Self homotopy group of the exceptional Lie group G_{2}

By

Hideaki Oshima*

1. Introduction

Let G be a connected Lie group and $\mu: G \times G \rightarrow G$ the multiplication of G. For any space A with a base point, the based homotopy set $[A, G]$ becomes a group with respect to the binary operation $\mu_{*}:[A, G] \times[A, G]=[A, G \times G] \rightarrow[A, G]$. Even if A is a simple space such as the sphere, it is difficult to calculate the group $[A, G]$. A general result was given by Whitehead (p. 464 of [10]):

$$
\begin{equation*}
\operatorname{nil}[A, G] \leq \operatorname{cat} A \tag{1.1}
\end{equation*}
$$

where nil and cat denote the nilpotency class and the Lusternik-Schnirelmann category with $\operatorname{cat}\{*\}=0$, respectively. In [5], we determined the group structure of $[G, G]$ and proved nil $[G, G]=2$ when G is $S U(3)$ or $S p(2)$. We want to study nil $[G, G]$ for other G 's. Though we have very few results, it seems reasonable to set the following:

Conjecture 1.1 If G is simple, then $\operatorname{nil}[G, G] \geq \operatorname{rank} G$.
A weaker one is
Conjecture 1.2. If G is simple and $\operatorname{rank} G \geq 2$, then $\operatorname{nil}[G, G] \geq 2$, that is, $[G, G]$ is not commutative.

Let G_{2} be the exceptional Lie group of rank 2. Then the purpose of this note is to prove the following which supports 1.1.

Theorem 1.3. nil $\left[G_{2}, G_{2}\right]=3$.
Two conjectures are false in general without the assumption of simpleness of G.
Example 1.4. (1). nil $\left[S^{3} \times S^{1}, S^{3} \times S^{1}\right]=1$ and nil $[U(2), U(2)]=2$. Notice that $S^{3} \times S^{1}$ and $U(2)$ are homeomorphic but not isomorphic.
(2). If $G=S^{3} \times \cdots \times S^{3}$ (n times), then $\operatorname{rank} G=n$ and nil $[G, G]$ equals 3 if $n \geq 3$

[^0]and n if $n \leq 2$.
In §2, we indicate notation, recall some results from [3], [4], [6], [7], and state Theorem 2.2 which contains Theorem 1.3. We prove Theorem 2.2 in $\S 3$ and Example 1.4 in $\S 4$.

2. Notation and a main theorem

We do not distinguish notationally between a map and its homotopy class. Even for non-commutative group, the multiplication is denoted by +. For elements x, y of a group, we write $[x, y]=x+y-x-y$, the commutator. We say that a group Γ has nilpotency class n and write nil $\Gamma=n$ if the iterated n-th commutator $\left[x_{1},\left[x_{2}, \cdots\left[x_{n-1}, x_{n}\right] \cdots\right]\right]$ is non zero for some n elements x_{1}, \cdots, x_{n} of Γ and every iterated $(n+1)$-th commutator is zero. For a space A with a base point, $d_{n}: A \rightarrow A \wedge \cdots \wedge A$ (n times) denotes the diagonal map. For a topological group G, $c_{2}: G \wedge G \rightarrow G$ denotes the commutator map, $c_{2}(x \wedge y)=[x, y]$, and $\langle\rangle:, \pi_{s}(G) \times \pi_{t}(G)$ $\rightarrow \pi_{s+t}(G)$ is the Samelson product. For a CW complex $X, X^{(n)}$ denotes the n-skeleton of X.

As is well-known, G_{2} has a cell structure:

$$
G_{2}=S^{3} \cup e^{5} \cup e^{6} \cup e^{8} \cup e^{9} \cup e^{11} \cup e^{14} .
$$

Let $i_{n}: G_{2}^{(n)} \subset G_{2}, i_{n, n+k}: G_{2}^{(n)} \rightarrow G_{2}^{(n+k)}(k \geq 0)$ and $\bar{i}_{8,11}: S^{8}=G_{2}^{(8)} / G_{2}^{(6)} \rightarrow G_{2}^{(11)} / G_{2}^{(6)}$ be the inclusion maps. For $n=5,6,8,9,11,14$, let $q_{n}: G_{2}^{(n)} \rightarrow S^{n}$ be the quotient map and $\rho_{n}: S^{n-1} \rightarrow G_{2}^{(n-1)}$ the attaching map of the n-cell. The cohomology structure of G_{2} (Théorème 17.2 and 17.3 of [2]) implies that $\rho_{5}=\Sigma \eta_{2}$, the suspension of the Hopf map $\eta_{2}: S^{3} \rightarrow S^{2}$, and

$$
\begin{equation*}
q_{n} \circ \rho_{n+1}=2 l_{n} \quad \text { for } \quad n=5,8, \tag{2.1}
\end{equation*}
$$

where i_{n} is the identity map of S^{n}. Let $q_{11,6}: G_{2}^{(11)} \rightarrow G_{2}^{(11)} / G_{2}^{(6)}$ and $\bar{q}_{11,6}: G_{2}^{(11)} / G_{2}^{(6)} \rightarrow$ S^{11} be the quotient maps. We have fibrations

$$
S U(3) \xrightarrow{j} G_{2} \xrightarrow{p} S^{6}, \quad S^{3} \xrightarrow{i_{3}^{\prime}} S U(3) \xrightarrow{p} S^{5} .
$$

Let $v_{4} \in \pi_{7}\left(S^{4}\right)$ and $\mu^{\prime} \in \pi_{14}\left(S^{3}\right)$ be the elements of [9] and set $\eta_{n}=\Sigma^{n-2} \eta_{2} \in \pi_{n+1}\left(S^{n}\right)$ for $n \geq 2$ and $v_{n}=\Sigma^{n-4} v_{4} \in \pi_{n+3}\left(S^{n}\right)$ for $n \geq 4$. Write $\eta_{n}^{2}=\eta_{n} \circ \eta_{n+1}$ and $v_{n}^{2}=v_{n} \circ v_{n+3}$.

We need
Proposition 2.1. (1)([6]). $\quad \pi_{3}(S U(3))=\boldsymbol{Z}\left\{i_{3}^{\prime}\right\}, \quad \pi_{11}(S U(3))=\boldsymbol{Z}_{4}\left\{\left[\nu_{5}^{2}\right]\right\}$ and π_{14} $(S U(3))=\boldsymbol{Z}_{4}\left\{\left[v_{5}^{2}\right] \circ v_{11}\right\} \oplus \boldsymbol{Z}_{2}\left\{i_{3}{ }^{\prime} \mu^{\prime}\right\} \oplus \boldsymbol{Z}_{21}$, where $p_{*}\left[\nu_{5}^{2}\right]=v_{5}^{2}$.
(2) $([4]) . \quad \pi_{4}\left(G_{2}\right)=\pi_{5}\left(G_{2}\right)=\pi_{7}\left(G_{2}\right)=\pi_{10}\left(G_{2}\right)=\pi_{12}\left(G_{2}\right)=\pi_{13}\left(G_{2}\right)=0, \pi_{3}\left(G_{2}\right)=\boldsymbol{Z}$ $\left\{i_{3}\right\}, \pi_{6}\left(G_{2}\right)=\boldsymbol{Z}_{3}, \pi_{8}\left(\boldsymbol{G}_{2}\right)=\boldsymbol{Z}_{2}\left\{\left[\eta_{6}^{2}\right]\right\}, \pi_{9}\left(G_{2}\right)=\boldsymbol{Z}_{2}\left\{\left[\eta_{6}^{2}\right] \circ \eta_{8}\right\} \oplus \boldsymbol{Z}_{3}, \pi_{11}\left(G_{2}\right)=\boldsymbol{Z}\{\gamma\} \oplus \boldsymbol{Z}_{2}$ $\left\{j_{*}\left[v_{5}^{2}\right]\right\}$ and $\pi_{14}\left(G_{2}\right)=\boldsymbol{Z}_{8} \oplus \boldsymbol{Z}_{2}\left\{j_{*}\left[v_{5}^{2}\right] \circ v_{11}\right\} \oplus \boldsymbol{Z}_{21}$, where $p_{*}\left[\eta_{6}^{2}\right]=\eta_{6}^{2}$ and $i_{3} \mu^{\prime}=j_{*} i_{3 *}^{\prime} \mu^{\prime}=0$.
(3) (Lemma 1 of [3]). $\left\langle i_{3},\left[\eta_{6}^{2}\right]\right\rangle=j_{*}\left[v_{5}^{2}\right]$ and $\left\langle i_{3}, j_{*}\left[v_{5}^{2}\right]\right\rangle=j_{*}\left[v_{5}^{2}\right] \circ v_{11}$.
(4) (Lemma 5.8 of [7]). $\quad\left[G_{2}^{(11)} / G_{2}^{(6)}, G_{2}\right]=\boldsymbol{Z}\left\{\gamma^{\prime}\right\} \oplus \boldsymbol{Z}_{2}\left\{\bar{q}_{11,6}^{*} j *\left[v_{5}^{2}\right]\right\}, \bar{q}_{11,6}^{*} \gamma=4 \gamma^{\prime}$ and $\bar{i}_{8,11}^{*} \gamma^{\prime}=\left[\eta_{6}^{2}\right]$.

Given integers $m \geq 1$ and n, we denote by $\Psi\left(x_{1}, x_{2}, x_{3} ; m, n\right)$ or simply by $\Psi(m, n)$ the group with generators x_{1}, x_{2}, x_{3} and relations

$$
m x_{3}=\left[x_{1}, x_{3}\right]=\left[x_{2}, x_{3}\right]=0, \quad\left[x_{1}, x_{2}\right]=n x_{3} .
$$

Our main theorem is
Theorem 2.2. (1). There exists a central extension of groups:

$$
0 \rightarrow \pi_{14}\left(G_{2}\right) \xrightarrow{q_{14}^{*}}\left[G_{2}, G_{2}\right] \xrightarrow{i_{11}^{*}}\left[G_{2}^{(11)}, G_{2}\right] \rightarrow 0 .
$$

(2). $\left[G_{2}^{(11)}, G_{2}\right]=\Psi\left(i_{11}, q_{11,6}^{*} \gamma^{\prime}, q_{11}^{*} j_{*}\left[v_{5}^{2}\right] ; 2,1\right)$.
(3). Let $\alpha \in\left[G_{2}, G_{2}\right]$ be an element such that $i_{11}^{*} \alpha=q_{1,6}^{*} \gamma^{\prime}$. Then $[\alpha,[1, \alpha]]=0$ and $[1,[1, \alpha]]=q_{14}^{*}\left(j,\left[v_{5}^{2}\right] \circ v_{11}\right) \neq 0$ so that nil $\left[\mathrm{G}_{2}, \mathbf{G}_{2}\right]=3$, where 1 denotes the identity map of G_{2}.
(4). There exists $x_{0} \in \pi_{14}\left(G_{2}\right)$ such that $2[1, \alpha]=2 q_{14}^{*}\left(x_{0}\right)$ and $\left\langle i_{3}, \gamma\right\rangle= \pm 4 x_{0}$.

We can show that the order of $\left\langle i_{3}, \gamma\right\rangle$ is odd. We omit the details.
Problem 2.3. Determine the group structure of $\left[G_{2}, G_{2}\right]$ completely.
3. Proof of Theorem $\mathbf{2 . 2}$

Theorem 2.2 follows from 3.4, 3.6 and 3.7 below.
Lemma 3.1. (1). $\left[G_{2}^{(6)}, G_{2}\right]=Z\left\{i_{6}\right\}$.
(2). $\left[\Sigma G_{2}^{(6)}, G_{2}\right]=0$.
(3). The following is an exact sequence of groups:

$$
0 \rightarrow\left[G_{2}^{(11)} / G_{2}^{(6)}, G_{2}\right] \xrightarrow{q_{11,6}^{*}}\left[G_{2}^{(11)}, G_{2}\right] \xrightarrow{i_{6,11}^{*}}\left[G_{2}^{(6)}, G_{2}\right] \rightarrow 0,
$$

and $\left[G_{2}^{(11)}, G_{2}\right]$ is generated by three elements $i_{11}, q_{11,6}^{*} \gamma^{\prime}, q_{11}^{*} j_{*}\left[v_{5}^{2}\right]$ of which the last element is central.

Proof. Since $G_{2}^{(5)}=\Sigma\left(S^{2} \cup_{\eta_{2}} e^{4}\right)$, it follows that $\left[G_{2}^{(5)}, G_{2}\right] \cong \pi_{3}\left(G_{2}\right)$ from 2.1
(2). Consider the following exact sequence of groups:

$$
\left.\left.\begin{array}{rl}
\pi_{7}\left(G_{2}\right) \longrightarrow\left[\Sigma G_{2}^{(6)}, G_{2}\right] & \longrightarrow\left[\Sigma G_{2}^{(5)}, G_{2}\right] \\
& \pi_{6}\left(\rho_{2}\right) \underset{q_{6}^{*}}{\longrightarrow}
\end{array}\right] G_{2}^{(6)}, G_{2}\right] \underset{i_{5,6}^{*}}{\longrightarrow}\left[G_{2}^{(5)}, G_{2}\right] \longrightarrow \pi_{5}\left(G_{2}\right), ~ l
$$

By (2.1) and 2.1(2), $\left(\Sigma \rho_{6}\right)^{*} \circ\left(\Sigma q_{5}\right)^{*}: \pi_{6}\left(G_{2}\right) \rightarrow \pi_{6}\left(G_{2}\right)$ is an isomorphism. Hence
$\left(\Sigma \rho_{6}\right)^{*}:\left[\Sigma G_{2}^{(5)}, G_{2}\right] \rightarrow \pi_{6}\left(G_{2}\right)$ is surjective, and $\left(\Sigma q_{5}\right)^{*}: \pi_{6}\left(G_{2}\right) \rightarrow\left[\Sigma G_{2}^{(5)}, G_{2}\right]$ is injective so that it is an isomorphism, since $\pi_{4}\left(G_{2}\right)=0$ by $2.1(2)$. By the above exact sequence, $i_{5,6}^{*}:\left[G_{2}^{(6)}, G_{2}\right] \cong\left[G_{2}^{(5)}, G_{2}\right]$ and $\left[\Sigma G_{2}^{(6)}, G_{2}\right]=0$. Hence we obtain (1) and (2) from which the sequence of (3) follows. By p. 465 of [10], $q_{11}^{*} j_{0}\left[\nu_{5}^{2}\right]$ is central.

The following is easy and well-known.
Lemma 3.2. In any group, $[x, y+z]=[x, y]+[x, z]+[[z, x], y]$.
Lemma 3.3. (1). $\left[i_{11}, q_{11,6}^{*} \gamma^{\prime}\right]=q_{11}^{*} j_{+}\left[\nu_{5}^{2}\right]$.
(2). $2 q_{11,6}^{*} \gamma^{\prime}$ is central in $\left[G_{2}^{(11)}, G_{2}\right]$.

Proof. Write $x=q_{11,6}^{*} \gamma^{\prime}$ and $y=q_{11}^{*} j_{*}\left[\nu_{5}^{2}\right]$. Let k be any integer. Then $\left[i_{11}, k x\right] \in \operatorname{Image}\left(q_{11,6}^{*}\right)$, since $i_{6,11}^{*}\left[i_{11}, k x\right]=0$. Hence there exist $m_{k} \in \boldsymbol{Z}$ and $n_{k} \in\{0,1\}$ such that $\left[i_{11}, k x\right]=m_{k} x+n_{k} y$. We have

$$
\begin{align*}
{\left[i_{11}, 2 x\right] } & \left.=2\left[i_{11}, x\right]+\left[\left[x, i_{11}\right], x\right] \quad \text { (by } 3.2\right) \tag{3.1}\\
& =2\left[i_{11}, x\right] \quad \text { (since } \operatorname{Im}\left(q_{11,6}^{*}\right) \text { is commutative). } \tag{3.2}
\end{align*}
$$

Inductively, we have $\left[i_{11}, 3 x\right]=3\left[i_{11}, x\right]$ and $\left[i_{11}, 4 x\right]=4\left[i_{11}, x\right]=4 m_{1} x$. Since $4 x=q_{11}^{*} \gamma$ by $2.1(4)$ so that $4 x$ is central by p. 465 of [10], it follows that $4 m_{1} x=0$ so that $m_{1}=0$. Therefore $\left[i_{11}, x\right]=n_{1} y$ and $\left[i_{11}, 2 x\right]=0$. Hence $2 x$ is central in $\left[G_{2}^{(1)}, G_{2}\right]$.

The rest we must prove is the equality: $n_{1}=1$. There exists a map $f: S^{11} \rightarrow S^{3} \wedge S^{8}$ which makes the following diagram commutative up to homotopy:

By using cohomology of Z_{2}-coefficients, it follows that the degree of f is odd so that $\left[i_{11}, x\right]=c_{2} \circ\left(1 \wedge \gamma^{\prime}\right) \circ\left(i_{11} \wedge q_{11,6}\right) \circ d=q_{11}^{*}\left\langle i_{3},\left[\eta_{6}^{2}\right]\right\rangle=q_{11}^{*} j_{*}\left[v_{5}^{2}\right]$. Hence $n_{1}=1$ as desired.

By 2.1(4), 3.1 and 3.3(1), we have
Proposition 3.4. $\left[G_{2}^{(11)}, G_{2}\right]=\Psi\left(i_{11}, q_{11,6}^{*} \gamma^{\prime}, q_{11}^{*} j_{*}\left[v_{5}^{2}\right] ; 2,1\right)$ which is of nilpotency class two.

Lemma 3.5. $\Sigma \rho_{14}^{*}=0:\left[\Sigma G_{2}^{(11)}, G_{2}\right] \rightarrow \pi_{14}\left(G_{2}\right)$.
Proof. Write $\bar{\rho}_{14}=q_{11,6^{\circ}} \rho_{14}: S^{13} \rightarrow G_{2}^{(11)} / G_{2}^{(6)}$. Since ρ_{14} is stably null- homotopic and $\bar{\rho}_{14}$ is in stable range, $\bar{\rho}_{14}$ is null-homotopic. It follows that
$\Sigma \rho_{14}^{*} \circ \Sigma q_{11,6}^{*}=\Sigma \bar{\rho}_{14}^{*}=0$ and $\Sigma \rho_{14}^{*}=0$, since $\Sigma q_{11,6}^{*}:\left[\Sigma G_{2}^{(11)} / G_{2}^{(6)}, G_{2}\right] \rightarrow\left[\Sigma G_{2}^{(11)}, G_{2}\right]$ is surjective by 3.1(2).

By applying $\left[-, G_{2}\right]$ to the cofibre sequence

$$
S^{13} \xrightarrow{\rho_{14}} G_{2}^{(11)} \xrightarrow{i_{11}} G_{2} \xrightarrow{q_{14}} S^{14} \xrightarrow{\Sigma \rho_{14}} \Sigma G_{2}^{(11)}
$$

we have
Proposition 3.6. The following is a central extension of groups:

$$
0 \longrightarrow \pi_{14}\left(G_{2}\right) \xrightarrow{q_{14}^{*}}\left[G_{2}, G_{2}\right] \xrightarrow{i_{i 1}^{*}}\left[G_{2}^{(11)}, G_{2}\right] \longrightarrow 0 .
$$

Proof. The exact sequence follows from 2.1(2) and 3.5. It is a central extension by p .465 of [10].

Let $\alpha \in\left[G_{2}, G_{2}\right]$ be an element such that $i_{11}^{*}(\alpha)=q_{11,6}^{*} \gamma^{\prime}$. Then $\left[G_{2}, G_{2}\right]$ is generated by $\operatorname{Im}\left(q_{14}^{*}\right), 1$ and α.

Lemma 3.7. (1). $[\alpha,[1, \alpha]]=0$.
(2). $[1,[1, \alpha]]=q_{14}^{*}\left(j_{*}\left[v_{5}^{2}\right] \circ v_{11}\right)$.
(3). There exists $x_{0} \in \pi_{14}\left(G_{2}\right)$ such that $\left\langle i_{3}, \gamma\right\rangle= \pm 4 x_{0}$ and $2[1, \alpha]=2 q_{14}^{*}\left(x_{0}\right)$.

Proof. There exists a map $f: G_{2} \rightarrow G_{2}^{(11)} \wedge G_{2}^{(11)}$ which makes the following diagram commutative up to homotopy:

Since $\left(q_{11,6} \wedge q_{11}\right) \circ f=0$, we have $[\alpha,[1, \alpha]]=c_{2} \circ\left(\gamma^{\prime} \wedge j \times\left[\nu_{5}^{2}\right]\right) \circ\left(q_{11,6} \wedge q_{11}\right) \circ f=0$. This proves (1).

Let the pair (a, b) be $\left([1, \alpha], j_{[}\left[\nu_{5}^{2}\right]\right)$ or $(4 \alpha, \gamma)$. There exists a map $g: S^{14} \rightarrow S^{3} \wedge S^{11}$ which makes the following diagram commutative up to homotopy:

By using the integral cohomology, we have that g is a homotopy equivalence. Hence $[1, a]= \pm q_{14}^{*}\left\langle i_{3}, b\right\rangle$, that is, $[1,[1, \alpha]]=q_{14}^{*}\left\langle i_{3}, j .\left[v_{5}^{2}\right]\right\rangle$ and

$$
\begin{equation*}
[1,4 \alpha]= \pm q_{14}^{*}\left\langle i_{3}, \gamma\right\rangle . \tag{3.3}
\end{equation*}
$$

By $2.1(3)$, we then have (2). Since $i_{11}^{*}[2 \alpha, 1]=0$ by $3.3(2)$, it follows that $[2 \alpha, 1]$ is central and from 3.2 that $[1,4 \alpha]=2[1,2 \alpha]$ and $[1,2 \alpha]=2[1, \alpha]+[[\alpha, 1], \alpha]=2[1, \alpha]$ by $3.7(1)$. Hence $[1,4 \alpha]=4[1, \alpha]$ and $4[1, \alpha]= \pm q_{14}^{*}\left\langle i_{3}, \gamma\right\rangle$ by (3.3). On the other hand, since $q_{11^{\circ}} \circ \rho_{14}=0$, there exists a map $\tilde{q}_{11}: G_{2} \rightarrow S^{11}$ such that $\tilde{q}_{11} \circ i_{11}=q_{11}$. Write $\beta=j \circ\left[v_{5}^{2}\right] \circ \tilde{q}_{11}: G_{2} \rightarrow G_{2}$. Then $i_{11}^{*} \beta=q_{11}^{*} j,\left[v_{5}^{2}\right]$ and β is of order 2 in $\left[G_{2}, G_{2}\right]$. Since $i_{11}^{*}[1, \alpha]=i_{11}^{*} \beta$, there exists $x_{0} \in \pi_{14}\left(G_{2}\right)$ such that $[1, \alpha]=\beta+q_{14}^{*}\left(x_{0}\right)$. Hence $2[1, \alpha]=2 q_{14}^{*}\left(x_{0}\right)$ and $4[1, \alpha]=q_{14}^{*}\left(4 x_{0}\right)$. Therefore $\left\langle i_{3}, \gamma\right\rangle= \pm 4 x_{0}$. This has proved (3).

4. Proof of Example 1.4

By Theorem 4.1(1) of [8], [$\left.S^{3} \times S^{1}, S^{3} \times S^{1}\right] \cong Z \oplus Z \oplus Z_{2}$. Let $\theta \in \pi_{1}(U(2)) \cong Z$ and $\alpha \in \pi_{3}(U(2)) \cong Z$ be generators, $p: U(2) \rightarrow S^{3}$ the projection, and $q: U(2) \approx S^{3} \times S^{1}=$ $\left(S^{3} \vee S^{1}\right) \cup_{\rho} e^{4} \rightarrow S^{4}$ the quotient map. There exists a map g which makes the following diagram commutative up to homotopy:

By using integral cohomology, we see that g is a homotopy equivalence so that [1 , $\alpha \circ p]= \pm q^{*}\langle\theta, \alpha\rangle$, where $\langle\theta, \alpha\rangle$ is a generator of $\pi_{4}(U(2)) \cong \boldsymbol{Z}_{2}$ by [2]. Since the attaching map $\rho: S^{3} \rightarrow S^{3} \vee S^{1}$ of the top cell of $U(2)$ is the Whitehead product of l_{3} and l_{1}, it follows that $\Sigma \rho$ is null-homotopic so that $q^{*}: \pi_{4}(U(2)) \rightarrow[U(2), U(2)]$ is injective. Hence $[1, \alpha \circ p] \neq 0$ and $\operatorname{nil}[U(2), U(2)]=2$ by (1.1). Then $[U(2), U(2)]=$ $\Psi(2,1)$ from Theorem 4.1(1) of [8]. This completes the proof of Example 1.4(1).

We write $\Pi^{n} S^{3}=S^{3} \times \cdots S^{3}$ (n times) and $\Lambda^{n} S^{3}=S^{3} \wedge \cdots \wedge S^{3}$ (n times). We define the iterated commutator map $c_{n}: \Lambda^{n} S^{3} \rightarrow S^{3}$ inductively by $c_{n}=c_{2} \circ\left(1 \wedge c_{n-1}\right)$ for $n \geq 3$. Then, given $f_{i} \in\left[X, S^{3}\right](1 \leq i \leq n)$, we have $\left[f_{1},\left[f_{2}, \cdots\left[f_{n-1}, f_{n}\right] \cdots\right]\right]=c_{n}$ 。 $\left(f_{1} \wedge \cdots \wedge f_{n}\right) \circ d_{n} \in\left[X, S^{3}\right]$. The following is contatined in Theorem B of [1].

Lemma 4.1. The map $c_{4}: \Lambda^{4} S^{3} \rightarrow S^{3}$ is null-homotopic and so nil $\left[X, S^{3}\right] \leq 3$ for every X.

Proof. We have $c_{4}=c_{2} \circ\left(1 \wedge c_{2}\right) \circ\left(1 \wedge 1 \wedge c_{2}\right) \in \pi_{6}\left(S^{3}\right) \circ \pi_{9}\left(S^{6}\right) \circ \pi_{12}\left(S^{9}\right)=0$ by [9].

Hence the results follow.
The following contains Example 1.4(2).
Proposition 4.2. $\operatorname{nil}\left[\Pi^{n} S^{3}, \Pi^{n} S^{3}\right]=\operatorname{nil}\left[\Pi^{n} S^{3}, S^{3}\right]$ and it equals 3 or n according as $n \geq 3$ or $n \leq 2$.

Proof. The case $n=1$ is trivial. Since $\left[X, \Pi^{n} S^{3}\right] \cong\left[X, S^{3}\right] \oplus \cdots \oplus\left[X, S^{3}\right]$ (n times), $\operatorname{nil}\left[X, \Pi^{n} S^{3}\right]=\operatorname{nil}\left[X, S^{3}\right]$ for any pointed space X. Hence the case $n=2$ is proved in Proposition 3.1 of [5]. Since the map $p: \Pi^{n} S^{3} \rightarrow \Pi^{n-1} S^{3}$ defined by $p\left(x_{1}, \cdots, x_{n}\right)=\left(x_{1}, \cdots, x_{n-1}\right)$ has a right inverse, $p^{*}:\left[\Pi^{n-1} S^{3}, S^{3}\right] \rightarrow\left[\Pi^{n} S^{3}, S^{3}\right]$ is a monomorphism and so nil $\left[\Pi^{n-1} S^{3} S^{3}\right] \leq \operatorname{nil}\left[\Pi^{n} S^{3}, S^{3}\right]$. Thus, by 4.1 , it suffices to prove nil $\left[\Pi^{3} S^{3}, S^{3}\right] \geq 3$.

Write $G=\Pi^{3} S^{3}$. Let $p_{i}: G \rightarrow S^{3}$ be defined by $p_{i}\left(x_{1}, x_{2}, x_{3}\right)=x_{i} \quad(i=1,2,3)$. There exists a map g which makes the following diagram commutative up to homotopy:

By using integral cohomology, we see that g is a homotopy equivalence. Hence $\left[p_{1},\left[p_{2}, p_{3}\right]\right]= \pm q^{*} c_{3}= \pm q^{*}\left\langle l_{3},\left\langle l_{3}, l_{3}\right\rangle\right\rangle$. We have a cell-decomposition: $G=\left(S^{3}\right.$ $\left.\vee S^{3} \vee S^{3}\right) \cup e^{6} \cup e^{6} \cup e^{6} \cup_{\rho} e^{9}$. There are exact sequences:

$$
\begin{align*}
& {\left[\Sigma G^{(8)}, S^{3}\right] \xrightarrow{\Sigma \rho *} \pi_{9}\left(S^{3}\right) \xrightarrow{q *}\left[G, S^{3}\right],} \tag{4.1}\\
& {\left[S^{7} \vee S^{7} \vee S^{7}, S^{3}\right] \xrightarrow{q *}\left[\Sigma G^{(8)}, S^{3}\right] \longrightarrow\left[S^{4} \vee S^{4} \vee S^{4}, S^{3}\right]}
\end{align*}
$$

Since $\pi_{7}\left(S^{3}\right) \cong \pi_{4}\left(S^{3}\right) \cong Z_{2}$ by [9], $\left[S^{7} \vee S^{7} \vee S^{7}, S^{3}\right] \cong\left[S^{4} \vee S^{4} \vee S^{4}, S^{3}\right] \cong Z_{2} \oplus Z_{2} \oplus$ Z_{2}. Hence $2^{2}\left[\Sigma G^{(8)}, S^{3}\right]=0$. On the other hand, as is well-known, $\pi_{9}\left(S^{3}\right)=Z_{3}\left\{\left\langle l_{3}\right.\right.$, $\left.\left.\left\langle l_{3},{ }_{3}\right\rangle\right\rangle\right\}$ (see [1]). Hence $\Sigma \rho^{*}=0$ in (4.1) and the order of $\left[p_{1},\left[p_{2}, p_{3}\right]\right]$ is three. Therefore nil $[G, S] \geq 3$. This completes the proof.

Department of Mathematical Sciences Ibaraki University
e-mail: ooshima@mito.ipc.ibaraki.ac.jp

References

[1] M. Arkowitz and C. R. Curjel, Some properties of the exotic multiplications on the three sphere, Quart. J. Math., 20 (1969), 171-176.
[2] A. Borel, Sur l'homologie et la cohomologie des groupes de Lie compacts connexes, Amer. J.

Math., 76 (1954), 273-342.
[3] Y. Furukawa, Homotopy-normality of Lie groups II, Quart. J. Math., 38 (1987), 185-188.
[4] M. Mimura, The homotopy groups of Lie groups of low rank, J. Math. Kyoto Univ., 6 (1967), 131-176.
[5] M. Mimura and H. Oshima, Self homotopy groups of Hopf spaces with at most three cells, J. Math. Soc. Japan, 51 (1999), 71-92.
[6] M. Mimura and H. Toda, Homotopy groups of $S U(3), S U(4)$ and $S p(2)$, J. Math. Kyoto Univ., 3 (1964), 217-250.
[7] S. Oka, Homotopy of the exceptional Lie group G_{2}, Proc. Edinburgh Math. Soc., 29 (1986), 145-169.
[8] H. Oshima, Self homotopy set of a Hopf space, Quart. J. Math., 50 (1999), 483-495.
[9] H. Toda, Composition methods in homotopy groups of spheres, Ann. of Math. Studies 49, Princeton Univ. Press, Princeton, 1962.
[10] G. W. Whitehead, Elements of homotopy theory, Springer, New York, 1978.

[^0]: * Supported by Grant-in-Aid for Scientific Research (C) 10640087

 Communicated by Prof. G. Nishida, July 13, 1999

