstruction theory which measures when a  map
between H-spaces preserves th e  iterated reduced coproduc t. We generalize this
obstruction theory to maps of the  three-fold projective space into an H-space.

Let ( Y ,p) be an  H -space . For 1 3  le t py :  Y x  Y x  Y Y x Y
be the projection to the ith and jth factor for i < j. Define yy  : E( Y x  Y x  Y)

Y  by

E.(1-1(P x 1 )) P(P12) E1t(P13) Eli(P23)

+ 'P i  + EP2+ E 2 3

where p, : Y x  Y x  Y Y  is  projection on the ith  factor. N ote addition and
subtraction o f  maps is defined since [E (Y x Y x Y ), E / 1  is  a n  algebraic loop.
We have

Proposition 4 . 1 .  (a) yy : H* (Y) ° 3  satisf ies

= 1)4.
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(b) y y  factors

E(Y 3) EV

E ( y A3 )

P r o o f  This follows from the definitions.

If  /7 y  :  Y 3 —) 52E Y is  adjoint to yy  a n d  f ly  : Y A 3 Q E Y  is  adjoint to  YY,
then we have a commutative diagram

Y 3Q E Y

F o r X  a n  H -space  we can define an  analogous map

6x  :  E(EQX ) 3 —> EP3QX .

L e t LUX P2QX P3 Q X  b e  th e  inc lu sions and  le t p, : (L12 X) 3

E Q X  be the projections on the i th  fa c to r . Then we define

6x• — El-12,1 0 2 1,1 x  1 ) — Ei21-11,1(P12) Ei211 1,1(10 13)

—  Ei2Pi,i(P23)+ + Eiz ii P2 + (4.1)

By (4.1), (5x induces 6x  : E(EQ X ) A 3  —) E P3 S 2 X . We have a commutative diagram

E(EQX )
3

E P 3 Q X

E(E.QX )"

If c y  i s  adjoint to (5x , c x  ad jo in t to (5x, we have

(EQX ) 3O Z P 3 Q X

(152X ) A 3

N ow suppose w e  a r e  given  a  m ap f  : X  — 4 Y  between H-spaces, (X ,p x )
a n d  ( I f  Z  i s  a n  H -sp a c e , define rz  : Q EZ Z  b y  rz[z i, • • • >zt] =
(• • • (zizz)z3 . . .) z , where [zi, , z ,] is the point of the James reduced product space
J ( Z ) .  See [12].

Consider the diagram (not necessarily commutative)
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X ^3Q E  X i ' >` X

II A  3 Q E  f

if
^3Q E Y Y

Fly ry

where rA,  a n d  r y  are the retractions. We define D (f ) :  X A 3 —> QE Y  to be
(Q / f )F lx  Ph,  Cf A  3  ) and D 3 (f) : X ^ 3  —+ Y to be

D 3 (f ) =  ry .D (f).

Now suppose we are given a  map f :  P3S2 X Y where both X  and Y are
H-spaces.

Consider the diagram

(EQX)A3 QE P3S2 X

t(Ii2j1)"31 0 E  f

y " 3

 

QE Y

 

l 'y

Define c3 (f )  : (ES2X) A 3Y  to be

c3 =  rY KQEfgx — ) A 3 1 •

Lemma 4.2. (a) I f  f : X —> K(Fp ,n) f o r p  a prim e then

D 3 (f)* (i) =  (A ®  1)A f * (in )

and

c3( f i(3)) * (in ) =  (a* 0  a* 0  a* )(z1 0 1)Af (in ).

(b) I f  g : P352 X K(Fp ,n ) then

c3(g)* (in ) -= 6*
x g* (in )

where A,  is def ined in  (4.1).
(c) If  111,1 : E (EQX) ^  2E  P 2 Q X and

14 2,1 E(P2S2 X A E Q X ) E P3 Q X

are the Hopf constructions applied toi i , ia n d P2,1t h e n c 3 ( g ) 4 ( i )  =
(I4,1 1 )(fIZ,1)9 * (in).

Proof If K = K(F p ,n)

(EQX) A 3

) "

QE P3S2X

f2Eg

K^ 3 QEK K
71K rK
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Since (rv iK ) * (in) =  0 , we have

c3(g) r K (S2Eg) x

(rK(S2Eg)) * (i) = g*(i) e H * (P3 S2X) g H*(S2EP3S2X)

and ')('* g*(i) 6 ;  g * ( i ) .  Here we are suppressing isomorphisms due to suspension.
(c) is proved since

8x* g*(in ) = (T4, 1 0  1 )ftZ,19 * (in)•

We want to investigate how c3 and D 3 behave with respect to composition of
maps.

Suppose g : Y Z  is an H - m a p . Then D3(g) is trivial.

Proposition 4.3. I f  f : X Y  and g: Y  Z  i s  an H-m ap then D 3 (g f )  =
gD3 (f ). If  h : P3S 2X Y , and g: Y  -> Z  is an H-m ap, then c3(gh) = gc 3 (h).

P ro o f  We have a diagram

XA3 - S2E X

(f)̂ 3 I QE f

Y A3S - 2 /  Y
ry Y

(0^31 52Eq

Z " 3 QEZ Z
rz

D 3 ( il)  = rz[f 2 E (9 .f )O x  ilz (g f ) A 3 i

= rz[S2Eg(QE f)qx - (S21g)ri y (f ) A 3  + (S2Eg)17 1,( f ) A 3 -  q z (g) A 3 (f ) A 3 ]

rz(S2Eg)[(t2E f)qx v(f) A 3 ]+ rz [(QE9)0r(f ) A 3  f i z ( g ) A 3 ( f ) A 3 i

= gD 3(f )+ D 3 (g )( f ) ^ 3  s in ce  rz (S2Eg) g r y  i f  g  is an H- map

g D 3 ( f )  since D3 ( g ) .,  * .

The proof for c3(gh) is analogous.

Returning to our diagram (3.27),

P 3 Q X  - >  K
f i ( 3 )
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since go ,g i are H-maps, we can apply Proposition 4.3 to get a commutative
diagram

qi
c3(.4)

E0

c3(.1:0) l q °

(EQX) A3 — 4  K
c3 (f i(3 ))

We have c3(fi(3 )) * (i6n+3) = (0 - * 0 a* 0 a- *)(41 (D 1)42x = 0 since (41 ) ,A x  e  B
B  R  and (5-* (B) = O. S im ilarly  c3(fi(3)) * (iisn-i) = CI, so c3 (fi(3 )) is null homo-
topic and c3(f0 )  factors through the fibre K(18n + 6):

K(18n+ 6)

e3(1.0)

(EQX) ^ 3 E o
C3 (Jo)

But e3 (f0 ) E H 1 8 n + 6 ((EQX) 1'3 ) = [H * (QX)® 3 ] 1 8 n + 3  =  0  since H * (S2 X )  is even di-
mensional by [9].

Therefore c3 (10)* ,  so c3 (f i )  factors through the fibre

K(18n +9)

(EQ X ) A 3E 1  — 11—> K(18n + 17)

We now want to study c3 (yf1). Recall y is not an H-map.
Now suppose g : Y  Z  is not an H-map. Then rz(S2Eg) is not homotopic

to gry.
If J (Y ) is the James reduced product space, then let D '(g) : J (Y ) —> Z be the

map with

D' (g) + gr y  = rz(S2Eg).

Then Di(g)1 y = * and we have a map D(g) : J(Y)/Y Z  with

J(Y) Z

\  / M g )

J( Y )/

By definition J2 ( Y )/  Y=YAY and D(g)IJ2(Y)/ Y is the H-deviation of g.
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If Z  =  K(Fp ,n )  then

1 1 * (J( Y)/ )7 ) =  e 11*c Y ri>2

and D ( g ) * ( i )  i s  the sum  of all the iterated reduced coproducts

E ( A 0 1 0 - • - 0 1 ) • • •  Ag*(i).

Now we have the following diagram (not necessarily commutative)

 

QEP3QX

1 ‘7 "

OLT'

j-

 

rK

Here we let K  = K (18n + 17) and go = i2it r 3 . T h e n

c3(vf1 ) =  rK(QE v)(S2 Efi)çx —  rKiK(v)' 3 ço

c3(f 1 ) = rE,
(4.2)

D 3 (V ) = ric(f2Ev)11E, — rxn K(v) A3

(v) = rK(S2Ev) — vrE, : 52EE1 K.

First w e note that

vc3(fi) vrE,(QE.fi)x — (4.3)

To see this note th a t for maps 0, : A  —* El

v(01 — 02) vt/f2 + Dv Oki 02)

where D v :  E  E K  is the H -deviation. If ii 1 =  rE ,(Q E f i)4x , 2  = rEi nE, 40 , we
have

1):(i) = A v  = ug i u 0 u  g l u  0  ug l u + ( 2 u ) u  0  u  u  0  ( g 2 u)u.

Now

114(u) = (o - * o» o - *)(4 0 1)/1(x ) = 0

= 0 1)4u  = O.
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So we have D ( i 1 4 2 )  is null h o m o to p ic . This proves (4.3).

c3(vf1) =  ric(g2Ev)(QEA )cx — rKOK(v) A 3 V

[ric(f2Ev)(f2Efi ) x —  r (g2 Iv)F E,V1

+ [rK(QEv)F7E,V — rKF (v) A 3 §9]

(D' (v) + vrE,)(i2 Efi)x —  (D' (v) + vrE,) 11E,V + D3(V)§9

D i  (v)(S2Efi g x  — D'(v)F vc3(f1) D3(v )ço. (4.4)

The last equivalence follows from (4.3).

Theorem 4.4. c3 ( vfi ) vc3 (fi ) D3(v) V  where ç,, = (f1i2ii) A 3

P ro o f  It suffices by (4.4) to prove

0 = D'(v)(g2Ef1)çx — (v)i1E,S0

is null homotopic.
Let's review some facts about H *(Q / Y ) .  We have with field coefficients

H *(S 2E Y )= 0  f l* (Y ) ® i .
i>o

If f : Y  Z  is a map, then

(S2E1)* : H* (f2EZ) H *  (Q E  Y )

satisfies

(Q E f ) t .(z )®i =  ( f * )® '•

Since H * (S2EY ) as an algebra is the tensor algebra on f ( Y ) ,  we can dualize
this to describe the coalgebra structure on H* (Q E  Y )  0 , > 0 ( Y )

®

We denote a1 ® • • • ® a/, e II* ( Y)® k  H *  (O E  Y )  by  [ai •  lad •
Then the coproduct A  : H*(g2E Y ) H * (O E  Y ) 0  H *(S 2E Y ) is defined by

k —1
A [a  . laic] = ...laid 0 1  + lad [aid-i • • lad

+ 1 [al • lad. (4.5)

By (4.2), (4.5) and (2.2), (2.3),

D' (v)* (i) = [u( u) 1 u] + ulu(Y ' u)] [(Y 2 u)ulul [ul(g 2 u)u]

+ u1'u] — 10 1 Y ' [Y2 tdulu] — [ulY 2 ulu].
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19 may be described as the following composition of maps

(EQX)^3
REQx)A312  D'(v)(Q)x,-D'(v)PE1 ço 

K x K K.

So

0* (i) -= ex (QEfi
)*g(v)*(i) — go*q i D/(v)*(i).

Note that D' (v)(S2E A ) factors

Q E (P3Q X ) Q E E 1  
D'(v)

i5217(3)
h

‘21 X

since f i
* (u) =  i(3 ) * CSC)

h* (i) = 5c)1Y15c] + [ ' k ( ' ) ]  +  R Y 2 4 1 +

+ + -

If p : X x  X  X is multiplication on X ,,u K : K x K —>K i s  the multiplication
on K .  Let

gi =  Q E ,u(p  x  1 )

92 = — QE11(P12)

g3 =  — Q 1p(p 13 )

g4 =  - Q IP (P23)

g5 = S2Ep i

96 = QE132

g7 Q E  1 3 3 .

Let kl , . . , lc7 b e  the analogous maps for K .  Let

g QEP2, 1 (PI, 1 X  1 )

= (P 12)



H* (OE X) \

H* (S2E X)° 7

i g  ®  C )g

H (S2L(X 3 )) ° 7

H (f2E (X 3 ))

H  (X 3 )  /
(exe x

(4.6)
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g  =  A 2Ei2/11, (P13)

= — Qzi2PI, (P23)

g's =  Q z i2 iip 1

g  = Q E i2 i1 p 2

= g2 E i2i1 P3 •

We have the following commutative diagram

H* (K)

I 1D' (v)*

H* (S21E1 )

1( Q E "

H* (OE P2S2 X)

I
H* (52E P3 Se 2 X)° 7

I
(6,0* 0...0(g4)

H* (S2E (I Q X) 3 )° 7

I
H* (S2I(ET2X) 3 )

\ II
H*((E,S2X) 3 )

(2E11 )* D'(o)

Now .41k e I (B)H* (X) H* (X ) H* (X) 0 I (B)H* (X) a n d  o-* (B) = O. S o  a l l
terms in h* (0 that involve elements in  B will go  to zero in

(o- * a* o- *)nI.h* (i) = ,(S -21f1 )* (v)* (i)

So we can treat k  like it is primitive in computing

)*D' (y)* (i).

yo* risk' i D'(v)* (i) is computed by the  following diagram
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H t(K )

I
D' (v) .

I  

H *(2 Z E I )

H*(f2E.E 1 )° 7

i
ki* Ok;

H*(S2E(E?)) ® 7 (4.7)

H*(S2E(E?))

H*(E?)

H *((E Q X ) 3 )

Comparing (4.6) and (4.7) we get

Cx(f2 Efi ) * D i (v) * (i) (.0* q , D / (v) * (i)-

Passing to the smash products we get

) * D'(v) * (i) = D'(v)* (i).

Hence 0 is null homotopic.

Corollary 4.5.

c3(v/i) * (
1
18n+17) = Y 2 E3(fi) * (il8n+9) — Y l z z lz z Y l z Y l z

± Y 2 z 0 z 0 Z — Z O Y 2 Z OZ

where z =

P ro o f  This follows from (2.3), Lemma 4.2(a) and ( f i) *  (u) =  o .*()  =  z.

5. Steenrod actions on finite H-spaces

We now prove the Main Theorem.

Theorem 5.1. L et •k e QH 6n+3 (X )  with Y 3 " - i .  e im Y 2 . Suppose there are
I8n+no transpotenee elements in H 1 6 (Q X ) .  Then , l o- *(x) E  im .2 .
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P r o o f  We may choose x E R 6 n+3 and y  e R 18 "- 1  with x  representing fc and
2Y 3n+ I x =  2 y. H ence by (2.4) 2g 3n+ 1  =  Y 2 Y . By Theorem 3.4, we have a
commutative diagram

K(I8n + 17)

By Corollary 4.5

e3(vf1) * (iisn+t7) = Y 2 e'3(fi) * (ii8n+9)

—Y 1z 0 z 0 Y 1z + z 0 Y 1z ( ) Y l z

Y 2 Z 0 Z 0 Z — Z O 9 2 Z O Z

E PH* (QX) c ) 3  ±  (H *  (5 2 X ) ® 3 )

for z = ( x ) .
If Y l z  im  Y 2 we can choose SE H * (S2X) with

<s, .q) I z> = 1 and sY 2 =  O.

Note that since z and Y 1 z are primitive s and sY I are  indecomposable, then

<s s sY I — s C)s, c3(vfl )* (iisn+17)>

=  < s 0 s 0 s Y 1 —sY 1 0 s 0 s ,

Y 2 e 3 ( f i  ) *  ( i )  — g l z 0 z 0 Y 1 z + z  
o y lz o y lz>

= —1. (5.1)

So

But by Lemma 4.2(c)

So

C3( llfi)
*

(i I8n+17 )  0 0 .

c3(ii)*(i) = (fii,1 0 OK (vfi )*(i).

<s so — sg  I s  s ,  (/-4, 0 1 )T (vfl ) * (0>

= 1)(s s sY l — sY 1s  s ) , v f  (i)>.
We have <s, I o- *(x)> =  1  implies at(s) # 0  and o-

* (s3) 1 ) #0 .
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B y (3.3), we have commutativity of the diagrams

fiE(E12X) A 2
i

EP252X
E(e A e) Ei(2)

E(X  A X )  — >  EX

E (P 2 f2 X  A E D X )  / >  EP 3 ,QX
E (i(2 ) c)1 Ei(3)

( X  A X)

If  W I )* (i) = i(3)*(y), for y e  H *(X ). Then by Lemma 4.2(a)

c3(vfi )* (i) =  (a* 0  5* 0  a*)(.4 0 1)4(y)

Ks 0  s ®  1 1s — 0  s ®  s,c3(v.fi) * (i)>

= <m* (m* 0 ) o-
* a,.)(s 0 sC)sY l — sY l s  s ) , y >

= <a*(S) 2 (°*(S)Y 1 ) — (6  *(s) )a .(s) 2 Y>

=  0  since a (s ) 2 = 0  b y  [4].

Therefore W I )* (i) 43)* H* (X).
B y  Proposition 3 .1 , an d  fo r degree reasons (vfi )* (i) m ust have nonzero

summands of the form (ty1)4  + cq(C ). Further c3 is  additive by Lemma 4.2c.
But since 4  =  i(3)*(y j ) and yj  e  B, we have®  1 ) ( 4 )  =  0. Similarly

1)(ty 1)  =  0 .  So c3((ty1)4 ) = 0.
Finally c3(4(C)) is  a  sum of permutations applied to C b y [4]. C  lies in  a

vector space complementary to PH*(QX) ® 3 /im d i b y  Proposition 3.1.
So  <s 0  s 0  s g "  sY 1 0  s 0  s, c oqC)> = O.
We conclude

s s Y  — s s, c3( vf i )*  (i)> = o.

This contradicts (5.1) and  proves the theorem.
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