On commutators of foliation preserving Lipschitz homeomorphisms

By

Kazuhiko FUKUI* and Hideki IMANISHI

Abstract

We consider the group of foliation preserving Lipschitz homeomorphisms of a Lipschitz foliated manifold. First we show that the identity component of the group of leaf preserving Lipschitz homeomorphisms of a Lipschitz foliated manifold is perfect. Next using this result we compute the first homology of the group of foliation preserving Lipschitz homeomorphisms of a codimension one C^2 -foliated manifold. Then we have results which are different from those of topological and differentiable cases.

1. Introduction

Let M be an m-dimensional connected Lipschitz manifold. A continuous map $f: M \to M$ is called a Lipschitz map if for any point p in M, there exist a local Lipschitz chart $(U_{\alpha}, \varphi_{\alpha})$ of M around p and a local Lipschitz chart $(U_{\beta}, \varphi_{\beta})$ of M around f(p) such that $f(U_{\alpha}) \subset U_{\beta}$ and $\varphi_{\beta} \circ f \circ \varphi_{\alpha}^{-1} : \varphi_{\alpha}(U_{\alpha}) \to \varphi_{\beta}(U_{\beta})$ is Lipschitz. We denote by $C_{LIP}(M, M)$ the set of all Lipschitz mappings from M to M. A homeomorphism $f: M \to M$ is called a Lipschitz homeomorphism if both f and f^{-1} are Lipschitz. We denote by $C_{LIP}(M, M)$ the space of all Lipschitz maps from M to M with the compact open Lipschitz topology (see Section 2) and by $\mathcal{H}_{LIP}(M)$ the subspace of $C_{LIP}(M, M)$ which consists of Lipschitz homeomorphisms of M with compact support.

In this note we treat certain subgroups of $\mathcal{H}_{LIP}(M)$. Let $\mathbf{R}^m = \{(x_1, \ldots, x_m) \mid x_i \in \mathbf{R}\}$ be an *m*-dimensional Euclidean space and \mathcal{F}_0 the *p*-dimensional foliation of \mathbf{R}^m whose leaves are defined by $x_{p+1} = constant, \ldots, x_m = constant$ $(1 \leq p \leq m)$. A *p*-dimensional Lipschitz foliation \mathcal{F} of M is defined to be a maximal set of local Lipschitz charts : $\{(U_\alpha, \varphi_\alpha), U_\alpha \text{ is open in } M, \varphi_\alpha : U_\alpha \rightarrow \varphi_\alpha(U_\alpha)(\subset \mathbf{R}^m), \alpha \in A\}$ of M such that $\varphi_\alpha \circ \varphi_\beta^{-1} : \varphi_\beta(U_\alpha \cap U_\beta) \rightarrow \varphi_\alpha(U_\alpha \cap U_\beta)$ preserves the leaves of foliations which are restrictions of \mathcal{F}_0 to $\varphi_\beta(U_\alpha \cap U_\beta)$ and $\varphi_\alpha(U_\alpha \cap U_\beta)$.

²⁰⁰⁰ Mathematics Subject Classification(s). Primary 58D05.

Communicated by Prof. A. Kono, March 14, 2000

Revised 5 July, 2000

^{*}This research was partially supported by Grant-in-Aid for Scientific Research (No. 12640094), Ministry of Education, Science and Culture, Japan.

A Lipschitz homeomorphism $f: M \to M$ is called a foliation preserving Lipschitz homeomorphism (resp. a leaf preserving Lipschitz homeomorphism) if for each point x of M, the leaf through x is mapped into the leaf through f(x)(resp. x), that is, $f(L_x) = L_{f(x)}$ (resp. $f(L_x) = L_x$), where L_x is the leaf of \mathcal{F} which contains x. Let $\mathcal{H}_{LIP}(M, \mathcal{F})$ (resp. $\mathcal{H}_{LIP,L}(M, \mathcal{F})$) denote the group of foliation (resp. leaf) preserving homeomorphisms of (M, \mathcal{F}) which are isotopic to the identity by foliation (resp. leaf) preserving Lipschitz homeomorphisms fixed outside a compact set.

In Section 2, we consider the homologies of $\mathcal{H}_{LIP,L}(M,\mathcal{F})$, that is, the homology groups of the group $\mathcal{H}_{LIP,L}(M,\mathcal{F})$ and show that the homologies of $\mathcal{H}_{LIP,L}(\mathbf{R}^m,\mathcal{F}_0)$ vanish in all dimension > 0. This is an analogy to Theorem 2.1 of [F-I] which is a generalization of a result of Mather [M].

In Section 3, first we show that any $f \in \mathcal{H}_{LIP,L}(M, \mathcal{F})$ can be expressed as $f = f_k \circ f_{k-1} \circ \cdots \circ f_1$, where each f_i is a leaf preserving Lipschitz homeomorphism with support in a small ball. Next we show using this result and the result in Section 2 that $\mathcal{H}_{LIP,L}(M, \mathcal{F})$ is perfect for a compact Lipschitz foliated manifold (M, \mathcal{F}) . Furthermore by an argument similar to that in [A-F] we can show that $\mathcal{H}_{LIP,L}(M, \mathcal{F})$ is locally contractible.

In Section 4, we compute the first homology of $\mathcal{H}_{LIP}(M, \mathcal{F})$ for a codimension one C^2 -foliated manifold (M, \mathcal{F}) . For the case that \mathcal{F} has no dense components, we have the same result as that in topological case (Theorem 4.4), which is different from that in differentiable case. For the case that \mathcal{F} has a dense component, we have a phenomenon different from that in topological case (Theorem 4.7).

The authors would like to thank the referee for pointing out a gap in the proof of Theorem 4.4 and for helpful suggestions. Example 4.5 is due to the referee.

2. Compact open Lipschitz topology and homologies of $\mathcal{H}_{LIP,L}(\mathbf{R}^m, \mathcal{F}_0)$

We recall the definitions of a Lipschitz manifold, a Lipschitz map and the compact open Lipschitz topology on $\mathcal{H}_{LIP}(M)$ (cf. [A-F]). Let M be an m-dimensional topological manifold. By a Lipschitz atlas on M we mean a maximal family $\mathcal{S} = \{(U_{\alpha}, \varphi_{\alpha})\}_{\alpha \in A}$ of pairs $(U_{\alpha}, \varphi_{\alpha})$ of open sets U_{α} in Mand homeomorphisms φ_{α} of U_{α} to $\varphi_{\alpha}(U_{\alpha})$ in \mathbb{R}^m satisfying the following : (i) $\{U_{\alpha}\}_{\alpha \in A}$ covers M and (ii) If $U_{\alpha} \cap U_{\beta} \neq \emptyset$, the transition function $\varphi_{\beta} \circ \varphi_{\alpha}^{-1}$: $\varphi_{\alpha}(U_{\alpha} \cap U_{\beta}) \to \varphi_{\beta}(U_{\alpha} \cap U_{\beta})$ from an open set of \mathbb{R}^m to an open set of \mathbb{R}^m is Lipschitz. We call (M, \mathcal{S}) a Lipschitz manifold and simply write M instead of (M, \mathcal{S}) .

Let M, N be two Lipschitz manifolds. A continuous map $f : M \to N$ is called a Lipschitz map if for any point p in M, there exist a local chart $(U_{\alpha}, \varphi_{\alpha})$ of M around p and a local chart $(V_{\lambda}, \psi_{\lambda})$ of N around f(p) such that $f(U_{\alpha}) \subset V_{\lambda}$ and $\psi_{\lambda} \circ f \circ \varphi_{\alpha}^{-1} : \varphi_{\alpha}(U_{\alpha}) \to \psi_{\lambda}(V_{\lambda})$ is Lipschitz. We denote by $C_{LIP}(M, N)$ the set of all Lipschitz mappings from M to N.

Let $\{(U_{\alpha}, \varphi_{\alpha})\}_{\alpha \in A}$ and $\{(V_{\lambda}, \psi_{\lambda})\}_{\lambda \in \Lambda}$ be Lipschitz atlases on M and N respectively. Let K_{α} be a compact subset of U_{α} for each $\alpha \in A$ such that the fam-

ily {int K_{α} } $_{\alpha \in A}$ covers M. Let $f \in C_{LIP}(M, N)$. We take a local chart $(V_{\lambda}, \psi_{\lambda})$ on N such that $f(K_{\alpha}) \subset V_{\lambda}$. For $\epsilon_{\alpha} > 0$, we let $\mathcal{N}^{LIP}(f, (U_{\alpha}, \varphi_{\alpha}), (V_{\lambda}, \psi_{\lambda}), \epsilon_{\alpha}, K_{\alpha})$ be the set of all $g \in C_{LIP}(M, N)$ such that $g(K_{\alpha}) \subset V_{\lambda}$ and $lip(f-g) < \epsilon_{\alpha}$, where $lip(f-g) < \epsilon_{\alpha}$ means that

$$||\psi_{\lambda} \circ f \circ \varphi_{\alpha}^{-1}(x) - \psi_{\lambda} \circ g \circ \varphi_{\alpha}^{-1}(x)|| < \epsilon_{\alpha}$$

and

$$||(\psi_{\lambda} \circ f \circ \varphi_{\alpha}^{-1}(x) - \psi_{\lambda} \circ g \circ \varphi_{\alpha}^{-1}(x)) - (\psi_{\lambda} \circ f \circ \varphi_{\alpha}^{-1}(y) - \psi_{\lambda} \circ g \circ \varphi_{\alpha}^{-1}(y))|| < \epsilon_{\alpha} ||x - y||$$

for distinct $x, y \in K_{\alpha}$. The sets $\mathcal{N}^{LIP}(f, (U_{\alpha}, \varphi_{\alpha}), (V_{\lambda}, \psi_{\lambda}), \epsilon_{\alpha}, K_{\alpha})$ form a subbasis for a topology on $C_{LIP}(M, N)$. We call this topology the *compact* open Lipschitz topology.

A homeomorphism $f: M \to M$ is called a Lipschitz homeomorphism if f and f^{-1} are Lipschitz. We denote by $\mathcal{H}_{LIP}(M)$ the group of all Lipschitz homeomorphisms of M with compact support (as a subspace of $C_{LIP}(M, M)$ endowed with the compact open Lipschitz topology).

Let $\mathbf{R}^m = \{(x_1, \ldots, x_m) \mid x_i \in \mathbf{R}\}$ be an *m*-dimensional Euclidean space and \mathcal{F}_0 the *p*-dimensional foliation of \mathbf{R}^m whose leaves are defined by $x_{p+1} = constant, \ldots, x_m = constant \ (1 \leq p \leq m)$. A *p*-dimensional Lipschitz foliation \mathcal{F} of a Lipschitz manifold *M* is defined to be a maximal set of Lipschitz charts $\{(U_\alpha, \varphi_\alpha)\}_{\alpha \in A}$ of *M* such that $\varphi_\alpha \circ \varphi_\beta^{-1} : \varphi_\beta(U_\alpha \cap U_\beta) \to \varphi_\alpha(U_\alpha \cap U_\beta)$ preserves the leaves of foliations which are restrictions of \mathcal{F}_0 to $\varphi_\beta(U_\alpha \cap U_\beta)$ and $\varphi_\alpha(U_\alpha \cap U_\beta)$.

Let (M, \mathcal{F}) be a Lipschitz foliated manifold. We denote by $\mathcal{H}_{LIP}(M, \mathcal{F})$ (resp. $\mathcal{H}_{LIP,L}(M, \mathcal{F})$) the identity component of the subgroup of $\mathcal{H}_{LIP}(M)$ which consists of foliation (resp. leaf) preserving Lipschitz homeomorphisms of (M, \mathcal{F}) (as the subspace of $\mathcal{H}_{LIP}(M)$).

By an argument similar to those in the proofs of Theorem 2.1 of [F-I] and Theorem 2.2 of [A-F], we have the following:

Theorem 2.1. The homology groups $H_r(\mathcal{H}_{LIP,L}(\mathbf{R}^m, \mathcal{F}_0)) = 0$ for r > 0.

Corollary 2.2. $\mathcal{H}_{LIP,L}(\mathbf{R}^m, \mathcal{F}_0)$ is a perfect group.

Proof. This is an immediate consequence of Theorem 2.1 because that $H_1(G) \cong G/[G,G]$ for any group G.

3. Commutators of leaf preserving Lipschitz homeomorphisms

In this section we consider commutators of $\mathcal{H}_{LIP,L}(M, \mathcal{F})$. Let (M, \mathcal{F}) be a compact Lipschitz foliated manifold. We take a local foliated chart $(U_{\alpha}, \varphi_{\alpha})$ on M, that is, for coordinate $(x, y) = (x_1, \ldots, x_p, y_1, \ldots, y_{m-p})$, the set $\{(x, y) \in U_{\alpha} \mid y_1 = c_1, \ldots, y_{m-p} = c_{m-p}\}$ gives a connected component of a leaf of \mathcal{F} and identify U_{α} with an open subset of \mathbf{R}^m via φ_{α} , and take relatively compact

open subsets W_1 , W_2 of U_α such that $\bar{W}_2 \subset W_1$. Then the metric on \bar{W}_1 may be considered as the Euclidean metric. Furthermore we take a Lipschitz function $\mu_\alpha : U_\alpha \to [0,1]$ such that $\mu_\alpha = 1$ on \bar{W}_2 and $\mu_\alpha = 0$ outside of \bar{W}_1 . For any $f \in \mathcal{N}^{LIP}(1_M, (U_\alpha, \varphi_\alpha), (U_\alpha, \varphi_\alpha), \epsilon, \bar{W}_1) \cap \mathcal{H}_{LIP,L}(M, \mathcal{F}), f$ has the form $f(x, y) = (f_1(x, y), y)$. Then we define a map $f_\alpha : M \to M$ by

$$f_{\alpha}(x,y) = \begin{cases} (x,y) + (\mu_{\alpha}(x,y)(f_{1}(x,y) - x), 0) & \text{for} \quad (x,y) \in U_{\alpha} \\ (x,y) & \text{for} \quad (x,y) \notin U_{\alpha} \end{cases}$$

Then we have the following:

Proposition 3.1. If $p(1 + lip(\mu_{\alpha}))\epsilon < 1$, then f_{α} is a leaf preserving Lipschitz homeomorphism which is isotopic to 1_M through leaf preserving Lipschitz homeomorphisms, that is, $f_{\alpha} \in \mathcal{H}_{LIP,L}(M, \mathcal{F})$.

Proof. For distinct $(x, y), (x', y') \in \overline{W}_1$, we have

$$\begin{aligned} ||\mu_{\alpha}(x,y)(f_{1}(x,y)-x)-\mu_{\alpha}(x',y')(f_{1}(x',y')-x')|| \\ &\leq ||\mu_{\alpha}(x,y)(f_{1}(x,y)-x)-\mu_{\alpha}(x,y)(f_{1}(x',y')-x')|| \\ &+ ||\mu_{\alpha}(x,y)(f_{1}(x',y')-x')-\mu_{\alpha}(x',y')(f_{1}(x',y')-x')|| \\ &= |\mu_{\alpha}(x,y)|\cdot ||f_{1}(x,y)-x-(f_{1}(x',y')-x')|| \\ &+ |\mu_{\alpha}(x,y)-\mu_{\alpha}(x',y')|\cdot ||f_{1}(x',y')-x'|| \\ &< \epsilon \cdot ||(x,y)-(x',y')|| + lip(\mu_{\alpha})\epsilon \cdot ||(x,y)-(x',y')||. \end{aligned}$$

Putting $\mu_{\alpha}(x, y)(f_1(x, y) - x) = (u_1(x, y), \dots, u_p(x, y))$, we have $lip(u_i) < 1/p$ for each *i*. We define maps $f_{\alpha}^i : U_{\alpha} \to U_{\alpha} \ (i = 1, \dots, p)$ by $f_{\alpha}^1(x_1, \dots, x_p, y_1, \dots, y_{m-p}) = (x_1 + u_1(x, y), \dots, x_p, y_1, \dots, y_{m-p})$ and $f_{\alpha}^i(x_1, \dots, x_p, y_1, \dots, y_{m-p}) = (x_1, \dots, x_{i-1}, x_i + u_i((f_{\alpha}^{i-1} \circ \dots \circ f_{\alpha}^1)^{-1}(x, y)), x_{i+1}, \dots, x_p, y_1, \dots, y_{m-p})$ for $i = 2, \dots, p$. By an argument similar to that in the proof of Proposition 4.2 of [A-F], we can prove by induction that each f_{α}^i is a leaf preserving Lipschitz homeomorphism which is isotopic to 1_M through leaf preserving Lipschitz homeomorphisms. Since $f_{\alpha} = f_{\alpha}^p \circ f_{\alpha}^{p-1} \circ \dots \circ f_{\alpha}^1$, we have $f_{\alpha} \in \mathcal{H}_{LIP,L}(M, \mathcal{F})$. This completes the proof.

Corollary 3.2 (fragmentation lemma). For any $f \in \mathcal{H}_{LIP,L}(M, \mathcal{F})$, there are $f_i \in \mathcal{H}_{LIP,L}(M, \mathcal{F})$ (i = 1, 2, ..., k) such that $f = f_k \circ f_{k-1} \circ \cdots \circ f_1$ and the support of each f_i is contained in a small ball.

Proof. This follows from Proposition 3.1 because of the compactness of M.

Corollary 3.3. $\mathcal{H}_{LIP,L}(M,\mathcal{F})$ is locally contractible.

Proof. This is an immediate consequence of Proposition 3.1 and Corollary 3.2. $\hfill \square$

Theorem 3.4. $\mathcal{H}_{LIP,L}(M,\mathcal{F})$ is perfect.

Proof. Let $f \in \mathcal{H}_{LIP,L}(M,\mathcal{F})$. We may assume that f is close to the identity. From Corollary 3.2, we have $f = f_k \circ f_{k-1} \circ \cdots \circ f_1$, where each f_i is a leaf preserving Lipschitz homeomorphism whose support is contained in a small ball. Hence we can assume that $f_i \in \mathcal{H}_{LIP,L}(\mathbf{R}^m, \mathcal{F}_0)$ for each i. From Corollary 2.2, we have that f_i is in the commutator subgroup of $\mathcal{H}_{LIP,L}(\mathbf{R}^m, \mathcal{F}_0)$ and hence f is in the commutator subgroup of $\mathcal{H}_{LIP,L}(\mathbf{M}, \mathcal{F})$. Thus $\mathcal{H}_{LIP,L}(M, \mathcal{F})$ is perfect.

4. $H_1(\mathcal{H}_{LIP}(\mathcal{F}))$ for codimension one foliations

In this section, we consider the first homology of $\mathcal{H}_{LIP}(M, \mathcal{F})$ for a codimension one foliation \mathcal{F} . Let M be a compact C^2 -manifold without boundary and \mathcal{F} a codimension one C^2 -foliation of M. Hereafter we simply write $\mathcal{H}_{LIP}(\mathcal{F}), \mathcal{H}_{LIP,L}(\mathcal{F})$ instead of $\mathcal{H}_{LIP}(M, \mathcal{F}), \mathcal{H}_{LIP,L}(M, \mathcal{F})$ respectively.

There exists a one dimensional C^2 -foliation \mathcal{T} of M transverse to \mathcal{F} . Then we have the following:

Lemma 4.1. Let f be an element of $\mathcal{H}_{LIP}(\mathcal{F})$ sufficiently close to the identity. Then f is uniquely decomposed as $f = g \circ h$, where h (resp. g) is an element of $\mathcal{H}_{LIP}(\mathcal{F}) \cap \mathcal{H}_{LIP,L}(\mathcal{T})$ (resp. $\mathcal{H}_{LIP,L}(\mathcal{F})$) and h and g are also close to the identity.

Proof. The existence of g and h follows from Lemma 4.1 of [F-I]. For coordinate $(x, y) = (x_1, \ldots, x_{m-1}, y)$ on a foliated chart U, we may assume that \mathcal{F} is defined by y = constant and \mathcal{T} is defined by $x_1 = constant, \ldots, x_{m-1} = constant$. Thus f has the form $f(x, y) = (f_1(x, y), f_2(y))$ locally. Then h has the form $h(x, y) = (x, f_2(y))$. Hence h is Lipschitz and is close to the identity and g is also so.

Lemma 4.2 (Lemma 4.2 of [F-I]). Let f be an element of $\mathcal{H}_{LIP}(\mathcal{F})$ and L a leaf of \mathcal{F} . If $f(L) \neq L$, then the holonomy group of L is trivial.

We define the subset S_0 of M by

 $S_0 = \{x \in M \mid \text{there exists an element } f \text{ of } \mathcal{H}_{LIP}(\mathcal{F}) \text{ such that } f(L_x) \neq L_x\}.$

By definition, S_0 is an open \mathcal{F} -saturated set and by Lemma 4.2, all leaves in S_0 have trivial holonomy.

Theorem 4.3 (see Theorem 4.3 of [F-I]). Let S be a connected component of S_0 . Then clearly S is invariant under the action of $\mathcal{H}_{LIP}(\mathcal{F})$ and S is one of the following three types:

Type P : S is homeomorphic to $L \times (0,1)$ and the foliations $\mathcal{F} \mid_S$ and $\mathcal{T} \mid_S$ correspond to the product structure of $L \times (0,1)$.

Type R : There exists a closed transversal curve C in S such that C meets each leaf of $\mathcal{F}|_S$ at exactly one point and the natural map

$$p: S \to C, \quad p(x) = L_x \cap C$$

is a fibration and $\mathcal{T} \mid_{S}$ is a connection of the fibration p.

Type D : All leaves of \mathcal{F} in S are dense in S and there exists a topological flow $\{\varphi_t\}$ on S which preserves $\mathcal{F}|_S$ and whose orbits are leaves of $\mathcal{T}|_S$.

Then following Theorem 4.6 of [F-I], we have:

Theorem 4.4. Let \mathcal{F} be a codimension one C^2 -foliation of a compact C^2 -manifold M. Suppose that \mathcal{F} has no components of Type D and has only a finite number of components of type R. Then $\mathcal{H}_{LIP}(\mathcal{F})$ is perfect.

Proof. We can suppose that the transverse foliation \mathcal{T} is defined by a C^2 vector field X and on each Type R component S, X has a closed orbit C of period 1 which satisfies the condition of Type R. We make the convention that t is the first component of any local coordinate compatible with the foliation satisfying $\partial/\partial t = fX$, where f is a function which is 1 on C, and differentiations with respect to t will be denoted by ' (prime).

For a Type R component S, we can define an flow $\{\varphi_s\}$ on S by the C^1 vector field $(1/p^*dt(X))X$, then $\{\varphi_s\}$ is \mathcal{F} -preserving and from the relation $p(\varphi_s(x)) = p(x) + s$, we have the formula $\varphi_s'(x) = p'(x)/p'(\varphi_s(x))$.

Assertion. φ_s' are bounded on S uniformly for $|s| \leq 1$.

Proof. Since φ_1 (or possibly φ_k) generates the holonomy of a leaf in $\partial \overline{S}$, φ_1 is of class C^2 on \overline{S} . In particular $\log(\varphi_1')$ has bounded variation. Let K be a compact subset of S such that $\{\varphi_s\}$ -orbit of K is S, then φ_s' are bounded on K and $|s| \leq 1$. For $x \notin K$ we have $\varphi_n(x) \in K$ (or possibly $\varphi_{-n}(x) \in K$) for a positive integer n. Since $p = p \circ \varphi_n = p \circ (\varphi_1)^n$, we have

 $\left|\log \varphi_s'(x)\right|$

$$\leq |\log p'(\varphi_n(x)) - \log p'(\varphi_{n+s}(x))| + \sum_{k=0}^{n-1} |\log \varphi_1'(\varphi_k(x)) - \log \varphi_1'(\varphi_{k+s}(x))|.$$

Therefore the assertion holds.

Proof of Theorem 4.4 continued. We have a homomorphism $p_*:\mathcal{H}_{LIP}(\mathcal{F}|_S)$ $\rightarrow \mathcal{H}_{LIP}(C)$ defined by $p_*(f) = f|_C (=\bar{f})$ for $f \in \mathcal{H}_{LIP}(\mathcal{F}|_S)$. We assert that p_* is surjective. Let \bar{f} be an element of $\mathcal{H}_{LIP}(C)$, then we lift \bar{f} to a foliation preserving homeomorphism f of S by $f(x) = \varphi_{s(x)}(x)$, where $s(x) = \bar{f}(p(x)) - p(x)$. Since \bar{f} is Lipschitz, \bar{f} is almost everywhere differentiable and $\bar{f'}$ is bounded. To prove that f is Lipschitz, it is sufficient to prove that f'exists a.e. and is bounded. From the relation $p(f(x)) = \bar{f}(p(x))$, it is easy to

see that $f'(x) = (p'(x)/p'(\varphi_{s(x)}(x)))\bar{f}'(p(x)) = \varphi_{s(x)}'(x)\bar{f}'(p(x))$. Since $\varphi_{s'}(x)$ is bounded for $x \in S$ and $|s| \leq 1$, so f'(x) exists a.e. and is bounded. This proves that p_* is surjective.

Since $\mathcal{H}_{LIP}(C)$ is perfect (Theorem 4.6 of [A-F]), we have that for any $f \in$ $\mathcal{H}_{LIP}(\mathcal{F}|_{\bar{S}}), \bar{p}_*(f)$ is expressed as the product of commutators $\prod_{i=1}^{v} [\bar{f}_{2i-1}, \bar{f}_{2i}],$ where $\bar{f}_i \in \mathcal{H}_{LIP}(C)$, and we can lift \bar{f}_i to $f_i \in \mathcal{H}_{LIP}(\mathcal{F}|_{\bar{S}})$ (i = 1, ..., 2v) with $f_i|_{\partial \bar{S}} = identity$. Then $f \circ (\prod_{i=1}^v [f_{2i-1}, f_{2i}])^{-1}$ is in the kernel of p_* which is $\mathcal{H}_{LIP,L}(\mathcal{F} \mid_{\bar{S}}).$

From Theorem 4.3, for a Type P component S, we have $S \cong L \times (0, 1)$, hence $\bar{S} \cong L \times [0, 1]$. Then we have the surjective homomorphism $\pi : \mathcal{H}_{LIP}(\mathcal{F}|_{\bar{S}})$ $\rightarrow \mathcal{H}_{LIP}([0,1])$. T. Tuboi [T] showed that $\mathcal{H}_{LIP}([0,1])$ is uniformly perfect. Thus for any $f \in \mathcal{H}_{LIP}(\mathcal{F}|_{\bar{S}}), \pi(f)$ is expressed as the product of commutators $\prod_{i=1}^{u} [\bar{f}_{2i-1}, \bar{f}_{2i}]$, where $\bar{f}_i \in \mathcal{H}_{LIP}([0, 1])$ and u is the positive integer which does not depend on Type P components. Since π is surjective, we can show by an argument similar to that in the proof of a Type R component that for any $f \in \mathcal{H}_{LIP}(\mathcal{F}|_{\bar{S}}), f \circ (\prod_{i=1}^{u} [f_{2i-1}, f_{2i}])^{-1} \text{ is in } \mathcal{H}_{LIP,L}(\mathcal{F}|_{\bar{S}}).$ Hence by Theorem 3.4, $\mathcal{H}_{LIP}(\mathcal{F})$ is perfect. This completes the proof.

The following example shows that the homomorphism p_* is not necessarily surjective for a Type R component of class C^1 .

Example 4.5. Let h be a diffeomorphism of [0, 1] which is tangent to the identity at 0.1 and satisfies the condition h(t) > t for $t \in (0,1)$. Let I be the interval (1/2, h(1/2)), Φ a diffeomorphism of I onto **R** and let X and Y be vector fields on I defined by $\Phi_* X = x(\partial/\partial x)$ and $\Phi_* Y = \partial/\partial x$. Then the flows $\{f_s\}$ and $\{g_t\}$ on I defined by X and Y respectively satisfies the relation $f_s \circ g_t \circ f_{-s} = g_{te^s}$. We define $f_s(x) = g_t(x) = x$ for $x \in [0,1] \setminus I$, then, by a suitable choice of Φ , we can suppose that f_s and g_t are diffeomorphisms of [0,1]. For any sequences s_n and t_n , we define homeomorphisms F and G of [0, 1] by

$$F = h \prod_{n = -\infty}^{\infty} h^n \circ f_{s_n} \circ h^{-n}, \quad G = \prod_{n = -\infty}^{\infty} h^n \circ g_{t_n} \circ h^{-n}.$$

We choose the sequence $\{s_n\}$ so that we have $\lim_{n\to\pm\infty} s_n = 0$, $\sum_{n=0}^{\infty} s_n = \infty$, and $\sum_{n=0}^{\infty} s_{-n} = -\infty$, then F is of class C^1 . We define t_n by $e^{s_n}t_n = t_{n+1}$ $(t_1 = 1)$, then we have $F \circ G = G \circ F$ and G is not Lipschitz since $\lim_{n \to \pm \infty} t_n$ $=\infty$. We consider \mathcal{F} the foliated [0,1]-bundle over S^1 with the holonomy F, then \mathcal{F} is of Type R and of class C^1 . G defines an \mathcal{F} -preserving homeomorphism q on $[0,1] \times S^1$ and $p_*(q) = \bar{q}$ is smooth but \bar{q} does not lift to an \mathcal{F} -preserving Lipschitz homeomorphism of $[0, 1] \times S^1$.

From Theorem 4.4, we see that $\mathcal{H}_{LIP}(S^3, \mathcal{F}_R)$ is perfect Remark 4.6. for the Reeb foliation \mathcal{F}_R of S^3 . In contrast with Lipschitz case, differentiable case has a different phenomenon as follows. Let $F^r(S^3, \mathcal{F}_R)$ be the group of foliation preserving C^r -diffeomorphisms of (S^3, \mathcal{F}_R) isotopic to the identity

through foliation preserving diffeomorphisms. Then Lemma 1 of [F-U] implies that $F^r(S^3, \mathcal{F}_R)$ is not perfect for $r \geq 1$.

For a Type D component S, the flow $\{\varphi_t\}$ is defined as follows (see [I]). Let C be a closed transversal curve of $\mathcal{F} \mid_S$ and we suppose that C is a \mathcal{T} -orbit. Then, for a leaf L of $\mathcal{F} \mid_S$, $G = C \cap L$ has a structure of abelian group and Gacts on C as the holonomy transformation group. Since all G-orbits are dense, there exists a homeomorphism h of C such that G is included in $h^{-1} \circ SO(2) \circ h$ and we call h, which is unique up to rotations of C, the linearization map of the holonomy transformations. We define a flow $\{\varphi_t\}$ on C by $\{h^{-1} \circ R_t \circ h\}$, where R_t is the rotation of C of angle $2\pi t$, and we extend $\{\varphi_t\}$ to a flow on Sby using holonomy maps.

We define a submodule Per(S) of **R** by

$$Per(S) = \{t \in \mathbf{R} \mid \varphi_t(L) = L \text{ for one and all leaves } L \text{ in } S\}.$$

Then we have the following:

Theorem 4.7. Let S be a Type D component and suppose the linearization map h is not absolutely continuous, then $\mathcal{H}_{LIP}(\mathcal{F}|_S)$ coincides with $\mathcal{H}_{LIP,L}(\mathcal{F}|_S)$.

Proof. Suppose that there exists an element f of $\mathcal{H}_{LIP}(\mathcal{F} |_S) - \mathcal{H}_{LIP,L}(\mathcal{F} |_S)$ and let $\{f_t\}$ be an isotopy in $\mathcal{H}_{LIP}(\mathcal{F} |_S)$ and, by restriction, we consider that $\{f_t\}$ is in $\mathcal{H}_{LIP}(C)$. Then we can write $f_t = h^{-1} \circ R_{\alpha(t)} \circ h$, where α is a continuous function of [0, 1] onto $[0, \alpha]$. Since f_1 is Lipschitz and h is not absolutely continuous, by Proposition (1.2) of [H](CHAP. XII), we see that h and h^{-1} are almost everywhere differentiable and we have h'(x) = 0 (a.e.), $(h^{-1})'(x) = 0$ (a.e.). We choose points x_1, x_2 of C and an angle β so that $h'(x_1) = 0, (h^{-1})'(x_2) = 0$ and $R_{\beta}(h(x_1)) = x_2$. Moreover we can choose x_2 near to $h(x_1)$ and β sufficiently small. Then for some t_1 , we have $\alpha(t_1) = \beta$, $f_{t_1} = h^{-1} \circ R_{\beta} \circ h$ and $f'_{t_1}(x_1) = 0$. Since $f_{t_1}^{-1}$ is Lipschitz, this is a contradiction.

Theorem 4.8. Let S be a Type D component and suppose the linearization map h is a C¹-diffeomorphism, then there exists a surjection π of $H_1(\mathcal{H}_{LIP}(\mathcal{F}))$ to $\mathbf{R}/Per(S)$.

Proof. In this case the flow $\{\varphi_t\}$ is a one parameter subgroup of $\mathcal{H}_{LIP}(\mathcal{F}|_S)$ and the proof is the same as that of Theorem 4.3 of [F-I]. \Box

Theorem 4.9. Let \mathcal{F} be a foliation of a torus T^m defined by a 1-form $\omega = \sum a_i dx_i$. If one of a_i/a_j is irrational, then $H_1(\mathcal{H}_{LIP}(\mathcal{F}))$ is isomorphic to $\mathbf{R}/a_1\mathbf{Z} + \cdots + a_m\mathbf{Z}$.

Proof. The proof is same as in the proof of Theorem 4.10 of [F-I].

Remark 4.10. By Theorem (3.6) of [H](CHAP. XII), there exists a C^{∞} -foliation \mathcal{F}' which is topologically equivalent to \mathcal{F} of Theorem 4.9 for a suitable $\{a_i\}$ with non absolutely continuous linearization map, therefore by Theorem 3.4 and Theorem 4.7, we have $H_1(\mathcal{H}_{LIP}(\mathcal{F}')) = 0$. We also remark that if \mathcal{F} is $C^r(r \geq 3)$ and Per(S) contains an irrational number which satisfies a Diophantine condition, then the linearization map h is differentiable (see [Y]).

DEPARTMENT OF MATHEMATICS KYOTO SANGYO UNIVERSITY KYOTO 603-8555, JAPAN e-mail: fukui@cc.kyoto-su.ac.jp

FACULTY OF INTEGRATED HUMAN STUDIES KYOTO UNIVERSITY KYOTO 606-8501, JAPAN e-mail: imanishi@math.h.kyoto-u.ac.jp

References

- [A-F] K. Abe and K. Fukui, On the structure of the group of Lipschitz homeomorphisms and its subgroups, J. Math. Soc. Japan, 53-3 (2001), 501–511.
- [F-I] K. Fukui and H. Imanishi, On commutators of foliation preserving homeomorphisms, J. Math. Soc. Japan, 51-1 (1999), 227–236.
- [F-U] K. Fukui and S. Ushiki, On the homotopy type of $FDiff(S^3, \mathcal{F}_R)$, J. Math. Kyoto Univ., **15**-1 (1975), 201–210.
- [H] M. R. Herman, Sur la conjugaison différentiable des difféomorphismes du cercle à des rotations, Publ. I.H.E.S., 49 (1979), 5–233.
- H. Imanishi, On the theorem of Denjoy-Sacksteder for codimension one foliations without holonomy, J. Math. Kyoto Univ., 14 (1974), 607–634.
- [M] J. N. Mather, The vanishing of the homology of certain groups of homeomorphisms, Topology, 10 (1971), 297–298.
- [S] L. C. Siebenmann, Deformations of homeomorphisms on stratified sets, Comment. Math. Helv., 47 (1972), 123–163.
- [T] T. Tsuboi, On the perfectness of groups of diffeomorphisms of the interval tangent to the identity at the endpoints, preprint.
- [Y] J. C. Yoccoz, Conjugaison différentiable des difféomorphismes du cercle dont le nomble de rotation vérifie une condition Diophantienne, Ann. Sci. Éc. Norm. Sup., 17 (1984), 333–359.