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Self homotopy group of the exceptional Lie
group G2

By

Hideaki OSHIMA *

1. Introduction

Let G be a connected Lie group and 1.1: G xG - 4G the multiplication of G .  For
any space A  with a base point, the based homotopy set [A , G ] becomes a group
with respect to  the binary operation pi* : [A, G] x [A, G] = [A, G x G ]  [A, G ] .  Even
if A  is  a simple space such as the sphere, it is difficult to calculate the group
[A , G ]. A general result was given by Whitehead (p. 464 of [10]):

(1.1) nil[A, G ]  cat A,

w here nil and ca t deno te  the nilpotency class and the Lusternik-Schnirelmann
category with cat{*} =0, respectively. In [5], we determined the group structure
of [G, G ] and proved nil[G, G ] = 2 when G is  S U(3) or Sp(2). We want to study
nil[G, G] for other G 's. Though we have very few results, it seems reasonable to set
the following:

Conjecture 1 . 1  If G is simple, then nil[G, G] > rankG.

A weaker one is

Conjecture 1 .2 .  If G is simple and rankG_ 2, then nil[G, G ]  2, that is, [G, G]
is not commutative.

Let G2 be the exceptional Lie group of rank  2 . T hen  the purpose of this note
is to prove the following which supports 1.1.

Theorem 1 .3 .  nil[G 2 , = 3 .

Two conjectures are false in general without the assumption of simpleness of G.

Example 1 .4 .  (1). n i l [ S 3 x x S 1 ] = 1 and nil[U(2), U(2)] = 2. Notice that
x S 1 and U(2) are homeomorphic but not isomorphic.

(2). If G  =  x • • • x 53 (n times), then rankG=n and nil[G, G] equals 3 if n  3
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and n  if n < 2.

In §2, we indicate notation, recall some results from [3 ], [4 ] , [6 ] , [7 ] , and
state Theorem 2.2 which contains Theorem 1.3. We prove Theorem 2.2 in §3 and
Example 1.4 in §4.

2. Notation and a main theorem

W e d o  not distinguish notationally between a  m ap a n d  i t s  homotopy
class. Even for non-commutative group, the multiplication is denoted by + .  For
elements x ,y  of a group, we write [x ,y ]=x +y —x —y , the  commutator. We say
that a group F has nilpotency class n and write nilF = n if the iterated n-th commutator
[x 1, [x2 , • • • [x,, _ 1 , x„]• • •]] is non zero for some n  elements x 1 , • • x „  of F. a n d  every
iterated (n + 1)-th commutator is z e r o .  F o r  a  space A  w ith a  b a se  p o in t,
cln :A —) A A ••• A A  (n times) denotes the diagonal m ap. For a topological group G,
c2 G  A G  -+ G denotes the commutator map, c2 (x A y) = [x, y], and < , > : 7r(G)x tr,(G)

± ,(G) is the Samelson product. For a CW complex X,X (n) denotes the n-skeleton
of X.

As is well-known, G2 has a  cell structure:

G2 = S 3 ue 5 ue 6u e l  u e " .

Let in  : G2, n,n +k: GT) k) (k > 0) and i' : S8 = 028)/0 26) 0 2 )  ' /GLi b e  the
inclusion m aps. For n= 5, 6, 8, 9, 11, 14, let qn : 0 2") S "  be the quotient map and
p „: S'  —) G  1 ) the  attaching map of the n-cell. The cohomology structure of G
(Théorème 17.2 and 17.3 of [2]) implies that p = 2 '  the suspension of the Hopf
map 112 : S 3 —) 5 2 , and

(2.1) q„. p = 2i„ f o r  n = 5, 8,

where i n is the identity map of S " .  Let q1
 1 . 6 V

 01 1 ) —) G(
2
1 1 ) /G (

2
6 ) and  q 1 1 ,6 : G(21 1) /G (26 )

5 11 b e  the quotient maps. W e have fibrations

j P
S U(3) -4 G S6,S 3 SU(3) — ) S 5 .

-Let v4 en 7 (S4 )  and II' e It 14(S3) be the elements of [9] and  se t Tin = En2172 enn+I(S)
E nfor n > 2 and v =„ n — 4 v4 eir +

3(,)--) for n > 4. Write n„2 = n  n,n °  ,n+1 and v„ = v„ . v„ +  3.

We need

Proposition 2.1. (1)([6]). n 3(S U(3)) = Z{i'3 }, 7 E 1 1 ( 5 ( 4 3 n =
 Z 4 { [q ]}  a n d  it 14.

(SU(3))= Z4 { [q].v  1 ,} CI , Z 2 {i'3 ,111 (:),Z2 1 , where p lv i]= v i.
(2)([4]). n4(G2) — n 5(G 2) — n7(G2) — it 0(G2) —  2.(G 2) — it 1 3 (G2 ) — 0, TE3 (G2 ) = Z

0315 n6(G2) — Z3, n8(G2) —  Z2 {N M , n9(G2) — Z2{[rg] ° 8} 0 Z3,  i t  1(G 2 ) =  Z{Y} 0 Z2

filvD1 and 7t 14.(G = Z 8 CI Z  2  {j ll ]  v  11} '0 Z21, where AND = ill and i3 .p' = 0.
(3) (Lemma 1 of [ 3 ]). 03, ND> =j1vi] and <i3,.4.[II]> =.i*[4] ° v 1.
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(4) (Lemma 5.8 of [7]). [ G (
2
1 1 ) / G(

2
6 ) , G2 ] =Zty'lEDZ2 {0 1 ,,i* Din, ck1 ,6 y= 4y and

4,111'' =ND.
Given integers m  1 and n, we denote by 111(x 1, x2 , x3 ; m, n) or simply by til(m, n)

the group with generators x i , x 2 , x3 and relations

mx3 = [x i , x 3 ] = [x 2 , x3 ] = 0, [x i , x2 ] = nx 3 .

Our main theorem is

Theorem 2 .2 .  (1). There exists a central ex tension of groups:
.4

if14
n14(G2)— [G 2 ,G2 ] — [G (

2
1- 11 ,G2 ]-+ 0.

(2). [G(
2
1 1 ) , G2 ] = 1 , q q t j . [q ] ;  2,1).

(3). L et oce[G2 , G2 ]  be an element such that /tot = 4 1 ,6 y'. Then [a ,[1 ,a ]]=0  and
[1 ,[1 ,a ]]= 4 4 ( j [ v i ]  v „ )  0  so  th at nil[G2 , G 2 ] = 3, w here 1 denotes the identity
m ap of  G2.

(4). There exists X 0  E  4 (G2 ) such that 2[1,Œ] = 2 qt4.(x0) and 0397> =  4x0.

We can show that the order of 0 3 , y> is  odd . W e omit the details.

Problem 2 .3 .  Determine the group structure of [G 2 , G2 ]  completely.

3. Proof of Theorem 2.2

Theorem 2.2 follows from 3.4, 3.6 and 3.7 below.

Lemma 3 . 1 .  (1). [G126 ) , G2] = Z{i6}.
(2). [EG(

2
6 ) , G2 ] = O.

(3). The following is an ex act sequence of groups:
4

q*11,6 6[G (21. 1)/ 0 26) ,[ 0 „ i ,11
2...),  G 2 ] [ G s . ) ,  G 2 ] 0 5

and [ 0 2
1 1 ) ,G2 ]  is generated by three elements j 1 1 , 4 1 ,6 y', qt i j . [ q ]  of which the last

element is central.

P ro o f  Since G(
2
5 ) = E(S2 u, 2e4 ), it follow s that [O P, G2 ]L-n 3 (G2 )  from  2.1

(2). Consider the following exact sequence of groups:

£p*6
n 7 (G2 )- - .[E G 7 , G2 ][ E G (

2
5 ) , G 2 ]

n6(G2) - - ■ [OP, G2] [GP, G2] - - - *Ir5(G2)

B y (2.1) a n d  2.1(2), (Ep 6 )* (Eq 5 )*: 7c6 (G2 ) 7 r 6 ( G 2 )  i s  an isom orphism . Hence
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(Ep 6 )* : [EG(
2

5 ) , G 2 ] 7c6 (G 2 ) is surjective, and (Eq5)*:7r 6 (G2 ) [EG(
2
5 ) , G2 ]  is injective

so that it is an isomorphism, since 7r4 (G2 )= 0 by 2.1(2). By the above exact sequence,
: [G (26 ) , G 2 ] [ G (25 ) , G 2 ]  and [EG(

2
6 ) , G2 ]  = 0 . Hence we obtain (1) and (2) from

which the sequence of (3) follows. By p. 465 of [10], qt L a v i ]  is central.

The following is easy and well-known.

Lemma 3 .2 .  In any  group, [x ,y+z ]= [x ,y ]+ [x ,z ]+ [[z ,x ],y ].

Lemma 3 .3 .  (1). [ 4 1 , 4 1 ,6 y1 = 4 1/[vi].
(2). 2 q 1 ,6 7'is central in [G (21 1 ,G2 ].

P ro o f  W rite x = qt1 ,6 y' a n d  y=gt 1j * [ 4 ] .  L e t k  be any integer. Then
[ill, kx]eImage(4 1 ,6 ), since it[iii, kx]= O. Hence there exist mk eZ and nk E{O, 1}
such that [i l l , kx]=m k x+n ky. We have

(3.1) [ ili, 2x] = 2[4 i , x ] + [[x ,i 1 i ] , x ]  (by 3.2)

(3.2) = 2 [iii, x] (since Im(qr1 ,6 ) is commutative).

Inductively, we have [ j 11 , 3x] = 3[i 1 1 , x] a n d  [i11, 4 x] = 4[41, x] = 4m i x. S in c e
4x = q*„y by 2.1(4) so that 4x is central by p. 465 of [10], it follows that 4m 1x = 0
so that m, = 0. Therefore [4 1,x] =n ly  and [i l l , 2x] =O . H ence 2x is central in
[G(

2
1 1 ) , G2 ].
The rest we must prove is the equality: nl = 1. There exists a m apf:S 11 S '  A  S8

which makes the following diagram commutative up to  homotopy:

d 2G(211) ,  G(211 ) A  G (21 1 )

i l l  A 4 1 1 , 6 l ) "

 G2 A  0 2
1 1 ) / G(

2
8 )G 2  A  G2

s"

 

i3  A  ig , 11

S 3 A  S 8

 

C2

 G2

   

<i3,N261)

By using cohomology of Z2 -coefficients, it follows that the degree of f  is odd so
that [ iii,x ] =-C2  o(1 A  y ' ) °  (i11 A 1411,6) ° d= e l  <i3 , Pin> = qi'L L [ q ] .  Hence n1 =1  as
desired.

By 2.1(4), 3.1 and 3.3(1), we have

Proposition 3.4. [ G (
2

1 1 ) , G2 ] = T(4 1, q tlf,[q ]; 2 , 1) which is of nilpotency
class two.

Lemma 3 .5 .  Ept, = 0 : [EG (
211) , G2 ] —■ n "(G2 ).

P ro o f  W rite  14 =q11 6 0  P14 S 1 3
G(210/026). Since P 1 4

 is stably null- homo-r 
to p ic  a n d  f i 1 4

 i s  in  s ta b le  ra n g e , 151 4  i s  null-homotopic. It follow s that
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Ep 1
4

4 . Eqt 1 ,6 = T t 4 = 0 and  Ept4  =0, since Eq 1 ,6 :[EG (
2.

i 'VG (
2
6 ) , G2 ] [ G " ,  G 2 ]

is surjective by 3.1(2).

By applying [ G 2 ]  to  the cofibre sequence

we have

P 1 4 .114

S '3 G y 1 ) G2
E/914

S '4 vc:(11)
2

Proposition 3.6. The following is a central extension of groups:

'44
n, 4 (G2 ) [G2, G2 ] [G(211), G2 ] 0.

Pro o f . The exact sequence follows from 2.1(2) and 3.5. It is a central extension
by p.465 of [10].

L e t  ace [G 2 , G2 ]  b e  a n  e lem ent such  tha t it l (a)= qiki ,6 y'. T h e n  [G2 , G2 ]  is
generated by Im (44 ), 1 and a.

Lemma 3 .7 .  (1). [a, [1, oc]] = 0.
(2). [1, [1, a]] = ql 4̀ (j* [4 ]  o  vi l ).
(3). There exists x0 en i 4 (G2 ) such that <i3,y>= ±4x0 and 2[1, a] = 2q '4 (x0 ).

P ro o f  There exists a  m ap f: G2 -+ 021 "  A 0 2
1 ' ) w h ich  m ak es  th e  following

diagram commutative u p  to  homotopy:

d2 Œ A [1 ,Œ ] C2

G2 G2 A  G2 G2 A  G2 ■ G 2

Ti l l  A Iii y' A  j.,[vO

0 2" ) A 0 2" )0 2 1 1 ) 1 0 2 6 )  S  "
4 1 1 , 6 A q i i

Since (q 1 ,,, A q l  I ) of= 0, we have [cc, [1,a]] =c 2
 o  (y' AfIvi]).(q 1 1 ,6  A q,,)0f= O. This

proves (1).
Let the pair (a, b) be ([1,a],j* [q ] )  or (4a, y). There exists a map g :S "— ,S 3  A

which makes the following diagram commutative u p  to  homotopy:
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By using the integral cohomology, we have that g is a homotopy equivalence. Hence
[1, a] =  +4 4 0 3 ,0 , tha t is, [1, [1, a]] = 4 4 0 3 ,j.,[vi]> and

(3.3) [1,4a] = +44 0 3 ,y>.

By 2.1(3), we then have (2 ). Since [2a, 1] =0 by 3.3(2), it follows that [2a, 1] is
central and from 3.2 th a t [1, 4a] = 2[1, 2a] and  [1, 2a] = 2[1, a] + [[a, 1], a] = 2[1, a]
by 3.7(1). Hence [1, 4a] = 4[1, a ]  and 4[1,1] =  4 4 0 3 ,y> by (3.3). O n the other
hand, since 

7 1 1 ° P 1 4 = 0 ,
 there exists a  map 411 G 2  S'1 su c h  th a t 4, 1 0j 11 = q,

W rite  fl = [11] o 4, 1 : G 2  G 2 .  T h e n  i t ,  = qt1j.,[q ]  a n d  ,6 i s  o f  o rd e r  2  in
[G2 , G2 ]. Since i'1[ 1 ,cc] =ir,fi, there exists 'Coe 14(G 2) such that [1, a] = fi+qtt(-xo).
Hence 2[1, oc] =- 2qt4.(x0 ) and 4[1, a] = q t4 (4.x0 ). Therefore <i3 ,y> = +4x 0 . This has
proved (3).

4. Proof of Example 1.4

By Theorem 4.1(1) o f [8], [S 3 x 5
1, 53 x S l ] i--.'ZOZOZ 2 . L et Oen1 (U(2))

and aen3 (U(2))-Z be generators, p: U(2)-S 3 the projection, and q: U(2) S 3 x S I =
(S3 y S I )u p e4 --+S4  the quotient m ap. There exists a map g which makes the following
diagram commutative up  to  homotopy:

d,
U(2) U(2) A U(2)

11 p
1 A

U(2) U(2) A S3U ( 2 )  A  U(2)

'7 1
1 0 1 c 2

s4 S i  A  S3U ( 2 )
<0,1>

By using integral cohomology, we see that g  is a  homotopy equivalence so that [1,
ccop]= +q*<0, a>, where <8, a> is a  generator of n4 (U(2)).- Z2  b y  [2 ] .  Since the
attaching map p:5 3 ->S3 v S1 o f  th e  to p  cell o f  U(2) is  the Whitehead product of
/3 a n d  1,, it follows that Ep is null-homotopic so that q*: 7r4 (U(2))- [U(2), U(2)] is
injective. Hence [1, a op] 00 and nil[U(2), U(2)] = 2 by (1.1). Then [U(2), U(2 )]_=
‘11(2,1) from Theorem 4.1(1) of [8 ] .  This completes the proof of Example 1.4(1).

W e write 11"S3 =5 3 x • • • S3 (n times) and  A"S3 =S 3 A  • A  S3 (n  times). W e
define the iterated commutator map c„: AnS3 S 3 inductively by c„ = c2 o (1 

Ac

for 3. Then, given fi€ [X, S3 ] (1 <i _<.n), w e have [ f i , [f 2 , • • [f„ _ f,]- • •]] = c„ o
(f A • • AL). d,,E[X , S3 ]. The following is contatined in  Theorem B  of [1].

Lemma 4.1. The map c4 : A4 53 -+ S3 is null-homotopic and so nil[X, S3 ] <3  for
every X.

Pro o f  We have c4  = c2  o(1 A  c2 )0(1 A  1 A c2 )en 6 (S3 )0n 9 (S6 )0 1 1 2 (S 9 ) =  0 by [9].
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Hence the results follow.

The following contains Example 1.4(2).

Proposition 4.2. nil[11",53 ,11"SI = nil[17,93 , .93 ] and  it equals 3 or n according
as n>3  or n<2 .

P ro o f  T h e  case n  =1  i s  trivial. Since [X, n n 5 3 ]  [ x, s3 ],0  • • • c, [X, S 3 ] (n
times), nil[X, I P S 3 ] = nil[X, ..53 ]  for any pointed space X .  Hence the case n =2  is
proved in Proposition 3.1 o f  [5 ] .  Since the m ap p : FI"S3 Fin- 1 r+33  defined by
p(x 1, • • • , x„) =(x 1, • • • , x„ _ i )  h a s  a  righ t inverse, p* : [ n n - 15 3 s 3] E n n s 3 , S 3 ]  i s  a
monomorphism and so  nil[II S3 S3 ] < n41111,53 , S3 ]. Thus, by 4.1, it suffices to
prove nil[II 3 53 , S3 ] > 3.

W rite  G = II 3 S3 . L et p i :G +) S 3  b e  d e f in e d  b y  pi(x i , x2 , x3 ) = x; ( i=  1, 2, 3).
There exists a  m ap  g  which m akes th e  following diagram commutative up  to
homotopy:

(13
G GA GA G

IPI A P2 A  p3

89S 3  A  S3 A  S 38 3

By using integral cohomology, we see that g  is  a  homotopy equivalence. Hence
[p  [p  2 , p 3]] = + q*c 3 = + q*<1 3 , 0 3 ,13 » .  W e  h a v e  a  cell-decomposition: G = (53

s
3
 y  s

3
) u e

6 ue 6 ue 6 u pe9 . There are exact sequences:

Ep. qt
(4.1) [EG(81, S3 ] n9(53) [G,S3],

q*
[ s7 v S 7  y  5 7 , s3 ]•— •  [ EO), 5 3 ] [5 4  s 4  y s4 , s3 ]

Since n7 (S3 ) n4(S 3 )-= Z2 b y  [ 9 ] , CS7 y S7 v 5 7  , [S4 v 54 v  5 4 , S 3 ] .' Z 2 Z 2 @

Z 2 .  Hence 22 [EG( 8 ) , S3 ] = O. On the other hand, as is well-known, n9 (S3 ) = Z 3 {0 3 ,
<13 , 3 » }  ( s e e  [1 ]).  H ence Ep*= 0 i n  (4.1) a n d  th e  o rd e r  o f  [p 1 , [p2 ,p3 ] ]  is
three. Therefore nil[G, S] > 3. This completes the proof.
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