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A  remark on Baker operations on the
elliptic cohomology of finite groups

By

Michimasa TANABE

Introduction

Let G be a  finite group and BG be its classifying space. In [18] it is shown
that every element of Ell"en(BG) yields a certain p-adic lim it of Thompson series
via elliptic character. W e hope that this fact will shed light o n  still unknown
geometric construction of elliptic cohomology and hence the study of Ell *(BG) in
connection with moonshine phenomena would be important.

In theory of Thompson series we have certain Hecke operators constructed by
G. Mason which a re  related to usual Hecke operators o n  modular forms (see
[11]). The purpose of this note is to prove that the stable operations on elliptic
cohomology constructed by A. Baker in [3] act on  Elleven(BG) as Mason's Hecke
operators act on Thompson series (Theorem 3.1). The proof of this fact is pretty
easy. First we review the construction of elliptic character and Baker operations
and describe the composition of these natural transformations (Proposition 1.3). By
using this description and a certain explicit formula given in  [18] we can easily
prove Theorem 3.1 (3).

1. Elliptic character and Baker operation

We begin by considering a  general construction of natural transformations of
cohomology theories obtained by Landweber exact functor theorem (Landweber
exact cohomologies for short). Let R*(?)=R * O m u .MU *(?) a n d  S*(?)=S * O m u .

MU *(?) be Landweber exact homologies. Let

A :R* O m u . MU *(MU)—, S*

be a  right M U - m o d u le  m a p .  Then we can define a  natural transformation

R  (X )  S  *(X)

as the composite map

R * Omu *A1U4SX) R*0 mu*M U*(M OOm u *MU4(X)
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A® MU.(X)
S *0 m u U  *(X),

x

where

M U  (X ) M  *(A l 00  mu .M  *(X )

is  the coaction m ap and  we denote a  m odule and the identity map on  it  b y  the
sam e n o ta tio n . B y using  Spanier-Whitehead dua lity  w e  ge t a  (not necessarily
multiplicative) natural transformation of cohomology theories

A(X): R*(X) —■ S*(X)

o n  finite CW com plexes. N ow  this natural transformation can be realized as a
map of spectra which is unique up to weak homotopy (cf. [17, Theorem 9.24]). (We
should rem ark that the extra condition in Theorem 9.30 in  [17] is unnecessary.)
Thus we have a (not necessarily unique) extension of A(X) on  any CW complexes
which is still denoted by A(X).

We now apply this general construction to the following two special c a se s . Let
K*(?) be complex K-theory with coefficient ring K *  =Z [t ,  1]  (Id = —2) and Ell*(?)
b e  le v e l 1  elliptic cohomology w ith  coefficient ring E//*=Z[1/6] [g 2 ,g 3 ,A - 1 ]
( = g - 2 7 g ,  1g2 1= —8, 1g3 1= —12) (see [3]). Then the ring Ell* can be viewed
as the ring of modular forms on  F(1)=SL 2 (Z) over Z[1/6], i.e., the  universal ring
classifying F(1)-test objects over Z[1/6]-algebras with universal test object

(Euniv
,
 wuniv)

=
 (Y 2 =  4x 3 — g2 x —g3 , dx y).

(For the description of Ell* as the universal ring, see [9, Chapter II].) The formal
group law FK associated with K*(?) with canonical orientation x-K is given by

FK (X , Y)= X+ Y + tX Y eK*[[X , Y]]

and the one FKII of Ell*(?) with canonical orientation x E " is given by 
Ê u n i v  

with local
parameter T =-2 x ly .

Let Tate(q) be the Tate curve over Z[1/6]((q)) and 
C O c a n  

= dx ly  be a  canonical
nowhere vanishing invariant differential o n  Tate(q) (see  [ 9 ,  C hapter I I]  a n d
[1 8 ]) . Then we have an injective q-expansion ring homomorphism classifying the
F(1)-test object (Tate(q), Wcan)

1:E11* Z [l  6]((q))

given by il(f)=f(q)=f(Tate(q),o),.„) (V f eE ll*). We define a  ring homomorphism

1: E l l *  K 1 1  I 6]((q))

b y  ( f )=t - k,l(f) (Vfe E11 2 k ). Then we have a unique strict isomorphism of formal
group laws
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() c a n : FK *FEU

o v e r  10[1/6]((q)) s in ce  2 * Eu n iv  = Tate(q) is canonically  isom orphic  to  form al
multiplicative group Gm  (see [12] and [1 8 ] ) .  Let

0 :  MU * (MU) ,— K *[ l /6]((q))

be the ring homomorphism classifying Oc an . Now the composite map

;too
Ell * 0 z M U * (MU) K  I 6]((q))0,K[1/6]((q)) K* [ 1 /6] ((q)),

where the second map is the product on K* [1/6]((q)), induces a right MU * -module map

7 = A( ,ocan) :E/4 0,,,,u.mu,,xmo _.K * [ 1/6]((q )) .

Thus we have the following theorem proved by H. Miller [12].

Theorem 1.1 ([12]). There is a natural transformation

7(X): Ell*(X)-4 K*(X)[1/6]((q)),

which is multiplicative on f inite CW  complexes, such that:

1. 7(pt)= 7.
2. 7(CPx)(xE")= 0.(xK).

The above 7(X) is called elliptic character.
N ext w e construct Baker opera tion . L e t I  b e  a  p r im e . Consider th e  /+ 1

f(1)-test objects over Z[1/61, 1]((q )): (Tate(0, co 1 and (Tate(C; qi), co car) (11 c a n ,

where ( , denotes a primitive /-th root of un ity . T hese  1+ 1 f(1)-test objects yield
1+ 1 ring homomorphisms

2: Ell* —> Z[1/6/, M((q 1))

given by

A n= f f (T ate(q 1),l - l cocan) ( i=  0)A(J) (V fe Ell *).
f(Tate(C

W e also have 1+ 1 unique strict isomorphisms over Z[1/61, (,]((q I))

Bi : 2 * FE„:1 -  Ell
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since all formal group laws in question are the formal completion of the corresponding
Tate curves, which is canonically isomorphic to ,  with appropriate local parameter
(see [3]). (All chosen local parameters are the standard one except for the one for
20 .F51 ,  w hich is tw isted by 1- 1 .) Then the  /+  1  pa irs  (2e, Oi)  yield /+ 1 right
MU-module maps

Oi): Ell * 0 mu.MU,SMU)-> Z[1161, 0 ( 0 ) ,

where the MU-module  structure on Z[1 /6l, W ((0) is the one determined by the
ring homomorphism classifying the formal group law Let r,=-iE. <i<IA(Ai.
Then w e can prove that Ti (f01 )= (Td )(q ) for all fe E ll*  an d  tha t Im T , Im
(20Z[1 /l]), where

Ell* --+ Ell*[111]

is Hecke operator. Therefore T, can be viewed as a  right MU-module map

T1 : Ell * 0 m u . MU * (MU)--■ El1[1 l].

Applying the above general construction to this r, we have the following theorem
proved by A. Baker [3].

Theorem 1.2 ([3]). There is a natural transformation

T ,() :
 E l l* (X) -+ Ell *(X)[1 I

such that Ti(pt)=T I.

We will call this TAX) Baker operation.
We end this section by describing the composition of Baker operation with

elliptic character. Let

: Z((q)) --■ Z((q))

and

: Z((q))-■ Z[C,]((qT))

b e  the ring hom om orphism s g iv e n  b y  1/1(q)= qi a n d  U,,,(q)= (1
respectively. Let U, = +E Then V, and U, determine operations V,(X) and
U,(X) o n  K*(X)((q)) in  th e  obvious w a y . (Here remark that 1m U, c  Z((q)).) Let

WI(X): K*(X)-■ K*(X)[1I1]

be Adams operation.

Proposition 1.3. For any finite CW complex X we have a commutative diagram
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Too
Ell *(X) Ell *(A)[1//]

X(X)1 lx(x)

K*(X)[116]((q)) K*(X)[1 I 61]((q)),
r 1(q)(X)

where Ti(q)(X)=111'1(X)V,(X)+ (11(X).

To prove the proposition we need the following simple lem m a. Let R*(?), S*(?)
and T*(?) be Landweber exact cohomologies and

A 1(X) : R*(X) —■ S* (X)
and

A 2(X): S*(X) —■ T*(X)

be the natural transformations obtained from right MU-module maps

A1 : R * Omu*M U(M U) —) S *

and
A2: S* Omu*M U * (MU) -■ T *

respectively. Let A3 be the composite map

R* 06,
R,,,® mu .m. u ,,,0 10  -  R * 0 m u  *M U *WO® mu *MU *(MU)

Ai 0 mu (mu) A2

 S * O m u * MU * (M U )---.T * ,

where

A: M U(M U) —> MU *(MU)0 m u * MU *(M U)

is  the coproduct. Then A3 is  a  right M U-m odule m ap and  yields a  natural
transformation

A3(X): R*(X) T * (X ).

Lemma 1.4. For any finite CW  complex X  we have A 3 (X)= A 2 (X)A i (X).

P r o o f  Work with homology and simple diagram chasing.

Proof of 1.3. F i r s t  note that the natural transformation Ti(q)(X) can be obtained
from a certain right MU-module map

Ti(q): K * [1 /6]((q))® m u * MU * (MU) .— K [ 1  I61]((q))

as described bellow. Let
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Ii1 : K * K 11 11]

b e  the ring homomorphism given by V (0= It. Then there  is a unique strict
isomorphism

0:FK (41 ' Vd* Fic

over K*[1 I 1]((q)) given by

0(7)= l 1 [I]e .( 7 ) = t -  1 [(1 + IT)' — 1] e K*[1 I1]((q))[[T]].

Thus the pair (T 1 V1,0) determines a  right MU *-module map

ACV VI, 0): K [1 /6]((q))® m u * MU *(MU)--* K* [1 /61]((q)).

Also the pair (U ,,idF . )  determines a  right MU *-module map

A( id F K) : K [ 1 /6]((q))0 m v * MU * (M U )  K* [1 /6/, C,]((q+)).

Let TI(q) = +(A(T I VI,O)+Eii s iA(UlmidF„)). Then it is easy to see that Im Ti(q)g K *
[1/6/]((q)) and that the natural transformation obtained from this Tt(q) (viewed as
a  m ap to K [1 I 61]((q))) is +41/(X)V,(X)+ U M . (Note that A(tla VI , 0)(X) is a ring
homomorphism for finite X  such that MY' VI, 0)(0  =V  VI and

A(T I V,, 0)(CP')(x i c ) = 0(xK )

=1 - 1 t - 1 [(1+ tx K )' —1]

= 1111(CP')(x K ).)

Therefore, by the above lemma, it is sufficient to show that

7 (T , MU (M U))(Ell * 0 4 )=  Ti(q)(7® MU *(M U))(Ell * 0 A)

and this is equivalent to

(7( T , M  U *(M U)XE// * 0 A)) Q = (T,(q)(7() MU *(MU))(Ell * 0 A))0 Q.

Now for any a0bO1eM U * OzMU * O zQ =M U 4SMUYDzQ we have

A(a0b0 1) = a010b0 1 EMU * C) z MU * 0 zMU * 0 zQ

= MU,SMOOmu *M U * (AM O z Q .

Hence for any f® a®leEll * 0 z MU * 0 zQ = Ell * 0 me*MU * (M U)0 z Q we have

7(T,OM U *(M U))(Ell * 0 A )(f a)C) 1 = a-7T,(f)® 1,
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where • denotes the M U-action on K [ l
 /61]((q)). I f  fE E l l ' then

t - k (Tif)(q)

= t V l(f(q)) + U kf(q))) (see [8, Chapter 1])

= kf(q))+ kf(q))

=(+T I V1 + f(q))

= T 1(q)(t -  kf(q)0 1)

= T 1(q)(7(f)0 1)

= T1(q)(7(f 01)01).

Therefore

a • T,(f)® 1 = a • T1(q)(7(f 01)01)0 1

= TI(q)(7(f 0 1) 0 a)0 1

= T 1(q)(7 0 M U(MU))(Ell * C4 MVO a) 1

and hence we get

(7(7'10 MU * (M U))(Ell * (3, ADO Q = (T1(q)(70 M U * (MU))(Ell * 0 A) 0 Q.

This completes the proof.

Remark 1 .5 .  The commutativity of the diagram in Proposition 1.3 is similar to
the formula (7.3) in [11].

2. Recollections on elliptic cohomology of finite groups

In  this section we recall a  result on the modularity of elliptic character for
finite groups given in  [1 8 ] . L e t G  be a  finite group and BG be its classifying
space. Since K*(BG)=1im K*(BG,) for a filtration {BGi} on BG consisting of finite
subcomplexes and 7(B G ,) is multiplicative the map

7(BG): Ell *(BG) K *(B G )[1  /6]((q))

is a ring homomorphism. For a prime p let G p = fg eGlgPN  = 1 N» 01 and denote
by C p  the completion of the algebraic closure of the p-adic number field Qp . T h e n ,
by using the p-adic analogue of group character

(BG); Map G (G p , Cp )

based on Atiyah's isomorphism (see [5]), we have a natural ring homomorphism

A(BG) Xp(G)
Ell *(BG) K*(BG)[1 /6]((q)) 

— t G (G p , C p((q))).
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Here x (G ) is the composite map

K *(B G)=K (B G)-.10(B G)-* 10(B G); -M ap G (Gp ,Cp ),

where the first map is given by x (VxelC2k(BG)), and we assume p> 5. (From
now on we fix a prime 5.)

Let V(n)=V(Z p [Cp .], F(1)) be the ring of F(1)-generalizedp-adic modular functions
over B„= Zp [Cp ,1 (see [9, Chapter V ] and [4, C hapter I]). The ring V(n) is the
universal ring classifying trivialized elliptic curves over p-adic B a -algebras. We have
an injective q-expansion homomorphism

: V(n) B „((q))

given by A(f)=f(q)=f(Tate(q), cpc a n ) (Vf e V(n)), where B„((q)) is the p-adic completion
of B„((q)) and (Tate(q),(p na „) denotes the Tate curve over B„((q)) with canonical
trivialization

( N a n  = e 4,0 a n
i  :  Tate(q)= a

 a p  Ell = 6 *FIC.

(Here c is a ring homomorphism

6 :K *  Z

given by 6(t)=1.) For any fE V(n) and any a e Z ; we define an element [a]fe V(n)
by the formula

[a] f(E , cp)= f(E, a -  'q'),

where a - '  acts on yo via an automorphism of Gm . This gives a  group action of
Z i;  o n  V(n). L et Vk (n)={ fe V (n)i[a]f=a kf (V ae 1"„)} , where F„ = {a e Z; la 1(0).
We also have a ring homomorphism

Ell* --+ V(n)

which preserves q-expansions and hence is injective (see [9, Chapter V] and [4,
Chapter I]). When we regard Ell* as a subring of V(n) via this homomorphism

E u n iv  admits a  canonical trivialization over V(n)

(P u n iv  Ê u n iv
: 4

m

given by

(Puniv(n = e x P lo g F E „ M e  V(n)[[T]]

(see [18]).

Theorem 2.1 ([18]). For any  xeElP k (BG) and geG of  order if  there is a unique
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element feV - k (n) such that [4(G)(x)](g)=f(Tate(q),(p.).

3 .  Baker operation on elliptic cohomology of finite groups and Hecke operator

Let p> 5 be a prim e and 1 be a  different prim e. L et

T,:V(n)—)V(n)

be Hecke operator which is an extension of Hecke operator

T1 : Ell* —) E1111 11]

(see [4, Chapter II]). Then T, induces an  operation

TI : Vk(n) Vk (n)

for every k  since T , commutes with the action of  Z . B y  T h e o re m  2.1 for any
geG of order p" we can define a ring homomorphism

Ap (g): Ell""(BG)—)V(n)

by the formula

[4(G)(x)](g)=R,(g)(x)](q)= [4(g)(x)](Tate(q), (p. ) .

With this notation we have

Theorem 3.1. The following diagram

Taw)
E1121'(BG) Ell2k(BG)[1 11]

A p(g)i

V (n )

 

14(9)

V- k (n)

 

is commutative for every geG of  order p" and every k.

P ro o f  For xeEll2 k (BG) let

7(BG)(x)=t - kE a„q"eK2 k (BG)[1/6]((q)) (an er(B G)[1/6]).

By Proposition 1.3 we have a commutative diagram
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Ell2k(B0 E lp k w o [i/n

A(BG) .1X ( B G )

K21'(B0[1 I 6]((q)) K2k(BG)[1161]((q)),
TI(q)(BG)

since K*(BG)= limK*(BGi). Thus

[A p (g)Ti(BG)(x)](q)= [Ap(G)Ti(B0(x)](g)

=EXp(G)t(BG)TABG)(x)](g)

=[x p (G)Ti(q)(BG)I(BGXx)](g)

= EXp(G)(t k E„(1- k - 1 1̀1 '(BGXan )q"' + ap l q"))](g)

= 1-  k  l Enan (g)q"' +E n an I(g)q",

where a(g)=[x p (G)(a)](g) for aele(B G )[116]. On the other hand

[TiAp(g)(x)](q)= —

1  

[1](Ap(g)(x))(q1)+Ean1(g)q"
1

since

P p (g)(x)](q)=Ean(g)q"

(see [4, Chapter II]). Therefore

Ap (g)TABG)(x)= Tyl p (g)(x)

is equivalent to

Ean (g1)qn1 = ik([1]()10 (4 )(q i).

Let 01(g) and 4)2(g) be ring homomorphisms

49 1(g), 02 (g): Elleven(BG) Cp ((q))

given by

4)1(g)(x)=Ean(g)q"'

and

2 (g)(x)= 1
k ([1](A p(g)(x)))(q)

for xe Ell2 k (BG) with
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7(BG)(x)= t a„q" (a„ 10(BG)[1 /6]).

Then we have to  show that

(I) (OM = 02(g)(x) (3.2)

for a ll xeElln (BG) and geG  o f order p " .  To prove (3.2) first consider the case
G = Z/p"Z, g = g„ (the canonical generator of Z /p"Z) and x = XE" e E112 (BZ/p"Z). Let

7(BzipnzxxE")= ocanc"  =  t -  iE an q n (a„ele(BZ/p"Z)[1/6]).

Then, by the proof of Theorem 2.1 given in  [18], the righthand side of (3.2) is

i f f r i (A p (g A x Etiw v , _) /([/]Tuinlygpn - 1 ))(0

= 1(1- -  0)(0

=( (P,71(Cipn-

=E na„(4)e.

(Note that w*. univ = ( P can  =  * 1 9 ca rv )  Thus (3.2) holds in  this c a s e .  Since 0 1 ( g n )  and
0 2 (0  are continuous ring homomorphisms we have

i(g„)(x)= 02 (g „)(x)

for a ll xeEll21'(B Z /p"Z ). N ow  fo r  a  general G  and  geG  o f  order p" there  is a
unique homomorphism

ot: Z/p"Z -+ G

which sends g„ to  g. Hence for any xeE1121'(BG)

i(g)(x) = 4)1(00.))(x)

= 1( g .)((13a) * x)

= 02(g )((Ba)*x)

= 020000)

2(g)(-70.

This completes the proof.

Remark 3 .3 .  The commutativity of the diagram in  Theorem 3.1 suggests that
B aker operation could be constructed geom etrically i f  w e  h a v e  a  geometric
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construction of elliptic cohomology w hich explains the  re la tions between elliptic
cohomology of finite groups and theory of Thompson series appearing in Theorem 2.1.
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