Fold-maps and the space of base point preserving maps of spheres

By

Yoshifumi Ando*

Abstract

Let $f: N \to P$ be a smooth map between *n*-dimensional oriented manifolds which has only fold singularities. Such a map is called a fold-map. For a connected closed oriented manifold P, we shall define a fold-cobordism class of a fold-map into P of degree m under a certain cobordism equivalence. Let $\Omega_{fold,m}(P)$ denote the set of all foldcobordism classes of fold-maps into P of degree m. Let F^m denote the space $\lim_{k\to\infty} F_k^m$, where F_k^m denotes the space of all base point preserving maps of degree m of S^{k-1} . In this paper we shall prove that there exists a surjection of $\Omega_{fold,m}(P)$ to the set of homotopy classes $[P, F^m]$, which induces many fold-cobordism invariants.

Introduction

Let N and P be smooth (C^{∞}) manifolds of dimension n. We shall say that a smooth map germ of (N, x) into (P, y) has a singularity of fold type at x if it is written as $(x_1, \ldots, x_{n-1}, x_n) \mapsto (x_1, \ldots, x_{n-1}, x_n^2)$ under suitable local coordinate systems on neighborhoods of $x \in N$ and $y \in P$ respectively. A smooth map $f: N \to P$ is called a *fold-map* if it has only fold singularities. In [E] Eliasberg has proved a certain "homotopy principle" (a terminology used in [G2]) for fold-maps. Let TN and $f^*(TP)$ be stably equivalent for a given map $f: N \to P$ and let an (n-1)-dimensional submanifold M of N be given. As an application he has given the conditions so that there is a fold-map which is homotopic to f and folds on M. For example, for any homotopy sphere of dimension n, there exists a fold-map into S^n of degree 1. These results are the motivation for the following problems. Given a connected closed oriented manifold P, consider a fold-map $f: N \to P$ of degree 1. What properties of a fold-map f represent the procedure of changing the differentiable structure of P to that of N? How is a classification of fold-maps into P together with the singularities of f related to a classification of source manifolds N? These

Communicated by Prof. G. Nishida, February 8, 2000

Revised August 9, 2000

^{*}This research was partially supported by Grant-in-Aid for Scientific Research (No. 11640081), Ministry of Education, Science and Culture, Japan.

problems have been studied in [An3]. This paper is its continuation and we shall study this problem in a more general situation.

Let P be a connected closed oriented smooth manifold of dimension n. For the study of this problem we shall define a fold-cobordism class of a fold-map of degree m. Namely, let $f_i : N_i \to P$ (i = 0, 1) be two fold-maps of degree m, where N_i are closed oriented smooth manifolds of dimension n. We shall say that they are *fold-cobordant* when there exists a fold-map $F : (W, \partial W) \to$ $(P \times [0, 1], P \times 0 \cup P \times 1)$ of degree m such that

(i) W is oriented with $\partial W = N_0 \cup (-N_1)$ and the collar of ∂W is identified with $N_0 \times [0, \varepsilon) \cup N_1 \times (1 - \varepsilon, 1]$,

(ii) $F|N_0 \times [0,\varepsilon) = f_0 \times id_{[0,\varepsilon)}$ and $F|N_1 \times (1-\varepsilon,1] = f_1 \times id_{(1-\varepsilon,1]}$, where ε is a sufficiently small positive number. Let $\Omega_{fold,m}(P)$ denote the set of all fold-cobordism classes of fold-maps into P of degree m.

Let F_k^m denote the space of all base point preserving maps of degree m of S^{k-1} with compact-open topology. The suspension induces the inclusion $F_k^m \to F_{k+1}^m$. Let F^m denote the space $\lim_{k\to\infty} F_k^m$. Let G_k (resp. SG_k) denote the space of all homotopy equivalences (resp. of degree 1) of S^{k-1} with compact-open topology. The suspension of a homotopy equivalence yields the inclusion $G_k \to G_{k+1}$ (resp. $SG_k \to SG_{k+1}$). We set $G = \lim_{k\to\infty} G_k$ and $SG = \lim_{k\to\infty} SG_k$ respectively. Similarly set $O = \lim_{k\to\infty} O(k)$. By considering the quotient space $G_k/O(k)$ by the action of O(k) on G_k , set $G/O = \lim_{k\to\infty} G_k/O(k)$. Then we have the projection $p_{SG} : SG \to G/O$. It is well known that each F^m is weakly homotopy equivalent to SG.

The main result of this paper is the following theorem.

Theorem 1. Let P be a connected closed oriented smooth manifold of dimension n. Then there exists a surjection $\omega_m : \Omega_{fold,m}(P) \to [P, F^m]$ for $n \geq 1$.

Let π_n^s denote the *n*-th stable homotopy group of spheres, $\lim_{k\to\infty} \pi_{n+k}(S^k)$. It is known that $[S^n, F^0]$ is isomorphic to π_n^s (see, for example, [At1]). Then we have the following corollary.

Corollary 2. There exists a surjection $\Omega_{fold,0}(S^n) \to \pi_n^s$ induced from ω_0 for $n \ge 1$.

For example, the fold-map $S^1 \to S^1$ mapping $e^{\sqrt{-1}x} \mapsto e^{\sqrt{-1}\cos ax}, a \in \mathbb{Z}$, is mapped to $0 \in \pi_1^s \cong \mathbb{Z}/2\mathbb{Z}$ for odd integers a and to $1 \in \pi_1^s \cong \mathbb{Z}/2\mathbb{Z}$ for even integers $a \neq 0$ (see Proposition 5.3).

Now we recall a smooth structure on P, which refers to a homotopy equivalence $f: N \to P$ of degree 1, and the surgery obstruction in the surgery theory developed by [K-M], [Br2], [Su] and [W2]. We will say that two smooth structures on P, $f_i: N_i \to P$ (i = 0, 1), are equivalent if there is a diffeomorphism $d: N_0 \to N_1$ such that f_0 is homotopic to $f_1 \circ d$. Let $\mathcal{S}(P)$ denote the set of all equivalence classes of smooth structures on P. Then there has been defined a map $\eta_n: \mathcal{S}(P) \to [P, G/O]$. Let $i_{F^1,SG}: F^1 \to SG$ be the inclusion. Then it will turn out that $(i_{F^1,SG})_* \circ \omega_1$ coincides with $\omega: \Omega_{fold,1}(P) \to [P,SG]$ defined in [An3]. As for smooth structures on P we have the following theorem (see [An3, Section 5 and Theorem 5.5]).

Theorem 3 ([An3]). Let $n \ge 5$. Let P be a connected closed oriented smooth manifold of dimension n. If a fold-map $f : N \to P$ is a homotopy equivalence of degree 1, then we have that $(p_{SG})_* \circ \omega(f) = \eta_n(f)$.

Furthermore, the surgery obstructions induce fold-cobordism invariants through the composition with $(p_{SG})_* \circ \omega$ ([An3, Proposition 5.1]). In particular, if P is of dimension 4k + 2 ($k \ge 1$), then we have the Kervaire invariant $\theta_{4k+2} : [P, G/O] \to \mathbb{Z}/2\mathbb{Z}$.

Theorem 4. Let P be a closed oriented and simply connected smooth manifold of dimension 4k + 2 $(k \ge 1)$. Then the surgery obstruction of Kervaire invariant θ_{4k+2} induces a fold-cobordism invariant $\theta_{4k+2} \circ (p_{SG})_* \circ \omega$: $\Omega_{fold,1}(P) \rightarrow \mathbb{Z}/2\mathbb{Z}$. In particular, if $P = S^{4k+2}$ and k = 1,3,7, then this invariant is not trivial.

The latter half of Theorem 4 is a direct consequence of the results due to several authors that $\theta_{4k+2} \circ (p_{SG})_*$ for $P = S^{4k+2}$ is surjective for k = 1, 3, 7 (see [Br1, Corollary 1]).

Theorem 1 will make the following corollary important, in which we define other fold-cobordism invariants. As for the (co)homology groups of the space F^m , namely, SG, consult [M], [M-M] and [Tsu].

Corollary 5. Let p be a prime number. For an element [f] of $\Omega_{fold,m}(P)$, we have the homomorphism $\omega_m(f)^* : H^*(F^m; \mathbb{Z}/p\mathbb{Z}) \to H^*(P; \mathbb{Z}/p\mathbb{Z})$. Then for any element a of $H^*(F^m; \mathbb{Z}/p\mathbb{Z})$, $\omega_m(f)^*(a)$ is a fold-cobordism invariant.

Now we shall explain the homotopy principle for fold-maps, which is necessary for the proof of Theorem 1. In the 2-jet space $J^2(n,n)$ we shall consider the subspace $\Omega^{10}(n,n)$ consisting of all jets of either regular germs or germs with fold singularities at the origin. In the 2-jet bundle $J^2(N, P)$ with projection $\pi_N^2: J^2(N, P) \to N$, let $\Omega^{10}(N, P)$ be its subbundle associated with $\Omega^{10}(n,n)$. A smooth map $f: N \to P$ is a fold-map if and only if the image of $j^2 f$ is contained in $\Omega^{10}(N, P)$. Let $C_{\Omega}^{\infty}(N, P)$ denote the space consisting of all fold-maps with C^{∞} -topology. Let $\Gamma(N, P)$ denote the space consisting of all continuous sections of the fibre bundle $\pi_N^2 |\Omega^{10}(N, P): \Omega^{10}(N, P) \to N$ with compact-open topology. Then there exists a continuous map

$$j_{\Omega}: C^{\infty}_{\Omega}(N, P) \to \Gamma(N, P)$$

defined by $j_{\Omega}(f) = j^2 f$.

We shall prove the following homotopy principle in the existence level in Section 4, where two theorems [G1, 4.1.1 Theorem] and [E, 2.2 Theorem] will play important roles. In the following theorem the manifolds N and P may not be closed or oriented.

Theorem 6. Let $n \ge 2$. Let N and P be connected smooth manifolds of dimension n and $\partial N = \emptyset$. For any continuous section s in $\Gamma(N, P)$, there exists a fold-map $f : N \to P$ such that $j^2 f$ and s are homotopic as sections.

In Section 1 we shall explain the well known results concerning fold singularities. In Section 2 we shall prove several results concerning Thom spaces and duality in the suspension category (see [Sp1], [Sp2] and [W1]). In Section 3 we shall review the results of [An3] and define the map ω_m . In Section 4 we shall state Propositions 4.6 and 4.7 without proofs and prove Theorem 6. In Section 5 we shall prove Theorem 1 by using Theorem 6 and give some examples. In Sections 6 and 7 we shall prove Propositions 4.6 and 4.7 respectively. In Section 8 we shall give another invariant of fold-maps, say fold-degree in \mathbf{Z} , which is not a fold-cobordism invariant. In odd dimensions, we shall show that many integers can be realized as fold-degrees.

The author would like to thank the referee for his kind and helpful comments.

1. Preliminaries

Throughout the paper all manifolds are smooth of class C^{∞} . Maps are basically continuous, but may be smooth (of class C^{∞}) if so stated. Given a fibre bundle $\pi : E \to X$ and a subset C in X, we denote $\pi^{-1}(C)$ by $E|_C$. Let $\pi' : F \to Y$ be another fibre bundle. A map $\tilde{b} : E \to F$ is called a fibre map over a map $b : X \to Y$ if $\pi' \circ \tilde{b} = b \circ \pi$ holds. The restriction $\tilde{b}|(E|_C) : E|_C \to$ F (or $F|_{b(C)}$) is denoted by $\tilde{b}|_C$. In particular, for a point $x \in X$, $E|_x$ and $\tilde{b}|_x$ are denoted by E_x and $\tilde{b}_x : E_x \to F_{b(x)}$ respectively.

We shall review the well known results about fold singularities (see [Bo], [L1]). Let $J^k(N, P)$ denote the k-jet space of manifolds N and P. Let π_N^k and π_P^k be the projections mapping a jet to its source and target respectively. The map $\pi_N^k \times \pi_P^k : J^k(N, P) \to N \times P$ induces a structure of fibre bundle with structure group $L^k(n) \times L^k(n)$, where $L^k(n)$ denotes the group of all k-jets of local diffeomorphisms of $(\mathbf{R}^n, 0)$. The fibre $(\pi_N^k \times \pi_P^k)^{-1}(x, y)$ is denoted by $J_{x,y}^k(N, P)$.

Let $\pi_1^2 : J^2(N, P) \to J^1(N, P)$ be the canonical forgetting map. Let $\Sigma^i(N, P)$ denote the submanifold of $J^1(N, P)$ consisting of all 1-jets $z = j_x^1 f$ such that the kernel of $d_x f$ is of dimension *i*. We denote $(\pi_1^2)^{-1}(\Sigma^i(N, P))$ by the same symbol $\Sigma^i(N, P)$ if there is no confusion. For a 2-jet $z = j_x^2 f$ of $\Sigma^i(N, P)$, there has been defined the second intrinsic derivative $d_x^2 f : T_x N \to \text{Hom}(\text{Ker}(d_x f), \text{Cok}(d_x f))$. Let $\Sigma^{ij}(N, P)$ denote the subbundle of $J^2(N, P)$ consisting of all jets $z = j_x^2 f$ such that $\dim(\text{Ker}(d_x f)) = i$ and $\dim(\text{Ker}(d_x^2 f))$ $\sum i \leq 1$. A jet of $\Sigma^{10}(N, P)$ will be called a fold jet. Let $\Omega^{10}(N, P)$ denote the union of $\Sigma^0(N, P)$ and $\Sigma^{10}(N, P)$ in $J^2(N, P)$. Then $\pi_N^2 \times \pi_P^2 |\Omega^{10}(N, P)$ induces a structure of an open subbundle of $\pi_N^2 \times \pi_P^2$. Let $\Omega^{10}(n, n) = \Omega^{10}(\mathbf{R}^n, \mathbf{R}^n) \cap J_{0,0}^2(\mathbf{R}^n, \mathbf{R}^n)$.

In particular, there exists a canonical diffeomorphism

$$\pi_{\mathbf{R}^n}^2 \times \pi_{\mathbf{R}^n}^2 \times \pi_{\Omega} : \Omega^{10}(\mathbf{R}^n, \mathbf{R}^n) \to \mathbf{R}^n \times \mathbf{R}^n \times \Omega^{10}(n, n).$$

Here, for a jet $z = j_x^2 f \in \Omega^{10}(\mathbf{R}^n, \mathbf{R}^n)$, π_Ω is defined by $\pi_\Omega(z) = j_0^2(l(-f(x)) \circ f \circ l(x))$, where l(a) denotes the parallel translation defined by l(a)(x) = x + a. We note that $J_{0,0}^2(\mathbf{R}^n, \mathbf{R}^n)$ is canonically identified with $\operatorname{Hom}(\mathbf{R}^n, \mathbf{R}^n) \oplus \operatorname{Hom}(S^2\mathbf{R}^n, \mathbf{R}^n)$ under the canonical basis of \mathbf{R}^n , where $S^2\mathbf{R}^n$ is the 2-fold symmetric product of \mathbf{R}^n .

Next we shall review the properties of the submanifolds $\Sigma^1(N, P)$ and $\Sigma^{10}(N, P)$ along the line of [Bo, Section 7]. Let **D'** denote the induced bundle $(\pi_N^2)^*(TN)$ over $J^2(N, P)$. Recall the homomorphism

$$\mathbf{d}^1: \mathbf{D}' \longrightarrow (\pi_P^2)^*(TP) \quad \text{over} \quad J^2(N, P),$$

which maps an element $\mathbf{v} = (z, \mathbf{v}') \in \mathbf{D}'_z$ with $z = j_x^2 f$ to $(z, d_x f(\mathbf{v}'))$. There is a commutative diagram

Here \mathbf{d}^1 is identified with a section of $\operatorname{Hom}(\mathbf{D}', (\pi_P^2)^*(TP))$ over $J^2(N, P)$. Let \mathbf{K} and \mathbf{Q} be the kernel bundle and the cokernel bundle of \mathbf{d}^1 over $\Sigma^1(N, P)$ with dim $\mathbf{K} = \dim \mathbf{Q} = 1$ respectively. Next we have the second intrinsic derivative $\mathbf{d}^2 : \mathbf{K} \to \operatorname{Hom}(\mathbf{K}, \mathbf{Q})$ over $\Sigma^1(N, P)$, whose restriction $\mathbf{d}_z^2 : \mathbf{K}_z \to \operatorname{Hom}(\mathbf{K}_z, \mathbf{Q}_z)$ with $z \in \Sigma^1(N, P)$ is nothing but the homomorphism induced from $d_x^2 f : \operatorname{Ker}(d_x f) \to \operatorname{Hom}(\operatorname{Ker}(d_x f), \operatorname{Cok}(d_x f))$ by $(\pi_N^2)^*$ and $(\pi_P^2)^*$. This map is extended to the following epimorphism by [Bo, Lemma 7.4 and p. 412],

$$\mathbf{d}^2: T(J^2(N,P))|_{\Sigma^1(N,P)} \to \operatorname{Hom}(\mathbf{K},\mathbf{Q}) \quad \text{over} \quad \Sigma^1(N,P),$$

where \mathbf{D}' is identified with a subbundle of $T(J^2(N, P))$ corresponding to the total tangent bundle of $J^{\infty}(N, P)$. It has been proved in [Bo, Lemma 7.13] that there exists an exact sequence,

$$0 \longrightarrow T(\Sigma^1(N, P)) \stackrel{\subset}{\longrightarrow} T(J^2(N, P))|_{\Sigma^1(N, P)} \stackrel{\mathbf{d}^2}{\longrightarrow} \operatorname{Hom}(\mathbf{K}, \mathbf{Q}) \longrightarrow 0.$$

Under these notations, a 2-jet $z \in \Sigma^1(N, P)$ lies in $\Sigma^{10}(N, P)$ if and only if $\mathbf{d}^2 | \mathbf{K}_z$ is an isomorphism (otherwise, z lies in $\Sigma^{11}(N, P)$). This implies that $T(\Sigma^1(N, P))_z \cap \mathbf{K}_z = \{0\}$ for any jet $z \in \Sigma^{10}(N, P)$. Hence $\mathbf{K}|_{\Sigma^{10}(N, P)}$ and $\operatorname{Hom}(\mathbf{K}, \mathbf{Q})|_{\Sigma^{10}(N, P)}$ are isomorphic to the normal bundle of $\Sigma^{10}(N, P)$ in $J^2(N, P)$.

Boardman [Bo] has first done these constructions over the infinite jet space $J^{\infty}(N, P)$. In particular, there has been defined the total tangent bundle **D** over $J^{\infty}(N, P)$, which is canonically identified with $(\pi_N^{\infty})^*(TN)$. It does not seem so simple to explain how to define the extended epimorphism \mathbf{d}^2 and

how to regard **K** as the subbundle of the tangent bundle $T(J^2(N, P))$ from the comment given in [Bo, p. 412]. The following interpretation is different from this comment. We need Riemannian metrics on N and P, which enable us to consider the exponential maps $TN \to N$ and $TP \to P$ by the Levi-Civita connections. For any points $x \in N$ and $y \in P$, we have the local coordinates (x_1, \ldots, x_n) and (y_1, \ldots, y_n) on convex neighborhoods of x and y associated to orthonormal basis of T_xN and T_yP respectively (see [K-N]). We shall define an embedding $\mu_{\infty}^2 : J^2(N, P) \to J^{\infty}(N, P)$. Let $z \in J_{x,y}^2(N, P)$ be represented by a C^{∞} map germ $f: (N, x) \to (P, y)$ such that any k-th derivative of f with $k \geq 3$ vanishes under these coordinates. Then we set $\mu_{\infty}^2(z) = j_x^{\infty}f$. It is clear that $\pi_2^{\infty} \circ \mu_{\infty}^2 = id_{J^2(N,P)}$. We can prove that $\mathbf{D}|_{\mu_{\infty}^2(J^2(N,P))}$ is tangent to $\mu_{\infty}^2(J^2(N,P))$. Indeed, for $\sigma = (\sigma_1, \ldots, \sigma_n)$ with non-negative integers σ_i , we recall the functions X_i and $Z_{j,\sigma}$ with $1 \leq i \leq n$ and $1 \leq j \leq n$ defined locally on a neighborhood of $J^{\infty}(N, P)$ by, for $z = j_x^{\infty} f$,

$$X_i(z) = x_i,$$

$$Z_{j,\sigma}(z) = \frac{\partial^{|\sigma|}(y_j \circ f)}{\partial x_1^{\sigma_1} \cdots \partial x_n^{\sigma_n}}(x),$$

which constitute the local coordinates on $J^{\infty}(N, P)$ as described in [Bo, Section 1]. Let Φ be a smooth function defined locally on $\mu^2_{\infty}(J^2(N, P))$ and let $D_i \in \mathbf{D}$ be the total tangent vector corresponding to $\partial / \partial x_i$ by the canonical identification of \mathbf{D} and $(\pi^{\infty}_N)^*(TN)$. Then we have by [Bo, (1.8)] that

$$D_{i}(\Phi)(z) = \frac{\partial(\Phi \circ j^{\infty}f)}{\partial x_{i}}(x)$$
$$= \frac{\partial \Phi}{\partial X_{i}}(z) + \sum_{j,\sigma} \frac{\partial \Phi}{\partial Z_{j,\sigma}}(z) Z_{j,\sigma'}(z),$$

where $\sigma' = (\sigma_1, \ldots, \sigma_{i-1}, \sigma_i + 1, \sigma_{i+1}, \ldots, \sigma_n)$. If $z \in \mu_{\infty}^2(J^2(N, P))$, then $Z_{j,\sigma}(z)$ vanishes for $|\sigma| \geq 3$. Hence, $D_i(\Phi)$ is a smooth function defined locally on $\mu_{\infty}^2(J^2(N, P))$. This implies that D_i is tangent to $\mu_{\infty}^2(J^2(N, P))$. Since \mathbf{D}_z consists of all linear combinations of D_1, \ldots, D_n , we have that $\mathbf{D}_z \subset T_z(\mu_{\infty}^2(J^2(N, P)))$.

Let $\mathbf{d}^{1,\infty}: \mathbf{D}|_{\mu^2_{\infty}(J^2(N,P))} \to (\pi^{\infty}_P)^*(TP)|_{\mu^2_{\infty}(J^2(N,P))}$ be the first derivative over $\mu^2_{\infty}(J^2(N,P))$. Let \mathbf{K}^{∞} and \mathbf{Q}^{∞} be the kernel bundle and the cokernel bundle of $\mathbf{d}^{1,\infty}$ over $\mu^2_{\infty}(\Sigma^1(N,P))$. Now we consider the intrinsic derivative $d(\mathbf{d}^{1,\infty}): T(\mu^2_{\infty}(J^2(N,P)))|_{\mu^2_{\infty}(\Sigma^1(N,P))} \to \operatorname{Hom}(\mathbf{K}^{\infty},\mathbf{Q}^{\infty})$ of $\mathbf{d}^{1,\infty}$ (see the definition of the intrinsic derivative in [Bo, Lemma 7.4] due to I. R. Porteous). Then it induces the homomorphism $(\mu^2_{\infty})^*(d(\mathbf{d}^{1,\infty})): T(J^2(N,P))|_{\Sigma^1(N,P)} \to$ $\operatorname{Hom}(\mathbf{K},\mathbf{Q})$. It is clear that the restriction $(\mu^2_{\infty})^*(d(\mathbf{d}^{1,\infty}))|(\mu^2_{\infty})^*(\mathbf{D}): (\mu^2_{\infty})^*(\mathbf{D})$ $D) \to \operatorname{Hom}(\mathbf{K},\mathbf{Q})$ is identified with $\mathbf{d}^2: \mathbf{D}'|_{\Sigma^1(N,P)} \to \operatorname{Hom}(\mathbf{K},\mathbf{Q})$, which is invariantly defined with respect to the choice of metrics on N and P, through the identification of \mathbf{D} and $(\pi^{\infty}_N)^*(TN)$.

A smooth map $f: N \to P$ is called a fold-map when the image of $j^2 f$ is contained in $\Omega^{10}(N, P)$. Let $C_{\Omega}^{\infty}(N, P)$ and $\Gamma(N, P)$ denote the spaces defined in Introduction with the continuous map

$$j_{\Omega}: C_{\Omega}^{\infty}(N, P) \to \Gamma(N, P).$$

Let $\Gamma^{tr}(N, P)$ denote the subspace of $\Gamma(N, P)$ consisting of all sections s such that s is smooth on some neighborhood of $s^{-1}(\Sigma^{10}(N, P))$ and that s is transverse to $\Sigma^{10}(N, P)$. Throughout the paper S(s) denotes $s^{-1}(\Sigma^{10}(N, P))$. From now on, for a point $c \in S(s)$, let $K(s)_c$ and $Q(s)_c$ denote $s^*(\mathbf{K})_c = \operatorname{Ker}(d_c f)$ and $s^*(\mathbf{Q})_c = \operatorname{Cok}(d_c f)$ respectively, where $s(c) = j_c^2 f$. Let $d^1(s) : TN \to s^*(TP)$ and $d^2(s) : K(s) \to \operatorname{Hom}(K(s), Q(s))$ over S(s) denote the homomorphisms induced from \mathbf{d}^1 and \mathbf{d}^2 by s respectively.

A homotopy c_{λ} with $\lambda \in [0, 1]$ refers to a continuous map c of I = [0, 1]into a space. For example, a homotopy h_{λ} relative to a closed subset C of Nin $\Gamma(N, P)$ refers to a continuous map $h: I \to \Gamma(N, P)$ such that $h_{\lambda}|C = h_0|C$ for any λ .

2. Thom spaces and duality in suspension category

In this section we shall give several results concerning S-dual spaces and duality maps in the suspension category. They are necessary in the arguments for defining ω_m and inducing its properties, though some of them may be known results (see [At1], [Br2], [Sp1], [Sp2] and [W1]).

In Sections 2, 3 and 5 let $k \gg n$. Let S^{ℓ} be the sphere with radius 1 centred at the origin in $\mathbb{R}^{\ell+1}$ and let S^{ℓ} be oriented so that a pair of an orthonormal basis of $T_x S^{\ell}$ and an inward vector at x is compatible with the canonical orientation of $\mathbb{R}^{\ell+1}$. In this section S^{ℓ} is identified with the wedge product $S^1 \wedge \cdots \wedge S^1$ of ℓ copies of S^1 and is oriented by coordinates (x_1, \ldots, x_{ℓ}) . We denote the set of homotopy classes of maps $\alpha : A \to B$ by [A, B]. Let Abe a space with base point. According to $[\operatorname{Sp2}], S^{\ell}A$ (S^1A is written as SA for short) denotes the ℓ -th suspension $A \wedge S^{\ell}$. Let $S^{\ell}(\alpha)$ denote the ℓ -th suspension of a map α . If B is also a space with base point, then we denote the set of S-homotopy classes of S-maps by $\{A, B\}$. An element of $\{A, B\}$ represented by a map $\alpha : S^{\ell}A \to S^{\ell}B$ ($\ell \geq 0$) is written as $\{\alpha\}$. Let D_r^{ℓ} be the disk centred at the origin with radius r in \mathbb{R}^{ℓ} (D_1^{ℓ} is often written as D^{ℓ} for short). For spaces A and A', let $1^{\sim} : A \times A' \to A' \times A$ be the map defined by $1^{\sim}(a, a') = (a', a)$.

Let A and B be connected finite polyhedrons with base points. We assume in this section that A and B are sufficiently highly connected so that we do not need to consider $S^{\ell}A$ and $S^{\ell}B$ in the following arguments. Then an *m*duality map refers to a continuous map $v^{AB} : A \wedge B \to S^m$ such that the map $\varphi_{v^{AB}} : H_q(A; \mathbb{Z}) \to H^{m-q}(B; \mathbb{Z})$ defined by sending $z \in H_q(A; \mathbb{Z})$ to the slant product $(v^{AB})^*([S^m]^*)/z$ is an isomorphism. Let $v^{A'B'} : A' \wedge B' \to S^m$ be another *m*-duality map. By applying the work due to Spanier [Sp1] and [Sp2], we obtain the isomorphisms

 $(1v) \quad \mathcal{D}_m(v^{AB}, v^{A'B'}) : \{B, B'\} \to \{A', A\},$ $(2v) \quad \mathcal{D}(v^{AB}) : \{S^m, B\} \to \{A, S^0\},$ $(2v) \quad \mathcal{D}(v^{AB}) = \{S^m, B\} \to \{A, S^0\},$

We shall here recall their definitions respectively. In this paper we call isomorphisms of this type defined in [Sp2, Theorem 5.9] duality isomorphisms, which are often denoted simply by \mathcal{D} . The notation $\mathcal{D}(v^{AB})$ is different from that used in [Sp2]. The map $\mathcal{D}_m(v^{AB}, v^{A'B'})$ in (1v) is defined by the isomorphism $\{B, B'\} \cong (\{B \land A', S^m\} \cong) \{A' \land B, S^m\} \cong \{A', A\}$. Namely, let $\alpha_B : B \to B'$, $\alpha_A : A' \to A$. Then the first isomorphism is defined by sending $\{\alpha_B\}$ to the element represented by the map

$$v^{A'B'} \circ (id_{A'} \wedge \alpha_B) : A' \wedge B \to A' \wedge B' \to S^m$$

The inverse of the latter isomorphism $\{A', A\} \cong \{A' \land B, S^m\}$ is defined by sending $\{\alpha_A\}$ to the element represented by the map

$$v^{AB} \circ (\alpha_A \wedge id_B) : A' \wedge B \to A \wedge B \to S^m$$

The duality isomorphisms in (2v) and (3v) are special cases of (1v) and will be often used. As for (2v), let $\{\alpha\} \in \{S^m, B\}$ be an element with $\alpha : S^m \to B$. Then $\mathcal{D}(v^{AB})(\{\alpha\})$ is defined by the element represented by the map

$$v^{AB} \circ (id_A \wedge \alpha) : A \wedge S^m \to A \wedge B \to S^m$$

For (3v), consider the map $v^{AB} \wedge (v^{AB} \circ 1^{\sim}) : A \wedge B \wedge B \wedge A \to S^m \wedge S^m = S^{2m}$. It is not difficult to see that this map is a duality map. Then, for a map $\alpha_S : S^m \to B \wedge A$, $\mathcal{D}(v^{AB})(\{\alpha_S\})$ in (3v) is defined to be the element represented by the map $(v^{AB} \wedge (v^{AB} \circ 1^{\sim})) \circ (id_{A \wedge B} \wedge \alpha_S)$:

$$A \wedge B \wedge S^m \to A \wedge B \wedge B \wedge A \to A \wedge B \wedge A \wedge B \to S^m \wedge S^m = S^{2m}$$

By the isomorphism $\mathcal{D}(v^{AB})$ in (3v) we obtain a map $w^{BA}: S^m \to B \wedge A$ such that $\mathcal{D}(v^{AB})(\{w^{BA}\}) = \{v^{AB}\}$. It is not difficult to see that w^{BA} is a *duality map* in the sense of [Br2] and [W1]. In fact, the map $\varphi_{w^{BA}}$: $H^{m-q}(B; \mathbf{Z}) \to H_q(A; \mathbf{Z})$ defined by sending $z \in H^{m-q}(B; \mathbf{Z})$ to the slant product $(w^{BA})_*([S^m]) \setminus z$ is an isomorphism. Similarly we obtain a duality map $w^{B'A'}: S^m \to B' \wedge A'$ such that $\mathcal{D}(v^{A'B'})(\{w^{B'A'}\}) = \{v^{A'B'}\}$. Then we define the isomorphism

$$(1w) \mathcal{D}(w) : \{A', A\} \to \{B, B'\}$$

as follows. The map $\mathcal{D}(w)$ in (1w) is defined by $\{A', A\} \cong \{S^m, B' \land A\} \cong \{B, B'\}$. Namely, for a map $\alpha_A : A' \to A$, the first isomorphism is defined by sending $\{\alpha_A\}$ to the element represented by $(id_{B'} \land \alpha_A) \circ w^{B'A'}$. The latter isomorphism $\{B, B'\} \cong \{S^m, B' \land A\}$ is defined by sending $\{\alpha_B\}$ to the element represented by $(\alpha_B \land id_A) \circ w^{BA}$.

We prove in the following lemma that $\mathcal{D}(w) = \mathcal{D}_m(v^{AB}, v^{A'B'})^{-1}$. By this lemma we can apply the results in [Sp1] and [Sp2] to $\mathcal{D}(w)$ through \mathcal{D} . In particular, $\mathcal{D}(w)$ is well defined. In this paper $\mathcal{D}_m(v^{AB}, v^{AB})$ is also written as $\mathcal{D}(v^{AB})$, and we use the notation $\mathcal{D}(w^{BA})$ for $\mathcal{D}(v^{AB})^{-1}$.

Lemma 2.1. In the cases (1v), (1w) we have that $\mathcal{D}(w) = \mathcal{D}_m(v^{AB}, v^{A'B'})^{-1}$.

Proof. For the proof, we consider the duality map $(v^{A'B'} \wedge v^{AB}) \circ (id_{A' \wedge B'} \wedge 1^{\sim}) \circ (id_{A'} \wedge 1^{\sim} \wedge id_A)$:

$$A' \wedge B \wedge B' \wedge A \to A' \wedge B' \wedge A \wedge B \to S^m \wedge S^m \cong S^{2m},$$

which is denoted by u. Furthermore, the canonical identification $S^m \wedge S^m \cong S^{2m}$ is also a duality map, which is denoted by $v^{S^{2m}}$. Then we have the duality isomorphism $\mathcal{D}_{2m}(v^{S^{2m}}, u) : \{S^m, B' \wedge A\} \to \{A' \wedge B, S^m\}$ as in (1v). We use the notation exhibited in the following diagram for the duality isomorphisms defined above to distinguish them

We prove $\mathcal{D}_{2m}(v^{S^{2m}}, u) \circ \mathcal{D}^B(w)(\{\alpha_B\}) = \mathcal{D}^B(v)(\{\alpha_B\})$ and $\mathcal{D}_{2m}(v^{S^{2m}}, u) \circ \mathcal{D}^A(w)(\{\alpha_A\}) = \mathcal{D}^A(v)(\{\alpha_A\})$. For a map $\alpha_B : B \to B'$, we have that

$$\mathcal{D}_{2m}(v^{S^{2m}}, u) \circ \mathcal{D}^B(w)(\{\alpha_B\}) = \mathcal{D}_{2m}(v^{S^{2m}}, u)(\{(\alpha_B \wedge id_A) \circ w^{BA}\})$$

$$= \mathcal{D}(v^{AB})(\{w^{BA}\}) \circ \mathcal{D}(\{\alpha_B \wedge id_A\})$$

$$= \{v^{AB}\} \circ \{\mathcal{D}(\{\alpha_B\}) \wedge \mathcal{D}(\{id_A\})\}$$

$$= \{v^{AB}\} \circ \{\mathcal{D}^A(v)^{-1} \circ \mathcal{D}^B(v)(\{\alpha_B\}) \wedge \{id_B\}\}$$

$$= \mathcal{D}^A(v) \circ \mathcal{D}^A(v)^{-1} \circ \mathcal{D}^B(v)(\{\alpha_B\})$$

$$= \mathcal{D}^B(v)(\{\alpha_B\}).$$

For a map $\alpha_A : A' \to A$ we have

$$\mathcal{D}_{2m}(v^{S^{2m}}, u) \circ \mathcal{D}^{A}(w)(\{\alpha_{A}\}) = \mathcal{D}_{2m}(v^{S^{2m}}, u)(\{(id_{B'} \land \alpha_{A}) \circ w^{B'A'}\})$$

= $\mathcal{D}(v^{A'B'})(\{w^{B'A'}\}) \circ \mathcal{D}(\{id_{B'} \land \alpha_{A}\})$
= $\{v^{A'B'}\} \circ \{\mathcal{D}(\{id_{B'}\}) \land \mathcal{D}(\{\alpha_{A}\})\}$
= $\{v^{A'B'}\} \circ \{\{id_{A'}\} \land \mathcal{D}^{B}(v)^{-1} \circ \mathcal{D}^{A}(v)(\{\alpha_{A}\})\}$
= $\mathcal{D}^{B}(v) \circ \mathcal{D}^{B}(v)^{-1} \circ \mathcal{D}^{A}(v)(\{\alpha_{A}\})$
= $\mathcal{D}^{A}(v)(\{\alpha_{A}\}).$

Therefore, $\mathcal{D}^{A}(w)$ and $\mathcal{D}^{B}(w)$ are isomorphisms, and hence we have

$$\mathcal{D}(w)(\{\alpha_A\}) = \mathcal{D}^B(w)^{-1} \circ \mathcal{D}^A(w)(\{\alpha_A\})$$
$$= \mathcal{D}^B(v)^{-1} \circ \mathcal{D}^A(v)(\{\alpha_A\})$$
$$= \mathcal{D}_m(v^{AB}, v^{A'B'})^{-1}(\{\alpha_A\}).$$

Let X be a connected closed oriented smooth manifold of dimension n.

Let θ_X^ℓ be the trivial bundle $X \times \mathbf{R}^\ell$. For the tangent bundle TX of X, we will denote $TX \oplus \theta_X^k$ by a symbol τ_X without specifying the number k, which is called the *stable tangent bundle* of X. Choose a smooth embedding $e: X \to \mathbf{R}^{n+k}$, and let $\nu_X(e) = T(\mathbf{R}^{n+k})|_{e(X)}/T(e(X))$ be the normal bundle of e(X). The induced bundle $\nu_X = e^*(\nu_X(e))$ is also called the normal bundle of X, which has the canonical bundle map $e_{\nu_X}: \nu_X \to \nu_X(e)$. Then ν_X is a stable vector bundle, since $k \gg n$. The usual metric of \mathbf{R}^{n+k} induces a splitting of the sequence

$$0 \to TX \to \theta_X^{n+k} \to \nu_X \to 0$$

by orthogonality, which yields a trivialization $t_X : \tau_X \oplus \nu_X \to \theta_X^{2k}$ with dimension of τ_X being equal to k. Let $T(\nu_X(e))$ be the Thom space. Let $\phi_X : S^{n+k} \to T(\nu_X(e))$ be the Pontrjagin-Thom construction for the embedding e of X. Then we have the homotopy class $[\alpha_X]$ of $\alpha_X = T(e_{\nu_X}^{-1}) \circ \phi_X$ in $\pi_{n+k}(T(\nu_X))$, where [*] refers to the homotopy class. In this paper we also call α_X the Pontrjagin-Thom construction for the embedding e. In the following we canonically identify $T(\nu_X \oplus \theta_X^\ell)$ and $T(\nu_X \times \theta_X^\ell)$ with $T(\nu_X) \wedge S^\ell$ and $T(\nu_X) \wedge S^\ell X^0$ respectively.

It has been proved in [M-S, Lemma 2] that $T(\nu_X)$ is the S-dual space of $X^0 = X \cup *_X$, where $*_X$ is the base point. In fact, we shall construct a duality map $\nu_X : S^{\ell}X^0 \wedge T(\nu_X) \to S^{n+k+\ell}$ along the line of the arguments above by using the duality map $w_X : S^{n+k+\ell} \to T(\nu_X) \wedge S^{\ell}X^0$ constructed in [W1, p. 228]. Take an embedding $e : X \to \mathbf{R}^{n+k}$ with normal bundle ν_X . Consider the diagonal map $\Delta : X \to X \times X$ and the vector bundle $\nu_X \times \theta_X^{\ell}$ over $X \times X$. By the definition of the Whitney sum we have the bundle map $\widetilde{\Delta} : \nu_X \oplus \theta_X^{\ell} \to \nu_X \times \theta_X^{\ell}$ covering Δ , which induces a map $T(\widetilde{\Delta}) : T(\nu_X \oplus \theta_X^{\ell}) = T(\nu_X) \wedge S^{\ell} \to T(\nu_X \times \theta_X^{\ell}) = T(\nu_X) \wedge S^{\ell}X^0$. Let \widehat{e} be the embedding $X \to \mathbf{R}^{n+k} \times \mathbf{0} \subset \mathbf{R}^{n+k+\ell}$. Then the normal bundle of \widehat{e} is identified with $\nu_X \oplus \theta_X^{\ell}$ and the Pontrjagin-Thom construction for the embedding \widehat{e} yields the map $S^{\ell}(\alpha_X) : S^{n+k+\ell} \to T(\nu_X) \wedge S^{\ell}$. Let w_X denote the composition map

$$T(\widetilde{\Delta}) \circ S^{\ell}(\alpha_X) : S^{n+k+\ell} \longrightarrow T(\nu_X) \wedge S^{\ell} X^0.$$

It has been proved in [W1, Chapter 3] that w_X is an $(n + k + \ell)$ -duality map. We shall now apply the arguments above concerning duality maps by setting $A = S^{\ell}X^0$, $B = T(\nu_X)$ and $w^{BA} = w_X$. Then, for $\ell \gg n$, there exists a duality map $v_X : S^{\ell}X^0 \wedge T(\nu_X) \to S^{n+k+\ell}$, which is defined by $\mathcal{D}(w_X)(\{v_X\}) = \{w_X\}$. This duality map induces an isomorphism

$$\mathcal{D}(v_X): \{S^{n+k}, T(\nu_X)\} \to \{X^0, S^0\}$$

as in (2v). We should note that $\mathcal{D}(w_X)$ and $\mathcal{D}(v_X)$ are defined depending on the embedding e, although they are uniquely determined in the sense of Lemma 2.3 below.

Remark 2.2. Let e^1 be another embedding with normal bundle ν_X^1 . Let α_X and α_X^1 be the Pontrjagin-Thom constructions for the embeddings e and e^1 respectively. Then there exists an isotopy of embeddings $e^{\lambda}: X \to \mathbf{R}^{n+k}$ with $e^0 = e$. Let ν^{λ} be the normal bundle of e^{λ} with $\nu^0 = \nu_X$ and $\nu^1 = \nu_X^1$. Let $E: I \times X \to I \times \mathbf{R}^{n+k}$ be the embedding defined by $E(\lambda, x) = (\lambda, e^{\lambda}(x))$. Let ν be the normal bundle of the embedding E, which yields a bundle map $B: I \times \nu_X \to \nu$ covering $id_{I \times X}$. Let $b: \nu_X \to \nu_X^1$ be the bundle map defined by $B|1 \times \nu_X: \nu_X = 1 \times \nu_X \to \nu_X^1 = \nu|_{1 \times X}$ (see, for example, [An3, Proof of Lemma 4.4]). Hence, the isotopy $e^{\lambda}: X \to \mathbf{R}^{n+k} \times \mathbf{0} \subset \mathbf{R}^{n+k+\ell}$ induces homotopies $S^{\ell}(\alpha_X^{\lambda}): S^{n+k+\ell} \to T(\nu_X^{\lambda}) \wedge S^{\ell}$ and $T(\widetilde{\Delta}^{\lambda}): T(\nu_X^{\lambda}) \wedge S^{\ell} \to T(\nu_X^{\lambda}) \wedge S^{\ell} X^0$ by applying the arguments above for e^{λ} and ν_X^{λ} in place of eand ν_X .

We have the following lemma.

Lemma 2.3. Let w_X^{λ} be the composition map $T(\widetilde{\Delta}^{\lambda}) \circ S^{\ell}(\alpha_X^{\lambda})$ and let $\mathcal{D}(w_X^{\lambda})(\{v_X^{\lambda}\}) = \{w_X^{\lambda}\}$. Then we have the following: (1) $w_X^1 = (T(b) \wedge id_{S^{\ell}X^0}) \circ w_X^0$, (2) $\mathcal{D}_{n+\ell+k}(v_X^0, v_X^1)(\{T(b)\}) = \{id_{X^0}\}$, where $\mathcal{D}_{n+\ell+k}(v_X^0, v_X^1) : \{T(\nu_X), T(\nu_X^1)\} \to \{X^0, X^0\}$,

(3)
$$v_X^0 = v_X^1 \circ (id_{S^\ell X^0} \wedge T(b)),$$

(4) the following diagram is commutative.

$$\begin{array}{ccc} \{S^{n+k}, T(\nu_X)\} & \xrightarrow{\mathcal{D}(v_X^0)} & \{X^0, S^0\} \\ & & \\ T(b)_* & & & \\ \{S^{n+k}, T(\nu_X^1)\} & \xrightarrow{\mathcal{D}(v_X^1)} & \{X^0, S^0\} \end{array}$$

Proof. By the definition of w_X^{λ} , we first prove (1). Indeed, we have that

$$\begin{split} w_X^1 &= T(\widetilde{\Delta}^1) \circ S^{\ell}(\alpha_X^1) \\ &= T(\widetilde{\Delta}^1) \circ S^{\ell}(T(b)) \circ S^{\ell}(\alpha_X) \\ &= (T(b) \wedge id_{S^{\ell}X^0}) \circ T(\widetilde{\Delta}) \circ S^{\ell}(\alpha_X) \\ &= (T(b) \wedge id_{S^{\ell}X^0}) \circ w_X^0. \end{split}$$

Hence, we have the commutative diagram

$$S^{n+k+\ell} \xrightarrow{w_X^0} T(\nu_X) \wedge S^{\ell} X^0$$

$$\downarrow^{w_X^1} \downarrow \qquad \qquad \qquad \downarrow^{T(b) \wedge (id_{S^{\ell} X^0})}$$

$$T(\nu_X^1) \wedge S^{\ell} X^0 \xrightarrow{id_{T(\nu_X^1) \wedge S^{\ell} X^0}} T(\nu_X^1) \wedge S^{\ell} X^0.$$

Then the assertion (2) follows from [Sp2, Theorem 5.11] or [Br2, I.4.14 Theorem] (see Lemma 2.1). Next we prove (3). By (2) we have $\mathcal{D}_{n+\ell+k}(v_X^1, v_X^0)(\{T($ b^{-1})}) = { id_{X^0} }, where $\mathcal{D}_{n+\ell+k}(v_X^1, v_X^0) : {T(\nu_X)}, T(\nu_X)$ } $\rightarrow {X^0, X^0}$. Since $w_X^0 = (T(b^{-1}) \wedge id_{S^\ell X^0}) \circ w_X^1$ by (1), we have

$$\begin{aligned} \{v_X^0\} &= \mathcal{D}(v_X^0)(\{w_X^0\}) \\ &= \mathcal{D}(\{w_X^1\}) \circ \mathcal{D}(\{T(b^{-1}) \wedge id_{S^{\ell}X^0}\}) \\ &= \mathcal{D}(\{w_X^1\}) \circ (\mathcal{D}(\{T(b^{-1})\}) \wedge \mathcal{D}(\{id_{S^{\ell}X^0}\})) \\ &= \{v_X^1 \circ (id_{S^{\ell}X^0} \wedge T(b))\}, \end{aligned}$$

where we consider dualities (indicated by $\)$ of the spaces and maps in the diagram

The assertion (4) follows from (3). In fact, we have

$$\mathcal{D}(v_X^1) \circ T(b)_*(\{\alpha\}) = \{v_X^1 \circ (id_{S^\ell X^0} \wedge (T(b) \circ \alpha)\}$$
$$= \{v_X^1 \circ (id_{S^\ell X^0} \wedge T(b)) \circ (id_{S^\ell X^0} \wedge \alpha)\}$$
$$= \{v_X^0 \circ (id_{S^\ell X^0} \wedge \alpha)\}$$
$$= \mathcal{D}(v_X^0)(\{\alpha\}).$$

We shall say that $\{\alpha\} \in \{S^{n+k}, T(\nu_X)\}$ is of degree m if $\alpha_*([S^{n+k}]) = m([T(\nu_X)])$, where [*] refers to the fundamental class of *. For an element $\{\beta\} \in \{X^0, S^0\}$ with $\beta : S^k X^0 \to S^k$ and a point $x \in X$, we shall define the map $\beta(x) : S^k = S^0 \land S^k \to S^k$ by the map $(\beta|(\{*_X, x\} \land S^k)) \circ (\iota_x \land id_{S^k}),$ where $\iota_x : S^0 \to \{*_X, x\}$ is the canonical identification. Let F denote the union of all $F^m, m \in \mathbf{Z}$. Then we have the map

$$c_F: \{X^0, S^0\} \to [X, F]$$

defined by $c_F(\beta)(x) = \beta(x)$. We shall say that $\{\beta\}$ is of degree *m* if $c_F(\beta)(x)$ is of degree *m* for any $x \in X$. Let $\{S^{n+k}, T(\nu_X)\}_m$ and $\{X^0, S^0\}_m$ be the sets of all respective maps of degree *m*. Then c_F induces the map $c_{F^m} : \{X^0, S^0\}_m \to [X, F^m]$. Let $c_{X^0} : X^0 \to S^0$ be the base point preserving surjection mapping *X* to the other point. Then we have the following lemma.

Lemma 2.4. (1) $\mathcal{D}(v_X)(\{\alpha_X\}) = \{c_{X^0}\}.$ (2) $\{\alpha\}$ is of degree m if and only if $\mathcal{D}(v_X)(\{\alpha\})$ is of degree m.

Proof. (1) It is enough for the assertion (1) to prove that $\mathcal{D}(w_X)(\{c_{X^0}\}) = \{\alpha_X\}$. By the definition of α_X , c_{X^0} and w_X , we have the homotopy com-

mutative diagram

Since the identification $S^{n+k+\ell} = S^{n+k} \wedge S^{\ell}$ is a duality map, it follows from [Br2, I.4.14 Theorem] that $\mathcal{D}(w_X)(\{c_{X^0}\}) = \{\alpha_X\}.$

(2) Let $\mathcal{D}(v_X)$ ($\{\alpha\}$) = $\{\beta\}$, or $\mathcal{D}(w_X)(\{\beta\}) = \{\alpha\}$. Then we have the commutative diagram

$$\begin{array}{cccc} H_{\ell}(S^{\ell}; \mathbf{Z}) & \stackrel{\varphi_{v}}{\longrightarrow} & H^{n+k}(S^{n+k}; \mathbf{Z}) \\ (c_{X^{0}})_{*} & & \uparrow (\alpha_{X})^{*} \\ H_{\ell}(S^{\ell}X^{0}; \mathbf{Z}) & \stackrel{\varphi_{v_{X}}}{\longrightarrow} & H^{n+k}(T(\nu_{X}); \mathbf{Z}) \\ \beta_{*} & & \downarrow \alpha^{*} \\ H_{\ell}(S^{\ell}; \mathbf{Z}) & \stackrel{\varphi_{v}}{\longrightarrow} & H^{n+k}(S^{n+k}; \mathbf{Z}), \end{array}$$

where v is a duality map of the identification $S^{n+k} \wedge S^{\ell} = S^{n+k+\ell}$. We note that both α_X and c_{X^0} are of degree 1. Therefore, if α is of degree m, then β must be of degree m and vice versa.

We shall recall some results about spherical fibre spaces (see [Br2], [W1] and [At2]). Let ξ be a vector bundle of dimension k with metric over a manifold X of dimension n and let $S(\xi)$ be the associated sphere bundle. A fibre map $h: S(\xi) \to S(\xi)$ covering id_X is called an *automorphism* if h is a homotopy equivalence. In this paper if ξ is oriented, then an automorphism of $S(\xi)$ is always assumed to be an orientation preserving one. Let $\operatorname{End}(\xi)$ denote the group of the homotopy classes of automorphisms of $S(\xi)$. An automorphism of $S(\xi)$ is extended to a self-fibre map of ξ by fibrewise cone construction. This self-fibre map of ξ is also called an automorphism of ξ . Let $h': S(\eta) \to S(\eta)$ be an automorphism of another vector bundle η over X. Then we can define the Whitney sum $h + h': \xi \oplus \eta \to \xi \oplus \eta$ of the fibre maps h and h' similarly as in the case of bundle maps and it yields an automorphism denoted by h + h': $S(\xi \oplus \eta) \to S(\xi \oplus \eta)$.

There is an isomorphism of $\operatorname{End}(\xi)$ to $\operatorname{End}(\xi \oplus \theta_X^\ell)$ $(\ell \ge 0)$ which maps h to $h + id_{\theta_X^\ell}$. Set $\mathcal{E}(\xi) = \lim_{\ell \to \infty} \operatorname{End}(\xi \oplus \theta_X^\ell)$. Then it follows that $\mathcal{E}(\xi) \cong \mathcal{E}(\xi \oplus \theta_X^\ell)$. Suppose that $\xi \oplus \eta$ is trivial and has its trivialization $t : \xi \oplus \eta \to \theta_X^{2k}$. Let a homomorphism $E(t) : \operatorname{End}(\xi) \to \operatorname{End}(\theta_X^{2k})$ be defined by E(t)(h) =

 $[t \circ (h + id_\eta) \circ t^{-1}]$. Then it induces an isomorphism

$$\mathcal{E}: \mathcal{E}(\xi) \longrightarrow \mathcal{E}(\theta_X^{2k}),$$

which does not depend on the choice of a trivialization t.

Conversely, the map $\operatorname{End}(\theta_X^k) \to \operatorname{End}(\xi \oplus \theta_X^k) \cong \mathcal{E}(\xi)$ defined by mapping $h: \theta_X^k \to \theta_X^k$ to $id_{\xi} + h$ also induces $\mathcal{E}(\theta_X^k) \cong \mathcal{E}(\xi)$, which coincides with \mathcal{E}^{-1} . Therefore, an automorphism $h: S(\xi) \to S(\xi)$ has a map $\beta: X \to SG(k)$ and an automorphism $h_{\beta}: \theta_X^k \to \theta_X^k$ defined by $h_{\beta}(x,v) = (x,\beta(x)(v))$ such that $h + id_{\theta_X^k} \simeq id_{\xi} + h_{\beta}$. Furthermore, if $h: S(\xi) \to S(\xi)$ is, in particular, the associated automorphism induced from a bundle map $\xi \to \xi$ preserving the metric, then we can take β as a map $X \to SO(k)$.

If we apply this fact to the case $\xi = \nu_X$, then an automorphism $h : S(\nu_X) \to S(\nu_X)$ has a map $\beta : X \to SG(k)$ and an automorphism $h_\beta : \theta_X^k \to \theta_X^k$ such that $h + id_{\theta_X^k} \simeq id_{\nu_X} + h_\beta$.

Lemma 2.5. Let $h: S(\nu_X) \to S(\nu_X)$ and $h_\beta : \theta_X^k \to \theta_X^k$ be the automorphisms given above such that $h + id_{\theta_X^k} \simeq id_{\nu_X} + h_\beta$. Consider the duality map $\mathcal{D}(v_X) : \{T(\nu_X), T(\nu_X)\} \to \{X^0, X^0\}$. Then we have $\mathcal{D}(v_X)(\{T(h)\}) = \{T(h_\beta)\}$.

Proof. By Lemma 2.1 it is enough for the assertion to prove that $\mathcal{D}(w_X)(\{T(h_\beta)\}) = \{T(h)\}$. Since $h + id_{\theta_X^k} \simeq id_{\nu_X} + h_\beta$, we have that $T(h + id_{\theta_X^k}) \simeq T(id_{\nu_X} + h_\beta) : T(\nu_X) \wedge S^k \to T(\nu_X) \wedge S^k$. Furthermore, we have that $\widetilde{\Delta} \circ (h + id_{\theta_X^k}) \simeq (h \times id_{\theta_X^k}) \circ \widetilde{\Delta}$ and $\widetilde{\Delta} \circ (id_{\nu_X} + h_\beta) \simeq (id_{\nu_X} \times h_\beta) \circ \widetilde{\Delta}$. This implies that the following diagram is homotopy commutative, since $w_X = T(\widetilde{\Delta}) \circ (\alpha_X \wedge id_{S^k})$.

$$\begin{array}{cccc} S^{2k} & \xrightarrow{w_X} & T(\nu_X) \wedge S^k X^0 \\ & & & & \downarrow id_{T(\nu_X)} \wedge T(h_\beta) \\ T(\nu_X) \wedge S^k X^0 & \xrightarrow{T(h) \wedge id_{S^k X^0}} & T(\nu_X) \wedge S^k X^0 \end{array}$$

By [Br2, I.4.14 Theorem] it follows that $\mathcal{D}(w_X)(\{T(h_\beta)\}) = \{T(h)\}.$

The inclusion $SO \to SG$ induces a map $J : [X, SO] \to [X, SG]$. According to [Ad], its image is denoted by J([X, SO]). The inclusion $F^1 \to SG$ is denoted by $i_{F^1,SG}$.

Proposition 2.6. Let $\alpha_X : S^{n+k} \to T(\nu_X)$ be the Pontrjagin-Thom construction as above and $b : \nu_X \to \nu_X$ be a bundle map over id_X . Then we have that $(i_{F^1,SG})_* \circ c_{F^1}(\mathcal{D}(v_X)(\{T(b) \circ \alpha_X\}))$ lies in J([X,SO]).

Proof. Let b be a bundle map in place of h in Lemma 2.5. Then there is a bundle map b_{β} described above with $\beta : X \to SO(k)$. Then it follows from

Lemma 2.4(2) that

$$(i_{F^{1},SG})_{*} \circ c_{F^{1}}(\mathcal{D}(v_{X})(\{T(b) \circ \alpha_{X}\}))$$

= $(i_{F^{1},SG})_{*} \circ c_{F^{1}}(\mathcal{D}(v_{X})(\{\alpha_{X}\}) \circ \mathcal{D}(v_{X})(\{T(b)\}))$
= $(i_{F^{1},SG})_{*} \circ c_{F^{1}}(\{c_{X^{0}}\} \circ \{T(b_{\beta})\})$
= $J([\beta]).$

This shows the lemma.

3. Map $\omega_m : \Omega_{fold,m}(P) \to [P, F^m]$

In this section we shall first review the results of [An2] and [An3] necessary for the definition of the map $\omega_m : \Omega_{fold,m}(P) \to [P, F^m]$ and then define the map ω_m by using the results in Section 2. We shall define the actions of $SO(n) \times SO(n)$ on SO(n+1) and on $J^2(n,n)$ as follows. Let $(O', {}^tO)$ be an element of $SO(n) \times SO(n)$ and M be an element of SO(n+1). Then define the actions by

$$(O', {}^{t}O) \cdot M = (O' \dotplus (1))M(O \dotplus (1)),$$

$$(O', {}^{t}O) \cdot j_{0}^{2}f = j_{0}^{2}(O' \circ f \circ O),$$

where O and O' are identified with the corresponding linear maps of \mathbf{R}^n and $\dot{+}$ denotes the direct sum of matrices. Note that $\Omega^{10}(n,n)$ is invariant with respect to the latter action. Then we have the following theorem.

Theorem 3.1 ([An2, Theorem (ii)] and [An3, Proposition 2.4]). There exists a topological embedding $i_n : SO(n+1) \to \Omega^{10}(n,n)$ such that i_n is equivariant with respect to those actions above and that the image of i_n is a deformation retract of $\Omega^{10}(n,n)$.

Let N and P be oriented manifolds of dimension n. If we choose an orthonormal basis of \mathbb{R}^n , then there are canonical inclusions of GL(n) into $L^2(n)$ and of SO(n) into GL(n). Hence, the structure group $L^2(n) \times L^2(n)$ of the fibre bundle $\Omega^{10}(N, P)$ over $N \times P$ is reduced to $SO(n) \times SO(n)$ when we provide N and P with Riemannian metrics. Let θ_N and θ_P refer to θ_N^1 and θ_P^1 respectively. Let $GL_{n+1}^+(TN \oplus \theta_N, TP \oplus \theta_P)$ and $SO_{n+1}(TN \oplus \theta_N, TP \oplus \theta_P)$ be the subbundles of $Hom(TN \oplus \theta_N, TP \oplus \theta_P)$ associated with $GL^+(n+1)$ and SO(n+1) respectively. Then we have the inclusion $i_{SO} : SO_{n+1}(TN \oplus \theta_N, TP \oplus \theta_P)$ $\oplus \theta_P) \to GL_{n+1}^+(TN \oplus \theta_N, TP \oplus \theta_P)$, which becomes a homotopy equivalence of fibre bundles covering $id_{N \times P}$.

We define the map

$$i(N,P): SO_{n+1}(TN \oplus \theta_N, TP \oplus \theta_P) \longrightarrow \Omega^{10}(N,P)$$

to be the map associated with i_n . Then i(N, P) is a fibre homotopy equivalence. Let $(i(N, P))^{-1} : \Omega^{10}(N, P) \to SO_{n+1}(TN \oplus \theta_N, TP \oplus \theta_P)$ be the homotopy inverse of i(N, P). Then we consider the fibre map

$$i_{SO} \circ (i(N,P))^{-1} : \Omega^{10}(N,P) \longrightarrow SO_{n+1}(TN \oplus \theta_N, TP \oplus \theta_P)$$

707

$$\longrightarrow GL_{n+1}^+(TN\oplus\theta_N,TP\oplus\theta_P)$$

giving a homotopy equivalence of fibre bundles. Then it has been shown in [An3, Proposition 3.1] that the homotopy class of the fibre map $i_{SO} \circ (i(N, P))^{-1}$ over $id_{N \times P}$ does not depend on the choice of Riemannian metrics of N and P.

The set of all continuous sections of $GL_{n+1}^+(TN \oplus \theta_N, TP \oplus \theta_P)$ over N corresponds bijectively to that of all orientation-preserving bundle maps of $TN \oplus \theta_N$ to $TP \oplus \theta_P$. Thus we have the following theorem.

Theorem 3.2 ([An3, Corollary 2]). Given a fold-map $f : N \to P$, the section $j^2 f$ determines the homotopy class of the section $i_{SO} \circ (i(N, P))^{-1} \circ j^2 f$ of $GL_{n+1}^+(TN \oplus \theta_N, TP \oplus \theta_P)$. It induces a bundle map $\mathcal{T}(f) : TN \oplus \theta_N \to TP \oplus \theta_P$ determined up to homotopy (this is denoted by \overline{f} in [An3]).

Let N and P be embedded in \mathbf{R}^{n+k} with the stable normal bundles ν_N and ν_P respectively. Let $\tau(f)$ denote the bundle map $\mathcal{T}(f) \oplus (f \times id_{\mathbf{R}^{k-1}})$. Then we have the following proposition.

Proposition 3.3 ([An3, Proposition 3.2]). Let N and P be oriented manifolds of dimension n embedded in \mathbb{R}^{n+k} with the trivializations $t_N : \tau_N \oplus$ $\nu_N \to \theta_N^{2k}$ and $t_P : \tau_P \oplus \nu_P \to \theta_P^{2k}$ respectively. Then a fold-map $f : N \to P$ determines the homotopy class of a bundle map $\nu(f) : \nu_N \to \nu_P$ over f such that $t_P \circ (\tau(f) \oplus \nu(f)) \circ t_N^{-1}$ is homotopic to $f \times id_{\mathbb{R}^{2k}}$.

Now we are ready to define the map $\omega_m : \Omega_{fold,m}(P) \to [P, F^m]$. Given a fold-map $f : N \to P$ of degree m, there is a bundle map $\tau(f) : \tau_N \to \tau_P$ and a bundle map $\nu(f) : \nu_N \to \nu_P$ determined up to homotopy by Theorem 3.2 and Proposition 3.3 respectively. Let $T(\nu(f)) : T(\nu_N) \to T(\nu_P)$ be the Thom map associated with $\nu(f)$. Then we set $\omega_m(f) = c_{F^m}(\mathcal{D}(v_P)(\{T(\nu(f)) \circ \alpha_N\}))$. Since $T(\nu(f))$ is of degree $m, \mathcal{D}(v_P)(\{T(\nu(f)) \circ \alpha_N\})$ is of degree m by Lemma 2.4 (2).

Lemma 3.4. (1) $\omega_m(f) = c_{F^m}(\mathcal{D}(v_P)(\{T(\nu(f)) \circ \alpha_N\}))$ does not depend on the choice of embeddings of N and P into \mathbf{R}^{n+k} .

(2) $\omega_m(f)$ does not depend on the choice of a representative f of the fold-cobordism class $[f] \in \Omega_{fold,m}(P)$.

Proof. (1) Let $e_N^1: N \to \mathbf{R}^{n+k}$ and $e_P^1: P \to \mathbf{R}^{n+k}$ be other embeddings with normal bundles ν_N^1 and ν_P^1 , trivializations $t_N^1: \tau_N \oplus \nu_N^1 \to \theta_N^{2k}$ and $t_P^1: \tau_P \oplus \nu_P^1 \to \theta_P^{2k}$ respectively and a bundle map $\nu(f)^1: \nu_N^1 \to \nu_P^1$. Then by Remark 2.2 there exist bundle maps $b_N: \nu_N \to \nu_N^1$ and $b_P: \nu_P \to \nu_P^1$ such that $b_P \circ \nu(f) \circ b_N^{-1} \simeq \nu(f)^1: \nu_N^1 \to \nu_P^1$. Then by Lemma 2.3 (4) we have that $\mathcal{D}(v_P^1) \circ T(b_P)_* = \mathcal{D}(v_P)$ and that

$$\mathcal{D}(v_P^1)(\{T(\nu(f)^1) \circ \alpha_N^1\}) = \mathcal{D}(v_P^1)(\{T(b_P) \circ T(\nu(f)) \circ T(b_N^{-1}) \circ T(b_N) \circ \alpha_N\})$$

= $\mathcal{D}(v_P^1)(\{T(b_P) \circ T(\nu(f)) \circ \alpha_N\})$
= $\mathcal{D}(v_P^1) \circ T(b_P)_*(\{T(\nu(f)) \circ \alpha_N\})$
= $\mathcal{D}(v_P)(\{T(\nu(f)) \circ \alpha_N\}).$

(2) Let $f_i : N_i \to P(i = 0, 1)$ be fold-maps of degree m, which are fold-cobordant. By the same arguments as in the proof of [An3, Lemma 4.3] we have that $\{T(\nu(f_0)) \circ \alpha_{N_0}\} = \{T(\nu(f_1)) \circ \alpha_{N_1}\}$. Hence, we have that $\omega_m(f_0) = \omega_m(f_1)$.

In particular, if m = 1, then we shall see that $(i_{F^1,SG})_* \circ \omega_1$ coincides with

$$\omega:\Omega_{fold,1}(P)\longrightarrow [P,SG]$$

defined in [An3, Section 4]. Now we first review the definition of ω . Let $f: N \to P$ be a fold-map of degree 1. By Proposition 3.3, there exists a bundle map $\nu(f): \nu_N \to \nu_P$. Then the map $T(\nu(f)) \circ \alpha_N$ gives an element of $\pi_{n+k}(T(\nu_P))$. By [Br2, I.4.19 Theorem] and [W1, Theorem 3.5], there exists an automorphism $h: S(\nu_P) \to S(\nu_P)$, which is unique up to homotopy and is extended to an automorphism $h: \nu_P \to \nu_P$ by the fibrewise cone construction satisfying the following properties. If $T(h): T(\nu_P) \to T(\nu_P)$ is the Thom map of h, then we have that $T(\nu(f))_*([\alpha_N]) = T(h)_*([\alpha_P])$. Furthermore, there exists a map $\beta: P \to SG(k)$ and a fibre map $h_\beta: \theta_P^k \to \theta_P^k$ defined by $h_\beta(x,v) = (x,\beta(x)(v))$ such that $h + id_{\theta_P^k}$ is homotopic to $id_{\nu_P} + h_\beta$ as automorphisms. Then we have defined ω to be $\omega(f) = [\beta]$.

Lemma 3.5. The map ω coincides with $(i_{F^1,SG})_* \circ \omega_1$.

Proof. We shall give a sketch of a proof, since most of the arguments are similar to those found in Section 2. Since SG is weakly homotopy equivalent to F^1 , we may suppose that the map β appearing in the definition of ω factors through F_k^1 , namely, $\beta : P \to F_k^1 \subset SG(k)$. By Lemma 2.5, we obtain that $\mathcal{D}(v_P)(\{T(h)\}) = \{T(h_\beta)\}$. Therefore, we have that

$$(i_{F^{1},SG})_{*} \circ \omega_{1}(f) = (i_{F^{1},SG})_{*} \circ c_{F^{1}}(\mathcal{D}(v_{P})(\{T(h) \circ \alpha_{P}\}))$$

= $(i_{F^{1},SG})_{*} \circ c_{F^{1}}(\mathcal{D}(v_{P})(\{\alpha_{P}\}) \circ \mathcal{D}(v_{P})(\{T(h)\}))$
= $(i_{F^{1},SG})_{*} \circ c_{F^{1}}(\{c_{P^{0}}\} \circ \{T(h_{\beta})\})$
= $(i_{F^{1},SG})_{*}([\beta])$
= $\omega(f).$

Hence, in the rest of the paper $(i_{F^1,SG})_* \circ \omega_1$ will be written as ω .

Remark 3.6. (1) The spaces F^m and SG are weakly homotopy equivalent to the identity component of the infinite loop space $\Omega^{\infty}S^{\infty}$ (see [M-M, Corollary 3.8]). In fact, let $\hat{m}: S^1 \to S^1$ be the map defined by $x \mapsto mx$ and let $m_{(S^k)}: S^k \to S^k$ be the suspension $S^{k-1}(\hat{m})$ of degree m. Let $\bigvee_{S^k}: S^k \to S^k \lor S^k$ be the comultiplication and let $(\mathbf{1}, \mathbf{1}): S^k \lor S^k \to S^k$ be the comultiplication and let $(\mathbf{1}, \mathbf{1}): S^k \lor S^k \to S^k$ be the canonical map, which is the identity on each S^k . Then we have the weak homotopy equivalence $h_{F^0,F^m}: F^0 \to F^m$ (resp. $h_{F^1,F^m}: F^1 \to F^m, m \neq 0$) defined by using the homotopy equivalence $h_k: F^0_k \to F^m_k$ (resp. $\hat{h}_k: F^1_k \to F^m_k, m \neq 0$) such that $h_k(j) = (\mathbf{1}, \mathbf{1}) \circ (j \lor m_{(S^k)}) \circ \bigvee_{S^k}$ (resp. $\hat{h}_k(j) = j \circ m_{(S^k)}, m \neq 0$).

Since F^0 , F^1 and SG are homotopy commutative *H*-spaces, $[P, F^0]$, $[P, F^1]$ and [P, SG] have structures of an abelian group. It is well known that there is an isomorphism $[S^n, F^0] \to \pi_n^s$. In fact, we have the following (see [At1, Lemma 1.3 and (i), (ii) on p. 295]).

$$[S^n, F_k^0] \cong \pi_n(F_k^0) \cong \pi_{n+k-1}(S^{k-1}) \qquad (k > n+2)$$

(2) Many authors have contributed to the study of the very difficult structure of the algebras $H_*(SG; \mathbf{Z}/p\mathbf{Z})$ and $H^*(SG; \mathbf{Z}/p\mathbf{Z})$, where p is a prime number (consult [M-M, Chapter 6], [M, Theorem 6.1 and Conjecture 6.2] and [Tsu]).

(3) We have seen in Corollary 5 that for any element *a* of $H^*(F^m; \mathbb{Z}/p\mathbb{Z})$, $\omega_m(f)^*(a)$ of $H^*(P; \mathbb{Z}/p\mathbb{Z})$ is a fold-cobordism invariant. It is natural to ask how $\omega_m(f)^*(a)$ is related to the topological structure of S(f) in *N* and f(S(f))in *P*, where S(f) is the set of fold singularities of *f* (see Example 8.4 (2)).

4. Homotopy principle for fold-maps

If for any section s of $\Gamma(N, P)$ there exists a fold-map $f: N \to P$ such that $j^2 f$ is homotopic to s by a homotopy in $\Gamma(N, P)$, then we shall say that the homotopy principle (a terminology used in [G2]) for fold-maps in the existence level holds. In this section we shall prove the following theorem in place of Theorem 6.

Theorem 4.1. Let $n \geq 2$. Let N and P be connected manifolds of dimension n and $\partial N = \emptyset$. Let C be a closed subset of N. Let s be a section of $\Gamma(N, P)$ such that there exists a fold-map g defined on a neighborhood of C into P with $j^2 g | C = s | C$. Then there exists a fold-map $f : N \to P$ such that $j^2 f$ is homotopic to s relative to C by a homotopy h_{λ} in $\Gamma(N, P)$ with $h_0 = s$ and $h_1 = j^2 f$.

If the closure of $N \setminus C$ has no compact connected component, then the assertion of Theorem 4.1 is a direct consequence of [G1, Theorem 4.1.1]. This theorem is a special case of [An1, Theorem 1], though the proof given there was sketchy. In particular, the proof of Proposition 4.7 below was not given. A weaker assertion where h_{λ} is required to be a homotopy of N into $\Omega^1(N, P)$ (not into $\Omega^{10}(N, P)$), which we can prove without Proposition 4.7, is sufficient for the proof of the main results in [An1]. Here $\Omega^1(N, P)$ denotes $\Sigma^0(N, P) \cup \Sigma^1(N, P)$ in $J^1(N, P)$. However, Theorem 4.1 above is very important for the proof of Theorem 1 in Introduction. This is the reason why a proof of Theorem 4.1 is given in detail in this paper. The following Theorem 4.2 due to Èliašberg [E] (see also [G2, 2.1.3 Theorem on p. 55]) will play an important role in the proof. We should note that Theorem 4.1 is not a generalization of Theorem 4.2.

Theorem 4.2 ([E, 2.2 Theorem]). Let N and P be connected manifolds of dimension n and S be an (n-1)-dimensional submanifold of N. Let C be a closed subset of N such that each connected component of $N \setminus C$ has

non-empty intersection with S. Assume that there exists an S-monomorphism $B:TN \to TP$ over a map $f_B: N \to P$, that is, a fibrewise linear map which satisfies

B is of rank n outside of S and is of rank n-1 on S, (H-4.2-i)

there exist a small tubular neighborhood U(S) of S, which is (H-4.2-ii) identified with $S \times (-1,1)$, and a fibre involution $i_U : U(S) \to U(S)$ such that $B \circ d(i_U)|TU(S) = B|TU(S)$ and

(H-4.2-iii) f_B is a fold-map on a small neighborhood of C and $df_B|_C =$ $B|_C$.

Then there exist a fold-map $f: N \to P$ and a homotopy of S-monomorphisms $B_{\lambda}: TN \to TP$ such that $B_0 = B$, $B_1 = df$ and $B_{\lambda}|_C = B|_C$ for any λ .

We here note the following. The fibre of $\Sigma^{10}(n,n) \to \Sigma^{1}(n,n)$ has two connected components. Hence, if an S-monomorphism B has a fold-map fwith S(f) = S such that df and B are homotopic as S-monomorphisms, then the homotopy class of $j^2 f$ as a section in $\Gamma(N, P)$ is uniquely determined from B and does not depend on the choice of f.

We shall begin by proving the following proposition, which is a direct consequence of Gromov's theorem ([G1, Theorem 4.1.1]). For the fold-map q and a closed subset C in the statement of Theorem 4.1 we take a closed neighborhood U(C) of C such that Cl(IntU(C)) = U(C) for a while, where g is defined on a neighborhood of U(C). Let j_0 be the number (possibly ∞) of compact connected components of $N \setminus Int(U(C))$, from each of which we choose a point q_i $(1 \le j \le j_0)$ in its interior. Using local charts of N we have embeddings $e_i : \mathbf{R}^n \to N \setminus U(C)$ with $e_i(0) = q_i$. In Sections 4, 6 and 7 we shall simply denote D_r^n by D_r .

Proposition 4.3. Let $n \geq 1$. Let s be a section satisfying the hypothesis in Theorem 4.1. Assume that $s^{-1}(\Sigma^{10}(N, P))$ is not contained in U(C). Take points $\{q_1, \ldots, q_{j_0}\}$ of $N \setminus U(C)$ and embeddings e_j $(1 \le j \le j_0)$ as above. Then there exist a homotopy s_{λ} relative to U(C) in $\Gamma(N, P)$ with $s_0 = s$ and positive numbers r_j $(1 \le j \le j_0)$ such that

(1) s_1 has a fold-map $f_0: N \setminus \{q_1, \ldots, q_{j_0}\} \to P$ with $j^2 f_0 | (N \setminus \bigcup_{i=1}^{j_0} e_i)$

 $\begin{aligned} \operatorname{Int} D_{r_j})) &= s_1 | (N \setminus \bigcup_{j=1}^{j_0} e_j(\operatorname{Int} D_{r_j})), \\ (2) \quad s_1 \text{ is transverse to } \Sigma^{10}(N, P) \text{ and} \\ (3) \quad s_1^{-1}(\Sigma^{10}(N, P)) \text{ transversely intersects } \partial e_j(D_{2r_j}) \text{ and } \partial e_j(D_{r_j}) \text{ for} \end{aligned}$ each j.

Proof. We can take the embeddings $e_j : \mathbf{R}^n \to N \setminus U(C)$ with $e_j(0) = q_j$ so that $\pi_P^2 \circ s \circ e_i(\mathbf{R}^n)$ is contained in a local chart of P. By applying [G1, Theorem 4.1.1] to the section $s|(N \setminus \{q_1, \ldots, q_{j_0}\}))$, we see that there exists a homotopy s'_{λ} relative to U(C) in $\Gamma(N \setminus \{q_1, \ldots, q_{j_0}\}, P)$ such that $s'_0 = s|(N \setminus \{q_1, \ldots, q_{j_0}\}, P)|$ $\{q_1, \ldots, q_{j_0}\}$ and that s'_1 has a fold-map $f_0: N \setminus \{q_1, \ldots, q_{j_0}\} \to P$ with $j^2 f_0 = s'_1$. Take a small positive number t_j for each j. By the homotopy extension property we can extend $s'_{\lambda}|(N \setminus \bigcup_{j=1}^{j_0} e_j(\operatorname{Int} D_{t_j}))$ to a homotopy s''_{λ} in $\Gamma(N, P)$ such that $s_0'' = s$ and $s_{\lambda}''|(N \setminus \bigcup_{j=1}^{j_0} e_j(\operatorname{Int} D_{t_j})) = s_{\lambda}'|(N \setminus \bigcup_{j=1}^{j_0} e_j(\operatorname{Int} D_{t_j}))$. Since $j^2 f_0$ is transverse to $\Sigma^{10}(N, P)$, we can deform s''_{λ} to the homotopy s_{λ} such that

- (i) $s_0 = s$,
- (ii) $s_{\lambda}|(N \setminus \bigcup_{j=1}^{j_0} e_j(\operatorname{Int} D_{t_j})) = s_{\lambda}''|(N \setminus \bigcup_{j=1}^{j_0} e_j(\operatorname{Int} D_{t_j}))$ and

(iii) s_1 is transverse to $\Sigma^{10}(N, P)$. Now recall that $S(s_1) = (s_1)^{-1}(\Sigma^{10}(N, P))$. For each j, consider the smooth map $h: S(s_1) \cap e_i(\mathbf{R}^n) \to \mathbf{R}$ defined by $h(x) = ||e_i^{-1}(x)||$ except for the origin. The assertion (3) follows from Sard Theorem (see [H2]) for h.

Since **K** over $\Sigma^{10}(\mathbf{R}^n, P)$ is a line bundle, $S^2\mathbf{K}$ is trivial and has the canonical orientation determined by a vector $\mathbf{v} \bigcirc \mathbf{v} = (-\mathbf{v}) \bigcirc (-\mathbf{v}), \mathbf{v} \in \mathbf{K}$. Therefore, the intrinsic derivative $\mathbf{d}^2: \mathbf{K} \to \operatorname{Hom}(\mathbf{K}, \mathbf{Q})$ induces an orientation of **Q** over $\Sigma^{10}(\mathbf{R}^n, P)$. Throughout the paper we shall always provide **Q** with this orientation.

Let s be a section of $\Gamma^{tr}(\mathbf{R}^n, P)$. Let $\nu(s)$ denote the orthogonal normal bundle of S(s) in \mathbb{R}^n . We set $K(s) = (s|S(s))^* \mathbb{K}, Q(s) = (s|S(s))^* \mathbb{Q}$ and $\theta^n(P) = (\pi_P \circ s)^* TP$. Throughout the paper we shall choose and fix a trivialization of $\theta^n(P)$ over \mathbf{R}^n $(n \geq 2)$. Then we can provide K(s) with the orientation induced by the exact sequence

$$0 \longrightarrow K(s) \longrightarrow T\mathbf{R}^n|_{S(s)} \xrightarrow{d^1(s)} \theta^n(P)|_{S(s)} \longrightarrow Q(s) \longrightarrow 0.$$

In fact, let $c \in S(s)$ and take an orthonormal basis $(\mathbf{m}_1, \ldots, \mathbf{m}_{n-1})$ of $K(s)_c^{\perp}$ in $T_c \mathbf{R}^n$ and a vector $\mathbf{v} \in Q(s)_c$ representing the orientation of $Q(s)_c$ such that $(d^1(s)(\mathbf{m}_1),\ldots,d^1(s)(\mathbf{m}_{n-1}),\mathbf{v})$ is compatible with the orientation of $\theta^n(P)_c$. Then there exists a vector $\mathbf{m}_n \in K(s)_c$ such that $(\mathbf{m}_1, \ldots, \mathbf{m}_n)$ represents the usual orientation of \mathbf{R}^n . We orient $K(s)_c$ by \mathbf{m}_n . Thus $\operatorname{Hom}(K(s), Q(s))$ is oriented and is isomorphic to the normal bundle $\nu(s)$ of S(s) in \mathbb{R}^n as is explained in Section 1. This induces the orientation of $\nu(s)$. On the other hand, we can provide any point x of $\mathbf{R}^n \setminus S(s)$ with sign - or + depending on whether the sign of the determinant of $d^{1}(s)_{x}$ is negative or positive (we note that when n = 1, we are considering the trivialization of $\theta^1(P)$ induced from Q(s) near each point c). This orientation of $\nu(s)$ coincides with the direction from the points of $\mathbf{R}^n \setminus S(s)$ with sign – to those points with sign +. Throughout the paper we shall orient S(s) so that $T(S(s)) \oplus \nu(s)$ is compatible with the usual orientation of \mathbf{R}^n .

Any point c of S(s) has two oriented lines $\nu(s)_c$ and $K(s)_c$. Here we note the following fact concerning these orientations.

Remark 4.4. If $g: (N, x) \to (P, f(x))$ is a fold-map and x is a fold singularity, then $d_x^2 g: T_x N \to \operatorname{Hom}(K(j^2 g)_x, Q(j^2 g)_x)$ coincides with $d_x^2(j^2 g)$ and is an epimorphism (see Section 1). Since $K(j^2g)_x \cap T_x(S(j^2g)) = \{0\}$, we may say that $K(j^2g)$ is the normal bundle of $S(j^2g)$ near x. Hence, it follows that the orientations of $\nu(j^2g)_x$ and $K(j^2g)_x$ are compatible.

For an oriented 1-dimensional subspace $L \subset \mathbf{R}^n$ we let $\mathbf{e}(L)$ denote the vector of length 1 with given orientation. Now we define the map $\mathbf{e}(s): S(s) \rightarrow \mathbf{e}(s)$

 $S^{n-1} \times S^{n-1}$ by $\mathbf{e}(s)(c) = (\mathbf{e}(K(s)_c), \mathbf{e}(\nu(s)_c))$. Let Δ^- denote the subspace of $S^{n-1} \times S^{n-1}$ consisting of all points $(v, -v), v \in S^{n-1}$. The following lemma can be proved by the standard arguments in differential topology.

Lemma 4.5. No matter how an orientation of $\theta^n(P)$ is chosen, the subset consisting of all sections s of $\Gamma^{tr}(\mathbf{R}^n, P)$ such that $\mathbf{e}(s) : S(s) \to S^{n-1} \times S^{n-1}$ is transverse to Δ^- is open and dense.

For the proof of Theorem 4.1 we need the following two propositions. In \mathbf{R}^n let O(p;r) be the open disk centered at p with radius r.

Proposition 4.6. Let $n \ge 1$. Assume that $s \in \Gamma^{tr}(\mathbf{R}^n, P)$ satisfies the hypotheses

(H-i) there exists a fold-map f_0 defined on $\mathbf{R}^n \setminus \operatorname{Int} D_r$ into P such that $j^2 f_0 |(\mathbf{R}^n \setminus \operatorname{Int} D_r) = s|(\mathbf{R}^n \setminus \operatorname{Int} D_r)$ and

(H-ii) $\mathbf{e}(s)$ is transverse to Δ^- and $\mathbf{e}(s)^{-1}(\Delta^-)$ consists of distinct points p_1, \ldots, p_m in $\operatorname{Int} D_r$.

Then there exists a homotopy s_{λ} relative to $\mathbf{R}^n \setminus \operatorname{Int} D_{2r}$ in $\Gamma(\mathbf{R}^n, P)$ with $s_0 = s$ satisfying the following.

(1) $s_1 \in \Gamma^{tr}(\mathbf{R}^n, P)$ and $S(s_\lambda) = S(s)$ for any λ .

(2) Let $\varepsilon > 0$ be any positive number such that $O(p_j; 2\varepsilon)$'s are disjoint and contained in $\operatorname{Int} D_r$. There exists a small neighborhood U(S(s)) of S(s) such that we have a fold-map $f : ((\mathbf{R}^n \setminus \operatorname{Int} D_{2r}) \cup U(S(s))) \setminus (\bigcup_{j=1}^m O(p_j; \varepsilon)) \to P$ with $j^2 f = s_1$ on $((\mathbf{R}^n \setminus \operatorname{Int} D_{2r}) \cup U(S(s))) \setminus (\bigcup_{j=1}^m O(p_j; \varepsilon))$.

(3) In particular, if $\mathbf{e}(s)^{-1}(\Delta^{-})$ is empty, then the fold-map f in (2) is defined on $(\mathbf{R}^n \setminus \operatorname{Int} D_{2r}) \cup U(S(s))$.

Proposition 4.7. Let $n \geq 2$. Given a section s in $\Gamma^{tr}(\mathbf{R}^n, P)$ satisfying (H-i) and (H-ii) with m > 0 in Proposition 4.6, there exists a homotopy s_{λ} relative to $\mathbf{R}^n \setminus \operatorname{Int} D_{2r}$ in $\Gamma(\mathbf{R}^n, P)$ with $s_0 = s$ such that $s_1 \in \Gamma^{tr}(\mathbf{R}^n, P)$, $\mathbf{e}(s_1)^{-1}(\Delta^-)$ is empty and that $S(s_1) \cap D_{2r}$ is not empty.

The corresponding assertion for the case n = 1 fails (see Remark 8.5). The proofs of Propositions 4.6 and 4.7 will be given in Sections 6 and 7 respectively.

Here we shall give a proof of Theorem 4.1.

Proof of Theorem 4.1. We may assume that $N \setminus C$ is not empty. From each connected compact component of $N \setminus \text{Int}(U(C))$, we take a point $q_j (1 \leq j \leq j_0)$ in its interior. We first deform s by a homotopy in $\Gamma(N, P)$ so that each connected compact component of $N \setminus \text{Int}(U(C))$ contains points of $S(s) \setminus C$ in its interior with q_j being excluded. Then for the section s there exists a homotopy $\overline{s_{\lambda}}$ with a fold-map f_0 satisfying the properties (1), (2) and (3) of Proposition 4.3. Therefore, it is enough for Theorem 4.1 to prove the special case of Theorem 4.1 where (1) $N = \mathbb{R}^n$, $C = \mathbb{R}^n \setminus \text{Int}D_{2r}$ and $g = f_0$ on a neighbourhood of $\mathbb{R}^n \setminus \text{Int}D_{2r}$, (2) s is transverse to $\Sigma^{10}(\mathbb{R}^n, P)$ and (3) $S(s) \cap \text{Int}D_{2r}$ contains the origin. We shall prove this special case.

It follows from Lemma 4.5 and Proposition 4.7 for s that there exists a homotopy s'_{λ} relative to $\mathbf{R}^n \setminus \text{Int}D_{2r}$ in $\Gamma(\mathbf{R}^n, P)$ with $s'_0 = s$ such that

 $s'_1 \in \Gamma^{tr}(\mathbf{R}^n, P)$ and $\mathbf{e}(s'_1)^{-1}(\Delta^-) = \emptyset$. By applying Proposition 4.6 to the section s'_1 there exists a homotopy s''_{λ} relative to $\mathbf{R}^n \setminus \operatorname{Int} D_{2r}$ in $\Gamma(\mathbf{R}^n, P)$ with $s''_0 = s'_1$ such that there exists a fold-map $\hat{g} : (\mathbf{R}^n \setminus \operatorname{Int} D_{2r}) \cup U(S(s)) \to P$ with $j^2 \hat{g} = s''_1$ on $(\mathbf{R}^n \setminus \operatorname{Int} D_{2r}) \cup U(S(s))$. Therefore, we obtain a homotopy s_{λ} relative to $\mathbf{R}^n \setminus \operatorname{Int} D_{2r}$ in $\Gamma(N, P)$ defined by

$$s_{\lambda} = \begin{cases} s'_{2\lambda} & \text{for } 0 \le \lambda \le 1/2, \\ s''_{2\lambda-1} & \text{for } 1/2 \le \lambda \le 1. \end{cases}$$

It is clear that s_{λ} is well defined. We shall apply Theorem 4.2 for the section $\pi_1^2 \circ s_1$ and \hat{g} . Since $J^1(N, P)$ is canonically identified with $\operatorname{Hom}(TN, TP)$, we may regard $\pi_1^2 \circ s_1$ as an $S(s_1)$ -monomorphism. By Theorem 4.2 we obtain a homotopy B_{λ} relative to $\mathbf{R}^n \setminus \operatorname{Int} D_{2r}$ of $S(s_1)$ -monomorphisms and a foldmap $f : \mathbf{R}^n \to P$ with $S(f) = S(s_1)$ such that $B_0 = \pi_1^2 \circ s_1$ and $B_1 = df$. Then this homotopy is lifted to the homotopy h_{λ} relative to $\mathbf{R}^n \setminus \operatorname{Int} D_{2r}$ in $\Gamma(\mathbf{R}^n, P)$ such that $h_0 = s_1$ and $h_1 = j^2 f$. Indeed, there exists a small tubular neighborhood $U(S(s_1))$ of $S(s_1)$, which is identified with $S(s_1) \times (-1, 1)$. Let $(c, t) \in S(s_1) \times (-1, 1)$. Then there exists a continuous homotopy $h_{\lambda}(c, t)$ in $\Gamma((\mathbf{R}^n \setminus \operatorname{Int} D_{2r}) \cup U(S(s_1)), P)$ such that

- (1) $\pi_1^2 \circ h_\lambda(c,t) = (B_\lambda)_{(c,t)},$
- (1) $(d^2_{h_{\lambda}(c,0)}(\partial/\partial t))(\partial/\partial t) = 2\mathbf{e}(T_c(S(s_1))^{\perp}),$
- (3) $d_{h_{\lambda}(c,0)}^2$ vanishes on $T_c(S(s_1))$.

As for other second derivatives of $h_{\lambda}(c,t)$ we can choose them arbitrarily. We note that $S(s_1)$ is oriented in (2) and the symbol \perp refers to the orthogonal complement. Since any fibre of $\pi_1^2 : \Omega^{10}(\mathbf{R}^n, P) \setminus \Sigma^1(\mathbf{R}^n, P) \to J^1(\mathbf{R}^n, P) \setminus$ $\Sigma^1(\mathbf{R}^n, P)$ is contractible, we can extend $h_{\lambda}(c, t)$ to a required homotopy $h_{\lambda} \in$ $\Gamma(\mathbf{R}^n, P)$. This is what we want.

Now we give an application of Theorem 4.1.

Theorem 4.8. Let N and P be oriented manifolds of dimension n. Let $f: N \to P$ be a continuous map. Then if the tangent bundles TN and $f^*(TP)$ are stably equivalent, then there exists a fold-map homotopic to f.

Proof. The assertion for n = 1 is trivial and so let n > 1. There exists an orientation preserving bundle map $b: TN \oplus \theta_N \to TP \oplus \theta_P$ covering f. Hence it follows that there exists a section $s \in \Gamma(N, P)$ such that $i_{SO} \circ i(N, P)^{-1} \circ s$ is homotopic to b. Then by Theorem 4.1 there exists a fold-map $g: N \to P$ such that j^2g is homotopic to s (note that $\mathcal{T}(g) \simeq b$). This is what we want.

This theorem should be compared with [E, 3.10. Theorem], from which the assertion of Theorem 4.8 follows in many cases. The converse of the theorem has been also proved in [E, 3.8 and 3.9].

5. Map ω_m is surjective

In this section we shall prove that $\omega_m : \Omega_{fold,m}(P) \to [P, F^m]$ is surjective by using Theorem 4.1. Proof of Theorem 1. The assertion for n = 1 follows from Proposition 5.3 below. So let n > 1. Let $\beta : P \to F^m$ be a map representing an element $[\beta] \in [P, F^m]$. Take an element $\{\beta_0\} \in \{P^0; S^0\}$ such that $c_{F^m}(\{\beta_0\}) = [\beta]$. By the duality of $\mathcal{D}(v_P)$ there exists an element $\alpha_\beta \in \pi_{n+k}(T(\nu_P))$ such that $\mathcal{D}(v_P)(\{\alpha_\beta\}) = \{\beta_0\}$. Since α_β is of degree m by Lemma 2.4, we have that $\mathcal{U}(\nu_P) \frown (\alpha_\beta)_*([S^{n+k}]) = m[P]$, where $\mathcal{U}(\nu_P)$ refers to the Thom class of ν_P . By the Thom transversality theorem we may assume that α_β is transverse to the zero-section $P \subset T(\nu_P)$ without loss of generality. Set $N = (\alpha_\beta)^{-1}(P)$. Let $\hat{g} = \alpha_\beta |D(\nu_N)|$ and $g = \alpha_\beta |N|$, where $D(\nu_N)$ is the normal disk bundle to the inclusion $N \subset S^{n+k}$. Then g is of degree m. Indeed, let $[D(\nu_N)]$ be the fundamental class of $H_{n+k}(D(\nu_N), \partial D(\nu_N); \mathbb{Z})$. Let $i_N : N \to D(\nu_N)$ and $i_P : P \to D(\nu_P)$ be the inclusions to the zero sections respectively. Then we have that

$$\hat{g}_{*}((i_{N})_{*}([N])) = \hat{g}_{*}(U(\nu_{N}) \frown [D(\nu_{N})]) = \hat{g}_{*}(\hat{g}^{*}(U(\nu_{P})) \frown [D(\nu_{N})]) = U(\nu_{P}) \frown \hat{g}_{*}([D(\nu_{N})]) = U(\nu_{P}) \frown (\alpha_{\beta})_{*}([S^{n+k}]) = m((i_{P})_{*}([P])).$$

Then we have a bundle map $b: \nu_N \to \nu_P$ over g induced from \hat{g} . By [An3, Proposition 3.3] there exists a bundle map $b': \tau_N \to \tau_P$, which is uniquely determined up to homotopy so that $t_P \circ (b' \oplus b) \circ t_N^{-1}$ is homotopic to $g \times id_{\mathbf{R}^{2k}}$.

Here we choose metrics of TN and TP. Recall $SO_{n+k}(TN \oplus \theta_N^k, TP \oplus \theta_P^k)$ and $GL_{n+k}^+(TN \oplus \theta_N^k, TP \oplus \theta_P^k)$ defined in Section 3. The inclusion $GL_{n+1}^+ \to GL_{n+k}^+$ induces a fibre map $i_{n+1,n+k} : GL_{n+1}^+(TN \oplus \theta_N, TP \oplus \theta_P) \to GL_{n+k}^+(TN \oplus \theta_N^k, TP \oplus \theta_P^k)$. Since $\pi_j(SO(n+k), SO(n+1)) \cong \{0\}$ for $j \leq n$ and since the canonical inclusion $SO(\ell) \to GL^+(\ell)$ is a homotopy equivalence, there exists an orientation preserving bundle map

$$b'': TN \oplus \theta_N \to TP \oplus \theta_P$$
 over g

such that $i_{n+1,n+k}(b'') \simeq b'$. By the fibre homotopy equivalence i(N, P) we obtain the homotopy class of a section s of $\Gamma(N, P)$ such that $i_{SO} \circ i(N, P)^{-1}(s)$ is homotopic to b''. Therefore it follows from Theorem 4.1 that there exists a fold-map $f: N \to P$ of degree m such that $j^2 f$ is homotopic to s in $\Gamma(N, P)$. By the definition of $\mathcal{T}(f)$ for f, we have that $\mathcal{T}(f) \simeq b''$ and $i_{n+1,n+k}(\mathcal{T}(f)) = \tau(f)$. This implies that $\tau(f) \simeq b'$ and so $\nu(f) \simeq b$. By the definition of ω_m in Section 3 it follows that $\omega_m(f) = c_{F^m}(\mathcal{D}(v_P)(\{T(b) \circ \alpha_N\})) = c_{F^m}(\mathcal{D}(v_P)(\{\alpha_\beta\})) = [\beta].$

We shall prove the following proposition.

Proposition 5.1. An element $a \in [P, SG]$ lies in J([P, SO]) if and only if there exists a fold-map $f : P \to P$ homotopic to id_P such that $\omega(f) = a$.

Proof. Since $\pi_1(SO) \cong \pi_1(SG)$, the assertion for n = 1 follows from Proposition 5.3. Let n > 1. Given a fold-map $f : P \to P$ homotopic to id_P , we have a bundle map $\nu(f) : \nu_P \to \nu_P$ such that $\omega(f) = (i_{F^1,SG})_* \circ c_{F^1}(\mathcal{D}(\nu_P)(\{T(\nu(f)) \circ \alpha_P\}))$. It follows from Proposition 2.6 that $\omega(f)$ lies in J([P,SO]) (this has been proved in [An3, Proposition 4.5] in a slightly different way).

Next we shall prove that $a \in J([P, SO])$ has such a fold-map f with $\omega(f) = a$. The proof is parallel to that of Theorem 1.

Let $\beta: P \to SO(k)$ be a map such that $J([\beta]) = a$. The orientation preserving isomorphism $h_{\beta}: \theta_P^k \to \theta_P^k$ as in Lemma 2.5 has an orientation preserving isomorphism $b: \nu_P \to \nu_P$ such that $id_{\nu_P} \oplus h_{\beta} \simeq b \oplus id_{\theta_P^k}: \nu_P \oplus \theta_P^k \to \nu_P \oplus \theta_P^k$. By [An3, Proposition 3.3] there exists an orientation preserving isomorphism $b': \tau_P \to \tau_P$, which is uniquely determined up to homotopy, such that $t_P \circ (b' \oplus b) \circ t_P^{-1}$ is homotopic to the identity of θ_P^{2k} . Here consider the inclusion $i_{n+1,n+k}: GL_{n+1}^+(TP \oplus \theta_P, TP \oplus \theta_P) \to GL_{n+k}^+(TP \oplus \theta_P^k, TP \oplus \theta_P^k)$, which is a homotopy equivalence. Then there exists an orientation preserving isomorphism $b'': TP \oplus \theta_P \to TP \oplus \theta_P$ over the identity of P such that $i_{n+1,n+k}(b'') \simeq b'$. We obtain the homotopy class of a section s of $\Gamma(P, P)$ such that $i_{SO} \circ i(P, P)^{-1}(s)$ is homotopic to b'' as above. Therefore, it follows from Theorem 4.1 that there exists a fold-map $f: P \to P$ (homotopic to id_P) such that $j^2 f$ is homotopic to s in $\Gamma(P, P)$. Similarly, we obtain that $i_{n+1,n+k}(\mathcal{T}(f)) = \tau(f)$ and $\tau(f) \simeq b'$, and so $\nu(f) \simeq b$. Since

$$(i_{F^{1},SG})_{*} \circ c_{F^{1}}(\mathcal{D}(v_{P})(\{T(b) \circ \alpha_{P}\})) = (i_{F^{1},SG})_{*} \circ c_{F^{1}}(\mathcal{D}(v_{P})(\{\alpha_{P}\}) \circ \{T(h_{\beta})\}) = (i_{F^{1},SG})_{*} \circ c_{F^{1}}(\{c_{P^{0}} \circ T(h_{\beta})\})$$

by Lemmas 2.4 and 2.5, we have that $\omega(f) = J([\beta]) = a$ by the definition of ω .

We shall give some examples of fold-maps in the dimensions 1 and 2.

Example 5.2. Let $f: N \to P$ be a fold-map. If $TN \oplus \theta_N$ and $TP \oplus \theta_P$ are trivial bundles with fixed trivializations, then the bundle map $\mathcal{T}(f): TN \oplus \theta_N \to TP \oplus \theta_P$ induces a map $M(f): N \to SO(n+1)$. Let $R(x) \in SO(2)$ be the rotation such that $R(x)\mathbf{e}_1 = {}^t(\cos x, \sin x)$. The assertions (1) and (2) below follow from [An3, Example 3.4].

(1) Let S^1 be parametrized by x of $e^{\sqrt{-1}x}$ $(0 \le x \le 2\pi)$ inducing the trivialization of TS^1 . Then consider the fold-map $f^1: S^1 \to \mathbf{R}^1$ defined by $f^1(x) = \cos 2x$. Then $M(f^1)$ is homotopic to the map $R^2: S^1 \to SO(2)$ defined by $R^2(x) = R(2x)$.

(2) Let $S^1 \times S^1$ be parametrized by (x, y) of $(e^{\sqrt{-1}x}, e^{\sqrt{-1}y})$ $(0 \le x, y \le 2\pi)$ inducing the trivialization of $T(S^1 \times S^1)$. Consider the fold-map f^2 : $S^1 \times S^1 \to \mathbf{R}^2$ defined by $f^2(x, y) = ((3 + \cos 2y) \cos 2x, (3 + \cos 2y) \sin 2x)$. Then $M(f^2)$ is homotopic to the map $\Pi : S^1 \times S^1 \to SO(3)$ defined by $\Pi(x, y) = ((1) + R(2y))(R(2x) + (1))$.

By identifying $S^i \setminus \{a \text{ point}\}\$ with \mathbf{R}^i , f^i induces the fold-map into S^i of degree 0 (i = 1, 2). Let $\beta : S^1 \to SO(k)$ represent the generator of $\pi_1(SO(k))$. Consider the fold-map $f^{1,m} : S^1 \to S^1$ of degree m obtained by the connected sum $f^1 \sharp m_{(S^1)} : S^1 \sharp S^1 \to S^1$ for $m \neq 0$, where the two connecting points in $S^1 \sharp S^1$ should be changed from regular points of f^1 and $m_{(S^1)}$ to the fold points of $f^1 \sharp m_{(S^1)}$. It follows that $\nu(f^{1,m})$ appearing in Proposition 3.3 is homotopic to the bundle map $b^m_\beta : \theta^k_{S^1} \to \theta^k_{S^1}$ defined by $b^m_\beta(x, \mathbf{v}) = (mx, \beta(x)\mathbf{v})$ as in the case of Example 5.2 (1).

Proposition 5.3. Let $f^i : S^i \to S^i$ and $f^{1,m} : S^1 \to S^1$ be the foldmaps given above. Then $\omega_0(f^1)$ and $\omega_0(f^2)$ are the generators of $\pi_1(F^0) \cong$ $\mathbb{Z}/2\mathbb{Z}$ and $\pi_2(F^0) \cong \mathbb{Z}/2\mathbb{Z}$ respectively. Furthermore, $\omega_m(f^{1,m})$ is the generator of $\pi_1(F^m) \cong \mathbb{Z}/2\mathbb{Z}$ $(m \neq 0)$.

Proof. We first recall the generator of $\pi_3(S^2)$, which induces the generator of π_1^s . We identify S^3 with $\partial(D^2 \times D^2)$ and S^1 is parametrized by x as in Example 5.2 (1). If $\mu' : S^1 \times S^1 \to S^1$ is the map $\mu(x,y) = x + y$ (modulo 2π), then it induces the map $\mu : S^1 \times D^2 \cup D^2 \times S^1 \to S^2$ by the cone-wise construction, which is the generator. Note that $(\mu|S^1 \times D^2)(x, \mathbf{v}) = R(x)\mathbf{v}$.

Consider the embedding $e_{S^1 \times (-1,1)}$: $S^1 \times (-1,1) \to \mathbf{R}^2$ defined by $e_{S^1 \times (-1,1)}(x,t) = (1-t)e^{\sqrt{-1}x}$. If we identify $T_{(x,t)}(S^1 \times (-1,1))$ with \mathbf{R}^2 under the trivialization of TS^1 in Example 5.2 (1), then $d_{(x,t)}e_{S^1 \times (-1,1)}$ is identified with R(x). When we recall the trivialization t_{S^1} of $\tau_{S^1} \oplus \nu_{S^1}$, considered before defining duality maps in Section 2, $t_{S^1} \circ (\tau(f^1) \oplus \nu(f^1)) \circ t_{S^1}^{-1}$ must be homotopic to the identity of $\theta_{S^1}^{2k}$. Therefore, since $M(f^1)$ is homotopic to the map $x \mapsto R(2x), \nu(f^1) : \nu_{S^1} \to \nu_{S^1}$ must be identified with $b_{\beta}^0 : \theta_{S^1}^k \to \theta_{S^1}^k$. The case n = 1. Consider the embedding $e : S^1 \to \mathbf{R}^{1+k}$ with normal

The case n = 1. Consider the embedding $e : S^1 \to \mathbf{R}^{1+k}$ with normal bundle $S^1 \times D^k$. Let $b : S^1 \times D^k \to D^k$ be the bundle map defined by $b(x, \mathbf{v}) = \beta(x)\mathbf{v}$, where $\beta : S^1 \to SO(k)$ represents a generator of $\pi_1(SO)$. Then it is known from the observation above concerning the generator of π_1^s that $\mathcal{D}(\{T(b) \circ \alpha_{S^1}\}) \in \{S^{1+k}, S^k\}$ is a generator of π_1^s . Let $\hat{b} : (1,0) \times D^k \to S^1 \times D^k$ be the bundle map $i_{(1,0)} \times id_{D^k}$, where (1,0) is the point of S^1 and $i_{(1,0)}$ is the inclusion. Then since $\nu(f^1) \simeq \hat{b} \circ b$, we have that

$$\omega_0(f^1) = c_{F^0}(\mathcal{D}(v_{S^1})(\{T(\hat{b} \circ b) \circ \alpha_{S^1}\}))$$

= $c_{F^0}(\mathcal{D}(v_{S^1})(\{T(b) \circ \alpha_{S^1}\}) \circ \mathcal{D}(v_{S^1})(\{T(\hat{b})\})).$

It follows from [Sp2, Theorem 6.1] that $\mathcal{D}(v_{S^1})(\{T(\hat{b})\}) \in \{(S^1)^0, S^1\}$ is represented by a base point preserving map $j_{S^1}: (S^1)^0 \to S^1$ with $j_{S^1}|S^1 = id_{S^1}$. Indeed, $(\mathcal{D}(v_{S^1})(\{T(\hat{b})\}))_*: H_1((S^1)^0) \to H_1(S^1)$ is the identity of **Z**. This implies the assertion for f^1 .

Next we deal with $f^{1,m}$ for $m \neq 0$. Let $m_{(S^1)^0} : (S^1)^0 \to (S^1)^0$ be the map $m_{(S^1)} \cup id_{*_{S^1}}$. Let $b^m : \theta^k_{S^1} \to \theta^k_{S^1}$ be the map defined by $b^m(x, \mathbf{v}) = (mx, \mathbf{v})$. We have that $b^m_\beta = b^m \circ b^1_\beta$. Since $\pi_1(SO) \cong \mathbf{Z}/2\mathbf{Z}$, we have that $\mathcal{D}(v_{S^1})(\{T(b^1_\beta)\}) = \{T(b^1_\beta)\}$. Since $T(b^m)$ is homotopic to $m_{(S^1)^0} \wedge id_{S^k}$,

we have that $\mathcal{D}(v_{S^1})(\{T(b^m)\}) \in \{(S^1)^0, (S^1)^0\}$ is represented by a map Υ : $S((S^1)^0) \to S((S^1)^0)$ by [Sp2, Theorem 6.1] such that

(1) $\Upsilon^* : H^1(S((S^1)^0); \mathbf{Z}) \to H^1(S((S^1)^0); \mathbf{Z})$ maps 1 to m,

(2) $\Upsilon^* : H^2(S((S^1)^0); \mathbf{Z}) \to H^2(S((S^1)^0); \mathbf{Z})$ maps 1 to 1.

Since $S((S^1)^0)$ is homotopy equivalent to $S^2 \vee S^1$, we may suppose that $\Upsilon|S^2 = id_{S^2}$ and that $\Upsilon|S(\{x\} \cup \{*\}) : S(\{x\} \cup \{*\}) \to S(\{x\} \cup \{*\})$ is of degree m. Thus, $\mathcal{D}(v_{S^1})(\{T(b^m)\}) \in \{(S^1)^0, (S^1)^0\}$ is represented by the map $S^{k-1}(\Upsilon)$. Hence, we have

$$\begin{split} \omega_m(f^{1,m}) &= c_{F^m}(\mathcal{D}(v_{S^1})(\{T(\nu(f^{1,m})) \circ \alpha_{S^1}\})) \\ &= c_{F^m}(\mathcal{D}(v_{S^1})(\{T(b^m \circ b^1_\beta) \circ \alpha_{S^1}\})) \\ &= c_{F^m}(\mathcal{D}(v_{S^1})(\{\alpha_{S^1}\}) \circ \{T(b^1_\beta)\} \circ \mathcal{D}(v_{S^1})(\{T(b^m)\})) \\ &= c_{F^m}(\{c_{(S^1)^0}\} \circ \{T(b^1_\beta) \circ S^{k-1}(\Upsilon)\}). \end{split}$$

Since

$$(S^{k-1}(c_{(S^1)^0}) \circ T(b^1_\beta) \circ S^{k-1}(\Upsilon)) | S^k \wedge S(\{x\} \cup *_{S^1}) = T(\beta(x)) \circ m_{(S^k)},$$

we have that $\omega_0(f^{1,m}) = (h_{F^1,F^m})_*([\beta])$, where $T(\beta(x))$ is the Thom map of $\beta(x) : \mathbf{R}^k \to \mathbf{R}^k$ and β is considered as an element of $[S^1, F^1]$. The case n = 2. Consider the embedding $e' : S^1 \times S^1 \to \mathbf{R}^{2+k}$ with normal

The case n = 2. Consider the embedding $e': S^1 \times S^1 \to \mathbf{R}^{2+k}$ with normal bundle $S^1 \times S^1 \times D^k$. Let $B: S^1 \times S^1 \times D^k \to D^k$ be the bundle map defined by $B(x, y, \mathbf{v}) = R(x)R(y)\mathbf{v}$. Then it is known that both $\{T(B) \circ \alpha_{S^1 \times S^1}\}$ and $\mathcal{D}(v_{S^1 \times S^1})(\{T(B) \circ \alpha_{S^1 \times S^1}\})$ are the generator of π_2^s (see [To, Propositions 3.1 and 5.3]). Let $\mathbf{a} = (1, 0, 0), i'_{\mathbf{a}}: \mathbf{a} \to S^2$ be the inclusion and $\hat{B}: \mathbf{a} \times D^k \to$ $S^2 \times D^k$ be the bundle map $i'_{\mathbf{a}} \times id_{D^k}$. Then we have by Example 5.2 (2) that

$$\omega_0(f^2) = c_{F^0}(\mathcal{D}(v_{S^1 \times S^1})(\{T(\hat{B} \circ B)\} \circ \{\alpha_{S^1 \times S^1}\}))$$

= $c_{F^0}(\mathcal{D}(v_{S^1 \times S^1})(\{T(B) \circ \alpha_{S^1 \times S^1}\}) \circ \mathcal{D}(v_{S^1 \times S^1})(\{T(\hat{B})\})).$

It follows from [Sp2, Theorem 6.1] that $\mathcal{D}(v_{S^1 \times S^1})(\{T(\hat{B})\}) \in \{(S^2)^0, S^2\}$ is represented by a base point preserving map $j_{S^2} : (S^2)^0 \to S^2$ with $j_{S^2}|S^2 = id_{S^2}$. Indeed, $\mathcal{D}(v_{S^1 \times S^1})(\{T(\hat{B})\})_* : H_2((S^2)^0) \to H_2(S^2)$ is the identity of \mathbb{Z} . This implies the assertion.

Remark 5.4. Let $f : N_i \to P(i = 1, 2)$ be fold-maps of degree 0. Then the disjoint union $f_1 \cup f_2 : N_1 \cup N_2 \to P$ is also a fold-map of degree 0. We define the sum $[f_1] + [f_2]$ to be $[f_1 \cup f_2]$. By this additive structure on $\Omega_{fold,0}(P)$ we can define the Grothendieck group for $\Omega_{fold,0}(P)$, which is denoted by K(fold,0)(P). Let S^n be the unit sphere in \mathbf{R}^{n+1} with coordinates (x_1,\ldots,x_{n+1}) . Let $p_{S^n}: S^n \to \mathbf{R}^n$ be the projection $(x_1,\ldots,x_{n+1}) \mapsto (x_1,\ldots,x_n)$. Let $e_{\mathbf{R}^n}: \mathbf{R}^n \to P$ be any local chart of P. Then $[e_{\mathbf{R}^n} \circ p_{S^n}]$ becomes the null element. Furthermore, the map ω_0 induces the homomorphism $K(fold,0)(P) \to [P,F^0]$. For example, if $P = S^1$, then it is not difficult to prove that $\Omega_{fold,0}(S^1) \cong K(fold,0)(S^1) \cong [S^1, F^0] \cong \mathbf{Z}/2\mathbf{Z}$.

Remark 5.5. For the case $P = \mathbf{R}^n$, it has been observed in [Sa, Section 5] by using [K-M] that the set of fold-cobordism classes of fold-maps into \mathbf{R}^n forms a non-trivial group in many dimensions.

6. Proof of Proposition 4.6

In this section any homotopy h_{λ} in $\Gamma(X, P)$ refers to a homotopy h_{λ} relative to $X \cap (\mathbf{R}^n \setminus \text{Int} D_{2r})$ in $\Gamma(X, P)$, where X is a submanifold in \mathbf{R}^n .

For a Riemannian manifold X without boundary, consider the exponential map $\exp_X : TX \to X$ defined by the Levi-Civita connection (see [K-N]). Let E be a subbundle of TX. Let δ be some sufficiently small positive smooth function on X. In this paper $D_{\delta}(E)$ always denotes the associated δ -disk bundle of E with radius δ such that $\exp_X |D_{\delta}(E)_x$ is an embedding for any $x \in X$.

Let L_i (i = 1, 2) be two oriented lines of \mathbf{R}^n . If $\mathbf{e}(L_1)$ and $\mathbf{e}(L_2)$ are independent, then they uniquely determine a curve $r_{\lambda}(L_1, L_2)$ in SO(n) defined as follows. Let θ be the angle of $\mathbf{e}(L_1)$ and $\mathbf{e}(L_2)$ less than π . Then we have the great circle of S^{n-1} through $\mathbf{e}(L_1)$ and $\mathbf{e}(L_2)$, and the rotation $r_{\lambda}(L_1, L_2)$ is the identity on the space orthogonal to $\mathbf{e}(L_1)$ and $\mathbf{e}(L_2)$ and rotates this great circle to the direction of $\mathbf{e}(L_1)$ to $\mathbf{e}(L_2)$ so as to carry $\mathbf{e}(L_1)$ to the point with rotated angle $\lambda\theta$, which is, in particular, equal to $\mathbf{e}(L_2)$ when $\lambda = 1$. Thus $r_1(L_1, L_2)(\mathbf{e}(L_1)) = \mathbf{e}(L_2)$. If $L_1 = L_2$ and $\mathbf{e}(L_1) = \mathbf{e}(L_2)$, then we set $r_{\lambda}(L_1, L_2) = E_n$ for all λ , where E_n is the unit matrix of rank n.

Lemma 6.1. Let $s \in \Gamma^{tr}(\mathbf{R}^n, P)$ be a section satisfying (H-i) and (H-ii) of Proposition 4.6. For any positive number ε such that $O(p_j; 2\varepsilon)$ $(1 \le j \le m)$ are all disjoint each other, we set $S(s)_0 = S(s) \setminus (\bigcup_{j=1}^m O(p_j; \varepsilon))$. Then there exists a homotopy s_λ relative to $\mathbf{R}^n \setminus \operatorname{Int} D_{2r}$ in $\Gamma^{tr}(\mathbf{R}^n, P)$ with $s_0 = s$ satisfying

(6.1.1) $S(s_{\lambda}) = S(s)$ for any λ ,

(6.1.2) for any point $c \in S(s_1)_0$ the angle of $\mathbf{e}(K(s_1)_c)$ and $\mathbf{e}(\nu(s_1)_c)$ is less than $\pi/2$,

(6.1.3) for any point $c \in S(s_1)_0 \cap D_r$, we have $\mathbf{e}(K(s_1)_c) = \mathbf{e}(\nu(s_1)_c)$.

Proof. Let $\exp_{\mathbf{R}^n, x} : T_x \mathbf{R}^n \to \mathbf{R}^n$ denote the exponential map defined near $x \in \mathbf{R}^n$. Since $\nu(s)$ is a trivial bundle, its element is written as (c, t). There exists a small positive number δ such that the map

$$e: D_{\delta}(\nu(s))|_{S(s)\cap D_{2r}} \to \mathbf{R}^n$$

defined by $e(c,t) = \exp_{\mathbf{R}^n,c}(c,t)$ is an embedding, where $c \in S(s) \cap D_{2r}$ and $(c,t) \in D_{\delta}(\nu(s)_c)$ (note that $e|S(s) = id_{S(s)}$). Since for $c \notin \mathbf{e}(s)^{-1}(\Delta^-)$, we have that $\mathbf{e}(K(s)_c) \neq -\mathbf{e}(\nu(s)_c)$, we can consider the rotation $r_{\lambda}(\nu(s)_c, K(s)_c)$. Let $\phi : [0, \infty) \to \mathbf{R}$ be a decreasing smooth function such that $0 \leq \phi(u) \leq 1$, $\phi(u) = 0$ if $u \geq 3r/2$, and $\phi(u) = 1$ if $u \leq r$. Let $\psi : [0, \infty) \to \mathbf{R}$ be a decreasing smooth function such that $0 \leq \psi(t) \leq 1$, $\psi(0) = 1$, and $\psi(t) = 0$ if $t \geq \delta$. Let ℓ_a be the parallel translation of \mathbf{R}^n defined by $\ell_a(x) = x + a$.

If we represent $s(x) \in \Omega^{10}(\mathbf{R}^n, P)$ by a jet $j_x^2 \sigma_x$ for a germ $\sigma_x : (\mathbf{R}^n, x) \to$

 $(P, \sigma(x))$, then we define the homotopy s'_{λ} of $\Gamma^{tr}(\mathbf{R}^n \setminus \{p_1, \ldots, p_m\}, P)$ by

$$\begin{cases} s_{\lambda}'(e(c,t)) = j_{e(c,t)}^2(\sigma_{e(c,t)} \circ \ell_{e(c,t)} \circ r_{\phi(||c||)\psi(|t|)\lambda}(\nu(s)_c, K(s)_c) \circ \ell_{-e(c,t)}) \\ & \text{if } c \in S(s) \cap D_{2r} \text{ and } |t| \leq \delta, \\ s_{\lambda}'(x) = s(x) \quad \text{if } x \notin \operatorname{Im}(e). \end{cases}$$

If either $|t| \ge \delta$, or $||c|| \ge 3r/2$, then we have

$$s'_{\lambda}(e(c,t)) = j^2_{e(c,t)}(\sigma_{e(c,t)} \circ \ell_{e(c,t)} \circ \ell_{-e(c,t)})) = j^2_{e(c,t)}(\sigma_{e(c,t)}) = s(e(c,t)).$$

Hence, s'_{λ} is well defined. Furthermore, we have that

(1) $\pi_P^2 \circ s'_\lambda(x) = \pi_P^2 \circ s(x),$

(2) $s'_{\lambda}|S(s) = s|S(s) \text{ and } S(s'_{\lambda}) = S(s),$

(3) if $c \in S(s)_0 \cap D_r$, then we have that $\mathbf{e}(K(s'_1)_c) = r_1(K(s)_c, \nu(s)_c)$ $(\mathbf{e}(K(s)_c)) = \mathbf{e}(\nu(s)_c)$ and

(4) $s'_{\lambda}|\mathbf{R}^n \setminus \{p_1, \ldots, p_m\}$ is transverse to $\Sigma^{10}(N, P)$.

The property (6.1.2) is satisfied for s'_1 inside of D_{2r} by the construction and outside of D_{2r} by Remark 4.4. Applying the homotopy extension property to s and $s'_{\lambda}|\mathbf{R}^n \setminus (\bigcup_{j=1}^m O(p_j;\varepsilon))$ together with the property (4), we obtain the required homotopy s_{λ} in $\Gamma^{tr}(\mathbf{R}^n, P)$ such that $s_0 = s$ and $s_{\lambda}|\mathbf{R}^n \setminus (\bigcup_{j=1}^m O(p_j;\varepsilon)) = s'_{\lambda}|\mathbf{R}^n \setminus (\bigcup_{j=1}^m O(p_j;\varepsilon)).$

Lemma 6.2. Let s be a section of $\Gamma^{tr}(\mathbf{R}^n, P)$ satisfying the properties (6.1.2) and (6.1.3) for s (in place of s_1) of Lemma 6.1. Then there exists a homotopy s_{λ} relative to $\mathbf{R}^n \setminus \operatorname{Int} D_{2r}$ in $\Gamma^{tr}(\mathbf{R}^n, P)$ with $s_0 = s$ such that

(6.2.1) $S(s_{\lambda}) = S(s)$ for any λ ,

(6.2.2) $\pi_P^2 \circ s_1 | S(s)_0$ is an immersion into P such that $d(\pi_P^2 \circ s_1 | S(s)_0) : TS(s)_0 \to TP$ is equal to $d^1(s_1) | TS(s)_0$.

Proof. Recall $d^1(s)|TS(s)_0 : TS(s)_0 \to TP$ in Section 1. Since by the assumption (6.1.2) for s the restriction $d^1(s)|TS(s)_0$ is injective. By the Hirsch Immersion Theorem (see [H1]) we have a homotopy $b_{\lambda} : TS(s)_0 \to TP$ of bundle monomorphisms over $i_{\lambda} : S(s)_0 \to P$ relative to $S(s)_0 \setminus \text{Int}D_{2r}$ such that $b_0 = d^1(s)|TS(s)_0$ and that i_1 is an immersion with $d(i_1) = b_1$.

We extend b_{λ} to a homotopy $m'_{\lambda}: \mathbf{TR}^n|_{S(s)_0} \to TP$ so that $m'_{\lambda}|K(s)_{S(s)_0}$ is the null-homomorphism and $m'_{\lambda}|TS(s)_0 = b_{\lambda}$. It is clear that m'_{λ} is of rank n-1. Hence, it induces a map $m'_{\lambda}: S(s)_0 \to \Sigma^1(\mathbf{R}^n, P)$ denoted by the same symbol m'_{λ} , where $\Sigma^1(\mathbf{R}^n, P)$ refers to the submanifold in $J^1(\mathbf{R}^n, P)$. By applying the covering homotopy property of the fibre bundle $\pi_1^2|\Sigma^{10}(\mathbf{R}^n, P)$: $\Sigma^{10}(\mathbf{R}^n, P) \to \Sigma^1(\mathbf{R}^n, P)$ to $s|S(s)_0: S(s)_0 \to \Sigma^{10}(\mathbf{R}^n, P)$ and m'_{λ} , we obtain a homotopy $m_{\lambda}: S(s)_0 \to \Sigma^{10}(\mathbf{R}^n, P)$ such that $m_0 = s|S(s)_0$ and $\pi_1^2 \circ m_{\lambda} = m'_{\lambda}$. Since s is transverse to $\Sigma^{10}(\mathbf{R}^n, P)$, there are small tubular neighborhoods U(S(s)) of S(s) and $p_{\Sigma}: U(\Sigma^{10}(\mathbf{R}^n, P)) \to \Sigma^{10}(\mathbf{R}^n, P)$, which induces structures of fibre bundles with fibre $[-\delta, \delta]$ respectively so that $s|U(S(s)): U(S(s)) \to U(\Sigma^{10}(\mathbf{R}^n, P))$ becomes a bundle map over s|S(s).

By applying the covering homotopy property of the bundle map $s|p_S^{-1}(S(s)_0) : p_S^{-1}(S(s)_0) \to U(\Sigma^{10}(\mathbf{R}^n, P))$ over $s|S(s)_0$ to $s|p_S^{-1}(S(s)_0)$ and m_{λ} , we

obtain a smooth homotopy of bundle maps $h'_{\lambda} : p_S^{-1}(S(s)_0) \to U(\Sigma^{10}(\mathbf{R}^n, P))$ over m_{λ} with $h'_0 = s | p_S^{-1}(S(s)_0)$. By the homotopy extension property applied to the bundle map $s|\tilde{U}(S(s))$ and the homotopy h'_{λ} , we can extend h'_{λ} to the smooth homotopy of bundle maps $h_{\lambda} : U(S(s)) \to U(\Sigma^{10}(\mathbf{R}^n, P))$ with $h_0 =$ s|U(S(s)).

By applying finally the homotopy extension property to s and

$$h_{\lambda}: (U(S(s)), \partial U(S(s))) \to (U(\Sigma^{10}(\mathbf{R}^n, P)), \partial U(\Sigma^{10}(\mathbf{R}^n, P))),$$

we obtain the extended homotopy $s_{\lambda} : \mathbf{R}^n \to \Omega^{10}(\mathbf{R}^n, P)$ of s. By the construction of s_{λ} , s_1 satisfies the required property.

Here we give two lemmas necessary for the proof of Proposition 4.6. Their proofs will be elementary and so are left to the reader.

Let S be a manifold of dimension n-1 with empty bound-Lemma 6.3. ary. Let $f_i: S \times (-a, a) \to P$, a > 0 (i = 1, 2) be fold-maps which fold only on $S \times 0$ such that

(i) $f_1 | S \times 0 = f_2 | S \times 0$,

(ii) $d_{(c,0)}f_1 = d_{(c,0)}f_2$ and $d_{(c,0)}^2f_1 = d_{(c,0)}^2f_2$ for any $c \in S$ and

(iii) $K(j^2 f_i)_{(c,0)}$ are tangent to $c \times (-a, a)$ and are oriented by the canonical direction of (-a, a).

Let $\eta: S \to \mathbf{R}$ be any smooth function. Then there exists a positive function $\varepsilon: S \to \mathbf{R}$ such that the map $(1-\eta)f_1 + \eta f_2$, defined by $((1-\eta)f_1 + \eta f_2)(c,t) =$ $(1 - \eta(c))f_1(c, t) + \eta(c)f_2(c, t)$ for $t \in (-\varepsilon(c), \varepsilon(c))$, is a fold-map which folds only on $S \times 0$, that $d_{(c,0)}((1-\eta)f_1+\eta f_2) = d_{(c,0)}f_i$, and that $d_{(c,0)}^2((1-\eta)f_1+\eta f_2) = d_{(c,0)}f_i$. $\eta f_2) = d_{(c,0)}^2 f_i.$

Let $E \to S$ be an oriented smooth line bundle with metric Lemma 6.4. over an (n-1)-dimensional manifold, where S is identified with the zero-section, and let (Ω, Σ) be a pair of a smooth manifold and its submanifold of codimension 1. Let $\varepsilon: S \to \mathbf{R}$ be a positive smooth function and $D_{\varepsilon}(E)$ be the associated disk bundle of E with radius ε . Let $h_i: D_{\varepsilon}(E) \to (\Omega, \Sigma)$ (i = 0, 1) be smooth maps such that $S = h_0^{-1}(\Sigma) = h_1^{-1}(\Sigma)$, $h_0|S = h_1|S$ and that h_i are transverse to Σ . Assume that for any $c \in S$, the monomorphisms $T_c E/T_c S \to T_{h_i(c)} \Omega/T_{h_i(c)} \Sigma$ induced from $d_c(h_i)$ send a unit vector to vectors with the same direction on $T_{h_i(c)}\Omega/T_{h_i(c)}\Sigma$. Then for a sufficiently small positive function $\varepsilon: S \to \mathbf{R}$, there exists a homotopy $h_{\lambda} : (D_{\varepsilon}(E), S) \to (\Omega, \Sigma)$ such that (1) $h_{\lambda}|S = h_0|S, \ h_{\lambda}^{-1}(\Sigma) = h_0^{-1}(\Sigma)$ for any λ ,

 h_{λ} is smooth and is transverse to Σ for any λ . (2)

For a vector bundle \mathcal{F} over Σ and a map $\iota: S \to \Sigma$, the induced bundle map $\iota^*(\mathcal{F}) \to \mathcal{F}$ over ι is denoted by $(\iota)_{\mathcal{F}}$ in the proof below.

Proof of Proposition 4.6. By Lemmas 6.1 and 6.2 we may assume that ssatisfies the properties (6.1.2), (6.1.3) and (6.2.2) with s_1 being replaced by s. Since s is smooth near S(s) and is an embedding near S(s), we can choose a Riemannian metric on $\Omega^{10}(\mathbf{R}^n, P)$ so that the induced metric by s near S(s) coincides with the metric on \mathbb{R}^n near S(s). Take any Riemannian metric on P. Set

 $\exp_{\Omega} = \exp_{\Omega^{10}(\mathbf{R}^n, P)}$ for simplicity. We set $E(S(s)_0) = \exp_{\mathbf{R}^n}(D_{\delta}(K(s)_{S(s)_0}))$, where $\delta : \Sigma^{10}(\mathbf{R}^n, P) \to \mathbf{R}$ is a sufficiently small positive function such that $\delta \circ s|S(s)_0 \cap D_{2r}$ is constant. Furthermore, if we identify $Q(s)|_{S(s)_0}$ with the orthogonal normal line bundle to the immersion $\pi_P^2 \circ s|S(s)_0 : S(s)_0 \to P$, then $\exp_P |D_{\gamma}(Q(s)|_{S(s)_0})$ is an immersion for some positive function γ . In the proof we represent points $E(S(s)_0)$ and $\exp_P(D_{\gamma}(Q(s)|_{S(s)_0}))$ as (c, t) and (c, u), where $c \in S(s)_0$, $|t| \leq \delta(s(c))$ and $|u| \leq \gamma(c)$ respectively. In the proof we say that a smooth homotopy

$$h_{\lambda}: (E(S(s)_0), \partial E(S(s)_0)) \to (\Omega^{10}(\mathbf{R}^n, P), \Sigma^0(\mathbf{R}^n, P))$$

has the property (C) if it satisfies that for any λ

(C-1) $h_{\lambda}^{-1}(\Sigma^{10}(\mathbf{R}^n, P)) = S(s)_0$ and $h_{\lambda}|S(s)_0 = h_0|S(s)_0$ and

(C-2) h_{λ} is smooth and transverse to $\Sigma^{10}(\mathbf{R}^n, P)$.

For a point $c \in S(s)_0$, the intrinsic derivative $d_c^2(s) : K(s)_c \to \operatorname{Hom}(K(s)_c, Q(s)_c)$ defines the positive function $b : S(s)_0 \to \mathbf{R}$ by the equation

$$(d_c^2(s)(\mathbf{e}(K(s)_c)))(\mathbf{e}(K(s)_c)) = 2b(c)(\mathbf{e}(Q(s)_c)).$$

If we choose δ sufficiently small compared with γ , then we can define the foldmap $g_0: E(S(s)_0) \to P$ by

$$g_0(c,t) = (c,b(c)t^2) (= \exp_P(c,b(c)t^2)).$$

Let r_0 be a small positive real number with $r_0 < r/10$. Now we need to modify g_0 by using Lemma 6.3 so that g_0 is compatible with f_0 . Let $\eta : S(s)_0 \to \mathbf{R}$ be a smooth function such that

(i) $0 \le \eta(c) \le 1$,

(ii) $\eta(c) = 0$ for $x \in \mathbf{R}^n \setminus \operatorname{Int} D_{2r-r_0}$,

(iii)
$$\eta(c) = 1$$
 for $x \in D_{2r-2r_0}$

Then consider the map $G: (\mathbf{R}^n \setminus \operatorname{Int} D_{2r-r_0}) \cup E(S(s)_0) \to P$ defined by

$$\begin{cases} G(x) = f_0(x) & \text{if } x \in \mathbf{R}^n \setminus \text{Int} D_{2r-r_0}, \\ G(c,t) = (1-\eta(c))f_0(c,t) + \eta(c)g_0(c,t) & \text{if } (c,t) \in E(S(s)_0). \end{cases}$$

It follows from Lemma 6.3 that G is a fold-map defined on a neighborhood of $(\mathbf{R}^n \setminus \operatorname{Int} D_{2r}) \cup E(S(s)_0)$, where δ is replaced by a smaller one if necessary so that $G|E(S(s)_0)$ folds only on $S(s)_0$, and that $d_c^i(G) = d_c^i(g_0)$ for any $c \in S(s)_0 \cap D_{2r}$ (i = 1, 2). Furthermore, we note that if $||c|| \geq 2r - r_0$, then $G(c, t) = f_0(c, t)$.

Next we shall construct a homotopy h_{λ} relative to $E(S(s)_0) \cap \operatorname{Int}(D_{2r} \setminus D_{2r-r_0})$ in $\Gamma^{tr}(E(S(s)_0) \cap \operatorname{Int}D_{2r}, P)$ satisfying the property (C) restricted to $E(S(s)_0) \cap \operatorname{Int}D_{2r}$ such that $h_0 = s$ and $h_1 = j^2 G$ on $E(S(s)_0) \cap \operatorname{Int}D_{2r}$.

By applying Lemma 6.4 to the section s, we first obtain a homotopy $h'_{\lambda} \in \Gamma^{tr}(E(S(s))_0, P)$ with $h'_0 = s$ and $h'_1 = \exp_{\Omega} \circ ds \circ \exp_{\mathbf{R}^n}^{-1}$ on $E(S(s)_0)$ satisfying the properties (1) and (2) of Lemma 6.4. Since $ds|(K(s)|_{S(s)_0}) : K(s)|_{S(s)_0} \to T\Omega^{10}(\mathbf{R}^n, P)$ and $(s|S(s)_0)_{\mathbf{K}} : K(s)|_{S(s)_0} \to \mathbf{K} \subset T\Omega^{10}(\mathbf{R}^n, P)$ are homotopic by a homotopy of monomorphisms transverse to $T\Sigma^{10}(\mathbf{R}^n, P)$,

we can construct a homotopy h''_{λ} in $\Gamma^{tr}(E(S(s)_0), P)$ satisfying the property (C) such that $h''_0 = h'_1$ and $h''_1 = \exp_{\Omega} \circ (s|S(s)_0)_{\mathbf{K}} \circ \exp_{\mathbf{R}^n}^{-1}$ on $E(S(s)_0)$. By pasting h'_{λ} and h''_{λ} we obtain a homotopy $h^1_{\lambda} \in \Gamma^{tr}(E(S(s)_0), P)$ satisfying the property (C) with $h^1_0 = s$ and $h^1_1 = \exp_{\Omega} \circ (s|S(s)_0)_{\mathbf{K}} \circ \exp_{\mathbf{R}^n}^{-1}$ on $E(S(s)_0)$.

Now recall the additive structure of $J^2(\mathbf{R}^n, P)$ defined by using the fixed Riemannian metric on P in [An2, Section 1]. Then we have the homotopy $j_{\lambda} : S(s)_0 \to J^2(\mathbf{R}^n, P)$ defined by

$$j_{\lambda}(c) = (1 - \lambda)s(c) + \lambda j^2 G(c)$$
 covering $i_1 : S(s)_0 \to P$.

Since $K(s)_c = K(j^2G)_c$ and $Q(s)_c = Q(j^2G)_c$ by the construction of the immersion i_1 and the fold-map G, it follows that for any $c \in S(s)_0$ we have $K(j_\lambda)_c = K(s)_c$ and $Q(j_\lambda)_c = Q(s)_c$. Hence, we have that

$$d_{c}^{i}(j_{\lambda}) = (1-\lambda)d_{c}^{i}(s) + \lambda d_{c}^{i}(j^{2}G) = d_{c}^{i}(s) = d_{c}^{i}(j^{2}G).$$

This implies that j_{λ} is a map of $S(s)_0$ into $\Sigma^{10}(\mathbf{R}^n, P)$. Therefore, the homotopy of bundle maps $(j_{\lambda})_{\mathbf{K}} : K(s)|_{S(s)_0} \to (\mathbf{K} \subset)T\Omega^{10}(\mathbf{R}^n, P)$ induces the homotopy h_{λ}^2 satisfying the property (C) defined by

$$h_{\lambda}^{2} = \exp_{\Omega} \circ (j_{\lambda})_{\mathbf{K}} \circ \exp_{\mathbf{R}^{n}}^{-1} |E(S(s)_{0})|$$

such that $h_0^2 = h_1^1 = \exp_{\Omega} \circ (s|S(s)_0)_{\mathbf{K}} \circ \exp_{\mathbf{R}^n}^{-1}$ and $h_1^2 = \exp_{\Omega} \circ (j^2 G|S(s)_0)_{\mathbf{K}} \circ \exp_{\mathbf{R}^n}^{-1}$ on $E(S(s)_0)$.

By applying Lemma 6.4 to $j^2G|E(S(s)_0)$ similarly as in the case of s| $E(S(s)_0)$, we have a homotopy h^3_{λ} satisfying the property (C) such that $h^3_0 = h^2_1 = \exp_{\Omega} \circ (j^2G|S(s)_0)_{\mathbf{K}} \circ \exp_{\mathbf{R}^n}^{-1}$ and $h^3_1 = j^2G$ on $E(S(s)_0)$.

Let h_{λ} be a homotopy in $\Gamma^{tr}(E(S(s)_0) \cap \operatorname{Int} D_{2r}, P)$ satisfying the property (C) defined by

$$h_{\lambda} = \begin{cases} h_{3\lambda}^{1} | E(S(s)_{0}) \cap \operatorname{Int} D_{2r} & \text{for} \quad 0 \leq \lambda \leq 1/3, \\ h_{3\lambda-1}^{2} | E(S(s)_{0}) \cap \operatorname{Int} D_{2r} & \text{for} \quad 1/3 \leq \lambda \leq 2/3, \\ h_{3\lambda-2}^{3} | E(S(s)_{0}) \cap \operatorname{Int} D_{2r} & \text{for} \quad 2/3 \leq \lambda \leq 1. \end{cases}$$

By modifying h_{λ} on $E(S(s)_0) \cap (D_{2r} \setminus \operatorname{Int} D_{2r-2r_0})$ via Lemma 6.4, we can construct a homotopy H_{λ} in $\Gamma^{tr}((\mathbf{R}^n \setminus \operatorname{Int} D_{2r}) \cup E(S(s)_0), P)$ satisfying the property (C) such that

- (1) $H_{\lambda}(x) = s(x)$ for $x \in \mathbf{R}^n \setminus \operatorname{Int} D_{2r}$,
- (2) $H_{\lambda}(c,t) = h_{\lambda}(c,t)$ for $(c,t) \in E(S(s)_0) \cap \operatorname{Int} D_{2r}$,
- $(3) \quad H_0(x) = s(x),$
- (4) $H_1(x) = j^2 G(x).$

By applying the homotopy extension property to s and H_{λ} , we obtain a homotopy

$$s_{\lambda}: (\mathbf{R}^n, S(s)) \to (\Omega^{10}(\mathbf{R}^n, P), \Sigma^{10}(\mathbf{R}^n, P))$$

such that

- (i) $s_0 = s$,
- (ii) $s_{\lambda}(x) = H_{\lambda}(x)$ for $x \in (\mathbf{R}^n \setminus \operatorname{Int} D_{2r}) \cup E(S(s)_0)$,
- (iii) s_{λ} is transverse to $\Sigma^{10}(\mathbf{R}^n, P)$ with $s_{\lambda}^{-1}(\Sigma^{10}(\mathbf{R}^n, P)) = S(s)$,
- (iv) if $(c,t) \in E(S(s)_0)$, then $s_1(c,t) = j^2 G(c,t)$.

Hence, s_{λ} is a required homotopy in $\Gamma^{tr}(\mathbf{R}^n, P)$.

7. Proof of Proposition 4.7

For a section $s \in \Gamma^{tr}(\mathbf{R}^n, P)$ given in Proposition 4.7, let $S(s) \cap D_{2r}$ be decomposed into the connected components M_1, \ldots, M_w . In this section any one of M_j 's will be often denoted by M, which may have non-empty boundary. Then by Remark 4.4 the image $\mathbf{e}(s)(\partial M)$ is contained in $S^{n-1} \times S^{n-1} \setminus \Delta^-$. Hence we can define the homomorphism

$$(\mathbf{e}(s)|M)_* : H_{n-1}(M, \partial M; \mathbf{Z}) \to H_{n-1}(S^{n-1} \times S^{n-1}, S^{n-1} \times S^{n-1} \setminus \Delta^-; \mathbf{Z}) \cong \mathbf{Z}.$$

Let [M] denote the fundamental class of M. The number $(\mathbf{e}(s)|M)_*([M])$ is called the degree of $\mathbf{e}(s)|M$ and denoted by $\deg(\mathbf{e}(s)|M)$. If for a point $p \in \mathbf{e}(s)^{-1}(\Delta^-)$,

$$\begin{aligned} (\mathbf{e}(s)|O(p;\varepsilon))_* &: H_{n-1}(O(p;\varepsilon), \partial O(p;\varepsilon); \mathbf{Z}) \\ &\to H_{n-1}(S^{n-1} \times S^{n-1}, S^{n-1} \times S^{n-1} \setminus \Delta^-; \mathbf{Z}) \cong \mathbf{Z} \end{aligned}$$

is of degree +1 (resp. -1), then we shall say that the degree of $\mathbf{e}(s)$ at p is equal to +1 (resp. -1).

Proposition 7.1. Let $n \ge 1$. Let s be the section of $\Gamma^{tr}(\mathbf{R}^n, P)$ given in Proposition 4.7. If $\deg(\mathbf{e}(s)|M_j) = 0$ (j = 1, 2, ..., w), then there exists a homotopy s_{λ} relative to $\mathbf{R}^n \setminus \operatorname{Int} D_r$ in $\Gamma^{tr}(\mathbf{R}^n, P)$ such that

(1) $S(s_{\lambda})$ coincides with S(s) for any λ and

(2) $e(s_1)^{-1}(\Delta^-)$ is empty.

Proof. We first consider the case where P is orientable and here choose the orientation of P compatible with $\theta^n(P)$, which appeared before Remark 4.4. For an element $z = j_c^2 \sigma \in \Sigma^{10}(\mathbf{R}^n, P)$, let $K(z)_c$ denote the subspace $(j^2 \sigma)^*(\mathbf{K}_z)$ of $T_c(\mathbf{R}^n)$, which is identified with a line of \mathbf{R}^n . Then we define the map $\kappa : \Sigma^{10}(\mathbf{R}^n, P) \to S^{n-1}$ by $\kappa(z) = \mathbf{e}(K(z)_c)$, which becomes a smooth fibre bundle. It is easy to see that the composition map $\kappa \circ s | S(s) : S(s) \to S^{n-1}$ satisfies $\kappa \circ s(c) = \mathbf{e}(K(s)_c)$.

Let p_1 or p_2 be the projection of $S^{n-1} \times S^{n-1}$ onto the first or second component respectively. The restriction $p_2 : S^{n-1} \times S^{n-1} \setminus \Delta^- \to S^{n-1}$ is a subbundle of p_2 . Then consider the induced bundle

724

Here, we regard $\mathbf{e}(s)|M$ as a section of the bundle $(p_2 \circ \mathbf{e}(s)|M)^*(S^{n-1} \times S^{n-1})$. Then the unique obstruction for the section $\mathbf{e}(s)|M$ to be deformed relative to $\mathbf{R}^n \setminus \operatorname{Int} D_r$ to a section of the bundle $(p_2 \circ \mathbf{e}(s)|M)^*(S^{n-1} \times S^{n-1} \setminus \Delta^-)$ is equal to $\deg(\mathbf{e}(s)|M)$. Since $\deg(\mathbf{e}(s)|M) = 0$, there is a homotopy $\mathbf{e}_{\lambda} : M \to S^{n-1} \times S^{n-1}$ relative to $\mathbf{R}^n \setminus \operatorname{Int} D_r$ with $\mathbf{e}_0 = \mathbf{e}(s)|M$ such that $p_2 \circ \mathbf{e}_{\lambda}|M = p_2 \circ \mathbf{e}(s)|M$ for any λ and $(\mathbf{e}_1)^{-1}(\Delta^-) = \emptyset$. Then $p_1 \circ \mathbf{e}_1(c)$ is not equal to $-\mathbf{e}(\nu(s)_c)$ for any $c \in M$.

By the covering homotopy property of the fibre bundle $\kappa : \Sigma^{10}(\mathbf{R}^n, P) \to S^{n-1}$ applied to s|S(s) and $p_1 \circ \mathbf{e}_{\lambda}$, we obtain a smooth homotopy $k_{\lambda} : S(s) \to \Sigma^{10}(\mathbf{R}^n, P)$ relative to $S(s) \setminus \operatorname{Int} D_r$ such that $k_0 = s|S(s)$ and $\kappa \circ k_{\lambda} = p_1 \circ \mathbf{e}_{\lambda}$.

Next consider the case where P is non-orientable and connected. In this case we need the double covering $\Upsilon_P : \tilde{P} \to P$ associated to the first Stiefel-Whitney class $W_1(P)$. If we choose an orientation of \tilde{P} , then we have the map $\tilde{\kappa} : \Sigma^{10}(\mathbf{R}^n, \tilde{P}) \to S^{n-1}$ defined similarly as κ . Recall that we have fixed the orientation of $\theta^n(P) = (\pi_P^2 \circ s)^*(TP)$ in Section 4, which induces a lift $\widetilde{s|S(s)} : S(s) \to \Sigma^{10}(\mathbf{R}^n, \tilde{P})$ of s|S(s). Indeed, a jet $j_c^2 \sigma$ defines the jet $j_c^2 \tilde{\sigma}$ with map germ $\tilde{\sigma} : (\mathbf{R}^n, c) \to (\tilde{P}, \tilde{\sigma}(c))$ such that the orientation of $\theta^n(P)$ is compatible with that of $(\tilde{P}, \tilde{\sigma}(c))$. Hence, we have the following commutative diagram, where $\widetilde{\Upsilon_P}$ is induced from Υ_P .

$$\begin{split} \Sigma^{10}(\mathbf{R}^{n},\widetilde{P}) & \xrightarrow{\pi_{\widetilde{P}}} \widetilde{P} \\ & \widetilde{\Upsilon_{P}} \downarrow \qquad \qquad \qquad \downarrow \Upsilon_{P} \\ \Sigma^{10}(\mathbf{R}^{n},P) & \xrightarrow{\pi_{P}} P \end{split}$$

Therefore, by an analogous argument as above, we have a smooth homotopy $\widetilde{k}'_{\lambda}: S(s) \to \Sigma^{10}(\mathbf{R}^n, \widetilde{P})$ relative to $S(s) \setminus \operatorname{Int} D_r$ covering $p_1 \circ \mathbf{e}_{\lambda}: S(s) \to S^{n-1}$ such that $\widetilde{k}'_0 = \widetilde{s|S(s)}$ and $\widetilde{\kappa} \circ \widetilde{k}'_{\lambda} = p_1 \circ \mathbf{e}_{\lambda}$. Thus we obtain a smooth homotopy $k_{\lambda}: S(s) \to \Sigma^{10}(\mathbf{R}^n, P)$ defined by $k_{\lambda} = \widetilde{\Upsilon}_P \circ \widetilde{k}'_{\lambda}$ such that $k_0 = s|S(s)$, that $\kappa \circ k_{\lambda} = p_1 \circ \mathbf{e}_{\lambda}$, and that $p_1 \circ \mathbf{e}_1(c)$ is not equal to $-\mathbf{e}(\nu(s)_c)$ for any $c \in S(s)$.

Since s is transverse to $\Sigma^{10}(\mathbf{R}^n, P)$, there exists a bundle map $s|U(S(s)) : U(S(s)) \to U(\Sigma^{10}(\mathbf{R}^n, P))$ introduced in the proof of Lemma 6.2. By applying the homotopy extension property of this bundle map to s|U(S(s)) and k_{λ} , we have a smooth homotopy of bundle maps

$$s'_{\lambda}: U(S(s)) \to U(\Sigma^{10}(\mathbf{R}^n, P))$$

relative to $U(S(s)) \setminus \operatorname{Int} D_r$ covering k_{λ} with $s'_0 = s|U(S(s))$. By the homotopy extension property, we extend s'_{λ} to a homotopy s_{λ} relative to $\mathbf{R}^n \setminus \operatorname{Int} D_r$ in $\Gamma^{tr}(\mathbf{R}^n, P)$ by considering $s|(\mathbf{R}^n \setminus \operatorname{Int} U(S(s)))$ and $s'_{\lambda}|\partial U(S(s))$ into $\Omega^{10}(\mathbf{R}^n, P) \setminus \operatorname{Int} U(\Sigma^{10}(\mathbf{R}^n, P))$ such that $s_{\lambda}(\mathbf{R}^n \setminus \operatorname{Int} U(S(s)))$ is contained in $\Omega^{10}(\mathbf{R}^n, P) \setminus \operatorname{Int} U(\Sigma^{10}(\mathbf{R}^n, P))$. By the construction, it follows that s_1 is the required section.

By Proposition 7.1 it is enough for Proposition 4.7 to show that the given

Yoshifumi Ando

section s is homotopic relative to $\mathbf{R}^n \setminus \text{Int} D_{2r}$ to a section s_1 in $\Gamma^{tr}(\mathbf{R}^n, P)$ such that $\deg(\mathbf{e}(s_1)|M_j)$ is equal to 0 for each j.

We begin by defining several spaces in \mathbf{R}^n . Let \mathcal{S}_2^{i-1} denote the (i-1)sphere of radius 2 in $\mathbf{R}^i \times \mathbf{0}_{n-i}$, which consists of all points $a = (a_1, \ldots, a_i, 0, \ldots, 0)$ with ||a|| = 2. Let \mathcal{D}_2^i denote the upper hemi-sphere of $\mathbf{R}^i \times \mathbf{0}_{n-i-1} \times \mathbf{R}$,
which consists of all points $a = (a_1, \ldots, a_i, 0, \ldots, 0, a_n)$ with ||a|| = 2 and $a_n \ge 0$. Let $U(\mathcal{S}_2^{i-1})$ denote the tubular neighborhood of \mathcal{S}_2^{i-1} in $\mathbf{R}^{n-1} \times 0$, which
consists of all points $(x_1, \ldots, x_{n-1}, 0)$ such that $x_j = (1 + t/2)a_j$ $(1 \le j \le i)$ with $a \in \mathcal{S}_2^{i-1}$ and $||(x_{i+1}, \ldots, x_{n-1}, t)|| \le 1$. Let $H(\mathcal{D}_2^i)$ denote the *i*-handle,
which consists of all points (x_1, \ldots, x_n) such that $x_j = (1 + t/2)a_j$ $(1 \le j \le i)$ or j = n with $a \in \mathcal{D}_2^i$, $x_n \ge 0$ and $||(x_{i+1}, \ldots, x_{n-1}, t)|| \le 1$.

For the cases where $n \geq 3$ and $1 \leq i < n-1$, we consider the union $\mathbb{R}^{n-1} \times 0 \cup \partial H(\mathcal{D}_2^i) \setminus \operatorname{Int} U(\mathcal{S}_2^{i-1})$. Let H^i denote the submanifold of codimension 1 in \mathbb{R}^n obtained from this union by rounding the corners by a slight deformation. We should note that H^i is connected (see Fig. 1).

For the case n = 3 and i = 2, let $\mathcal{D}_2^{1'}$ denote the upper hemi-sphere of $0 \times \mathbf{R}^2$, which consists of all points $b = (0, b_2, b_3)$ with ||b|| = 2 and $b_3 \ge 0$. Let $\mathcal{S}_2^{0'}$ denote the boundary of $\mathcal{D}_2^{1'}$. Let $U(\mathcal{S}_2^{0'})$ denote the tubular neighborhood of $\mathcal{S}_2^{0'}$ in $\mathbf{R}^2 \times 0$, which consists of all points $(x_1, x_2, 0)$ with $x_1^2 + (x_2 - 2)^2 \le 1$ or $x_1^2 + (x_2 + 2)^2 \le 1$. Let $H(\mathcal{D}_2^{1'})$ denote the 1-handle, which consists of all points (x_1, x_2, x_3) such that $x_j = (1 + t/2)b_j$ (j = 2, 3) with $b \in \mathcal{D}_2^{1'}, x_3 \ge 0$ and $x_1^2 + t^2 \le 1$. Then consider the union $\mathbf{R}^2 \times 0 \cup \partial(H(\mathcal{D}_2^1) \cup H(\mathcal{D}_2^{1'})) \setminus \operatorname{Int}(U(\mathcal{S}_2^0) \cup U(\mathcal{S}_2^{0'}))$. Let H' denote the submanifold of \mathbf{R}^3 obtained from this union by rounding the corners by a slight modification. We should note that H' is connected (see Fig. 2).

We shall explain an outline of the proof of Proposition 4.7 for $n \geq 3$ and $1 \leq i < n-1$. We start with the fold-map $\sigma : \mathbf{R}^n \to \mathbf{R}^n$ defined by $\sigma(x_1, \ldots, x_{n-1}, x_n) = (x_1, \ldots, x_{n-1}, x_n^2)$. Then $S(\sigma)$ coincides with $\mathbf{R}^{n-1} \times 0$, which we orient by (x_1, \ldots, x_{n-1}) . The usual surgery of $\mathbf{R}^{n-1} \times 0$ by the embedded sphere S_2^{i-1} and the handle $H(\mathcal{D}_2^i)$ induces a new connected and oriented manifold \mathbf{H}^i , that is, $\mathbf{R}^{n-1} \times 0 \cup \partial H(\mathcal{D}_2^i) \setminus \operatorname{Int} U(S_2^{i-1})$ with rounded corners. This procedure of the surgery is realized by a homotopy σ_{λ} in $\Gamma(\mathbf{R}^n, \mathbf{R}^n)$ with

727

 $\sigma_0 = j^2 \sigma$ such that

- (1) $S(\sigma_0) = \mathbf{R}^{n-1}$ and $S(\sigma_1) = \mathsf{H}^i$,
- (2) $\mathbf{e}(\sigma_1)^{-1}(\triangle^-)$ consists of a single point $(0, \ldots, 0, 1)$,
- (3) $\deg(\mathbf{e}(\sigma_1)|S(\sigma_1)) = (-1)^i.$

Next for the given section s in Proposition 4.7 we take disjoint embeddings $e_{\ell} : (\mathbf{R}^n, \mathbf{R}^{n-1} \times 0) \to (\mathbf{R}^n \setminus (\bigcup_{j=1}^m O(p_j; \varepsilon)), S(s))$ such that $\pi_P \circ s \circ e_{\ell}(\mathbf{R}^n)$ is contained in a local chart of P $(1 \leq \ell \leq |\deg(\mathbf{e}(s)|M)|)$. Then we can deform s on each $e_{\ell}(\mathbf{R}^n)$ by using σ_{λ} so that the degrees become 0. The proof of the case n = 3 and i = 2 is similar, though the case n = 2 is very exceptional.

Let $\mu : \mathbf{R}^n \to \mathbf{R}$ be a smooth map such that 0 is a regular value and $\mu(x) = 2x_n$ outside of D_4^n . We can orient $\mu^{-1}(0)$ by using grad μ . Then we can consider the map $\mathbf{e}(\mu) : (\mu^{-1}(0), \mu^{-1}(0) \setminus D_4^n) \to (S^{n-1}, \mathbf{e}_n)$ defined by

$$\mathbf{e}(\mu)(c) = (\operatorname{grad}\mu)(c) / \|(\operatorname{grad}\mu)(c)\|, c \in \mu^{-1}(0).$$

We define the degree of $\mathbf{e}(\mu)$ by $\mathbf{e}(\mu)_*([\mu^{-1}(0)]) = \text{dege}(\mu)[S^{n-1}]$, where $[\mu^{-1}(0)]$ is the fundamental class of $H^{n-1}(\mu^{-1}(0), \mu^{-1}(0) \setminus D_4^n; \mathbf{Z})$.

Lemma 7.2. Let $n \geq 3$. For i = 1, ..., n - 1, there exist functions $\mu_{\lambda}^{i} : \mathbf{R}^{n} \to \mathbf{R}, \lambda \in \mathbf{R}$, which are smooth with respect to the variables $x_{1}, ..., x_{n}$ and λ such that

- (1) $\mu_{\lambda}^{i}(x) = 2x_{n} \text{ if } \lambda \leq -1/2 \text{ or } ||(x_{1}, \dots, x_{n})|| \geq 4,$
- (2) $\mu_{\lambda}^{i}(x) = \mu_{1}^{i}(x) \text{ if } \lambda \ge 1/2,$
- (3) if $|\lambda| \ge 1/2$, then 0 is a regular value of μ_{λ}^{i} ,

(4) if $n \ge 3$ and $1 \le i < n-1$ (resp. n = 3 and i = 2), then the oriented manifold $(\mu_1^i)^{-1}(0)$ coincides with the connected and oriented manifold H^i (resp. H') and

(5) μ_1^i has a unique point $(0, \ldots, 0, 1)$ such that $\mathbf{e}(\mu_1^i)(0, \ldots, 0, 1) = -\mathbf{e}_n$ and the degree of $\mathbf{e}(\mu_1^i)$ is equal to $(-1)^i$ (resp. 1).

Proof. In \mathbf{R}^{n+1} with coordinates $(x_1, \ldots, x_n, \lambda)$, consider the subspace \mathcal{H} , which is the union

$$\mathbf{R}^{n-1} \times 0 \times (-\infty, 0] \cup H(\mathcal{D}_2^i) \times 0$$
$$\cup \{\mathbf{R}^{n-1} \times 0 \cup \partial H(\mathcal{D}_2^i) \setminus \operatorname{Int} U(\mathcal{S}_2^{i-1})\} \times [0, \infty).$$

We shall round the corner of \mathcal{H} by a slight modification, which is denoted by the same letter \mathcal{H} , so that $\mathcal{H} \cap (\mathbf{R}^n \times \lambda) = \mathsf{H}^i \times \lambda$, for $\lambda \geq 1/2$. Let $\nu_{\mathcal{H}}$ denote the orthogonal normal bundle of \mathcal{H} . Then \mathcal{H} has the Riemannian metric and $\nu_{\mathcal{H}}$ has the metric, which are induced from the metric on \mathbf{R}^{n+1} . Then we have the embedding $\exp_{\mathbf{R}^{n+1}} |D_{\varepsilon}(\nu_{\mathcal{H}}) : D_{\varepsilon}(\nu_{\mathcal{H}}) \to \mathbf{R}^{n+1}$ for a small positive number ε , which preserves the metrics. Since $\nu_{\mathcal{H}}$ is trivial, we can choose a trivialization $t(\nu_{\mathcal{H}}) : \nu_{\mathcal{H}} \to \mathcal{H} \times \mathbf{R}$ preserving the metrics of the vector bundles. Let $p_2 : \mathcal{H} \times \mathbf{R} \to \mathbf{R}$ be the projection onto the second component. Then we set

$$\mu' = 2p_2 \circ t(\nu_{\mathcal{H}}) \circ \exp_{\mathbf{R}^{n+1}}^{-1} | \exp_{\mathbf{R}^{n+1}}(D_{\varepsilon}(\nu_{\mathcal{H}})).$$

This map satisfies that $\mu'(x_1, \ldots, x_n, \lambda) = 2x_n$ if $\lambda < -1/2$ or $||(x_1, \ldots, x_n)|| \ge 4$, and $|x_n| < \varepsilon$. Furthermore, if $\lambda > 1/2$, then we have $D_{\varepsilon}(\nu_{\mathcal{H}}|_{\mathsf{H}^i \times \lambda}) = D_{\varepsilon}(\nu_{\mathsf{H}^i}) \times \lambda$ and $\mathcal{H} \cap (\mathbf{R}^n \times \lambda) = \mathsf{H}^i \times \lambda$. Hence, $\mu'|\exp_{\mathbf{R}^{n+1}}(D_{\varepsilon}(\nu_{\mathsf{H}^i} \times \lambda))$ is regular on $\mathsf{H}^i \times \lambda$ with regular value 0 for $\lambda > 1/2$.

Now we can extend μ' to the map $\mu : \mathbf{R}^{n+1} \to \mathbf{R}$ so that $\mu(x_1, \ldots, x_n, \lambda) = 2x_n$ for any $\lambda < -1/2$ or $||(x_1, \ldots, x_n)|| \ge 4$ and that $\mu^{-1}(0) = (\mu')^{-1}(0)$. Set $\mu_{\lambda}(x) = \mu(x, \lambda)$. Then μ_{λ} is the required map. The assertions (1) to (4) have already been proved. Since $x_j = (1+t/2)a_j$ for $1 \le j \le i$ and j = n, the length of the vector

$$(x_1, \dots, x_n) - (a_1, \dots, a_i, 0, \dots, 0, a_n) = (ta_1/2, \dots, ta_i/2, x_{i+1}, \dots, x_{n-1}, ta_n/2)$$

is equal to $\sqrt{x_{i+1}^2 + \cdots + x_{n-1}^2 + t^2}$. Hence, $\mu_1(x_1, \ldots, x_n)$ is equal to $2(\sqrt{x_{i+1}^2 + \cdots + x_{n-1}^2 + t^2} - 1)$ on a neighborhood of H^i with $x_n > 0$ except for the rounded corners. Furthermore, we have $t = \sqrt{x_1^2 + \cdots + x_i^2 + x_n^2} - 2$. Hence,

 $\partial \mu_1(x_1,\ldots,x_n)/\partial x_j$ is equal to

$$\begin{cases} \frac{2t}{\sqrt{x_{i+1}^2 + \dots + x_{n-1}^2 + t^2}} \cdot \frac{x_j}{\sqrt{x_1^2 + \dots + x_i^2 + x_n^2}} & \text{for} \quad 1 \le j \le i \text{ or } j = n, \\ \frac{2x_j}{\sqrt{x_{i+1}^2 + \dots + x_{n-1}^2 + t^2}}, & \text{for} \quad i+1 \le j \le n-1. \end{cases}$$

If the gradient vector of μ_1 on a point $(x_1, \ldots, x_n) \in \mu_1^{-1}(0)$ is equal to $(0, \ldots, 0, -1)$ up to length, then we have that $(x_1, \ldots, x_n) = (0, \ldots, 0, 1)$. We should note here that $(-x_1, x_2, \ldots, x_{n-1})$ can be oriented local coordinates of both spaces $\mu^{-1}(0)$ and S^{n-1} near the point $(0, \ldots, 0, 1)$, since the normal vectors at the point $(0, \ldots, 0, 1)$ are directed to $-\mathbf{e}_n$.

Therefore, we calculate the gradient vector of μ_1 on those points of t = -1and obtain that the degree of $\mathbf{e}(\mu_1)$ is equal to $(-1)^i$. This proves the assertion except for the case n = 3 and i = 2.

If n = 3 and i = 2, then H^2 is not connected. This is the reason why we need to consider H' defined before. Here we define the subspace \mathcal{H}' of \mathbf{R}^4 to be the union

$$\mathbf{R}^{2} \times 0 \times (-\infty, 0] \cup (H(\mathcal{D}_{2}^{1}) \cup H(\mathcal{D}_{2}^{\prime})) \times 0$$
$$\cup \{\mathbf{R}^{2} \times 0 \cup \partial(H(\mathcal{D}_{2}^{1}) \cup H(\mathcal{D}_{2}^{\prime})) \setminus \operatorname{Int}(U(\mathcal{S}_{0}) \cup U(\mathcal{S}_{0}^{\prime}))\} \times [0, \infty)$$

We can round the corner of \mathcal{H}' by a slight modification to be a smooth submanifold, which is denoted by the same symbol, so that $\mathcal{H}' \cap \mathbf{R}^3 \times \lambda = \mathbf{H}' \times \lambda$ for $\lambda \geq 1/2$. The rest of the proof in this case is quite analogous to the proof given above. Therefore it is left to the reader.

Proposition 7.3. Let $n \geq 3$. Consider the fold-map $\sigma : \mathbf{R}^n \to \mathbf{R}^n$ defined by $\sigma(x_1, \ldots, x_{n-1}, x_n) = (x_1, \ldots, x_{n-1}, x_n^2)$. Then there exists a homotopy σ_{λ} relative to $\mathbf{R}^n \setminus \operatorname{Int} D_{4r}$ in $\Gamma(\mathbf{R}^n, \mathbf{R}^n)$ such that

(1)
$$\sigma_0 = j^2 \sigma$$
,

(2) σ_1 is a smooth section transverse to $\Sigma^{10}(\mathbf{R}^n, \mathbf{R}^n)$ and $S(\sigma_1)$ is connected,

(3) $\mathbf{e}(\sigma_1)^{-1}(\Delta^-)$ consists of a single point such that $\deg(\mathbf{e}(\sigma_1)|S(\sigma_1))$ is equal to any one of 1 and -1.

Proof. Recall the identifications

$$\pi_{\mathbf{R}^n}^2 \times \pi_{\mathbf{R}^n}^2 \times \pi_{\Omega} : \Omega^{10}(\mathbf{R}^n, \mathbf{R}^n) \to \mathbf{R}^n \times \mathbf{R}^n \times \Omega^{10}(n, n),$$
$$J^2(n, n) \cong \operatorname{Hom}(\mathbf{R}^n, \mathbf{R}^n) \oplus \operatorname{Hom}(S^2 \mathbf{R}^n, \mathbf{R}^n)$$

in Section 1. Then

$$j_x^2 \sigma = (x, \sigma(x), E_{n-1} \dotplus (2x_n), (0, \dots, 0, 2))$$

where **0** denotes the zero $n \times n$ -matrix and $\Delta(0, \ldots, 0, 2)$ denotes the diagonal $n \times n$ -matrix with diagonal components $(0, \ldots, 0, 2)$. Let $\mu_{\lambda}^{i}(x)$ be the function considered in Lemma 7.2. Then we define the required homotopy σ_{λ} with $\sigma_{0} = j^{2}\sigma$ by

$$\sigma_{\lambda}(x) = (x, \sigma(x), E_{n-1} \dotplus (\mu_{\lambda}^{i}(x)), (\mathbf{0}, \dots, \mathbf{0}, \Delta(0, \dots, 0, 2)).$$

It is clear that $S(\sigma_1) = \mu_1^{-1}(0)$. On any point $c \in S(\sigma_1)$, the 2-jet $\pi_\Omega \circ \sigma_1(c)$ is represented by the germ $\sigma : (\mathbf{R}^n, 0) \to (\mathbf{R}^n, 0)$. Hence, $\mathbf{Q}_{\sigma_1(c)}$ and $\mathbf{K}_{\sigma_1(c)}$ are generated and oriented by \mathbf{e}_n . Therefore, $\operatorname{Hom}(\mathbf{K}_{\sigma_1(c)}, \mathbf{Q}_{\sigma_1(c)}) \cong \mathbf{R}$ and by the definition of the intrinsic derivative we have that $d_c(\mu_1^i)$ is identified with $d^2_{\sigma_1(c)} \circ d_c \sigma_1 : T_c \mathbf{R}^n \to \operatorname{Hom}(\mathbf{K}_{\sigma_1(c)}, \mathbf{Q}_{\sigma_1(c)}) \cong \mathbf{R}$. This shows that $\mathbf{e}(\sigma_1)^{-1}(\Delta^-) = \mathbf{e}(\mu_1^i)^{-1}(-\mathbf{e}_n)$, which consists of a single point $(0, \ldots, 0, 1)$ by Lemma 7.2 (5). Furthermore, we have that the degrees of $\mathbf{e}(\sigma_1)$ and $\mathbf{e}(\mu_1^i)$ are equal to $(-1)^i$. This proves the proposition.

Proof of the case $n \geq 3$ of Proposition 4.7. We give a proof for the case $n \geq 3$. Let M be any one of M_j 's. For the given section s, we take distinct points $c_{\ell} \in M$ and disjoint embeddings $e_{\ell} : \mathbf{R}^n \to \mathbf{R}^n \setminus (\bigcup_{j=1}^m O(p_j; \varepsilon))$ with $e_{\ell}(0) = c_{\ell}$ such that $\pi_P \circ s \circ e_{\ell}(\mathbf{R}^n)$ is contained in a local chart of P, which can be identified with \mathbf{R}^n in the proof $(1 \leq \ell \leq |\deg(\mathbf{e}(s)|M)|)$. By Proposition 4.6 (2) we may suppose that $s \circ e_{\ell}$ coincides with $j^2\sigma$, where $\sigma(x_1, \ldots, x_{n-1}, x_n) = (x_1, \ldots, x_{n-1}, x_n^2)$. For each $e_{\ell}(\mathbf{R}^n)$, we can construct the homotopy $\sigma(e_{\ell})_{\lambda} \in \Gamma(e_{\ell}(\mathbf{R}^n), P)$ defined by $\sigma(e_{\ell})_{\lambda}(x) = \sigma_{\lambda}(e_{\ell}^{-1}(x))$. By Proposition 7.3 we can take σ_{λ} so that

$$\deg(\mathbf{e}(\sigma(e_{\ell})_1)) = -\frac{\deg(\mathbf{e}(s)|M)}{|\deg(\mathbf{e}(s)|M)|}$$

By using $\sigma(e_{\ell})_{\lambda}$ for each M_j , we have a homotopy s'_{λ} in $\Gamma(\mathbf{R}^n, P)$ defined by $s'_{\lambda}|e_{\ell}(\mathbf{R}^n) = \sigma(e_{\ell})_{\lambda}$ on each $e_{\ell}(\mathbf{R}^n)$ and $s'_{\lambda}|(\mathbf{R}^n \setminus \bigcup_{\ell=1}^{|\deg(\mathbf{e}(s)|M)|} e_{\ell}(\mathbf{R}^n)) =$ $s|(\mathbf{R}^n \setminus \bigcup_{\ell=1}^{|\deg(\mathbf{e}(s)|M)|} e_{\ell}(\mathbf{R}^n))$ outside of all $e_{\ell}(\mathbf{R}^n)$ for all M_j 's. Then it is easy to see from the additive property of the degree that the degree of $\mathbf{e}(s_1)$ on each connected component M_i is equal to 0. By Proposition 7.1 we obtain the required homotopy s_{λ} .

Next we shall prove the case n = 2 of Proposition 4.7. This case is very exceptional and the arguments above for $n \geq 3$ are not available. We need to use the properties of the embedding $i_2 : SO(3) \to \Omega^{10}(2,2)$ in Theorem 3.1 described in Remark 7.4 and Proposition 7.7 below.

We interpret the following properties concerning the em-Remark 7.4. bedding $i_2: SO(3) \to \Omega^{10}(2,2)$. Let $\Sigma^0_+(2,2)$ and $\Sigma^0_-(2,2)$ be the subsets of $\Sigma^0(2,2)$ consisting of all regular jets preserving and reversing the orientation respectively. According to [An2], there exists a deformation retraction R_{λ} : $\Omega^{10}(2,2) \to \Omega^{10}(2,2)$ such that $R_0 = id_{\Omega^{10}(2,2)}$, the image of R_1 coincides with the image of i_2 and that R_{λ} preserves $\Sigma^0_+(2,2)$, $\Sigma^0_-(2,2)$ and $\Sigma^{10}(2,2)$.

Let $\pi : SO(3) \to SO(3)/SO(2) \times (1) \cong S^2$ be the fibre bundle defined by mapping $M \mapsto M\mathbf{e}_3$. Let D_+, D_- and $S^1 \times 0$ be the subsets consisting of all points ${}^t(x_1, x_2, x_3) \in S^2$ with $x_3 \ge 0$, $x_3 \le 0$ and $x_3 = 0$ respectively. Let $q: \Sigma^{10}(2,2) \to S^1 \times 0$ be defined by $q(j_0^2 f) = \mathbf{e}(\mathrm{Im}(d_0 f)^{\perp})$. Then the embedding i_2 has the properties ([An2, Proposition 3.4 and Section 4]): (i) $i_2^{-1}(\Sigma_+^0(2,2)) = \pi^{-1}(\text{Int}D_+), \quad i_2^{-1}(\Sigma_-^0(2,2)) = \pi^{-1}(\text{Int}D_-)$ and

 $i_2^{-1}(\Sigma^{10}(2,2)) = \pi^{-1}(S^1 \times 0),$

- (ii) i_2 is smooth near $\pi^{-1}(S^1 \times 0)$ and is transverse to $\Sigma^{10}(2,2)$,

(iii) we have that $q \circ i_2 = \pi$ on $\pi^{-1}(S^1 \times 0)$ and, (iv) there exists a trivialization $t : \pi^{-1}(S^1 \times 0) \to S^1 \times SO(2)$ such that if t(M) = (x,U) and $i_2(M) = j_0^2 f$, then we have that ${}^t U \mathbf{e}(\mathrm{Im}(d_0 f)^{\perp}) =$ $\mathbf{e}(\operatorname{Ker}(d_0 f))$ and $x = \mathbf{e}(\operatorname{Im}(d_0 f)^{\perp}).$

We should note that $\pi^{-1}(D_{-})$ and $\pi^{-1}(D_{+})$ are pasted by the transformation $T: \pi^{-1}(\partial D_{-}) \to \pi^{-1}(\partial D_{+})$ defined by $T((\cos\theta, \sin\theta), U) = ((\cos\theta, \sin\theta), U)$ $R(-2\theta)U$ by [Ste, 23.4 Theorem and 27.2 Theorem], where

$$R(-2\theta) = \begin{pmatrix} \cos 2\theta & \sin 2\theta \\ -\sin 2\theta & \cos 2\theta \end{pmatrix}.$$

In the following we use the maps $GL^{\pm}(2) \to S^1$ sending $U \mapsto U\mathbf{e}_2/||U\mathbf{e}_2||$ in dealing with degrees.

Lemma 7.5. Let D^2 be the disk centred at the origin with radius 1 in \mathbf{R}^2 and let $\mathbf{r} : D^2 \to D^2$ be the map defined by $\mathbf{r}(x_1, x_2) = (-x_1, x_2)$. Let $h: D^2 \to \mathbf{R}^2$ be the fold-map defined by $h(x_1, x_2) = e^{(-x_1^2 - x_2^2)}(-x_1, x_2)$. Then we have that

h folds only on the circle $S_{1/\sqrt{2}}^1$ with radius $1/\sqrt{2}$, (1)

(2) h preserves the orientation outside of $S^1_{1/\sqrt{2}}$ and reverses the orientation inside of $S_{1/\sqrt{2}}^1$ and

if we canonically identify $T_x \mathbf{R}^2$ with \mathbf{R}^2 , then the maps $T^{\pm}(dh)$: (3)

 $\partial D^2 \to GL^{\pm}(2)$ defined by $T^+(dh)(x) = d_x h$ and $T^-(dh)(x) = d_x(h \circ \mathbf{r})$ are of degree -2 and 2 respectively.

Proof. We have that

$$d_{(x_1,x_2)}h = e^{(-x_1^2 - x_2^2)} \begin{pmatrix} -1 + 2x_1^2 & 2x_1x_2 \\ -2x_1x_2 & 1 - 2x_2^2 \end{pmatrix},$$

whose determinant is equal to $e^{-2(x_1^2+x_2^2)}(2(x_1^2+x_2^2)-1)$. Therefore, h folds only on $S^1_{1/\sqrt{2}}$ and $T^+(dh)(\cos\theta, \sin\theta)$ is equal to the matrix $e^{-1}R(-2\theta)$. Hence, the degree of $T^+(dh)$ is equal to -2. The assertion for $T^-(dh)$ is similar. \Box

For a positive real number A, let C(A) be the subspace of \mathbf{R}^2 consisting of all points $y = (y_1, y_2)$ with $|y_i| \leq A$ (i = 1, 2). Let J = [-A, A] and δ be a sufficiently small positive real number with $\delta < A/4$. Let $\iota = 1$ or -1. We need the fold-map $\sigma : C(A) \to \mathbf{R}^2$ defined by $\sigma(y_1, y_2) = (y_1, y_2^2)$. Suppose that $\omega \in \Gamma^{tr}(C(A), \mathbf{R}^2)$ satisfies the properties:

(i) $S(\omega) = J \times 0, (\pi_{\Omega} \circ \omega)^{-1}(\Sigma^{0}_{+}(2,2)) = J \times (0,A] \text{ and } (\pi_{\Omega} \circ \omega)^{-1}(\Sigma^{0}_{-}(2,2)) = J \times [-A,0).$

(ii) $\omega | (J \times [-2\delta, 2\delta] \setminus C(A/2)) = j^2 \sigma | (J \times [-2\delta, 2\delta] \setminus C(A/2)).$

(iii) The degree of $\mathbf{e}(\omega)|S(\omega)$ is ι and $(\mathbf{e}(\omega)|S(\omega))^{-1}(\Delta^{-})$ consists of a single point (0,0).

(iv) Let $p_2: \pi^{-1}(\partial D_- \times 0) \to SO(2)$ be the projection through the trivialization t. The degree of $p_2 \circ i_2^{-1} \circ R_1 \circ \pi_\Omega \circ \omega | J \times 0 : J \times 0 \to SO(2)$ is equal to d.

By (ii), (iii), $K(\omega)_{(-A,0)}$ and $K(\omega)_{(A,0)}$ are generated and oriented by \mathbf{e}_2 . Since the point (0,0) lies in $(\mathbf{e}(\omega)|S(\omega))^{-1}(\Delta^-)$, $\nu(\omega)_{(0,0)}$ and $K(\omega)_{(0,0)}$ are generated and oriented by \mathbf{e}_2 and $-\mathbf{e}_2$ respectively. We can consider the degree of $\pi_{\Omega} \circ \omega | J \times \{\pm \delta\} : (J \times \{\pm \delta\}, \partial J \times \{\pm \delta\}) \to (\Sigma^0_{\pm}(2,2), \pi_{\Omega}(\omega(\pm A, \pm \delta)))$ by noting $\pi_1(\Sigma^0_{\pm}(2,2)) \cong \pi_1(GL^{\pm}(2)) \cong \mathbf{Z}$.

Lemma 7.6. Let ω be the section given above. Then the degree $\pi_{\Omega} \circ \omega | J \times \{-\delta\} : J \times \{-\delta\} \to \Sigma_{-}^{0}(2,2) \simeq GL^{-}(2)$ is equal to d and the degree of $\pi_{\Omega} \circ \omega | J \times \delta : J \times \delta \to \Sigma_{+}^{0}(2,2) \simeq GL^{+}(2)$ is equal to $-d - 2\iota$.

Proof. By Remark 7.4 (iv), the degree of $(q \circ \pi_{\Omega} \circ \omega)|S(\omega)$ is equal to $d + \iota$. The degree of the map $S^1 \to S^1$ sending $(\cos \theta, \sin \theta)$ to $R(-2\theta)\mathbf{e}_2$ is equal to -2. By the properties of i_2 and [Ste, 23.4 Theorem] stated in Remark 7.4, it follows that $\deg(\pi_{\Omega} \circ \omega|J \times \delta) = d + (-2)(d + \iota) = -d - 2\iota$.

Proposition 7.7. Let ω^{ι} be the section ω given above for $d = 1 - \iota$ ($\iota = 1 \text{ or } -1$). Then there exists a homotopy ω_{λ}^{ι} relative to $C(A) \setminus C(A/2)$ in $\Gamma(C(A), \mathbf{R}^2)$ such that $\omega_0^{\iota} = \omega^{\iota}, \, \omega_1^{\iota} \in \Gamma^{tr}(C(A), \mathbf{R}^2)$ and that $S(\omega_1^{\iota})$ is the disjoint union of $J \times 0$ and a circle L in $\operatorname{Int} C(A/2)$ with $(\mathbf{e}(\omega_1^{\iota})|J \times 0)^{-1}(\Delta^{-}) =$ \emptyset and $(\mathbf{e}(\omega_1^{\iota})|L)^{-1}(\Delta^{-}) = \emptyset$.

Proof. Let C^+ (resp. C^-) be the subspace consisting of all points (y_1, y_2) with $|y_1| \leq A/2$ and $\delta \leq y_2 \leq 2\delta$ (resp. $-2\delta \leq y_2 \leq -\delta$). We first construct a

map $v_1^{\iota}: C(A) \to \Omega^{10}(2,2)$ as in (i) through (iv) below. Since $\pi_2(\Omega^{10}(2,2)) \cong \pi_2(SO(3)) \cong \{0\}$ by Theorem 3.1, we have a homotopy $v_{\lambda}^{\iota}: C(A) \to \Omega^{10}(2,2)$ relative to $C(A) \setminus C(A/2)$ with $v_0^{\iota} = \pi_{\Omega} \circ \omega^{\iota}$. Then we obtain a required homotopy ω_{λ}^{ι} by $\omega_{\lambda}^{\iota} = (\pi_{\mathbf{R}^2}^2 \circ \omega^{\iota}, \pi_{\mathbf{R}^2}^2 \circ \omega^{\iota}, v_{\lambda}^{\iota})$.

(i) $v_1^{\iota}(y_1, y_2) = \pi_{\Omega} \circ \widetilde{\omega}^{\iota}(y_1, y_2)$ outside of $[-A/2, A/2] \times [-2\delta, 2\delta]$.

(ii) $v_1^{\iota}(y_1, y_2) = \pi_{\Omega} \circ j^2 \sigma(y_1, y_2)$ for $(y_1, y_2) \in J \times [-\delta, \delta]$.

(iii) Let $\iota = 1$. Since the degrees of $\pi_{\Omega} \circ \omega^1 | J \times \{-\delta\}$ and $\pi_{\Omega} \circ j^2 \sigma | J \times \{-\delta\}$ in $GL^-(2)$ are equal to 0, we can find an extension $v_1^1 | C^- : C^- \to \Sigma_-^0(2,2)$.

The degree of the map $\partial C^+ \to \Sigma^0_+(2,2)$ is equal to 2, which is the sum of $-\deg(\pi_\Omega \circ \omega^1 | (\partial C^+ \setminus [-A/2, A/2] \times \delta))(=2)$ and $\deg(\pi_\Omega \circ j^2 \sigma | [-A/2, A/2] \times \delta)$ (= 0). Hence, if we identify C^+ with D_2^2 , then we can paste the map $\pi_\Omega \circ \omega^1 | \partial C^+$ and the map $\pi_\Omega \circ j^2 h \circ \mathbf{r}$ defined on D^2 in C^+ by a homotopy $D_2^2 \setminus D^2 \to \Sigma^0_+(2,2)$. The circle *L* becomes $S^1_{1/\sqrt{2}}$. Thus we obtain a map $v_1^1 | C^+ : C^+ \to \Omega^{10}(2,2)$. Since $d\mathbf{r}$ reverses the orientation of TD^2 , we should note that $K(j^2h \circ \mathbf{r}) = (d\mathbf{r})^{-1}(K(j^2h))$, which is different from $\mathbf{r}^*(K(j^2h))$. Hence, we have that $\nu(j^2h \circ \mathbf{r}) = K(j^2h \circ \mathbf{r})$, and so $(\mathbf{e}(\omega_1^1)|L)^{-1}(\Delta^-) = \emptyset$.

(iv) Let $\iota = -1$. Since the degrees of $\pi_{\Omega} \circ \omega^{-1} | J \times \delta$ and $\pi_{\Omega} \circ j^2 \sigma | J \times \delta$ in $GL^+(2)$ are equal to 0, we can find an extension $v_1^{-1} | C^+ : C^+ \to \Sigma^0_+(2,2)$.

The degree of the map $\partial C^- \to \Sigma_-^0(2,2)$ is the sum of the degree of $\pi_\Omega \circ \omega^{-1}|(\partial C^- \setminus [-A/2, A/2] \times \{-\delta\})(=2)$ and the degree of $\pi_\Omega \circ j^2 \sigma | [-A/2, A/2] \times \{-\delta\}(=0)$. Hence, if we identify C^- with D_2^2 , then we can past the map $\pi_\Omega \circ \omega^{-1} | \partial C^-$ and the map $\pi_\Omega \circ j^2(h \circ \mathbf{r})$ defined on D^2 in C^- by a homotopy $D_2^2 \setminus D^2 \to \Sigma_-^0(2,2)$. Thus we obtain a map $v_1^{-1} | C^- : C^- \to \Omega^{10}(2,2)$.

Proof of the case n = 2 of Proposition 4.7. By Remark 7.4, $\Sigma^{10}(2,2)$ is homotopy equivalent to $\pi^{-1}(S^1 \times 0) = S^1 \times SO(2)$. Let p be any one of the points p_i 's. Since the normal bundle of S(s) is trivial as is explained in Section 4, we can take local coordinates $y = (y_1, y_2)$ under which we consider C(A)such that y(p) = (0,0) and that $S(s) \cap C(A)$ is on the line $y_2 = 0$. If ε is sufficiently small in Proposition 4.6, then we may deform s so that $O(p;\varepsilon)$ is contained in C(A/2) and that s coincides with $j^2\sigma$ on $J \times [-2\delta, 2\delta] \setminus O(p; \varepsilon)$. That is, $K(s)_{(-A,0)}$ and $K(s)_{(A,0)}$ are generated and oriented by \mathbf{e}_2 . Since $(\mathbf{e}(s)|J \times 0)^{-1}(\Delta^{-})$ consists of a single point $(0,0), \nu(s)_{(0,0)}$ and $K(s)_{(0,0)}$ are generated and oriented by \mathbf{e}_2 and $-\mathbf{e}_2$ respectively. Recall the fibre bundle $\kappa: \Sigma^{10}(2,2) \to S^1$ sending $j_0^2 f$ to $\mathbf{e}(K(j_0^2 f))$ in the proof of Proposition 7.1, which is a trivial bundle by Remark 7.4 (iv). Since A is sufficiently small and J is an interval, we can deform s so that the degree of $p_2 \circ i_2^{-1} \circ R_1 \circ \pi_\Omega \circ s | J \times 0$ is equal to $1 - \iota$ without changing $\kappa \circ \pi_{\Omega} \circ s | J \times 0$. This implies that the degree of $\pi_{\Omega} \circ s | J \times \{-\delta\} : (J \times \{-\delta\}, \partial J \times \{-\delta\}) \to (\Sigma^0_-(2,2), \pi_{\Omega}(s(\pm A, -\delta)))$ is equal to $1 - \iota$. Now we again apply Proposition 4.6 to this deformed section s. Thus we may assume that s satisfies the assumption of Proposition 7.7. Consequently, we obtain a homotopy $s_{\lambda}|C(A) \in \Gamma(C(A), \mathbb{R}^2)$ such that $s_1|C(A) \in \Gamma^{tr}(C(A), \mathbf{R}^2)$ and that $S(s_1|C(A))$ is the union of $J \times 0$ and a circle L contained in IntC(A/2) and that $(\mathbf{e}(s_1)|J \times 0)^{-1}(\Delta^-)$ and $(\mathbf{e}(s_1)|L)^{-1}(\Delta^-)$ are empty.

For any point p_j , we consider the homotopy $(s_{\lambda}|C(A))_j \in \Gamma(C(A), \mathbf{R}^2)$,

which is the homotopy $s_{\lambda}|C(A)$ defined above for p. Now we are ready to construct a homotopy h_{λ} of s. We set $h_{\lambda} = s$ outside of the union of all $C(A)_j$'s for any $\lambda \in [0,1]$ and $h_{\lambda} = s_{\lambda}|C(A)_j$ on any one of $C(A)_j$'s. By construction, h_{λ} satisfies the required properties.

8. Fold-degree and Gauss maps

Let ξ be an oriented vector bundle of dimension n + 1 with metric over a space X and $S^n(\xi)$ be its associated n-sphere bundle over X. The fibre $S^n(\xi_x)$ over x of X is canonically identified with the space of all oriented n-subspaces of ξ_x . For an oriented n-space a of ξ_x , we shall write the corresponding point of $S^n(\xi_x)$ by [a]. Let N be connected, closed and oriented, and P be oriented in this section. Let $f: N \to P$ be a fold-map. We shall construct two continuous sections of $S^n(f^*(TP \oplus \theta_P))$ over N as follows. For any point x of N, the space $T_{f(x)}P$ gives a point of $S^n(T_{f(x)}P \oplus \mathbf{R})$ and so we define the first section $s_0(f)$ by

$$s_0(f)(x) = (x, [T_{f(x)}P]).$$

Next the homomorphism $\mathcal{T}(f) : TN \oplus \theta_N \to TP \oplus \theta_P$ given in Theorem 3.2 defines the second section $s_1(\mathcal{T}(f))$ by

$$s_1(\mathcal{T}(f))(x) = (x, [\operatorname{Im}(\mathcal{T}(f)|T_xN)]).$$

By applying the obstruction theory of fibre bundles for these two sections, it follows from [Ste, 37.5 Classification Theorem] that the difference cocycle $d(s_0(f), s_1(\mathcal{T}(f)))$ defines an element of $H^n(N, \pi_n(S^n)) \cong \mathbb{Z}$. We shall call this number the *fold-degree* of f, which is denoted by $D^{\text{fold}}(f)$.

We have another interpretation of the fold-degree in the case where P is \mathbf{R}^n or S^n . In this case the associated homomorphism $\mathcal{T}(f)$ of a fold-map f determines a monomorphism $\mathcal{T}(f)|TN$ into $T(P \times \mathbf{R})$. Here if P is S^n , then $P \times \mathbf{R}$ is canonically embedded in \mathbf{R}^{n+1} as the tubular neighborhood of the unit sphere. By applying the Hirsch Immersion Theorem ([H1]) to $\mathcal{T}(f)|TN$ we obtain an immersion of N into $P \times \mathbf{R}$ and its Gauss map $N \to S^n$, which is denoted by G(f). If P is \mathbf{R}^n (resp. S^n), then the degree of G(f) is nothing but $D^{\text{fold}}(f)$ (resp. $D^{\text{fold}}(f) + \deg(f)$). In fact, if $P = S^n$, then let $c_0(f)$ be the map defined by $c_0(f)(x) = (x, [\mathbf{R}^n \times 0])$. The degree of G(f) is equal to the difference cocycle $d(c_0(f), s_1(\mathcal{T}(f))) = d(c_0(f), s_0(f)) + d(s_0(f), s_1(\mathcal{T}(f)))$ and $d(c_0(f), s_0(f))$ is equal to the degree of f. It is known that if n is even, then the degree of G(f) is equal to $(1/2)\chi(N)$ (see, for example, [L2, Theorem 2]).

We shall show that the fold-degree is nontrivial in odd dimensions. Let $p: SO(n+1) \rightarrow S^n$ be the map sending a rotation T of SO(n+1) onto its first column vector. The following lemma is well known ([Ste, 8.6 Theorem and 23.5 Corollary]).

Lemma 8.1. The image of $(p_*)_n : \pi_n(SO(n+1)) \to \pi_n(S^n) = \mathbb{Z}$ is the whole integers \mathbb{Z} if n = 1, 3 or 7 and is $2\mathbb{Z}$ if n is odd other than 1, 3 and 7.

Proposition 8.2. Let N and P be the manifolds as above of odd dimension n other than 1 and $f : N \to P$ be a fold-map. Then we have the following.

(1) If n is not 1,3 or 7, then any integer of $D^{fold}(f) + 2\mathbf{Z}$ can be a fold-degree of a fold-map homotopic to f.

(2) If n is 3 or 7, then any integer of \mathbf{Z} can be a fold-degree of a fold-map homotopic to f.

Proof. Let m be any integer (resp. even integer) for the case (2) (resp. (1)). There exists a section s of $S^n(f^*(TP \oplus \theta_P))$ such that the difference cocycle $d(s_1(\mathcal{T}(f)), s) = m$ by [Ste, 37.5]. By the assumption there is a map $m': N \to SO(n+1)$ with degree of $p \circ m'$ being m by Lemma 8.1. We here have a bundle map $b_m: TN \oplus \theta_N \to TN \oplus \theta_N$ coming from m'. For the bundle homomorphism $\mathcal{T}(f): TN \oplus \theta_N \to TP \oplus \theta_P$, consider the composition $\mathcal{T}(f) \circ b_m: TN \oplus \theta_N \to TP \oplus \theta_P$ such that $s_1(\mathcal{T}(f) \circ b_m)$ is homotopic to s. By Theorem 4.1 there is a fold-map g such that $\mathcal{T}(g)$ is homotopic to $\mathcal{T}(f) \circ b_m$ and that $D^{\text{fold}}(g) = D^{\text{fold}}(f) + m$ by

$$D^{\text{fold}}(g) = d(s_0(g), s_1(\mathcal{T}(g))) = d(s_0(f), s_1(\mathcal{T}(f))) + d(s_1(\mathcal{T}(f)), s) = D^{\text{fold}}(f) + m.$$

Corollary 8.3. Suppose N = P in addition to the hypothesis of Proposition 8.2. Consider the identity of P. Then we have the following.

(1) If n is not 1,3 or 7, then any even integer can be a fold-degree of a fold-map homotopic to the identity of P.

(2) If n is 3 or 7, then any integer can be a fold-degree of a fold-map homotopic to the identity of P.

Proof. By Proposition 8.2 it is enough to prove that the fold-degree of id_P is equal to 0. This follows from the fact that $\mathcal{T}(id_P)$ is homotopic to the identity of $TP \oplus \theta_P$, which is a consequence of the property that $i_n(E_{n+1})$ is equal to $j_0^2 \sigma$ with $\sigma(x_1, \ldots, x_n) = (1/n)(x_1, \ldots, x_n)$ (see [An3, Section 2]). \Box

Example 8.4. A 2-jet $z = j_0^2 f \in \Omega^{10}(1,1)$ is represented by the coordinates $(f'(0), f''(0)) \in \mathbf{R}^2 \setminus \{(0,0)\}$. Recall the embedding $i_1 : SO(2) \to \Omega^{10}(1,1)$, which sends $R(\theta)$ to $(\cos \theta, -\sin \theta) \in \Omega^{10}(1,1)$ by [An3, Section 2]. We here consider fold-maps f of S^1 into S^1 or \mathbf{R} . The map $\mathcal{T}(f)$ is identified with the following map $R \circ \theta : S^1 \to SO(2)$. First $\pi_{\Omega}(j_x^2 f) \in \Omega^{10}(1,1)$ has the coordinates (f'(x), f''(x)). Define the angle $\theta(x)$ by $(\cos \theta(x), -\sin \theta(x)) = (f'(x), f''(x))/||(f'(x), f''(x))||$. Then it follows from the definition of $i_1 : SO(2) \to \Omega^{10}(1,1)$ in [An2, Section 5] and [An3, Section 2] that $R \circ \theta : S^1 \to SO(2)$ is homotopic to $i_1^{-1} \circ R_1 \circ \pi_{\Omega} \circ j^2 f : S^1 \to SO(2)$ with

$$R \circ \theta(x) = \begin{pmatrix} \cos \theta(x) & -\sin \theta(x) \\ \sin \theta(x) & \cos \theta(x) \end{pmatrix}.$$

(1) If $f: S^1 \to \mathbf{R}$ is defined by $f(x) = \cos x$, then $\theta(x) = \pi/2 + x$. Hence, we have that $D^{\text{fold}}(f) = 1$.

(2) Let $f: S^1 \to S^1$ be a fold-map of degree 1. Let a_1 be the generator of $H^1(F^1; \mathbb{Z}/2\mathbb{Z}) \cong \mathbb{Z}/2\mathbb{Z}$. We can prove that $D^{\text{fold}}(f)$ or $\sharp S(f)/2$ modulo 2, where \sharp denotes the number of fold singularities, is equal to $\omega_1(f)^*(a_1) \in$ $H^1(S^1; \mathbb{Z}/2\mathbb{Z})$ in Corollary 5. More generally, consider a fold-map $f: N \to P$ of degree 1. The element $\omega_1(f)^*(a_1)$ is identified with the element of $\text{Hom}(H_1(P; \mathbb{Z}/2\mathbb{Z}), \mathbb{Z}/2\mathbb{Z})$. Any element $u \in H_1(P; \mathbb{Z}/2\mathbb{Z})$ has an embedding $i_u: S^1 \to$ P with $(i_u)_*([S^1]) = u$ such that i_u is transverse to f(S(f)) and does not intersect with the subset in f(S(f)) consisting of double points of f|S(f). Let $S_u = i_u(S^1)$ and S_N be the manifold $f^{-1}(S_u)$, which may not be connected. Then $i_u^{-1} \circ f|S_N: S_N \to S^1$ is a fold-map of degree 1. Then we have that $\omega_1(f)^*(a_1)(u)$ is equal to $\sharp S(i_u^{-1} \circ f|S_N)/2$ modulo 2.

We shall give an outline of the proof. Recall the notations in Section 3 and the definition of ω exactly before Lemma 3.5. Let $\nu_{S_u \subset P}$ be the normal bundle of S_u in P. We identify $D(\nu_{S_u \subset P})$ with a tubular neighborhood of S_u in P. Similarly we have the normal bundle $\nu_{S_N \subset N}$ and a tubular neighborhood $D(\nu_{S_N \subset N})$ of S_N in N with natural bundle maps $\nu_{S_N \subset N} \to \nu_{S_u \subset P}$ and $D(\nu_{S_N \subset N}) \to D(\nu_{S_u \subset P})$ induced from f. We can construct the collapsing maps $\mathbf{a}_N : T(\nu_N) \to T(\nu_N|_{S_N} \oplus \nu_{S_N \subset N})$ and $\mathbf{a}_P : T(\nu_P) \to T(\nu_P|_{S_u} \oplus \nu_{S_u \subset P})$ by collapsing $T(\nu_N|_{N\setminus \operatorname{Int} D(\nu_{S_N \subset N})})$ and $T(\nu_P|_{P\setminus \operatorname{Int} D(\nu_{S_u \subset P})})$ respectively. Let $h : \nu_P \to \nu_P$ be an automorphism such that $T(h)_*([\alpha_P]) = T(\nu(f))_*([\alpha_N])$ and that $h \oplus id_{\theta_P^k} \simeq id_{\nu_P} \oplus h_\beta$. Then we have that $h|_{S_u} \oplus id_{\nu_{S_u \subset P}} \oplus id_{\theta_{S_u}^k} \simeq$ $id_{\nu_{S_u}} \oplus h_{\beta \circ i_u}$ and that

$$(\mathbf{a}_P)_* \circ T(h)_*([\alpha_P]) = T(h|_{S_u} \oplus id_{\nu_{S_u \subset P}})_* \circ (\mathbf{a}_P)_*([\alpha_P]) = T(h|_{S_u} \oplus id_{\nu_{S_u \subset P}})_*([\alpha_{S_u}]), (\mathbf{a}_P)_* \circ T(\nu(f))_*([\alpha_N]) = T(\nu(f)|_{S_N} \oplus id_{\nu_{S_N \subset N}})_* \circ (\mathbf{a}_N)_*([\alpha_N]) = T(\nu(f)|_{S_N} \oplus id_{\nu_{S_N \subset N}})_*([\alpha_{S_N}]).$$

Since $\omega(f) = [\beta]$ by the definition of ω , we have that

$$(i_u)^* \circ \omega(f) = i_u^*([\beta]) = [\beta \circ i_u] = \omega(i_u^{-1} \circ f|S_N) \in [S^1, SG],$$

where $i_u^* : [P, SG] \to [S^1, SG]$. Furthermore, $\omega(i_u^{-1} \circ f | S_N)^*(a_1)([S^1])$ is identified with $\sharp S(i_u^{-1} \circ f | S_N)/2$ modulo 2.

Remark 8.5. Since the C^{∞} -equivalence classes of fold-germs in $\Omega^{10}(1,1)$ are $x \mapsto \pm x^2$, it follows that the fold-degree of f must be positive. This positiveness is essentially suggested to the author by Professor O. Saeki.

Department of Mathematics Faculty of Science Yamaguchi University Yamaguchi 753-8512, Japan e-mail: andoy@po.cc.yamaguchi-u.ac.jp

References

- [Ad] J. F. Adams, On the groups J(X) I-IV, Topology, **2** (1963), 181–195; **3** (1964), 137–171, 193–222; **5** (1966), 21–71.
- [An1] Y. Ando, On the elimination of Morin singularities, J. Math. Soc. Japan, 37 (1985), 471–487.
- [An2] Y. Ando, The homotopy type of the space consisting of regular jets and folding jets in $J^2(n, n)$, Japanese J. Math., **24** (1998), 169–181.
- [An3] Y. Ando, Folding maps and the surgery theory on manifolds, to appear in J. Math. Soc. Japan.
- [At1] M. F. Atiyah, Thom complexes, Proc. London Math. Soc., 11 (1961), 291–310.
- [At2] M. F. Atiyah, K-theory, Benjamin, 1969.
- [Bo] J. M. Boardman, Singularities of differentiable maps, IHES Publ. Math., 33 (1967), 21–57.
- [Br1] W. Browder, The Kervaire invariant of framed manifolds and its generalization, Ann. of Math., 90 (1969), 157–186.
- [Br2] W. Browder, Surgery on Simply-Connected Manifolds, Springer-Verlag, 1972.
- [E] J. M. Eliašberg, On singularities of folding type, Math USSR. Izv., 4 (1970), 1119–1134.
- [G1] M. Gromov, Stable mappings of foliations into manifolds, Math. USSR-Izv., 3 (1969), 671–694.
- [G2] M. Gromov, Partial Differential Relations, Springer-Verlag, 1986.
- [H1] M. W. Hirsch, Immersions of manifolds, Trans. Amer. Math. Soc., 93 (1959), 242–276.
- [H2] M. W. Hirsch, Differential Topology, Springer-Verlag, 1976.
- [K-M] M. Kervaire and J. Milnor, Groups of homotopy spheres I, Ann. of Math., 77 (1963), 504–537.
- [K-N] S. Kobayashi and K. Nomizu, Foundations of Differential Geometry, Vol. 1, Interscience Publishers, 1963.
- [L1] H. I. Levine, Singularities of differentiable maps, Proc. Liverpool Singularities Symposium, Springer Lecture Notes 192, 1971, 1–85.
- [L2] H. I. Levine, Blowing up singularities, Proc. Liverpool Singularities Symposium, Springer Lecture Notes 209, 1971, 90–103.

- [M] J. P. May, The homology of E_{∞} ring spaces, Springer Lecture Notes 533, 1976, 69–206.
- [M-M] I. Madsen and R. J. Milgram, The Classifying Spaces for Surgery and Cobordism of Manifolds, Princeton, 1979.
- [M-S] J. Milnor and E. Spanier, Two remarks on fiber homotopy type, Pacific J. Math., 10 (1960), 585–590.
- [Sa] O. Saeki, Topology of special generic maps into R³, Mat. Contemp., 5 (1993), 161–186.
- [Sp1] E. Spanier, Infinite symmetric products, function spaces, and duality, Ann. of Math., 69 (1959), 142–198.
- [Sp2] E. Spanier, Function spaces and duality, Ann. of Math., 70 (1959), 338–378.
- [Ste] N. Steenrod, The Topology of Fibre Bundles, Princeton Univ. Press, 1951.
- [Su] D. Sullivan, Triangulating Homotopy Equivalences, Thesis, Princeton Univ., 1965.
- [To] H. Toda, Composition methods in homotopy groups of spheres, Ann. of Math. Stud. 49, 1962, Princeton.
- [Tsu] A. Tsuchiya, Characteristic classes for spherical fiber spaces, Nagoya Math. J., 43 (1971), 1–39.
- [W1] C. T. C. Wall, Poincaré complexes: I, Ann. of Math., 86 (1967), 213– 245.
- [W2] C. T. C. Wall, Surgery on Compact Manifolds, Academic Press, London and New York, 1970.