Fold-maps and the space of base point preserving maps of spheres

By
Yoshifumi Ando*

Abstract

Let $f: N \rightarrow P$ be a smooth map between n-dimensional oriented manifolds which has only fold singularities. Such a map is called a fold-map. For a connected closed oriented manifold P, we shall define a fold-cobordism class of a fold-map into P of degree m under a certain cobordism equivalence. Let $\Omega_{\text {fold,m}}(P)$ denote the set of all foldcobordism classes of fold-maps into P of degree m. Let F^{m} denote the space $\lim _{k \rightarrow \infty} F_{k}^{m}$, where F_{k}^{m} denotes the space of all base point preserving maps of degree m of S^{k-1}. In this paper we shall prove that there exists a surjection of $\Omega_{\text {fold, } m}(P)$ to the set of homotopy classes $\left[P, F^{m}\right]$, which induces many fold-cobordism invariants.

Introduction

Let N and P be smooth $\left(C^{\infty}\right)$ manifolds of dimension n. We shall say that a smooth map germ of (N, x) into (P, y) has a singularity of fold type at x if it is written as $\left(x_{1}, \ldots, x_{n-1}, x_{n}\right) \mapsto\left(x_{1}, \ldots, x_{n-1}, x_{n}^{2}\right)$ under suitable local coordinate systems on neighborhoods of $x \in N$ and $y \in P$ respectively. A smooth map $f: N \rightarrow P$ is called a fold-map if it has only fold singularities. In [E] Èliašberg has proved a certain "homotopy principle" (a terminology used in [G2]) for fold-maps. Let $T N$ and $f^{*}(T P)$ be stably equivalent for a given map $f: N \rightarrow P$ and let an $(n-1)$-dimensional submanifold M of N be given. As an application he has given the conditions so that there is a fold-map which is homotopic to f and folds on M. For example, for any homotopy sphere of dimension n, there exists a fold-map into S^{n} of degree 1. These results are the motivation for the following problems. Given a connected closed oriented manifold P, consider a fold-map $f: N \rightarrow P$ of degree 1 . What properties of a fold-map f represent the procedure of changing the differentiable structure of P to that of N ? How is a classification of fold-maps into P together with the singularities of f related to a classification of source manifolds N ? These

[^0]problems have been studied in [An3]. This paper is its continuation and we shall study this problem in a more general situation.

Let P be a connected closed oriented smooth manifold of dimension n. For the study of this problem we shall define a fold-cobordism class of a fold-map of degree m. Namely, let $f_{i}: N_{i} \rightarrow P(i=0,1)$ be two fold-maps of degree m, where N_{i} are closed oriented smooth manifolds of dimension n. We shall say that they are fold-cobordant when there exists a fold-map $F:(W, \partial W) \rightarrow$ ($P \times[0,1], P \times 0 \cup P \times 1$) of degree m such that
(i) W is oriented with $\partial W=N_{0} \cup\left(-N_{1}\right)$ and the collar of ∂W is identified with $N_{0} \times[0, \varepsilon) \cup N_{1} \times(1-\varepsilon, 1]$,
(ii) $F \mid N_{0} \times[0, \varepsilon)=f_{0} \times i d_{[0, \varepsilon)}$ and $F \mid N_{1} \times(1-\varepsilon, 1]=f_{1} \times i d_{(1-\varepsilon, 1]}$,
where ε is a sufficiently small positive number. Let $\Omega_{f o l d, m}(P)$ denote the set of all fold-cobordism classes of fold-maps into P of degree m.

Let F_{k}^{m} denote the space of all base point preserving maps of degree m of S^{k-1} with compact-open topology. The suspension induces the inclusion $F_{k}^{m} \rightarrow F_{k+1}^{m}$. Let F^{m} denote the space $\lim _{k \rightarrow \infty} F_{k}^{m}$. Let G_{k} (resp. $S G_{k}$) denote the space of all homotopy equivalences (resp. of degree 1) of S^{k-1} with compact-open topology. The suspension of a homotopy equivalence yields the inclusion $G_{k} \rightarrow G_{k+1}$ (resp. $S G_{k} \rightarrow S G_{k+1}$). We set $G=\lim _{k \rightarrow \infty} G_{k}$ and $S G=\lim _{k \rightarrow \infty} S G_{k}$ respectively. Similarly set $O=\lim _{k \rightarrow \infty} O(k)$. By considering the quotient space $G_{k} / O(k)$ by the action of $O(k)$ on G_{k}, set $G / O=$ $\lim _{k \rightarrow \infty} G_{k} / O(k)$. Then we have the projection $p_{S G}: S G \rightarrow G / O$. It is well known that each F^{m} is weakly homotopy equivalent to $S G$.

The main result of this paper is the following theorem.
Theorem 1. Let P be a connected closed oriented smooth manifold of dimension n. Then there exists a surjection $\omega_{m}: \Omega_{\text {fold }, m}(P) \rightarrow\left[P, F^{m}\right]$ for $n \geq 1$.

Let π_{n}^{s} denote the n-th stable homotopy group of spheres, $\lim _{k \rightarrow \infty} \pi_{n+k}($ S^{k}). It is known that $\left[S^{n}, F^{0}\right.$] is isomorphic to π_{n}^{s} (see, for example, [At1]). Then we have the following corollary.

Corollary 2. \quad There exists a surjection $\Omega_{\text {fold }, 0}\left(S^{n}\right) \rightarrow \pi_{n}^{s}$ induced from ω_{0} for $n \geq 1$.

For example, the fold-map $S^{1} \rightarrow S^{1}$ mapping $e^{\sqrt{-1} x} \mapsto e^{\sqrt{-1} \cos a x}, a \in \mathbf{Z}$, is mapped to $0 \in \pi_{1}^{s} \cong \mathbf{Z} / 2 \mathbf{Z}$ for odd integers a and to $1 \in \pi_{1}^{s} \cong \mathbf{Z} / 2 \mathbf{Z}$ for even integers $a \neq 0$ (see Proposition 5.3).

Now we recall a smooth structure on P, which refers to a homotopy equivalence $f: N \rightarrow P$ of degree 1 , and the surgery obstruction in the surgery theory developed by $[\mathrm{K}-\mathrm{M}],[\mathrm{Br} 2]$, $[\mathrm{Su}]$ and [W2]. We will say that two smooth structures on $P, f_{i}: N_{i} \rightarrow P(i=0,1)$, are equivalent if there is a diffeomorphism $d: N_{0} \rightarrow N_{1}$ such that f_{0} is homotopic to $f_{1} \circ d$. Let $\mathcal{S}(P)$ denote the set of all equivalence classes of smooth structures on P. Then there has been defined a map $\eta_{n}: \mathcal{S}(P) \rightarrow[P, G / O]$. Let $i_{F^{1}, S G}: F^{1} \rightarrow S G$ be the inclusion. Then it will turn out that $\left(i_{F^{1}, S G}\right)_{*} \circ \omega_{1}$ coincides with $\omega: \Omega_{f o l d, 1}(P) \rightarrow[P, S G]$
defined in [An3]. As for smooth structures on P we have the following theorem (see [An3, Section 5 and Theorem 5.5]).

Theorem 3 ([An3]). Let $n \geq 5$. Let P be a connected closed oriented smooth manifold of dimension n. If a fold-map $f: N \rightarrow P$ is a homotopy equivalence of degree 1 , then we have that $\left(p_{S G}\right)_{*} \circ \omega(f)=\eta_{n}(f)$.

Furthermore, the surgery obstructions induce fold-cobordism invariants through the composition with $\left(p_{S G}\right)_{*} \circ \omega$ ([An3, Proposition 5.1]). In particular, if P is of dimension $4 k+2(k \geq 1)$, then we have the Kervaire invariant $\theta_{4 k+2}:[P, G / O] \rightarrow \mathbf{Z} / 2 \mathbf{Z}$.

Theorem 4. Let P be a closed oriented and simply connected smooth manifold of dimension $4 k+2(k \geq 1)$. Then the surgery obstruction of Kervaire invariant $\theta_{4 k+2}$ induces a fold-cobordism invariant $\theta_{4 k+2} \circ\left(p_{S G}\right)_{*} \circ \omega$: $\Omega_{\text {fold }, 1}(P) \rightarrow \mathbf{Z} / 2 \mathbf{Z}$. In particular, if $P=S^{4 k+2}$ and $k=1,3,7$, then this invariant is not trivial.

The latter half of Theorem 4 is a direct consequence of the results due to several authors that $\theta_{4 k+2} \circ\left(p_{S G}\right)_{*}$ for $P=S^{4 k+2}$ is surjective for $k=1,3,7$ (see [Br1, Corollary 1]).

Theorem 1 will make the following corollary important, in which we define other fold-cobordism invariants. As for the (co)homology groups of the space F^{m}, namely, $S G$, consult $[\mathrm{M}],[\mathrm{M}-\mathrm{M}]$ and $[\mathrm{Tsu}]$.

Corollary 5. Let p be a prime number. For an element $[f]$ of $\Omega_{f o l d, m}(P)$, we have the homomorphism $\omega_{m}(f)^{*}: H^{*}\left(F^{m} ; \mathbf{Z} / p \mathbf{Z}\right) \rightarrow H^{*}(P ; \mathbf{Z} / p \mathbf{Z})$. Then for any element a of $H^{*}\left(F^{m} ; \mathbf{Z} / p \mathbf{Z}\right), \omega_{m}(f)^{*}(a)$ is a fold-cobordism invariant.

Now we shall explain the homotopy principle for fold-maps, which is necessary for the proof of Theorem 1. In the 2-jet space $J^{2}(n, n)$ we shall consider the subspace $\Omega^{10}(n, n)$ consisting of all jets of either regular germs or germs with fold singularities at the origin. In the 2-jet bundle $J^{2}(N, P)$ with projection $\pi_{N}^{2}: J^{2}(N, P) \rightarrow N$, let $\Omega^{10}(N, P)$ be its subbundle associated with $\Omega^{10}(n, n)$. A smooth map $f: N \rightarrow P$ is a fold-map if and only if the image of $j^{2} f$ is contained in $\Omega^{10}(N, P)$. Let $C_{\Omega}^{\infty}(N, P)$ denote the space consisting of all fold-maps with C^{∞}-topology. Let $\Gamma(N, P)$ denote the space consisting of all continuous sections of the fibre bundle $\pi_{N}^{2} \mid \Omega^{10}(N, P): \Omega^{10}(N, P) \rightarrow N$ with compact-open topology. Then there exists a continuous map

$$
j_{\Omega}: C_{\Omega}^{\infty}(N, P) \rightarrow \Gamma(N, P)
$$

defined by $j_{\Omega}(f)=j^{2} f$.
We shall prove the following homotopy principle in the existence level in Section 4, where two theorems [G1, 4.1.1 Theorem] and [E, 2.2 Theorem] will play important roles. In the following theorem the manifolds N and P may not be closed or oriented.

Theorem 6. Let $n \geq 2$. Let N and P be connected smooth manifolds of dimension n and $\partial N=\emptyset$. For any continuous section s in $\Gamma(N, P)$, there exists a fold-map $f: N \rightarrow P$ such that $j^{2} f$ and s are homotopic as sections.

In Section 1 we shall explain the well known results concerning fold singularities. In Section 2 we shall prove several results concerning Thom spaces and duality in the suspension category (see [Sp1], [Sp2] and [W1]). In Section 3 we shall review the results of $[\mathrm{An} 3]$ and define the map ω_{m}. In Section 4 we shall state Propositions 4.6 and 4.7 without proofs and prove Theorem 6. In Section 5 we shall prove Theorem 1 by using Theorem 6 and give some examples. In Sections 6 and 7 we shall prove Propositions 4.6 and 4.7 respectively. In Section 8 we shall give another invariant of fold-maps, say fold-degree in \mathbf{Z}, which is not a fold-cobordism invariant. In odd dimensions, we shall show that many integers can be realized as fold-degrees.

The author would like to thank the referee for his kind and helpful comments.

1. Preliminaries

Throughout the paper all manifolds are smooth of class C^{∞}. Maps are basically continuous, but may be smooth (of class C^{∞}) if so stated. Given a fibre bundle $\pi: E \rightarrow X$ and a subset C in X, we denote $\pi^{-1}(C)$ by $\left.E\right|_{C}$. Let $\pi^{\prime}: F \rightarrow Y$ be another fibre bundle. A map $\tilde{b}: E \rightarrow F$ is called a fibre map over a map $b: X \rightarrow Y$ if $\pi^{\prime} \circ \tilde{b}=b \circ \pi$ holds. The restriction $\tilde{b}\left|\left(\left.E\right|_{C}\right): E\right|_{C} \rightarrow$ $F\left(\right.$ or $\left.\left.F\right|_{b(C)}\right)$ is denoted by $\left.\tilde{b}\right|_{C}$. In particular, for a point $x \in X,\left.E\right|_{x}$ and $\left.\tilde{b}\right|_{x}$ are denoted by E_{x} and $\tilde{b}_{x}: E_{x} \rightarrow F_{b(x)}$ respectively.

We shall review the well known results about fold singularities (see [Bo], [L1]). Let $J^{k}(N, P)$ denote the k-jet space of manifolds N and P. Let π_{N}^{k} and π_{P}^{k} be the projections mapping a jet to its source and target respectively. The map $\pi_{N}^{k} \times \pi_{P}^{k}: J^{k}(N, P) \rightarrow N \times P$ induces a structure of fibre bundle with structure group $L^{k}(n) \times L^{k}(n)$, where $L^{k}(n)$ denotes the group of all k-jets of local diffeomorphisms of $\left(\mathbf{R}^{n}, 0\right)$. The fibre $\left(\pi_{N}^{k} \times \pi_{P}^{k}\right)^{-1}(x, y)$ is denoted by $J_{x, y}^{k}(N, P)$.

Let $\pi_{1}^{2}: J^{2}(N, P) \rightarrow J^{1}(N, P)$ be the canonical forgetting map. Let $\Sigma^{i}(N, P)$ denote the submanifold of $J^{1}(N, P)$ consisting of all 1-jets $z=j_{x}^{1} f$ such that the kernel of $d_{x} f$ is of dimension i. We denote $\left(\pi_{1}^{2}\right)^{-1}\left(\Sigma^{i}(N, P)\right)$ by the same symbol $\Sigma^{i}(N, P)$ if there is no confusion. For a 2 -jet $z=j_{x}^{2} f$ of $\Sigma^{i}(N, P)$, there has been defined the second intrinsic derivative $d_{x}^{2} f: T_{x} N \rightarrow$ $\operatorname{Hom}\left(\operatorname{Ker}\left(d_{x} f\right), \operatorname{Cok}\left(d_{x} f\right)\right)$. Let $\Sigma^{i j}(N, P)$ denote the subbundle of $J^{2}(N, P)$ consisting of all jets $z=j_{x}^{2} f$ such that $\operatorname{dim}\left(\operatorname{Ker}\left(d_{x} f\right)\right)=i$ and $\operatorname{dim}\left(\operatorname{Ker}\left(d_{x}^{2} f \mid\right.\right.$ $\left.\left.\operatorname{Ker}\left(d_{x} f\right)\right)\right)=j$. In this paper we shall deal with these submanifolds only for $j \leq i \leq 1$. A jet of $\Sigma^{10}(N, P)$ will be called a fold jet. Let $\Omega^{10}(N, P)$ denote the union of $\Sigma^{0}(N, P)$ and $\Sigma^{10}(N, P)$ in $J^{2}(N, P)$. Then $\pi_{N}^{2} \times \pi_{P}^{2} \mid \Omega^{10}(N, P)$ induces a structure of an open subbundle of $\pi_{N}^{2} \times \pi_{P}^{2}$. Let $\Omega^{10}(n, n)=\Omega^{10}\left(\mathbf{R}^{n}, \mathbf{R}^{n}\right) \cap$ $J_{0,0}^{2}\left(\mathbf{R}^{n}, \mathbf{R}^{n}\right)$.

In particular, there exists a canonical diffeomorphism

$$
\pi_{\mathbf{R}^{n}}^{2} \times \pi_{\mathbf{R}^{n}}^{2} \times \pi_{\Omega}: \Omega^{10}\left(\mathbf{R}^{n}, \mathbf{R}^{n}\right) \rightarrow \mathbf{R}^{n} \times \mathbf{R}^{n} \times \Omega^{10}(n, n)
$$

Here, for a jet $z=j_{x}^{2} f \in \Omega^{10}\left(\mathbf{R}^{n}, \mathbf{R}^{n}\right), \pi_{\Omega}$ is defined by $\pi_{\Omega}(z)=j_{0}^{2}(l(-f(x)) \circ$ $f \circ l(x))$, where $l(a)$ denotes the parallel translation defined by $l(a)(x)=x+$ a. We note that $J_{0,0}^{2}\left(\mathbf{R}^{n}, \mathbf{R}^{n}\right)$ is canonically identified with $\operatorname{Hom}\left(\mathbf{R}^{n}, \mathbf{R}^{n}\right) \oplus$ $\operatorname{Hom}\left(S^{2} \mathbf{R}^{n}, \mathbf{R}^{n}\right)$ under the canonical basis of \mathbf{R}^{n}, where $S^{2} \mathbf{R}^{n}$ is the 2-fold symmetric product of \mathbf{R}^{n}.

Next we shall review the properties of the submanifolds $\Sigma^{1}(N, P)$ and $\Sigma^{10}(N, P)$ along the line of [Bo, Section 7]. Let \mathbf{D}^{\prime} denote the induced bundle $\left(\pi_{N}^{2}\right)^{*}(T N)$ over $J^{2}(N, P)$. Recall the homomorphism

$$
\mathbf{d}^{1}: \mathbf{D}^{\prime} \longrightarrow\left(\pi_{P}^{2}\right)^{*}(T P) \quad \text { over } \quad J^{2}(N, P),
$$

which maps an element $\mathbf{v}=\left(z, \mathbf{v}^{\prime}\right) \in \mathbf{D}_{z}^{\prime}$ with $z=j_{x}^{2} f$ to $\left(z, d_{x} f\left(\mathbf{v}^{\prime}\right)\right)$. There is a commutative diagram

Here \mathbf{d}^{1} is identified with a section of $\operatorname{Hom}\left(\mathbf{D}^{\prime},\left(\pi_{P}^{2}\right)^{*}(T P)\right)$ over $J^{2}(N, P)$. Let \mathbf{K} and \mathbf{Q} be the kernel bundle and the cokernel bundle of \mathbf{d}^{1} over $\Sigma^{1}(N, P)$ with $\operatorname{dim} \mathbf{K}=\operatorname{dim} \mathbf{Q}=1$ respectively. Next we have the second intrinsic derivative $\mathbf{d}^{2}: \mathbf{K} \rightarrow \operatorname{Hom}(\mathbf{K}, \mathbf{Q})$ over $\Sigma^{1}(N, P)$, whose restriction $\mathbf{d}_{z}^{2}: \mathbf{K}_{z} \rightarrow$ $\operatorname{Hom}\left(\mathbf{K}_{z}, \mathbf{Q}_{z}\right)$ with $z \in \Sigma^{1}(N, P)$ is nothing but the homomorphism induced from $d_{x}^{2} f: \operatorname{Ker}\left(d_{x} f\right) \rightarrow \operatorname{Hom}\left(\operatorname{Ker}\left(d_{x} f\right), \operatorname{Cok}\left(d_{x} f\right)\right)$ by $\left(\pi_{N}^{2}\right)^{*}$ and $\left(\pi_{P}^{2}\right)^{*}$. This map is extended to the following epimorphism by [Bo, Lemma 7.4 and p. 412],

$$
\mathbf{d}^{2}:\left.T\left(J^{2}(N, P)\right)\right|_{\Sigma^{1}(N, P)} \rightarrow \operatorname{Hom}(\mathbf{K}, \mathbf{Q}) \quad \text { over } \quad \Sigma^{1}(N, P),
$$

where \mathbf{D}^{\prime} is identified with a subbundle of $T\left(J^{2}(N, P)\right)$ corresponding to the total tangent bundle of $J^{\infty}(N, P)$. It has been proved in [Bo, Lemma 7.13] that there exists an exact sequence,

$$
\left.0 \longrightarrow T\left(\Sigma^{1}(N, P)\right) \xrightarrow{C} T\left(J^{2}(N, P)\right)\right|_{\Sigma^{1}(N, P)} \xrightarrow{\mathbf{d}^{2}} \operatorname{Hom}(\mathbf{K}, \mathbf{Q}) \longrightarrow 0
$$

Under these notations, a 2-jet $z \in \Sigma^{1}(N, P)$ lies in $\Sigma^{10}(N, P)$ if and only if $\mathbf{d}^{2} \mid \mathbf{K}_{z}$ is an isomorphism (otherwise, z lies in $\Sigma^{11}(N, P)$). This implies that $T\left(\Sigma^{1}(N, P)\right)_{z} \cap \mathbf{K}_{z}=\{0\}$ for any jet $z \in \Sigma^{10}(N, P)$. Hence $\left.\mathbf{K}\right|_{\Sigma^{10}(N, P)}$ and $\left.\operatorname{Hom}(\mathbf{K}, \mathbf{Q})\right|_{\Sigma^{10}(N, P)}$ are isomorphic to the normal bundle of $\Sigma^{10}(N, P)$ in $J^{2}(N, P)$.

Boardman [Bo] has first done these constructions over the infinite jet space $J^{\infty}(N, P)$. In particular, there has been defined the total tangent bundle \mathbf{D} over $J^{\infty}(N, P)$, which is canonically identified with $\left(\pi_{N}^{\infty}\right)^{*}(T N)$. It does not seem so simple to explain how to define the extended epimorphism \mathbf{d}^{2} and
how to regard \mathbf{K} as the subbundle of the tangent bundle $T\left(J^{2}(N, P)\right)$ from the comment given in [Bo, p. 412]. The following interpretation is different from this comment. We need Riemannian metrics on N and P, which enable us to consider the exponential maps $T N \rightarrow N$ and $T P \rightarrow P$ by the Levi-Civita connections. For any points $x \in N$ and $y \in P$, we have the local coordinates $\left(x_{1}, \ldots, x_{n}\right)$ and $\left(y_{1}, \ldots, y_{n}\right)$ on convex neighborhoods of x and y associated to orthonormal basis of $T_{x} N$ and $T_{y} P$ respectively (see [K-N]). We shall define an embedding $\mu_{\infty}^{2}: J^{2}(N, P) \rightarrow J^{\infty}(N, P)$. Let $z \in J_{x, y}^{2}(N, P)$ be represented by a C^{∞} map germ $f:(N, x) \rightarrow(P, y)$ such that any k-th derivative of f with $k \geq 3$ vanishes under these coordinates. Then we set $\mu_{\infty}^{2}(z)=j_{x}^{\infty} f$. It is clear that $\pi_{2}^{\infty} \circ \mu_{\infty}^{2}=i d_{J^{2}(N, P)}$. We can prove that $\left.\mathbf{D}\right|_{\mu_{\infty}^{2}\left(J^{2}(N, P)\right)}$ is tangent to $\mu_{\infty}^{2}\left(J^{2}(N, P)\right)$. Indeed, for $\sigma=\left(\sigma_{1}, \ldots, \sigma_{n}\right)$ with non-negative integers σ_{i}, we recall the functions X_{i} and $Z_{j, \sigma}$ with $1 \leq i \leq n$ and $1 \leq j \leq n$ defined locally on a neighborhood of $J^{\infty}(N, P)$ by, for $z=j_{x}^{\infty} f$,

$$
\begin{aligned}
X_{i}(z) & =x_{i}, \\
Z_{j, \sigma}(z) & =\frac{\partial^{|\sigma|}\left(y_{j} \circ f\right)}{\partial x_{1}^{\sigma_{1}} \cdots \partial x_{n}^{\sigma^{n}}}(x),
\end{aligned}
$$

which constitute the local coordinates on $J^{\infty}(N, P)$ as described in [Bo, Section 1]. Let Φ be a smooth function defined locally on $\mu_{\infty}^{2}\left(J^{2}(N, P)\right)$ and let $D_{i} \in \mathbf{D}$ be the total tangent vector corresponding to $\partial / \partial x_{i}$ by the canonical identification of \mathbf{D} and $\left(\pi_{N}^{\infty}\right)^{*}(T N)$. Then we have by [Bo, (1.8)] that

$$
\begin{aligned}
D_{i}(\Phi)(z) & =\frac{\partial\left(\Phi \circ j^{\infty} f\right)}{\partial x_{i}}(x) \\
& =\frac{\partial \Phi}{\partial X_{i}}(z)+\sum_{j, \sigma} \frac{\partial \Phi}{\partial Z_{j, \sigma}}(z) Z_{j, \sigma^{\prime}}(z)
\end{aligned}
$$

where $\sigma^{\prime}=\left(\sigma_{1}, \ldots, \sigma_{i-1,} \sigma_{i}+1, \sigma_{i+1}, \ldots, \sigma_{n}\right)$. If $z \in \mu_{\infty}^{2}\left(J^{2}(N, P)\right)$, then $Z_{j, \sigma}(z)$ vanishes for $|\sigma| \geq 3$. Hence, $D_{i}(\Phi)$ is a smooth function defined locally on $\mu_{\infty}^{2}\left(J^{2}(N, P)\right)$. This implies that D_{i} is tangent to $\mu_{\infty}^{2}\left(J^{2}(N, P)\right)$. Since \mathbf{D}_{z} consists of all linear combinations of D_{1}, \ldots, D_{n}, we have that $\mathbf{D}_{z} \subset$ $T_{z}\left(\mu_{\infty}^{2}\left(J^{2}(N, P)\right)\right)$.

Let $\mathbf{d}^{1, \infty}:\left.\left.\mathbf{D}\right|_{\mu_{\infty}^{2}\left(J^{2}(N, P)\right)} \rightarrow\left(\pi_{P}^{\infty}\right)^{*}(T P)\right|_{\mu_{\infty}^{2}\left(J^{2}(N, P)\right)}$ be the first derivative over $\mu_{\infty}^{2}\left(J^{2}(N, P)\right)$. Let \mathbf{K}^{∞} and \mathbf{Q}^{∞} be the kernel bundle and the cokernel bundle of $\mathbf{d}^{1, \infty}$ over $\mu_{\infty}^{2}\left(\Sigma^{1}(N, P)\right)$. Now we consider the intrinsic derivative $d\left(\mathbf{d}^{1, \infty}\right):\left.T\left(\mu_{\infty}^{2}\left(J^{2}(N, P)\right)\right)\right|_{\mu_{\infty}^{2}\left(\Sigma^{1}(N, P)\right)} \rightarrow \operatorname{Hom}\left(\mathbf{K}^{\infty}, \mathbf{Q}^{\infty}\right)$ of $\mathbf{d}^{1, \infty}$ (see the definition of the intrinsic derivative in [Bo, Lemma 7.4] due to I. R. Porteous). Then it induces the homomorphism $\left(\mu_{\infty}^{2}\right)^{*}\left(d\left(\mathbf{d}^{1, \infty}\right)\right):\left.T\left(J^{2}(N, P)\right)\right|_{\Sigma^{1}(N, P)} \rightarrow$ $\operatorname{Hom}(\mathbf{K}, \mathbf{Q})$. It is clear that the restriction $\left(\mu_{\infty}^{2}\right)^{*}\left(d\left(\mathbf{d}^{1, \infty}\right)\right) \mid\left(\mu_{\infty}^{2}\right)^{*}(\mathbf{D}):\left(\mu_{\infty}^{2}\right)^{*}($ $\mathbf{D}) \rightarrow \operatorname{Hom}(\mathbf{K}, \mathbf{Q})$ is identified with $\mathbf{d}^{2}:\left.\mathbf{D}^{\prime}\right|_{\Sigma^{1}(N, P)} \rightarrow \operatorname{Hom}(\mathbf{K}, \mathbf{Q})$, which is invariantly defined with respect to the choice of metrics on N and P, through the identification of \mathbf{D} and $\left(\pi_{N}^{\infty}\right)^{*}(T N)$.

A smooth map $f: N \rightarrow P$ is called a fold-map when the image of $j^{2} f$ is contained in $\Omega^{10}(N, P)$. Let $C_{\Omega}^{\infty}(N, P)$ and $\Gamma(N, P)$ denote the spaces defined
in Introduction with the continuous map

$$
j_{\Omega}: C_{\Omega}^{\infty}(N, P) \rightarrow \Gamma(N, P) .
$$

Let $\Gamma^{t r}(N, P)$ denote the subspace of $\Gamma(N, P)$ consisting of all sections s such that s is smooth on some neighborhood of $s^{-1}\left(\Sigma^{10}(N, P)\right)$ and that s is transverse to $\Sigma^{10}(N, P)$. Throughout the paper $S(s)$ denotes $s^{-1}\left(\Sigma^{10}(N, P)\right)$. From now on, for a point $c \in S(s)$, let $K(s)_{c}$ and $Q(s)_{c}$ denote $s^{*}(\mathbf{K})_{c}=\operatorname{Ker}\left(d_{c} f\right)$ and $s^{*}(\mathbf{Q})_{c}=\operatorname{Cok}\left(d_{c} f\right)$ respectively, where $s(c)=j_{c}^{2} f$. Let $d^{1}(s): T N \rightarrow s^{*}(T P)$ and $d^{2}(s): K(s) \rightarrow \operatorname{Hom}(K(s), Q(s))$ over $S(s)$ denote the homomorphisms induced from \mathbf{d}^{1} and \mathbf{d}^{2} by s respectively.

A homotopy c_{λ} with $\lambda \in[0,1]$ refers to a continuous map c of $I=[0,1]$ into a space. For example, a homotopy h_{λ} relative to a closed subset C of N in $\Gamma(N, P)$ refers to a continuous map $h: I \rightarrow \Gamma(N, P)$ such that $h_{\lambda}\left|C=h_{0}\right| C$ for any λ.

2. Thom spaces and duality in suspension category

In this section we shall give several results concerning S-dual spaces and duality maps in the suspension category. They are necessary in the arguments for defining ω_{m} and inducing its properties, though some of them may be known results (see [At1], [Br2], [Sp1], [Sp2] and [W1]).

In Sections 2, 3 and 5 let $k \gg n$. Let S^{ℓ} be the sphere with radius 1 centred at the origin in $\mathbf{R}^{\ell+1}$ and let S^{ℓ} be oriented so that a pair of an orthonormal basis of $T_{x} S^{\ell}$ and an inward vector at x is compatible with the canonical orientation of $\mathbf{R}^{\ell+1}$. In this section S^{ℓ} is identified with the wedge product $S^{1} \wedge \cdots \wedge S^{1}$ of ℓ copies of S^{1} and is oriented by coordinates $\left(x_{1}, \ldots, x_{\ell}\right)$. We denote the set of homotopy classes of maps $\alpha: A \rightarrow B$ by $[A, B]$. Let A be a space with base point. According to $[\mathrm{Sp} 2], S^{\ell} A\left(S^{1} A\right.$ is written as $S A$ for short) denotes the ℓ-th suspension $A \wedge S^{\ell}$. Let $S^{\ell}(\alpha)$ denote the ℓ-th suspension of a map α. If B is also a space with base point, then we denote the set of S-homotopy classes of S-maps by $\{A, B\}$. An element of $\{A, B\}$ represented by a map $\alpha: S^{\ell} A \rightarrow S^{\ell} B(\ell \geq 0)$ is written as $\{\alpha\}$. Let D_{r}^{ℓ} be the disk centred at the origin with radius r in \mathbf{R}^{ℓ} (D_{1}^{ℓ} is often written as D^{ℓ} for short). For spaces A and A^{\prime}, let $1^{\curvearrowleft}: A \times A^{\prime} \rightarrow A^{\prime} \times A$ be the map defined by $1^{\wedge}\left(a, a^{\prime}\right)=\left(a^{\prime}, a\right)$.

Let A and B be connected finite polyhedrons with base points. We assume in this section that A and B are sufficiently highly connected so that we do not need to consider $S^{\ell} A$ and $S^{\ell} B$ in the following arguments. Then an m duality map refers to a continuous map $v^{A B}: A \wedge B \rightarrow S^{m}$ such that the map $\varphi_{v^{A B}}: H_{q}(A ; \mathbf{Z}) \rightarrow H^{m-q}(B ; \mathbf{Z})$ defined by sending $z \in H_{q}(A ; \mathbf{Z})$ to the slant product $\left(v^{A B}\right)^{*}\left(\left[S^{m}\right]^{*}\right) / z$ is an isomorphism. Let $v^{A^{\prime} B^{\prime}}: A^{\prime} \wedge B^{\prime} \rightarrow S^{m}$ be another m-duality map. By applying the work due to Spanier [Sp 1$]$ and $[\mathrm{Sp} 2]$, we obtain the isomorphisms
(1v) $\mathcal{D}_{m}\left(v^{A B}, v^{A^{\prime} B^{\prime}}\right):\left\{B, B^{\prime}\right\} \rightarrow\left\{A^{\prime}, A\right\}$,
(2v) $\mathcal{D}\left(v^{A B}\right):\left\{S^{m}, B\right\} \rightarrow\left\{A, S^{0}\right\}$,
(3v) $\mathcal{D}\left(v^{A B}\right):\left\{S^{m}, B \wedge A\right\} \rightarrow\left\{A \wedge B, S^{m}\right\}$.

We shall here recall their definitions respectively. In this paper we call isomorphisms of this type defined in [Sp 2 , Theorem 5.9] duality isomorphisms, which are often denoted simply by \mathcal{D}. The notation $\mathcal{D}\left(v^{A B}\right)$ is different from that used in $[\mathrm{Sp} 2]$. The map $\mathcal{D}_{m}\left(v^{A B}, v^{A^{\prime} B^{\prime}}\right)$ in $(1 v)$ is defined by the isomorphism $\left\{B, B^{\prime}\right\} \cong\left(\left\{B \wedge A^{\prime}, S^{m}\right\} \cong\right)\left\{A^{\prime} \wedge B, S^{m}\right\} \cong\left\{A^{\prime}, A\right\}$. Namely, let $\alpha_{B}: B \rightarrow B^{\prime}$, $\alpha_{A}: A^{\prime} \rightarrow A$. Then the first isomorphism is defined by sending $\left\{\alpha_{B}\right\}$ to the element represented by the map

$$
v^{A^{\prime} B^{\prime}} \circ\left(i d_{A^{\prime}} \wedge \alpha_{B}\right): A^{\prime} \wedge B \rightarrow A^{\prime} \wedge B^{\prime} \rightarrow S^{m}
$$

The inverse of the latter isomorphism $\left\{A^{\prime}, A\right\} \cong\left\{A^{\prime} \wedge B, S^{m}\right\}$ is defined by sending $\left\{\alpha_{A}\right\}$ to the element represented by the map

$$
v^{A B} \circ\left(\alpha_{A} \wedge i d_{B}\right): A^{\prime} \wedge B \rightarrow A \wedge B \rightarrow S^{m}
$$

The duality isomorphisms in $(2 v)$ and ($3 v$) are special cases of $(1 v)$ and will be often used. As for $(2 v)$, let $\{\alpha\} \in\left\{S^{m}, B\right\}$ be an element with $\alpha: S^{m} \rightarrow B$. Then $\mathcal{D}\left(v^{A B}\right)(\{\alpha\})$ is defined by the element represented by the map

$$
v^{A B} \circ\left(i d_{A} \wedge \alpha\right): A \wedge S^{m} \rightarrow A \wedge B \rightarrow S^{m} .
$$

For (3v), consider the map $v^{A B} \wedge\left(v^{A B} \circ 1^{\wedge}\right): A \wedge B \wedge B \wedge A \rightarrow S^{m} \wedge S^{m}=$ $S^{2 m}$. It is not difficult to see that this map is a duality map. Then, for a map $\alpha_{S}: S^{m} \rightarrow B \wedge A, \mathcal{D}\left(v^{A B}\right)\left(\left\{\alpha_{S}\right\}\right)$ in (3v) is defined to be the element represented by the map $\left(v^{A B} \wedge\left(v^{A B} \circ 1^{\wedge}\right)\right) \circ\left(i d_{A \wedge B} \wedge \alpha_{S}\right)$:

$$
A \wedge B \wedge S^{m} \rightarrow A \wedge B \wedge B \wedge A \rightarrow A \wedge B \wedge A \wedge B \rightarrow S^{m} \wedge S^{m}=S^{2 m}
$$

By the isomorphism $\mathcal{D}\left(v^{A B}\right)$ in (3v) we obtain a map $w^{B A}: S^{m} \rightarrow B \wedge A$ such that $\mathcal{D}\left(v^{A B}\right)\left(\left\{w^{B A}\right\}\right)=\left\{v^{A B}\right\}$. It is not difficult to see that $w^{B A}$ is a duality map in the sense of $[\mathrm{Br} 2]$ and [W1]. In fact, the map $\varphi_{w^{B A}}$: $H^{m-q}(B ; \mathbf{Z}) \rightarrow H_{q}(A ; \mathbf{Z})$ defined by sending $z \in H^{m-q}(B ; \mathbf{Z})$ to the slant product $\left(w^{B A}\right)_{*}\left(\left[S^{m}\right]\right) \backslash z$ is an isomorphism. Similarly we obtain a duality map $w^{B^{\prime} A^{\prime}}: S^{m} \rightarrow B^{\prime} \wedge A^{\prime}$ such that $\mathcal{D}\left(v^{A^{\prime} B^{\prime}}\right)\left(\left\{w^{B^{\prime} A^{\prime}}\right\}\right)=\left\{v^{A^{\prime} B^{\prime}}\right\}$. Then we define the isomorphism

$$
(1 w) \mathcal{D}(w):\left\{A^{\prime}, A\right\} \rightarrow\left\{B, B^{\prime}\right\}
$$

as follows. The map $\mathcal{D}(w)$ in $(1 w)$ is defined by $\left\{A^{\prime}, A\right\} \cong\left\{S^{m}, B^{\prime} \wedge A\right\} \cong$ $\left\{B, B^{\prime}\right\}$. Namely, for a map $\alpha_{A}: A^{\prime} \rightarrow A$, the first isomorphism is defined by sending $\left\{\alpha_{A}\right\}$ to the element represented by $\left(i d_{B^{\prime}} \wedge \alpha_{A}\right) \circ w^{B^{\prime} A^{\prime}}$. The latter isomorphism $\left\{B, B^{\prime}\right\} \cong\left\{S^{m}, B^{\prime} \wedge A\right\}$ is defined by sending $\left\{\alpha_{B}\right\}$ to the element represented by $\left(\alpha_{B} \wedge i d_{A}\right) \circ w^{B A}$.

We prove in the following lemma that $\mathcal{D}(w)=\mathcal{D}_{m}\left(v^{A B}, v^{A^{\prime} B^{\prime}}\right)^{-1}$. By this lemma we can apply the results in $[\mathrm{Sp} 1]$ and $[\mathrm{Sp} 2]$ to $\mathcal{D}(w)$ through \mathcal{D}. In particular, $\mathcal{D}(w)$ is well defined. In this paper $\mathcal{D}_{m}\left(v^{A B}, v^{A B}\right)$ is also written as $\mathcal{D}\left(v^{A B}\right)$, and we use the notation $\mathcal{D}\left(w^{B A}\right)$ for $\mathcal{D}\left(v^{A B}\right)^{-1}$.

Lemma 2.1. In the cases $(1 v),(1 w)$ we have that $\mathcal{D}(w)=\mathcal{D}_{m}\left(v^{A B}\right.$, $\left.v^{A^{\prime} B^{\prime}}\right)^{-1}$.

Proof. For the proof, we consider the duality map $\left(v^{A^{\prime} B^{\prime}} \wedge v^{A B}\right) \circ\left(i d_{A^{\prime} \wedge B^{\prime}}\right.$ $\left.\wedge 1^{\wedge}\right) \circ\left(i d_{A^{\prime}} \wedge 1^{\wedge} \wedge i d_{A}\right):$

$$
A^{\prime} \wedge B \wedge B^{\prime} \wedge A \rightarrow A^{\prime} \wedge B^{\prime} \wedge A \wedge B \rightarrow S^{m} \wedge S^{m} \cong S^{2 m}
$$

which is denoted by u. Furthermore, the canonical identification $S^{m} \wedge S^{m} \cong$ $S^{2 m}$ is also a duality map, which is denoted by $v^{S^{2 m}}$. Then we have the duality isomorphism $\mathcal{D}_{2 m}\left(v^{S^{2 m}}, u\right):\left\{S^{m}, B^{\prime} \wedge A\right\} \rightarrow\left\{A^{\prime} \wedge B, S^{m}\right\}$ as in $(1 v)$. We use the notation exhibited in the following diagram for the duality isomorphisms defined above to distinguish them

$$
\begin{gathered}
\left\{B, B^{\prime}\right\} \xrightarrow{\mathcal{D}^{B}(w)}\left\{S^{m}, B^{\prime} \wedge A\right\} \stackrel{\mathcal{D}^{A}(w)}{\stackrel{~}{\longleftrightarrow}}\left\{A^{\prime}, A\right\} \\
\| \\
\left\{B, B^{\prime}\right\} \underset{\mathcal{D}^{B}(v)}{\longrightarrow}\left\{A^{\prime} \wedge B, S^{m}\right\} \underset{\mathcal{D}^{A}(v)}{\leftrightarrows}\left\{A^{\prime}, A\right\}
\end{gathered}
$$

We prove $\mathcal{D}_{2 m}\left(v^{S^{2 m}}, u\right) \circ \mathcal{D}^{B}(w)\left(\left\{\alpha_{B}\right\}\right)=\mathcal{D}^{B}(v)\left(\left\{\alpha_{B}\right\}\right)$ and $\mathcal{D}_{2 m}\left(v^{S^{2 m}}, u\right)$ ${ }^{\circ} \mathcal{D}^{A}(w)\left(\left\{\alpha_{A}\right\}\right)=\mathcal{D}^{A}(v)\left(\left\{\alpha_{A}\right\}\right)$. For a map $\alpha_{B}: B \rightarrow B^{\prime}$, we have that

$$
\begin{aligned}
\mathcal{D}_{2 m}\left(v^{S^{2 m}}, u\right) \circ \mathcal{D}^{B}(w)\left(\left\{\alpha_{B}\right\}\right) & =\mathcal{D}_{2 m}\left(v^{S^{2 m}}, u\right)\left(\left\{\left(\alpha_{B} \wedge i d_{A}\right) \circ w^{B A}\right\}\right) \\
& =\mathcal{D}\left(v^{A B}\right)\left(\left\{w^{B A}\right\}\right) \circ \mathcal{D}\left(\left\{\alpha_{B} \wedge i d_{A}\right\}\right) \\
& =\left\{v^{A B}\right\} \circ\left\{\mathcal{D}\left(\left\{\alpha_{B}\right\}\right) \wedge \mathcal{D}\left(\left\{i d_{A}\right\}\right)\right\} \\
& =\left\{v^{A B}\right\} \circ\left\{\mathcal{D}^{A}(v)^{-1} \circ \mathcal{D}^{B}(v)\left(\left\{\alpha_{B}\right\}\right) \wedge\left\{i d_{B}\right\}\right\} \\
& =\mathcal{D}^{A}(v) \circ \mathcal{D}^{A}(v)^{-1} \circ \mathcal{D}^{B}(v)\left(\left\{\alpha_{B}\right\}\right) \\
& =\mathcal{D}^{B}(v)\left(\left\{\alpha_{B}\right\}\right) .
\end{aligned}
$$

For a map $\alpha_{A}: A^{\prime} \rightarrow A$ we have

$$
\begin{aligned}
\mathcal{D}_{2 m}\left(v^{S^{2 m}}, u\right) \circ \mathcal{D}^{A}(w)\left(\left\{\alpha_{A}\right\}\right) & =\mathcal{D}_{2 m}\left(v^{S^{2 m}}, u\right)\left(\left\{\left(i d_{B^{\prime}} \wedge \alpha_{A}\right) \circ w^{B^{\prime} A^{\prime}}\right\}\right) \\
& =\mathcal{D}\left(v^{A^{\prime} B^{\prime}}\right)\left(\left\{w^{B^{\prime} A^{\prime}}\right\}\right) \circ \mathcal{D}\left(\left\{i d_{B^{\prime}} \wedge \alpha_{A}\right\}\right) \\
& =\left\{v^{A^{\prime} B^{\prime}}\right\} \circ\left\{\mathcal{D}\left(\left\{i d_{B^{\prime}}\right\}\right) \wedge \mathcal{D}\left(\left\{\alpha_{A}\right\}\right)\right\} \\
& =\left\{v^{A^{\prime} B^{\prime}}\right\} \circ\left\{\left\{i d_{A^{\prime}}\right\} \wedge \mathcal{D}^{B}(v)^{-1} \circ \mathcal{D}^{A}(v)\left(\left\{\alpha_{A}\right\}\right)\right\} \\
& =\mathcal{D}^{B}(v) \circ \mathcal{D}^{B}(v)^{-1} \circ \mathcal{D}^{A}(v)\left(\left\{\alpha_{A}\right\}\right) \\
& =\mathcal{D}^{A}(v)\left(\left\{\alpha_{A}\right\}\right) .
\end{aligned}
$$

Therefore, $\mathcal{D}^{A}(w)$ and $\mathcal{D}^{B}(w)$ are isomorphisms, and hence we have

$$
\begin{aligned}
\mathcal{D}(w)\left(\left\{\alpha_{A}\right\}\right) & =\mathcal{D}^{B}(w)^{-1} \circ \mathcal{D}^{A}(w)\left(\left\{\alpha_{A}\right\}\right) \\
& =\mathcal{D}^{B}(v)^{-1} \circ \mathcal{D}^{A}(v)\left(\left\{\alpha_{A}\right\}\right) \\
& =\mathcal{D}_{m}\left(v^{A B}, v^{A^{\prime} B^{\prime}}\right)^{-1}\left(\left\{\alpha_{A}\right\}\right) .
\end{aligned}
$$

Let X be a connected closed oriented smooth manifold of dimension n.

Let θ_{X}^{ℓ} be the trivial bundle $X \times \mathbf{R}^{\ell}$. For the tangent bundle $T X$ of X, we will denote $T X \oplus \theta_{X}^{k}$ by a symbol τ_{X} without specifying the number k, which is called the stable tangent bundle of X. Choose a smooth embedding $e: X \rightarrow \mathbf{R}^{n+k}$, and let $\nu_{X}(e)=\left.T\left(\mathbf{R}^{n+k}\right)\right|_{e(X)} / T(e(X))$ be the normal bundle of $e(X)$. The induced bundle $\nu_{X}=e^{*}\left(\nu_{X}(e)\right)$ is also called the normal bundle of X, which has the canonical bundle map $e_{\nu_{X}}: \nu_{X} \rightarrow \nu_{X}(e)$. Then ν_{X} is a stable vector bundle, since $k \gg n$. The usual metric of \mathbf{R}^{n+k} induces a splitting of the sequence

$$
0 \rightarrow T X \rightarrow \theta_{X}^{n+k} \rightarrow \nu_{X} \rightarrow 0
$$

by orthogonality, which yields a trivialization $t_{X}: \tau_{X} \oplus \nu_{X} \rightarrow \theta_{X}^{2 k}$ with dimension of τ_{X} being equal to k. Let $T\left(\nu_{X}(e)\right)$ be the Thom space. Let $\phi_{X}: S^{n+k} \rightarrow T\left(\nu_{X}(e)\right)$ be the Pontrjagin-Thom construction for the embedding e of X. Then we have the homotopy class $\left[\alpha_{X}\right]$ of $\alpha_{X}=T\left(e_{\nu_{X}}^{-1}\right) \circ \phi_{X}$ in $\pi_{n+k}\left(T\left(\nu_{X}\right)\right)$, where [$*$] refers to the homotopy class. In this paper we also call α_{X} the Pontrjagin-Thom construction for the embedding e. In the following we canonically identify $T\left(\nu_{X} \oplus \theta_{X}^{\ell}\right)$ and $T\left(\nu_{X} \times \theta_{X}^{\ell}\right)$ with $T\left(\nu_{X}\right) \wedge S^{\ell}$ and $T\left(\nu_{X}\right) \wedge S^{\ell} X^{0}$ respectively.

It has been proved in [M-S, Lemma 2] that $T\left(\nu_{X}\right)$ is the S-dual space of $X^{0}=X \cup *_{X}$, where $*_{X}$ is the base point. In fact, we shall construct a duality map $v_{X}: S^{\ell} X^{0} \wedge T\left(\nu_{X}\right) \rightarrow S^{n+k+\ell}$ along the line of the arguments above by using the duality map $w_{X}: S^{n+k+\ell} \rightarrow T\left(\nu_{X}\right) \wedge S^{\ell} X^{0}$ constructed in [W1, p. 228]. Take an embedding $e: X \rightarrow \mathbf{R}^{n+k}$ with normal bundle ν_{X}. Consider the diagonal map $\Delta: X \rightarrow X \times X$ and the vector bundle $\nu_{X} \times \theta_{X}^{\ell}$ over $X \times X$. By the definition of the Whitney sum we have the bundle map $\widetilde{\Delta}: \nu_{X} \oplus \theta_{X}^{\ell} \rightarrow \nu_{X} \times \theta_{X}^{\ell}$ covering Δ, which induces a map $T(\widetilde{\Delta}): T\left(\nu_{X} \oplus\right.$ $\left.\theta_{X}^{\ell}\right)=T\left(\nu_{X}\right) \wedge S^{\ell} \rightarrow T\left(\nu_{X} \times \theta_{X}^{\ell}\right)=T\left(\nu_{X}\right) \wedge S^{\ell} X^{0}$. Let \widehat{e} be the embedding $X \rightarrow \mathbf{R}^{n+k} \times \mathbf{0} \subset \mathbf{R}^{n+k+\ell}$. Then the normal bundle of \hat{e} is identified with $\nu_{X} \oplus \theta_{X}^{\ell}$ and the Pontrjagin-Thom construction for the embedding \widehat{e} yields the map $S^{\ell}\left(\alpha_{X}\right): S^{n+k+\ell} \rightarrow T\left(\nu_{X}\right) \wedge S^{\ell}$. Let w_{X} denote the composition map

$$
T(\widetilde{\Delta}) \circ S^{\ell}\left(\alpha_{X}\right): S^{n+k+\ell} \longrightarrow T\left(\nu_{X}\right) \wedge S^{\ell} X^{0}
$$

It has been proved in [W1, Chapter 3] that w_{X} is an $(n+k+\ell)$-duality map. We shall now apply the arguments above concerning duality maps by setting $A=S^{\ell} X^{0}, B=T\left(\nu_{X}\right)$ and $w^{B A}=w_{X}$. Then, for $\ell \gg n$, there exists a duality map $v_{X}: S^{\ell} X^{0} \wedge T\left(\nu_{X}\right) \rightarrow S^{n+k+\ell}$, which is defined by $\mathcal{D}\left(w_{X}\right)\left(\left\{v_{X}\right\}\right)=\left\{w_{X}\right\}$. This duality map induces an isomorphism

$$
\mathcal{D}\left(v_{X}\right):\left\{S^{n+k}, T\left(\nu_{X}\right)\right\} \rightarrow\left\{X^{0}, S^{0}\right\}
$$

as in $(2 v)$. We should note that $\mathcal{D}\left(w_{X}\right)$ and $\mathcal{D}\left(v_{X}\right)$ are defined depending on the embedding e, although they are uniquely determined in the sense of Lemma 2.3 below.

Remark 2.2. Let e^{1} be another embedding with normal bundle ν_{X}^{1}. Let α_{X} and α_{X}^{1} be the Pontrjagin-Thom constructions for the embeddings e
and e^{1} respectively. Then there exists an isotopy of embeddings $e^{\lambda}: X \rightarrow \mathbf{R}^{n+k}$ with $e^{0}=e$. Let ν^{λ} be the normal bundle of e^{λ} with $\nu^{0}=\nu_{X}$ and $\nu^{1}=\nu_{X}^{1}$. Let $E: I \times X \rightarrow I \times \mathbf{R}^{n+k}$ be the embedding defined by $E(\lambda, x)=\left(\lambda, e^{\lambda}(x)\right)$. Let ν be the normal bundle of the embedding E, which yields a bundle map $B: I \times \nu_{X} \rightarrow \nu$ covering $i d_{I \times X}$. Let $b: \nu_{X} \rightarrow \nu_{X}^{1}$ be the bundle map defined by $B\left|1 \times \nu_{X}: \nu_{X}=1 \times \nu_{X} \rightarrow \nu_{X}^{1}=\nu\right|_{1 \times X}$ (see, for example, [An3, Proof of Lemma 4.4]). Hence, the isotopy $\widehat{e^{\lambda}}: X \rightarrow \mathbf{R}^{n+k} \times \mathbf{0} \subset \mathbf{R}^{n+k+\ell}$ induces homotopies $S^{\ell}\left(\alpha_{X}^{\lambda}\right): S^{n+k+\ell} \rightarrow T\left(\nu_{X}^{\lambda}\right) \wedge S^{\ell}$ and $T\left(\widetilde{\Delta}^{\lambda}\right): T\left(\nu_{X}^{\lambda}\right) \wedge S^{\ell} \rightarrow$ $T\left(\nu_{X}^{\lambda}\right) \wedge S^{\ell} X^{0}$ by applying the arguments above for e^{λ} and ν_{X}^{λ} in place of e and ν_{X}.

We have the following lemma.
Lemma 2.3. Let w_{X}^{λ} be the composition map $T\left(\widetilde{\Delta}^{\lambda}\right) \circ S^{\ell}\left(\alpha_{X}^{\lambda}\right)$ and let $\mathcal{D}\left(w_{X}^{\lambda}\right)\left(\left\{v_{X}^{\lambda}\right\}\right)=\left\{w_{X}^{\lambda}\right\}$. Then we have the following:
(1) $w_{X}^{1}=\left(T(b) \wedge i d_{S^{\ell} X^{0}}\right) \circ w_{X}^{0}$,
(2) $\mathcal{D}_{n+\ell+k}\left(v_{X}^{0}, v_{X}^{1}\right)(\{T(b)\})=\left\{i d_{X^{0}}\right\}$, where $\mathcal{D}_{n+\ell+k}\left(v_{X}^{0}, v_{X}^{1}\right):\left\{T\left(\nu_{X}\right)\right.$, $\left.T\left(\nu_{X}^{1}\right)\right\} \rightarrow\left\{X^{0}, X^{0}\right\}$,
(3) $v_{X}^{0}=v_{X}^{1} \circ\left(i d_{S^{\ell} X^{0}} \wedge T(b)\right)$,
(4) the following diagram is commutative.

$$
\begin{array}{cc}
\left\{S^{n+k}, T\left(\nu_{X}\right)\right\} \xrightarrow{\mathcal{D}\left(v_{X}^{0}\right)}\left\{X^{0}, S^{0}\right\} \\
T(b)_{*} \downarrow & \| \\
\left\{S^{n+k}, T\left(\nu_{X}^{1}\right)\right\} \xrightarrow[\mathcal{D}\left(v_{X}^{1}\right)]{ }\left\{X^{0}, S^{0}\right\}
\end{array}
$$

Proof. By the definition of w_{X}^{λ}, we first prove (1). Indeed, we have that

$$
\begin{aligned}
w_{X}^{1} & =T\left(\widetilde{\Delta}^{1}\right) \circ S^{\ell}\left(\alpha_{X}^{1}\right) \\
& =T\left(\widetilde{\Delta}^{1}\right) \circ S^{\ell}(T(b)) \circ S^{\ell}\left(\alpha_{X}\right) \\
& =\left(T(b) \wedge i d_{S^{\ell} X^{0}}\right) \circ T(\widetilde{\Delta}) \circ S^{\ell}\left(\alpha_{X}\right) \\
& =\left(T(b) \wedge i d_{S^{\ell} X^{0}}\right) \circ w_{X}^{0} .
\end{aligned}
$$

Hence, we have the commutative diagram

Then the assertion (2) follows from [Sp2, Theorem 5.11] or [Br2, I.4.14 Theorem] (see Lemma 2.1). Next we prove (3). By (2) we have $\mathcal{D}_{n+\ell+k}\left(v_{X}^{1}, v_{X}^{0}\right)(\{T($
$\left.\left.\left.b^{-1}\right)\right\}\right)=\left\{i d_{X^{0}}\right\}$, where $\mathcal{D}_{n+\ell+k}\left(v_{X}^{1}, v_{X}^{0}\right):\left\{T\left(\nu_{X}^{1}\right), T\left(\nu_{X}\right)\right\} \rightarrow\left\{X^{0}, X^{0}\right\}$. Since $w_{X}^{0}=\left(T\left(b^{-1}\right) \wedge i d_{S^{\ell} X^{0}}\right) \circ w_{X}^{1}$ by (1), we have

$$
\begin{aligned}
\left\{v_{X}^{0}\right\} & =\mathcal{D}\left(v_{X}^{0}\right)\left(\left\{w_{X}^{0}\right\}\right) \\
& =\mathcal{D}\left(\left\{w_{X}^{1}\right\}\right) \circ \mathcal{D}\left(\left\{T\left(b^{-1}\right) \wedge i d_{S^{\ell} X^{0}}\right\}\right) \\
& =\mathcal{D}\left(\left\{w_{X}^{1}\right\}\right) \circ\left(\mathcal{D}\left(\left\{T\left(b^{-1}\right)\right\}\right) \wedge \mathcal{D}\left(\left\{i d_{S^{\ell} X^{0}}\right\}\right)\right) \\
& =\left\{v_{X}^{1} \circ\left(i d_{S^{\ell} X^{0}} \wedge T(b)\right)\right\},
\end{aligned}
$$

where we consider dualities (indicated by \mathbb{N}) of the spaces and maps in the diagram

The assertion (4) follows from (3). In fact, we have

$$
\begin{aligned}
\mathcal{D}\left(v_{X}^{1}\right) \circ T(b)_{*}(\{\alpha\}) & =\left\{v_{X}^{1} \circ\left(i d_{S^{\ell} X^{0}} \wedge(T(b) \circ \alpha)\right\}\right. \\
& =\left\{v_{X}^{1} \circ\left(i d_{S^{\ell} X^{0}} \wedge T(b)\right) \circ\left(i d_{S^{e} X^{0}} \wedge \alpha\right)\right\} \\
& =\left\{v_{X}^{0} \circ\left(i d_{S^{\ell} X^{0}} \wedge \alpha\right)\right\} \\
& =\mathcal{D}\left(v_{X}^{0}\right)(\{\alpha\}) .
\end{aligned}
$$

We shall say that $\{\alpha\} \in\left\{S^{n+k}, T\left(\nu_{X}\right)\right\}$ is of degree m if $\alpha_{*}\left(\left[S^{n+k}\right]\right)=$ $m\left(\left[T\left(\nu_{X}\right)\right]\right)$, where $[*]$ refers to the fundamental class of $*$. For an element $\{\beta\} \in\left\{X^{0}, S^{0}\right\}$ with $\beta: S^{k} X^{0} \rightarrow S^{k}$ and a point $x \in X$, we shall define the map $\beta(x): S^{k}=S^{0} \wedge S^{k} \rightarrow S^{k}$ by the map $\left(\beta \mid\left(\left\{*_{X}, x\right\} \wedge S^{k}\right)\right) \circ\left(\iota_{x} \wedge i d_{S^{k}}\right)$, where $\iota_{x}: S^{0} \rightarrow\left\{*_{X}, x\right\}$ is the canonical identification. Let F denote the union of all $F^{m}, m \in \mathbf{Z}$. Then we have the map

$$
c_{F}:\left\{X^{0}, S^{0}\right\} \rightarrow[X, F]
$$

defined by $c_{F}(\beta)(x)=\beta(x)$. We shall say that $\{\beta\}$ is of degree m if $c_{F}(\beta)(x)$ is of degree m for any $x \in X$. Let $\left\{S^{n+k}, T\left(\nu_{X}\right)\right\}_{m}$ and $\left\{X^{0}, S^{0}\right\}_{m}$ be the sets of all respective maps of degree m. Then c_{F} induces the map $c_{F^{m}}:\left\{X^{0}, S^{0}\right\}_{m} \rightarrow$ [X, F^{m}]. Let $c_{X^{0}}: X^{0} \rightarrow S^{0}$ be the base point preserving surjection mapping X to the other point. Then we have the following lemma.

Lemma 2.4. (1) $\mathcal{D}\left(v_{X}\right)\left(\left\{\alpha_{X}\right\}\right)=\left\{c_{X^{0}}\right\}$.
(2) $\{\alpha\}$ is of degree m if and only if $\mathcal{D}\left(v_{X}\right)(\{\alpha\})$ is of degree m.

Proof. (1) It is enough for the assertion (1) to prove that $\mathcal{D}\left(w_{X}\right)\left(\left\{c_{X^{0}}\right\}\right)$ $=\left\{\alpha_{X}\right\}$. By the definition of $\alpha_{X}, c_{X^{0}}$ and w_{X}, we have the homotopy com-
mutative diagram

$$
\begin{array}{cc}
S^{n+k} \wedge S^{\ell} \xrightarrow{\alpha_{X} \wedge i d_{S^{\ell}}} & T\left(\nu_{X}\right) \wedge S^{\ell} \\
\| & \downarrow T(\widetilde{\Delta}) \\
S^{n+k} \wedge S^{\ell} \xrightarrow{w_{X}} & T\left(\nu_{X}\right) \wedge S^{\ell} X^{0} \\
\| & \quad \begin{array}{l}
\text { id } d_{T\left(\nu_{X}\right)} \wedge S^{\ell}\left(c_{X_{0}}\right) \\
S^{n+k} \wedge S^{\ell} \xrightarrow[\alpha_{X} \wedge i d_{S^{\ell}}]{ } \\
\end{array} \\
T\left(\nu_{X}\right) \wedge S^{\ell}
\end{array}
$$

Since the identification $S^{n+k+\ell}=S^{n+k} \wedge S^{\ell}$ is a duality map, it follows from [Br2, I.4.14 Theorem] that $\mathcal{D}\left(w_{X}\right)\left(\left\{c_{X^{0}}\right\}\right)=\left\{\alpha_{X}\right\}$.
(2) Let $\mathcal{D}\left(v_{X}\right)(\{\alpha\})=\{\beta\}$, or $\mathcal{D}\left(w_{X}\right)(\{\beta\})=\{\alpha\}$. Then we have the commutative diagram

where v is a duality map of the identification $S^{n+k} \wedge S^{\ell}=S^{n+k+\ell}$. We note that both α_{X} and $c_{X^{0}}$ are of degree 1 . Therefore, if α is of degree m, then β must be of degree m and vice versa.

We shall recall some results about spherical fibre spaces (see [Br2], [W1] and [At2]). Let ξ be a vector bundle of dimension k with metric over a manifold X of dimension n and let $S(\xi)$ be the associated sphere bundle. A fibre map $h: S(\xi) \rightarrow S(\xi)$ covering $i d_{X}$ is called an automorphism if h is a homotopy equivalence. In this paper if ξ is oriented, then an automorphism of $S(\xi)$ is always assumed to be an orientation preserving one. Let $\operatorname{End}(\xi)$ denote the group of the homotopy classes of automorphisms of $S(\xi)$. An automorphism of $S(\xi)$ is extended to a self-fibre map of ξ by fibrewise cone construction. This self-fibre map of ξ is also called an automorphism of ξ. Let $h^{\prime}: S(\eta) \rightarrow S(\eta)$ be an automorphism of another vector bundle η over X. Then we can define the Whitney sum $h+h^{\prime}: \xi \oplus \eta \rightarrow \xi \oplus \eta$ of the fibre maps h and h^{\prime} similarly as in the case of bundle maps and it yields an automorphism denoted by $h+h^{\prime}$: $S(\xi \oplus \eta) \rightarrow S(\xi \oplus \eta)$.

There is an isomorphism of $\operatorname{End}(\xi)$ to $\operatorname{End}\left(\xi \oplus \theta_{X}^{\ell}\right)(\ell \geq 0)$ which maps h to $h+i d_{\theta_{X}^{\ell}}$. Set $\mathcal{E}(\xi)=\lim _{\ell \rightarrow \infty} \operatorname{End}\left(\xi \oplus \theta_{X}^{\ell}\right)$. Then it follows that $\mathcal{E}(\xi) \cong$ $\mathcal{E}\left(\xi \oplus \theta_{X}^{\ell}\right)$. Suppose that $\xi \oplus \eta$ is trivial and has its trivialization $t: \xi \oplus \eta \rightarrow$ $\theta_{X}^{2 k}$. Let a homomorphism $E(t): \operatorname{End}(\xi) \rightarrow \operatorname{End}\left(\theta_{X}^{2 k}\right)$ be defined by $E(t)(h)=$
$\left[t \circ\left(h+i d_{\eta}\right) \circ t^{-1}\right]$. Then it induces an isomorphism

$$
\mathcal{E}: \mathcal{E}(\xi) \longrightarrow \mathcal{E}\left(\theta_{X}^{2 k}\right),
$$

which does not depend on the choice of a trivialization t.
Conversely, the map $\operatorname{End}\left(\theta_{X}^{k}\right) \rightarrow \operatorname{End}\left(\xi \oplus \theta_{X}^{k}\right) \cong \mathcal{E}(\xi)$ defined by mapping $h: \theta_{X}^{k} \rightarrow \theta_{X}^{k}$ to $i d_{\xi}+h$ also induces $\mathcal{E}\left(\theta_{X}^{k}\right) \cong \mathcal{E}(\xi)$, which coincides with \mathcal{E}^{-1}. Therefore, an automorphism $h: S(\xi) \rightarrow S(\xi)$ has a map $\beta: X \rightarrow S G(k)$ and an automorphism $h_{\beta}: \theta_{X}^{k} \rightarrow \theta_{X}^{k}$ defined by $h_{\beta}(x, v)=(x, \beta(x)(v))$ such that $h+i d_{\theta_{\chi}^{k}} \simeq i d_{\xi}+h_{\beta}$. Furthermore, if $h: S(\xi) \rightarrow S(\xi)$ is, in particular, the associated automorphism induced from a bundle map $\xi \rightarrow \xi$ preserving the metric, then we can take β as a map $X \rightarrow S O(k)$.

If we apply this fact to the case $\xi=\nu_{X}$, then an automorphism h : $S\left(\nu_{X}\right) \rightarrow S\left(\nu_{X}\right)$ has a map $\beta: X \rightarrow S G(k)$ and an automorphism $h_{\beta}: \theta_{X}^{k} \rightarrow \theta_{X}^{k}$ such that $h+i d_{\theta_{X}^{k}} \simeq i d_{\nu_{X}}+h_{\beta}$.

Lemma 2.5. Let $h: S\left(\nu_{X}\right) \rightarrow S\left(\nu_{X}\right)$ and $h_{\beta}: \theta_{X}^{k} \rightarrow \theta_{X}^{k}$ be the automorphisms given above such that $h+i d_{\theta_{X}^{k}} \simeq i d_{\nu_{X}}+h_{\beta}$. Consider the duality map $\mathcal{D}\left(v_{X}\right):\left\{T\left(\nu_{X}\right), T\left(\nu_{X}\right)\right\} \rightarrow\left\{X^{0}, X^{0}\right\}$. Then we have $\mathcal{D}\left(v_{X}\right)(\{T(h)\})=$ $\left\{T\left(h_{\beta}\right)\right\}$.

Proof. By Lemma 2.1 it is enough for the assertion to prove that $\mathcal{D}\left(w_{X}\right)($ $\left.\left\{T\left(h_{\beta}\right)\right\}\right)=\{T(h)\}$. Since $h+i d_{\theta_{X}^{k}} \simeq i d_{\nu_{X}}+h_{\beta}$, we have that $T\left(h+i d_{\theta_{X}^{k}}\right) \simeq$ $T\left(i d_{\nu_{X}}+h_{\beta}\right): T\left(\nu_{X}\right) \wedge S^{k} \rightarrow T\left(\nu_{X}\right) \wedge S^{k}$. Furthermore, we have that $\widetilde{\Delta} \circ(h+$ $\left.i d_{\theta_{X}^{k}}\right) \simeq\left(h \times i d_{\theta_{X}^{k}}\right) \circ \widetilde{\Delta}$ and $\widetilde{\Delta} \circ\left(i d_{\nu_{X}}+h_{\beta}\right) \simeq\left(i d_{\nu_{X}} \times h_{\beta}\right) \circ \widetilde{\Delta}$. This implies that the following diagram is homotopy commutative, since $w_{X}=T(\widetilde{\Delta}) \circ\left(\alpha_{X} \wedge i d_{S^{k}}\right)$.

$$
\begin{aligned}
& S^{2 k} \xrightarrow{w_{X}} \quad T\left(\nu_{X}\right) \\
& w_{X} \wedge S^{k} X^{0} \\
& \downarrow \\
& T\left(\nu_{X}\right) \wedge S^{k} X^{0} \xrightarrow{T(h) \wedge i d_{S^{k} X^{0}}} \\
& \downarrow^{i d_{T\left(\nu_{X}\right)} \wedge T\left(h_{\beta}\right)} \\
&
\end{aligned}
$$

By [Br2, I.4.14 Theorem] it follows that $\mathcal{D}\left(w_{X}\right)\left(\left\{T\left(h_{\beta}\right)\right\}\right)=\{T(h)\}$.
The inclusion $S O \rightarrow S G$ induces a map $J:[X, S O] \rightarrow[X, S G]$. According to [Ad], its image is denoted by $J([X, S O])$. The inclusion $F^{1} \rightarrow S G$ is denoted by $i_{F^{1}, S G}$.

Proposition 2.6. Let $\alpha_{X}: S^{n+k} \rightarrow T\left(\nu_{X}\right)$ be the Pontrjagin-Thom construction as above and $b: \nu_{X} \rightarrow \nu_{X}$ be a bundle map over $i d_{X}$. Then we have that $\left(i_{F^{1}, S G}\right)_{*} \circ c_{F^{1}}\left(\mathcal{D}\left(v_{X}\right)\left(\left\{T(b) \circ \alpha_{X}\right\}\right)\right)$ lies in $J([X, S O])$.

Proof. Let b be a bundle map in place of h in Lemma 2.5. Then there is a bundle map b_{β} described above with $\beta: X \rightarrow S O(k)$. Then it follows from

Lemma 2.4 (2) that

$$
\begin{aligned}
\left(i_{F^{1}, S G}\right)_{*} \circ c_{F^{1}} & \left(\mathcal{D}\left(v_{X}\right)\left(\left\{T(b) \circ \alpha_{X}\right\}\right)\right) \\
& =\left(i_{F^{1}, S G}\right)_{*} \circ c_{F^{1}}\left(\mathcal{D}\left(v_{X}\right)\left(\left\{\alpha_{X}\right\}\right) \circ \mathcal{D}\left(v_{X}\right)(\{T(b)\})\right) \\
& =\left(i_{F^{1}, S G}\right)_{*} \circ c_{F^{1}}\left(\left\{c_{X^{0}}\right\} \circ\left\{T\left(b_{\beta}\right)\right\}\right) \\
& =J([\beta]) .
\end{aligned}
$$

This shows the lemma.

3. Map $\omega_{m}: \Omega_{\text {fold }, m}(P) \rightarrow\left[P, F^{m}\right]$

In this section we shall first review the results of [An2] and [An3] necessary for the definition of the map $\omega_{m}: \Omega_{f o l d, m}(P) \rightarrow\left[P, F^{m}\right]$ and then define the map ω_{m} by using the results in Section 2. We shall define the actions of $S O(n) \times S O(n)$ on $S O(n+1)$ and on $J^{2}(n, n)$ as follows. Let $\left(O^{\prime},{ }^{t} O\right)$ be an element of $S O(n) \times S O(n)$ and M be an element of $S O(n+1)$. Then define the actions by

$$
\begin{aligned}
\left(O^{\prime},{ }^{t} O\right) \cdot M & =\left(O^{\prime} \dot{+}(1)\right) M(O \dot{+}(1)), \\
\left(O^{\prime},{ }^{t} O\right) \cdot j_{0}^{2} f & =j_{0}^{2}\left(O^{\prime} \circ f \circ O\right),
\end{aligned}
$$

where O and O^{\prime} are identified with the corresponding linear maps of \mathbf{R}^{n} and $\dot{+}$ denotes the direct sum of matrices. Note that $\Omega^{10}(n, n)$ is invariant with respect to the latter action. Then we have the following theorem.

Theorem 3.1 ([An2, Theorem (ii)] and [An3, Proposition 2.4]). There exists a topological embedding $i_{n}: S O(n+1) \rightarrow \Omega^{10}(n, n)$ such that i_{n} is equivariant with respect to those actions above and that the image of i_{n} is a deformation retract of $\Omega^{10}(n, n)$.

Let N and P be oriented manifolds of dimension n. If we choose an orthonormal basis of \mathbf{R}^{n}, then there are canonical inclusions of $G L(n)$ into $L^{2}(n)$ and of $S O(n)$ into $G L(n)$. Hence, the structure group $L^{2}(n) \times L^{2}(n)$ of the fibre bundle $\Omega^{10}(N, P)$ over $N \times P$ is reduced to $S O(n) \times S O(n)$ when we provide N and P with Riemannian metrics. Let θ_{N} and θ_{P} refer to θ_{N}^{1} and θ_{P}^{1} respectively. Let $G L_{n+1}^{+}\left(T N \oplus \theta_{N}, T P \oplus \theta_{P}\right)$ and $S O_{n+1}\left(T N \oplus \theta_{N}, T P \oplus \theta_{P}\right)$ be the subbundles of $\operatorname{Hom}\left(T N \oplus \theta_{N}, T P \oplus \theta_{P}\right)$ associated with $G L^{+}(n+1)$ and $S O(n+1)$ respectively. Then we have the inclusion $i_{S O}: S O_{n+1}\left(T N \oplus \theta_{N}, T P\right.$ $\left.\oplus \theta_{P}\right) \rightarrow G L_{n+1}^{+}\left(T N \oplus \theta_{N}, T P \oplus \theta_{P}\right)$, which becomes a homotopy equivalence of fibre bundles covering $i d_{N \times P}$.

We define the map

$$
i(N, P): S O_{n+1}\left(T N \oplus \theta_{N}, T P \oplus \theta_{P}\right) \longrightarrow \Omega^{10}(N, P)
$$

to be the map associated with i_{n}. Then $i(N, P)$ is a fibre homotopy equivalence. Let $(i(N, P))^{-1}: \Omega^{10}(N, P) \rightarrow S O_{n+1}\left(T N \oplus \theta_{N}, T P \oplus \theta_{P}\right)$ be the homotopy inverse of $i(N, P)$. Then we consider the fibre map

$$
i_{S O} \circ(i(N, P))^{-1}: \Omega^{10}(N, P) \longrightarrow S O_{n+1}\left(T N \oplus \theta_{N}, T P \oplus \theta_{P}\right)
$$

$$
\longrightarrow G L_{n+1}^{+}\left(T N \oplus \theta_{N}, T P \oplus \theta_{P}\right)
$$

giving a homotopy equivalence of fibre bundles. Then it has been shown in [An3, Proposition 3.1] that the homotopy class of the fibre map $i_{S O^{\circ}}(i(N, P))^{-1}$ over $i d_{N \times P}$ does not depend on the choice of Riemannian metrics of N and P

The set of all continuous sections of $G L_{n+1}^{+}\left(T N \oplus \theta_{N}, T P \oplus \theta_{P}\right)$ over N corresponds bijectively to that of all orientation-preserving bundle maps of $T N \oplus \theta_{N}$ to $T P \oplus \theta_{P}$. Thus we have the following theorem.

Theorem 3.2 ([An3, Corollary 2]). Given a fold-map $f: N \rightarrow P$, the section $j^{2} f$ determines the homotopy class of the section $i_{S O} \circ(i(N, P))^{-1} \circ j^{2} f$ of $G L_{n+1}^{+}\left(T N \oplus \theta_{N}, T P \oplus \theta_{P}\right)$. It induces a bundle map $\mathcal{T}(f): T N \oplus \theta_{N} \rightarrow$ $T P \oplus \theta_{P}$ determined up to homotopy (this is denoted by \bar{f} in [An3]).

Let N and P be embedded in \mathbf{R}^{n+k} with the stable normal bundles ν_{N} and ν_{P} respectively. Let $\tau(f)$ denote the bundle map $\mathcal{T}(f) \oplus\left(f \times i d_{\mathbf{R}^{k-1}}\right)$. Then we have the following proposition.

Proposition 3.3 ([An3, Proposition 3.2]). Let N and P be oriented manifolds of dimension n embedded in \mathbf{R}^{n+k} with the trivializations $t_{N}: \tau_{N} \oplus$ $\nu_{N} \rightarrow \theta_{N}^{2 k}$ and $t_{P}: \tau_{P} \oplus \nu_{P} \rightarrow \theta_{P}^{2 k}$ respectively. Then a fold-map $f: N \rightarrow P$ determines the homotopy class of a bundle map $\nu(f): \nu_{N} \rightarrow \nu_{P}$ over f such that $t_{P} \circ(\tau(f) \oplus \nu(f)) \circ t_{N}^{-1}$ is homotopic to $f \times i d_{\mathbf{R}^{2 k}}$.

Now we are ready to define the map $\omega_{m}: \Omega_{f o l d, m}(P) \rightarrow\left[P, F^{m}\right]$. Given a fold-map $f: N \rightarrow P$ of degree m, there is a bundle map $\tau(f): \tau_{N} \rightarrow \tau_{P}$ and a bundle $\operatorname{map} \nu(f): \nu_{N} \rightarrow \nu_{P}$ determined up to homotopy by Theorem 3.2 and Proposition 3.3 respectively. Let $T(\nu(f)): T\left(\nu_{N}\right) \rightarrow T\left(\nu_{P}\right)$ be the Thom map associated with $\nu(f)$. Then we set $\omega_{m}(f)=c_{F^{m}}\left(\mathcal{D}\left(v_{P}\right)\left(\left\{T(\nu(f)) \circ \alpha_{N}\right\}\right)\right)$. Since $T(\nu(f))$ is of degree $m, \mathcal{D}\left(v_{P}\right)\left(\left\{T(\nu(f)) \circ \alpha_{N}\right\}\right)$ is of degree m by Lemma 2.4 (2).

Lemma 3.4. (1) $\omega_{m}(f)=c_{F^{m}}\left(\mathcal{D}\left(v_{P}\right)\left(\left\{T(\nu(f)) \circ \alpha_{N}\right\}\right)\right)$ does not depend on the choice of embeddings of N and P into \mathbf{R}^{n+k}.
(2) $\omega_{m}(f)$ does not depend on the choice of a representative f of the fold-cobordism class $[f] \in \Omega_{\text {fold }, m}(P)$.

Proof. (1) Let $e_{N}^{1}: N \rightarrow \mathbf{R}^{n+k}$ and $e_{P}^{1}: P \rightarrow \mathbf{R}^{n+k}$ be other embeddings with normal bundles ν_{N}^{1} and ν_{P}^{1}, trivializations $t_{N}^{1}: \tau_{N} \oplus \nu_{N}^{1} \rightarrow \theta_{N}^{2 k}$ and $t_{P}^{1}: \tau_{P} \oplus \nu_{P}^{1} \rightarrow \theta_{P}^{2 k}$ respectively and a bundle map $\nu(f)^{1}: \nu_{N}^{1} \rightarrow \nu_{P}^{1}$. Then by Remark 2.2 there exist bundle maps $b_{N}: \nu_{N} \rightarrow \nu_{N}^{1}$ and $b_{P}: \nu_{P} \rightarrow \nu_{P}^{1}$ such that $b_{P} \circ \nu(f) \circ b_{N}^{-1} \simeq \nu(f)^{1}: \nu_{N}^{1} \rightarrow \nu_{P}^{1}$. Then by Lemma 2.3 (4) we have that $\mathcal{D}\left(v_{P}^{1}\right) \circ T\left(b_{P}\right)_{*}=\mathcal{D}\left(v_{P}\right)$ and that

$$
\begin{aligned}
\mathcal{D}\left(v_{P}^{1}\right)\left(\left\{T\left(\nu(f)^{1}\right) \circ \alpha_{N}^{1}\right\}\right) & =\mathcal{D}\left(v_{P}^{1}\right)\left(\left\{T\left(b_{P}\right) \circ T(\nu(f)) \circ T\left(b_{N}^{-1}\right) \circ T\left(b_{N}\right) \circ \alpha_{N}\right\}\right) \\
& =\mathcal{D}\left(v_{P}^{1}\right)\left(\left\{T\left(b_{P}\right) \circ T(\nu(f)) \circ \alpha_{N}\right\}\right) \\
& =\mathcal{D}\left(v_{P}^{1}\right) \circ T\left(b_{P}\right)_{*}\left(\left\{T(\nu(f)) \circ \alpha_{N}\right\}\right) \\
& =\mathcal{D}\left(v_{P}\right)\left(\left\{T(\nu(f)) \circ \alpha_{N}\right\}\right)
\end{aligned}
$$

(2) Let $f_{i}: N_{i} \rightarrow P(i=0,1)$ be fold-maps of degree m, which are fold-cobordant. By the same arguments as in the proof of [An3, Lemma 4.3] we have that $\left\{T\left(\nu\left(f_{0}\right)\right) \circ \alpha_{N_{0}}\right\}=\left\{T\left(\nu\left(f_{1}\right)\right) \circ \alpha_{N_{1}}\right\}$. Hence, we have that $\omega_{m}\left(f_{0}\right)=\omega_{m}\left(f_{1}\right)$.

In particular, if $m=1$, then we shall see that $\left(i_{F^{1}, S G}\right)_{*} \circ \omega_{1}$ coincides with

$$
\omega: \Omega_{\text {fold }, 1}(P) \longrightarrow[P, S G]
$$

defined in [An3, Section 4]. Now we first review the definition of ω. Let $f: N \rightarrow P$ be a fold-map of degree 1. By Proposition 3.3, there exists a bundle map $\nu(f): \nu_{N} \rightarrow \nu_{P}$. Then the map $T(\nu(f)) \circ \alpha_{N}$ gives an element of $\pi_{n+k}\left(T\left(\nu_{P}\right)\right)$. By [Br2, I.4.19 Theorem] and [W1, Theorem 3.5], there exists an automorphism $h: S\left(\nu_{P}\right) \rightarrow S\left(\nu_{P}\right)$, which is unique up to homotopy and is extended to an automorphism $h: \nu_{P} \rightarrow \nu_{P}$ by the fibrewise cone construction satisfying the following properties. If $T(h): T\left(\nu_{P}\right) \rightarrow T\left(\nu_{P}\right)$ is the Thom map of h, then we have that $T(\nu(f))_{*}\left(\left[\alpha_{N}\right]\right)=T(h)_{*}\left(\left[\alpha_{P}\right]\right)$. Furthermore, there exists a map $\beta: P \rightarrow S G(k)$ and a fibre map $h_{\beta}: \theta_{P}^{k} \rightarrow \theta_{P}^{k}$ defined by $h_{\beta}(x, v)=(x, \beta(x)(v))$ such that $h+i d_{\theta_{P}^{k}}$ is homotopic to $i d_{\nu_{P}}+h_{\beta}$ as automorphisms. Then we have defined ω to be $\omega(f)=[\beta]$.

Lemma 3.5. The map ω coincides with $\left(i_{F^{1}, S G}\right)_{*} \circ \omega_{1}$.
Proof. We shall give a sketch of a proof, since most of the arguments are similar to those found in Section 2. Since $S G$ is weakly homotopy equivalent to F^{1}, we may suppose that the map β appearing in the definition of ω factors through F_{k}^{1}, namely, $\beta: P \rightarrow F_{k}^{1} \subset S G(k)$. By Lemma 2.5, we obtain that $\mathcal{D}\left(v_{P}\right)(\{T(h)\})=\left\{T\left(h_{\beta}\right)\right\}$. Therefore, we have that

$$
\begin{aligned}
\left(i_{F^{1}, S G}\right)_{*} \circ \omega_{1}(f) & =\left(i_{F^{1}, S G}\right)_{*} \circ c_{F^{1}}\left(\mathcal{D}\left(v_{P}\right)\left(\left\{T(h) \circ \alpha_{P}\right\}\right)\right) \\
& =\left(i_{F^{1}, S G}\right)_{*} \circ c_{F^{1}}\left(\mathcal{D}\left(v_{P}\right)\left(\left\{\alpha_{P}\right\}\right) \circ \mathcal{D}\left(v_{P}\right)(\{T(h)\})\right) \\
& =\left(i_{F^{1}, S G}\right)_{*} \circ c_{F^{1}}\left(\left\{c_{P^{0}}\right\} \circ\left\{T\left(h_{\beta}\right)\right\}\right) \\
& =\left(i_{F^{1}, S G}\right)_{*}([\beta]) \\
& =\omega(f) .
\end{aligned}
$$

Hence, in the rest of the paper $\left(i_{F^{1}, S G}\right)_{*} \circ \omega_{1}$ will be written as ω.
Remark 3.6. (1) The spaces F^{m} and $S G$ are weakly homotopy equivalent to the identity component of the infinite loop space $\Omega^{\infty} S^{\infty}$ (see [M-M, Corollary 3.8]). In fact, let $\hat{m}: S^{1} \rightarrow S^{1}$ be the map defined by $x \mapsto m x$ and let $m_{\left(S^{k}\right)}: S^{k} \rightarrow S^{k}$ be the suspension $S^{k-1}(\hat{m})$ of degree m. Let $\vee_{S^{k}}: S^{k} \rightarrow$ $S^{k} \vee S^{k}$ be the comultiplication and let $(\mathbf{1}, \mathbf{1}): S^{k} \vee S^{k} \rightarrow S^{k}$ be the canonical map, which is the identity on each S^{k}. Then we have the weak homotopy equivalence $h_{F^{0}, F^{m}}: F^{0} \rightarrow F^{m}$ (resp. $h_{F^{1}, F^{m}}: F^{1} \rightarrow F^{m}, m \neq 0$) defined by using the homotopy equivalence $h_{k}: F_{k}^{0} \rightarrow F_{k}^{m}\left(\right.$ resp. $\left.\hat{h}_{k}: F_{k}^{1} \rightarrow F_{k}^{m}, m \neq 0\right)$ such that $h_{k}(j)=(\mathbf{1}, \mathbf{1}) \circ\left(j \vee m_{\left(S^{k}\right)}\right) \circ \vee_{S^{k}}\left(\right.$ resp. $\left.\hat{h}_{k}(j)=j \circ m_{\left(S^{k}\right)}, m \neq 0\right)$.

Since F^{0}, F^{1} and $S G$ are homotopy commutative H-spaces, $\left[P, F^{0}\right],\left[P, F^{1}\right]$ and [$P, S G]$ have structures of an abelian group. It is well known that there is an isomorphism $\left[S^{n}, F^{0}\right] \rightarrow \pi_{n}^{s}$. In fact, we have the following (see [At1, Lemma 1.3 and (i), (ii) on p. 295]).

$$
\left[S^{n}, F_{k}^{0}\right] \cong \pi_{n}\left(F_{k}^{0}\right) \cong \pi_{n+k-1}\left(S^{k-1}\right) \quad(k>n+2)
$$

(2) Many authors have contributed to the study of the very difficult structure of the algebras $H_{*}(S G ; \mathbf{Z} / p \mathbf{Z})$ and $H^{*}(S G ; \mathbf{Z} / p \mathbf{Z})$, where p is a prime number (consult [M-M, Chapter 6], [M, Theorem 6.1 and Conjecture 6.2] and [Tsu]).
(3) We have seen in Corollary 5 that for any element a of $H^{*}\left(F^{m} ; \mathbf{Z} / p \mathbf{Z}\right)$, $\omega_{m}(f)^{*}(a)$ of $H^{*}(P ; \mathbf{Z} / p \mathbf{Z})$ is a fold-cobordism invariant. It is natural to ask how $\omega_{m}(f)^{*}(a)$ is related to the topological structure of $S(f)$ in N and $f(S(f))$ in P, where $S(f)$ is the set of fold singularities of f (see Example 8.4 (2)).

4. Homotopy principle for fold-maps

If for any section s of $\Gamma(N, P)$ there exists a fold-map $f: N \rightarrow P$ such that $j^{2} f$ is homotopic to s by a homotopy in $\Gamma(N, P)$, then we shall say that the homotopy principle (a terminology used in [G2]) for fold-maps in the existence level holds. In this section we shall prove the following theorem in place of Theorem 6.

Theorem 4.1. Let $n \geq 2$. Let N and P be connected manifolds of dimension n and $\partial N=\emptyset$. Let C be a closed subset of N. Let s be a section of $\Gamma(N, P)$ such that there exists a fold-map g defined on a neighborhood of C into P with $j^{2} g|C=s| C$. Then there exists a fold-map $f: N \rightarrow P$ such that $j^{2} f$ is homotopic to s relative to C by a homotopy h_{λ} in $\Gamma(N, P)$ with $h_{0}=s$ and $h_{1}=j^{2} f$.

If the closure of $N \backslash C$ has no compact connected component, then the assertion of Theorem 4.1 is a direct consequence of [G1, Theorem 4.1.1]. This theorem is a special case of [An1, Theorem 1], though the proof given there was sketchy. In particular, the proof of Proposition 4.7 below was not given. A weaker assertion where h_{λ} is required to be a homotopy of N into $\Omega^{1}(N, P)$ (not into $\Omega^{10}(N, P)$), which we can prove without Proposition 4.7, is sufficient for the proof of the main results in [An1]. Here $\Omega^{1}(N, P)$ denotes $\Sigma^{0}(N, P) \cup \Sigma^{1}(N, P)$ in $J^{1}(N, P)$. However, Theorem 4.1 above is very important for the proof of Theorem 1 in Introduction. This is the reason why a proof of Theorem 4.1 is given in detail in this paper. The following Theorem 4.2 due to Èliašberg [E] (see also [G2, 2.1.3 Theorem on p. 55]) will play an important role in the proof. We should note that Theorem 4.1 is not a generalization of Theorem 4.2.

Theorem 4.2 ([E, 2.2 Theorem]). Let N and P be connected manifolds of dimension n and S be an $(n-1)$-dimensional submanifold of N. Let C be a closed subset of N such that each connected component of $N \backslash C$ has
non-empty intersection with S. Assume that there exists an S-monomorphism $B: T N \rightarrow T P$ over a map $f_{B}: N \rightarrow P$, that is, a fibrewise linear map which satisfies
(H-4.2-i) $\quad B$ is of rank n outside of S and is of rank $n-1$ on S,
(H-4.2-ii) there exist a small tubular neighborhood $U(S)$ of S, which is identified with $S \times(-1,1)$, and a fibre involution $i_{U}: U(S) \rightarrow U(S)$ such that $B \circ d\left(i_{U}\right)|T U(S)=B| T U(S)$ and
(H-4.2-iii) f_{B} is a fold-map on a small neighborhood of C and $\left.d f_{B}\right|_{C}=$ $\left.B\right|_{C}$.
Then there exist a fold-map $f: N \rightarrow P$ and a homotopy of S-monomorphisms $B_{\lambda}: T N \rightarrow T P$ such that $B_{0}=B, B_{1}=d f$ and $\left.B_{\lambda}\right|_{C}=\left.B\right|_{C}$ for any λ.

We here note the following. The fibre of $\Sigma^{10}(n, n) \rightarrow \Sigma^{1}(n, n)$ has two connected components. Hence, if an S-monomorphism B has a fold-map f with $S(f)=S$ such that $d f$ and B are homotopic as S-monomorphisms, then the homotopy class of $j^{2} f$ as a section in $\Gamma(N, P)$ is uniquely determined from B and does not depend on the choice of f.

We shall begin by proving the following proposition, which is a direct consequence of Gromov's theorem ([G1, Theorem 4.1.1]). For the fold-map g and a closed subset C in the statement of Theorem 4.1 we take a closed neighborhood $U(C)$ of C such that $C l(\operatorname{Int} U(C))=U(C)$ for a while, where g is defined on a neighborhood of $U(C)$. Let j_{0} be the number (possibly ∞) of compact connected components of $N \backslash \operatorname{Int}(U(C))$, from each of which we choose a point $q_{j}\left(1 \leq j \leq j_{0}\right)$ in its interior. Using local charts of N we have embeddings $e_{j}: \mathbf{R}^{n} \rightarrow N \backslash U(C)$ with $e_{j}(0)=q_{j}$. In Sections 4, 6 and 7 we shall simply denote D_{r}^{n} by D_{r}.

Proposition 4.3. Let $n \geq 1$. Let s be a section satisfying the hypothesis in Theorem 4.1. Assume that $s^{-1}\left(\Sigma^{10}(N, P)\right)$ is not contained in $U(C)$. Take points $\left\{q_{1}, \ldots, q_{j_{0}}\right\}$ of $N \backslash U(C)$ and embeddings $e_{j}\left(1 \leq j \leq j_{0}\right)$ as above. Then there exist a homotopy s_{λ} relative to $U(C)$ in $\Gamma(N, P)$ with $s_{0}=s$ and positive numbers $r_{j}\left(1 \leq j \leq j_{0}\right)$ such that
(1) s_{1} has a fold-map $f_{0}: N \backslash\left\{q_{1}, \ldots, q_{j_{0}}\right\} \rightarrow P$ with $j^{2} f_{0} \mid\left(N \backslash \cup_{j=1}^{j_{0}} e_{j}(\right.$ $\left.\left.\operatorname{Int} D_{r_{j}}\right)\right)=s_{1} \mid\left(N \backslash \cup_{j=1}^{j_{0}} e_{j}\left(\operatorname{Int} D_{r_{j}}\right)\right)$,
(2) s_{1} is transverse to $\Sigma^{10}(N, P)$ and
(3) $s_{1}^{-1}\left(\Sigma^{10}(N, P)\right)$ transversely intersects $\partial e_{j}\left(D_{2 r_{j}}\right)$ and $\partial e_{j}\left(D_{r_{j}}\right)$ for each j.

Proof. We can take the embeddings $e_{j}: \mathbf{R}^{n} \rightarrow N \backslash U(C)$ with $e_{j}(0)=q_{j}$ so that $\pi_{P}^{2} \circ s \circ e_{j}\left(\mathbf{R}^{n}\right)$ is contained in a local chart of P. By applying [G1, Theorem 4.1.1] to the section $s \mid\left(N \backslash\left\{q_{1}, \ldots, q_{j_{0}}\right\}\right)$, we see that there exists a homotopy s_{λ}^{\prime} relative to $U(C)$ in $\Gamma\left(N \backslash\left\{q_{1}, \ldots, q_{j_{0}}\right\}, P\right)$ such that $s_{0}^{\prime}=s \mid(N \backslash$ $\left.\left\{q_{1}, \ldots, q_{j_{0}}\right\}\right)$ and that s_{1}^{\prime} has a fold-map $f_{0}: N \backslash\left\{q_{1}, \ldots, q_{j_{0}}\right\} \rightarrow P$ with $j^{2} f_{0}=$ s_{1}^{\prime}. Take a small positive number t_{j} for each j. By the homotopy extension property we can extend $s_{\lambda}^{\prime} \mid\left(N \backslash \cup_{j=1}^{j_{0}} e_{j}\left(\operatorname{Int} D_{t_{j}}\right)\right)$ to a homotopy $s_{\lambda}^{\prime \prime}$ in $\Gamma(N, P)$ such that $s_{0}^{\prime \prime}=s$ and $s_{\lambda}^{\prime \prime}\left|\left(N \backslash \cup_{j=1}^{j_{0}} e_{j}\left(\operatorname{Int} D_{t_{j}}\right)\right)=s_{\lambda}^{\prime}\right|\left(N \backslash \cup_{j=1}^{j_{0}} e_{j}\left(\operatorname{Int} D_{t_{j}}\right)\right)$. Since
$j^{2} f_{0}$ is transverse to $\Sigma^{10}(N, P)$, we can deform $s_{\lambda}^{\prime \prime}$ to the homotopy s_{λ} such that
(i) $s_{0}=s$,
(ii) $s_{\lambda}\left|\left(N \backslash \cup_{j=1}^{j_{0}} e_{j}\left(\operatorname{Int} D_{t_{j}}\right)\right)=s_{\lambda}^{\prime \prime}\right|\left(N \backslash \cup_{j=1}^{j_{0}} e_{j}\left(\operatorname{Int} D_{t_{j}}\right)\right)$ and
(iii) s_{1} is transverse to $\Sigma^{10}(N, P)$.

Now recall that $S\left(s_{1}\right)=\left(s_{1}\right)^{-1}\left(\Sigma^{10}(N, P)\right)$. For each j, consider the smooth map $h: S\left(s_{1}\right) \cap e_{j}\left(\mathbf{R}^{n}\right) \rightarrow \mathbf{R}$ defined by $h(x)=\left\|e_{j}^{-1}(x)\right\|$ except for the origin. The assertion (3) follows from Sard Theorem (see [H2]) for h.

Since \mathbf{K} over $\Sigma^{10}\left(\mathbf{R}^{n}, P\right)$ is a line bundle, $S^{2} \mathbf{K}$ is trivial and has the canonical orientation determined by a vector $\mathbf{v} \bigcirc \mathbf{v}=(-\mathbf{v}) \bigcirc(-\mathbf{v}), \mathbf{v} \in \mathbf{K}$. Therefore, the intrinsic derivative $\mathbf{d}^{2}: \mathbf{K} \rightarrow \operatorname{Hom}(\mathbf{K}, \mathbf{Q})$ induces an orientation of \mathbf{Q} over $\Sigma^{10}\left(\mathbf{R}^{n}, P\right)$. Throughout the paper we shall always provide \mathbf{Q} with this orientation.

Let s be a section of $\Gamma^{t r}\left(\mathbf{R}^{n}, P\right)$. Let $\nu(s)$ denote the orthogonal normal bundle of $S(s)$ in \mathbf{R}^{n}. We set $K(s)=(s \mid S(s))^{*} \mathbf{K}, Q(s)=(s \mid S(s))^{*} \mathbf{Q}$ and $\theta^{n}(P)=\left(\pi_{P} \circ s\right)^{*} T P$. Throughout the paper we shall choose and fix a trivialization of $\theta^{n}(P)$ over $\mathbf{R}^{n}(n \geq 2)$. Then we can provide $K(s)$ with the orientation induced by the exact sequence

$$
\left.\left.0 \longrightarrow K(s) \longrightarrow T \mathbf{R}^{n}\right|_{S(s)} \xrightarrow{d^{1}(s)} \theta^{n}(P)\right|_{S(s)} \longrightarrow Q(s) \longrightarrow 0
$$

In fact, let $c \in S(s)$ and take an orthonormal basis $\left(\mathbf{m}_{1}, \ldots, \mathbf{m}_{n-1}\right)$ of $K(s)_{c}^{\perp}$ in $T_{c} \mathbf{R}^{n}$ and a vector $\mathbf{v} \in Q(s)_{c}$ representing the orientation of $Q(s)_{c}$ such that $\left(d^{1}(s)\left(\mathbf{m}_{1}\right), \ldots, d^{1}(s)\left(\mathbf{m}_{n-1}\right), \mathbf{v}\right)$ is compatible with the orientation of $\theta^{n}(P)_{c}$. Then there exists a vector $\mathbf{m}_{n} \in K(s)_{c}$ such that $\left(\mathbf{m}_{1}, \ldots, \mathbf{m}_{n}\right)$ represents the usual orientation of \mathbf{R}^{n}. We orient $K(s)_{c}$ by \mathbf{m}_{n}. Thus $\operatorname{Hom}(K(s), Q(s))$ is oriented and is isomorphic to the normal bundle $\nu(s)$ of $S(s)$ in \mathbf{R}^{n} as is explained in Section 1. This induces the orientation of $\nu(s)$. On the other hand, we can provide any point x of $\mathbf{R}^{n} \backslash S(s)$ with sign - or + depending on whether the sign of the determinant of $d^{1}(s)_{x}$ is negative or positive (we note that when $n=1$, we are considering the trivialization of $\theta^{1}(P)$ induced from $Q(s)$ near each point c). This orientation of $\nu(s)$ coincides with the direction from the points of $\mathbf{R}^{n} \backslash S(s)$ with sign - to those points with sign + . Throughout the paper we shall orient $S(s)$ so that $T(S(s)) \oplus \nu(s)$ is compatible with the usual orientation of \mathbf{R}^{n}.

Any point c of $S(s)$ has two oriented lines $\nu(s)_{c}$ and $K(s)_{c}$. Here we note the following fact concerning these orientations.

Remark 4.4. If $g:(N, x) \rightarrow(P, f(x))$ is a fold-map and x is a fold singularity, then $d_{x}^{2} g: T_{x} N \rightarrow \operatorname{Hom}\left(K\left(j^{2} g\right)_{x}, Q\left(j^{2} g\right)_{x}\right)$ coincides with $d_{x}^{2}\left(j^{2} g\right)$ and is an epimorphism (see Section 1). Since $K\left(j^{2} g\right)_{x} \cap T_{x}\left(S\left(j^{2} g\right)\right)=\{0\}$, we may say that $K\left(j^{2} g\right)$ is the normal bundle of $S\left(j^{2} g\right)$ near x. Hence, it follows that the orientations of $\nu\left(j^{2} g\right)_{x}$ and $K\left(j^{2} g\right)_{x}$ are compatible.

For an oriented 1-dimensional subspace $L \subset \mathbf{R}^{n}$ we let $\mathbf{e}(L)$ denote the vector of length 1 with given orientation. Now we define the map $\mathbf{e}(s): S(s) \rightarrow$
$S^{n-1} \times S^{n-1}$ by $\mathbf{e}(s)(c)=\left(\mathbf{e}\left(K(s)_{c}\right), \mathbf{e}\left(\nu(s)_{c}\right)\right)$. Let Δ^{-}denote the subspace of $S^{n-1} \times S^{n-1}$ consisting of all points $(v,-v), v \in S^{n-1}$. The following lemma can be proved by the standard arguments in differential topology.

Lemma 4.5. No matter how an orientation of $\theta^{n}(P)$ is chosen, the subset consisting of all sections s of $\Gamma^{t r}\left(\mathbf{R}^{n}, P\right)$ such that $\mathbf{e}(s): S(s) \rightarrow S^{n-1} \times$ S^{n-1} is transverse to Δ^{-}is open and dense.

For the proof of Theorem 4.1 we need the following two propositions. In \mathbf{R}^{n} let $O(p ; r)$ be the open disk centered at p with radius r.

Proposition 4.6. Let $n \geq 1$. Assume that $s \in \Gamma^{\operatorname{tr}}\left(\mathbf{R}^{n}, P\right)$ satisfies the hypotheses
(H-i) there exists a fold-map f_{0} defined on $\mathbf{R}^{n} \backslash \operatorname{Int} D_{r}$ into P such that $j^{2} f_{0}\left|\left(\mathbf{R}^{n} \backslash \operatorname{Int} D_{r}\right)=s\right|\left(\mathbf{R}^{n} \backslash \operatorname{Int} D_{r}\right)$ and
(H-ii) $\mathbf{e}(s)$ is transverse to Δ^{-}and $\mathbf{e}(s)^{-1}\left(\Delta^{-}\right)$consists of distinct points p_{1}, \ldots, p_{m} in $\operatorname{Int} D_{r}$.
Then there exists a homotopy s_{λ} relative to $\mathbf{R}^{n} \backslash \operatorname{Int} D_{2 r}$ in $\Gamma\left(\mathbf{R}^{n}, P\right)$ with $s_{0}=s$ satisfying the following.
(1) $s_{1} \in \Gamma^{t r}\left(\mathbf{R}^{n}, P\right)$ and $S\left(s_{\lambda}\right)=S(s)$ for any λ.
(2) Let $\varepsilon>0$ be any positive number such that $O\left(p_{j} ; 2 \varepsilon\right)$'s are disjoint and contained in $\operatorname{Int} D_{r}$. There exists a small neighborhood $U(S(s))$ of $S(s)$ such that we have a fold-map $f:\left(\left(\mathbf{R}^{n} \backslash \operatorname{Int} D_{2 r}\right) \cup U(S(s))\right) \backslash\left(\cup_{j=1}^{m} O\left(p_{j} ; \varepsilon\right)\right) \rightarrow P$ with $j^{2} f=s_{1}$ on $\left(\left(\mathbf{R}^{n} \backslash \operatorname{Int} D_{2 r}\right) \cup U(S(s))\right) \backslash\left(\cup_{j=1}^{m} O\left(p_{j} ; \varepsilon\right)\right)$.
(3) In particular, if $\mathbf{e}(s)^{-1}\left(\Delta^{-}\right)$is empty, then the fold-map f in (2) is defined on $\left(\mathbf{R}^{n} \backslash \operatorname{Int} D_{2 r}\right) \cup U(S(s))$.

Proposition 4.7. Let $n \geq 2$. Given a sections in $\Gamma^{t r}\left(\mathbf{R}^{n}, P\right)$ satisfying (H-i) and (H-ii) with $m>0$ in Proposition 4.6, there exists a homotopy s_{λ} relative to $\mathbf{R}^{n} \backslash \operatorname{Int} D_{2 r}$ in $\Gamma\left(\mathbf{R}^{n}, P\right)$ with $s_{0}=s$ such that $s_{1} \in \Gamma^{t r}\left(\mathbf{R}^{n}, P\right)$, $\mathbf{e}\left(s_{1}\right)^{-1}\left(\Delta^{-}\right)$is empty and that $S\left(s_{1}\right) \cap D_{2 r}$ is not empty.

The corresponding assertion for the case $n=1$ fails (see Remark 8.5). The proofs of Propositions 4.6 and 4.7 will be given in Sections 6 and 7 respectively.

Here we shall give a proof of Theorem 4.1.
Proof of Theorem 4.1. We may assume that $N \backslash C$ is not empty. From each connected compact component of $N \backslash \operatorname{Int}(U(C))$, we take a point $q_{j}\left(1 \leq j \leq j_{0}\right)$ in its interior. We first deform s by a homotopy in $\Gamma(N, P)$ so that each connected compact component of $N \backslash \operatorname{Int}(U(C))$ contains points of $S(s) \backslash C$ in its interior with q_{j} being excluded. Then for the section s there exists a homotopy $\overline{s_{\lambda}}$ with a fold-map f_{0} satisfying the properties (1), (2) and (3) of Proposition 4.3. Therefore, it is enough for Theorem 4.1 to prove the special case of Theorem 4.1 where (1) $N=\mathbf{R}^{n}, C=\mathbf{R}^{n} \backslash \operatorname{Int} D_{2 r}$ and $g=f_{0}$ on a neighbourhood of $\mathbf{R}^{n} \backslash \operatorname{Int} D_{2 r}$, (2) s is transverse to $\Sigma^{10}\left(\mathbf{R}^{n}, P\right)$ and (3) $S(s) \cap \operatorname{Int} D_{2 r}$ contains the origin. We shall prove this special case.

It follows from Lemma 4.5 and Proposition 4.7 for s that there exists a homotopy s_{λ}^{\prime} relative to $\mathbf{R}^{n} \backslash \operatorname{Int} D_{2 r}$ in $\Gamma\left(\mathbf{R}^{n}, P\right)$ with $s_{0}^{\prime}=s$ such that
$s_{1}^{\prime} \in \Gamma^{t r}\left(\mathbf{R}^{n}, P\right)$ and $\mathbf{e}\left(s_{1}^{\prime}\right)^{-1}\left(\Delta^{-}\right)=\emptyset$. By applying Proposition 4.6 to the section s_{1}^{\prime} there exists a homotopy $s_{\lambda}^{\prime \prime}$ relative to $\mathbf{R}^{n} \backslash \operatorname{Int} D_{2 r}$ in $\Gamma\left(\mathbf{R}^{n}, P\right)$ with $s_{0}^{\prime \prime}=s_{1}^{\prime}$ such that there exists a fold-map $\hat{g}:\left(\mathbf{R}^{n} \backslash \operatorname{Int} D_{2 r}\right) \cup U(S(s)) \rightarrow P$ with $j^{2} \widehat{g}=s_{1}^{\prime \prime}$ on $\left(\mathbf{R}^{n} \backslash \operatorname{Int} D_{2 r}\right) \cup U(S(s))$. Therefore, we obtain a homotopy s_{λ} relative to $\mathbf{R}^{n} \backslash \operatorname{Int} D_{2 r}$ in $\Gamma(N, P)$ defined by

$$
s_{\lambda}=\left\{\begin{array}{lll}
s_{2 \lambda}^{\prime} & \text { for } \quad 0 \leq \lambda \leq 1 / 2 \\
s_{2 \lambda-1}^{\prime \prime} & \text { for } & 1 / 2 \leq \lambda \leq 1
\end{array}\right.
$$

It is clear that s_{λ} is well defined. We shall apply Theorem 4.2 for the section $\pi_{1}^{2} \circ s_{1}$ and \widehat{g}. Since $J^{1}(N, P)$ is canonically identified with $\operatorname{Hom}(T N, T P)$, we may regard $\pi_{1}^{2} \circ s_{1}$ as an $S\left(s_{1}\right)$-monomorphism. By Theorem 4.2 we obtain a homotopy B_{λ} relative to $\mathbf{R}^{n} \backslash \operatorname{Int} D_{2 r}$ of $S\left(s_{1}\right)$-monomorphisms and a foldmap $f: \mathbf{R}^{n} \rightarrow P$ with $S(f)=S\left(s_{1}\right)$ such that $B_{0}=\pi_{1}^{2} \circ s_{1}$ and $B_{1}=d f$. Then this homotopy is lifted to the homotopy h_{λ} relative to $\mathbf{R}^{n} \backslash \operatorname{Int} D_{2 r}$ in $\Gamma\left(\mathbf{R}^{n}, P\right)$ such that $h_{0}=s_{1}$ and $h_{1}=j^{2} f$. Indeed, there exists a small tubular neighborhood $U\left(S\left(s_{1}\right)\right)$ of $S\left(s_{1}\right)$, which is identified with $S\left(s_{1}\right) \times(-1,1)$. Let $(c, t) \in S\left(s_{1}\right) \times(-1,1)$. Then there exists a continuous homotopy $h_{\lambda}(c, t)$ in $\Gamma\left(\left(\mathbf{R}^{n} \backslash \operatorname{Int} D_{2 r}\right) \cup U\left(S\left(s_{1}\right)\right), P\right)$ such that
(1) $\pi_{1}^{2} \circ h_{\lambda}(c, t)=\left(B_{\lambda}\right)_{(c, t)}$,
(2) $\quad\left(d_{h_{\lambda}(c, 0)}^{2}(\partial / \partial t)\right)(\partial / \partial t)=2 \mathbf{e}\left(T_{c}\left(S\left(s_{1}\right)\right)^{\perp}\right)$,
(3) $d_{h_{\lambda}(c, 0)}^{2}$ vanishes on $T_{c}\left(S\left(s_{1}\right)\right)$.

As for other second derivatives of $h_{\lambda}(c, t)$ we can choose them arbitrarily. We note that $S\left(s_{1}\right)$ is oriented in (2) and the symbol \perp refers to the orthogonal complement. Since any fibre of $\pi_{1}^{2}: \Omega^{10}\left(\mathbf{R}^{n}, P\right) \backslash \Sigma^{1}\left(\mathbf{R}^{n}, P\right) \rightarrow J^{1}\left(\mathbf{R}^{n}, P\right) \backslash$ $\Sigma^{1}\left(\mathbf{R}^{n}, P\right)$ is contractible, we can extend $h_{\lambda}(c, t)$ to a required homotopy $h_{\lambda} \in$ $\Gamma\left(\mathbf{R}^{n}, P\right)$. This is what we want.

Now we give an application of Theorem 4.1.
Theorem 4.8. Let N and P be oriented manifolds of dimension n. Let $f: N \rightarrow P$ be a continuous map. Then if the tangent bundles $T N$ and $f^{*}(T P)$ are stably equivalent, then there exists a fold-map homotopic to f.

Proof. The assertion for $n=1$ is trivial and so let $n>1$. There exists an orientation preserving bundle map $b: T N \oplus \theta_{N} \rightarrow T P \oplus \theta_{P}$ covering f. Hence it follows that there exists a section $s \in \Gamma(N, P)$ such that $i_{S O} \circ i(N, P)^{-1} \circ s$ is homotopic to b. Then by Theorem 4.1 there exists a fold-map $g: N \rightarrow P$ such that $j^{2} g$ is homotopic to s (note that $\mathcal{T}(g) \simeq b$). This is what we want.

This theorem should be compared with [E, 3.10. Theorem], from which the assertion of Theorem 4.8 follows in many cases. The converse of the theorem has been also proved in [E, 3.8 and 3.9].

5. Map ω_{m} is surjective

In this section we shall prove that $\omega_{m}: \Omega_{f o l d, m}(P) \rightarrow\left[P, F^{m}\right]$ is surjective by using Theorem 4.1.

Proof of Theorem 1. The assertion for $n=1$ follows from Proposition 5.3 below. So let $n>1$. Let $\beta: P \rightarrow F^{m}$ be a map representing an element $[\beta] \in\left[P, F^{m}\right]$. Take an element $\left\{\beta_{0}\right\} \in\left\{P^{0} ; S^{0}\right\}$ such that $c_{F^{m}}\left(\left\{\beta_{0}\right\}\right)=[\beta]$. By the duality of $\mathcal{D}\left(v_{P}\right)$ there exists an element $\alpha_{\beta} \in \pi_{n+k}\left(T\left(\nu_{P}\right)\right)$ such that $\mathcal{D}\left(v_{P}\right)\left(\left\{\alpha_{\beta}\right\}\right)=\left\{\beta_{0}\right\}$. Since α_{β} is of degree m by Lemma 2.4, we have that $U\left(\nu_{P}\right) \frown\left(\alpha_{\beta}\right)_{*}\left(\left[S^{n+k}\right]\right)=m[P]$, where $U\left(\nu_{P}\right)$ refers to the Thom class of ν_{P}. By the Thom transversality theorem we may assume that α_{β} is transverse to the zero-section $P \subset T\left(\nu_{P}\right)$ without loss of generality. Set $N=\left(\alpha_{\beta}\right)^{-1}(P)$. Let $\hat{g}=\alpha_{\beta} \mid D\left(\nu_{N}\right)$ and $g=\alpha_{\beta} \mid N$, where $D\left(\nu_{N}\right)$ is the normal disk bundle to the inclusion $N \subset S^{n+k}$. Then g is of degree m. Indeed, let $\left[D\left(\nu_{N}\right)\right]$ be the fundamental class of $H_{n+k}\left(D\left(\nu_{N}\right), \partial D\left(\nu_{N}\right) ; \mathbf{Z}\right)$. Let $i_{N}: N \rightarrow D\left(\nu_{N}\right)$ and $i_{P}: P \rightarrow D\left(\nu_{P}\right)$ be the inclusions to the zero sections respectively. Then we have that

$$
\begin{aligned}
\hat{g}_{*}\left(\left(i_{N}\right)_{*}([N])\right) & =\hat{g}_{*}\left(U\left(\nu_{N}\right) \frown\left[D\left(\nu_{N}\right)\right]\right) \\
& =\hat{g}_{*}\left(\hat{g}^{*}\left(U\left(\nu_{P}\right)\right) \frown\left[D\left(\nu_{N}\right)\right]\right) \\
& =U\left(\nu_{P}\right) \frown \hat{g}_{*}\left(\left[D\left(\nu_{N}\right)\right]\right) \\
& =U\left(\nu_{P}\right) \frown\left(\alpha_{\beta}\right)_{*}\left(\left[S^{n+k}\right]\right) \\
& =m\left(\left(i_{P}\right)_{*}([P])\right) .
\end{aligned}
$$

Then we have a bundle map $b: \nu_{N} \rightarrow \nu_{P}$ over g induced from \hat{g}. By [An3, Proposition 3.3] there exists a bundle map $b^{\prime}: \tau_{N} \rightarrow \tau_{P}$, which is uniquely determined up to homotopy so that $t_{P} \circ\left(b^{\prime} \oplus b\right) \circ t_{N}^{-1}$ is homotopic to $g \times i d_{\mathbf{R}^{2 k}}$.

Here we choose metrics of $T N$ and $T P$. Recall $S O_{n+k}\left(T N \oplus \theta_{N}^{k}, T P \oplus\right.$ $\left.\theta_{P}^{k}\right)$ and $G L_{n+k}^{+}\left(T N \oplus \theta_{N}^{k}, T P \oplus \theta_{P}^{k}\right)$ defined in Section 3. The inclusion $G L_{n+1}^{+} \rightarrow G L_{n+k}^{+}$induces a fibre map $i_{n+1, n+k}: G L_{n+1}^{+}\left(T N \oplus \theta_{N}, T P \oplus \theta_{P}\right) \rightarrow$ $G L_{n+k}^{+}\left(T N \oplus \theta_{N}^{k}, T P \oplus \theta_{P}^{k}\right)$. Since $\pi_{j}(S O(n+k), S O(n+1)) \cong\{0\}$ for $j \leq n$ and since the canonical inclusion $S O(\ell) \rightarrow G L^{+}(\ell)$ is a homotopy equivalence, there exists an orientation preserving bundle map

$$
b^{\prime \prime}: T N \oplus \theta_{N} \rightarrow T P \oplus \theta_{P} \quad \text { over } \quad g
$$

such that $i_{n+1, n+k}\left(b^{\prime \prime}\right) \simeq b^{\prime}$. By the fibre homotopy equivalence $i(N, P)$ we obtain the homotopy class of a section s of $\Gamma(N, P)$ such that $i_{S O} \circ i(N, P)^{-1}(s)$ is homotopic to $b^{\prime \prime}$. Therefore it follows from Theorem 4.1 that there exists a fold-map $f: N \rightarrow P$ of degree m such that $j^{2} f$ is homotopic to s in $\Gamma(N, P)$. By the definition of $\mathcal{T}(f)$ for f, we have that $\mathcal{T}(f) \simeq b^{\prime \prime}$ and $i_{n+1, n+k}(\mathcal{T}(f))=\tau(f)$. This implies that $\tau(f) \simeq b^{\prime}$ and so $\nu(f) \simeq b$. By the definition of ω_{m} in Section 3 it follows that $\omega_{m}(f)=c_{F^{m}}\left(\mathcal{D}\left(v_{P}\right)\left(\left\{T(b) \circ \alpha_{N}\right\}\right)\right)=c_{F^{m}}\left(\mathcal{D}\left(v_{P}\right)\left(\left\{\alpha_{\beta}\right\}\right)\right)=$ $[\beta]$.

We shall prove the following proposition.
Proposition 5.1. An element $a \in[P, S G]$ lies in $J([P, S O])$ if and only if there exists a fold-map $f: P \rightarrow P$ homotopic to $i d_{P}$ such that $\omega(f)=a$.

Proof. Since $\pi_{1}(S O) \cong \pi_{1}(S G)$, the assertion for $n=1$ follows from Proposition 5.3. Let $n>1$. Given a fold-map $f: P \rightarrow P$ homotopic to $i d_{P}$, we have a bundle map $\nu(f): \nu_{P} \rightarrow \nu_{P}$ such that $\omega(f)=\left(i_{F^{1}, S G}\right)_{*} \circ$ $c_{F^{1}}\left(\mathcal{D}\left(\nu_{P}\right)\left(\left\{T(\nu(f)) \circ \alpha_{P}\right\}\right)\right)$. It follows from Proposition 2.6 that $\omega(f)$ lies in $J([P, S O])$ (this has been proved in [An3, Proposition 4.5] in a slightly different way).

Next we shall prove that $a \in J([P, S O])$ has such a fold-map f with $\omega(f)=$ a. The proof is parallel to that of Theorem 1.

Let $\beta: P \rightarrow S O(k)$ be a map such that $J([\beta])=a$. The orientation preserving isomorphism $h_{\beta}: \theta_{P}^{k} \rightarrow \theta_{P}^{k}$ as in Lemma 2.5 has an orientation preserving isomorphism $b: \nu_{P} \rightarrow \nu_{P}$ such that $i d_{\nu_{P}} \oplus h_{\beta} \simeq b \oplus i d_{\theta_{P}^{k}}: \nu_{P} \oplus \theta_{P}^{k} \rightarrow$ $\nu_{P} \oplus \theta_{P}^{k}$. By [An3, Proposition 3.3] there exists an orientation preserving isomorphism $b^{\prime}: \tau_{P} \rightarrow \tau_{P}$, which is uniquely determined up to homotopy, such that $t_{P} \circ\left(b^{\prime} \oplus b\right) \circ t_{P}^{-1}$ is homotopic to the identity of $\theta_{P}^{2 k}$. Here consider the inclusion $i_{n+1, n+k}: G L_{n+1}^{+}\left(T P \oplus \theta_{P}, T P \oplus \theta_{P}\right) \rightarrow G L_{n+k}^{+}\left(T P \oplus \theta_{P}^{k}, T P \oplus \theta_{P}^{k}\right)$, which is a homotopy equivalence. Then there exists an orientation preserving isomorphism $b^{\prime \prime}: T P \oplus \theta_{P} \rightarrow T P \oplus \theta_{P}$ over the identity of P such that $i_{n+1, n+k}\left(b^{\prime \prime}\right) \simeq b^{\prime}$. We obtain the homotopy class of a section s of $\Gamma(P, P)$ such that $i_{S O} \circ i(P, P)^{-1}(s)$ is homotopic to $b^{\prime \prime}$ as above. Therefore, it follows from Theorem 4.1 that there exists a fold-map $f: P \rightarrow P$ (homotopic to $i d_{P}$) such that $j^{2} f$ is homotopic to s in $\Gamma(P, P)$. Similarly, we obtain that $i_{n+1, n+k}(\mathcal{T}(f))=\tau(f)$ and $\tau(f) \simeq b^{\prime}$, and so $\nu(f) \simeq b$. Since

$$
\begin{aligned}
\left(i_{F^{1}, S G}\right)_{*} & \circ c_{F^{1}}\left(\mathcal{D}\left(v_{P}\right)\left(\left\{T(b) \circ \alpha_{P}\right\}\right)\right) \\
& =\left(i_{F^{1}, S G}\right)_{*} \circ c_{F^{1}}\left(\mathcal{D}\left(v_{P}\right)\left(\left\{\alpha_{P}\right\}\right) \circ\left\{T\left(h_{\beta}\right)\right\}\right) \\
& =\left(i_{F^{1}, S G}\right)_{*} \circ c_{F^{1}}\left(\left\{c_{P^{0}} \circ T\left(h_{\beta}\right)\right\}\right)
\end{aligned}
$$

by Lemmas 2.4 and 2.5 , we have that $\omega(f)=J([\beta])=a$ by the definition of ω.

We shall give some examples of fold-maps in the dimensions 1 and 2 .
Example 5.2. Let $f: N \rightarrow P$ be a fold-map. If $T N \oplus \theta_{N}$ and $T P \oplus \theta_{P}$ are trivial bundles with fixed trivializations, then the bundle map $\mathcal{T}(f): T N \oplus$ $\theta_{N} \rightarrow T P \oplus \theta_{P}$ induces a map $M(f): N \rightarrow S O(n+1)$. Let $R(x) \in S O(2)$ be the rotation such that $R(x) \mathbf{e}_{1}={ }^{t}(\cos x, \sin x)$. The assertions (1) and (2) below follow from [An3, Example 3.4].
(1) Let S^{1} be parametrized by x of $e^{\sqrt{-1} x}(0 \leq x \leq 2 \pi)$ inducing the trivialization of $T S^{1}$. Then consider the fold-map $f^{1}: S^{1} \rightarrow \mathbf{R}^{1}$ defined by $f^{1}(x)=\cos 2 x$. Then $M\left(f^{1}\right)$ is homotopic to the map $R^{2}: S^{1} \rightarrow S O(2)$ defined by $R^{2}(x)=R(2 x)$.
(2) Let $S^{1} \times S^{1}$ be parametrized by (x, y) of $\left(e^{\sqrt{-1} x}, e^{\sqrt{-1} y}\right)(0 \leq x, y \leq$ $2 \pi)$ inducing the trivialization of $T\left(S^{1} \times S^{1}\right)$. Consider the fold-map f^{2} : $S^{1} \times S^{1} \rightarrow \mathbf{R}^{2}$ defined by $f^{2}(x, y)=((3+\cos 2 y) \cos 2 x,(3+\cos 2 y) \sin 2 x)$. Then $M\left(f^{2}\right)$ is homotopic to the map $\Pi: S^{1} \times S^{1} \rightarrow S O(3)$ defined by $\Pi(x, y)=$ $((1) \dot{+} R(2 y))(R(2 x) \dot{+}(1))$.

By identifying $S^{i} \backslash$ \{a point $\}$ with \mathbf{R}^{i}, f^{i} induces the fold-map into S^{i} of degree $0(i=1,2)$. Let $\beta: S^{1} \rightarrow S O(k)$ represent the generator of $\pi_{1}(S O(k))$. Consider the fold-map $f^{1, m}: S^{1} \rightarrow S^{1}$ of degree m obtained by the connected sum $f^{1} \sharp m_{\left(S^{1}\right)}: S^{1} \sharp S^{1} \rightarrow S^{1}$ for $m \neq 0$, where the two connecting points in $S^{1} \sharp S^{1}$ should be changed from regular points of f^{1} and $m_{\left(S^{1}\right)}$ to the fold points of $f^{1} \sharp m_{\left(S^{1}\right)}$. It follows that $\nu\left(f^{1, m}\right)$ appearing in Proposition 3.3 is homotopic to the bundle map $b_{\beta}^{m}: \theta_{S^{1}}^{k} \rightarrow \theta_{S^{1}}^{k}$ defined by $b_{\beta}^{m}(x, \mathbf{v})=(m x, \beta(x) \mathbf{v})$ as in the case of Example 5.2 (1).

Proposition 5.3. Let $f^{i}: S^{i} \rightarrow S^{i}$ and $f^{1, m}: S^{1} \rightarrow S^{1}$ be the foldmaps given above. Then $\omega_{0}\left(f^{1}\right)$ and $\omega_{0}\left(f^{2}\right)$ are the generators of $\pi_{1}\left(F^{0}\right) \cong$ $\mathbf{Z} / 2 \mathbf{Z}$ and $\pi_{2}\left(F^{0}\right) \cong \mathbf{Z} / 2 \mathbf{Z}$ respectively. Furthermore, $\omega_{m}\left(f^{1, m}\right)$ is the generator of $\pi_{1}\left(F^{m}\right) \cong \mathbf{Z} / 2 \mathbf{Z}(m \neq 0)$.

Proof. We first recall the generator of $\pi_{3}\left(S^{2}\right)$, which induces the generator of π_{1}^{s}. We identify S^{3} with $\partial\left(D^{2} \times D^{2}\right)$ and S^{1} is parametrized by x as in Example 5.2 (1). If $\mu^{\prime}: S^{1} \times S^{1} \rightarrow S^{1}$ is the map $\mu(x, y)=x+y$ (modulo 2π), then it induces the map $\mu: S^{1} \times D^{2} \cup D^{2} \times S^{1} \rightarrow S^{2}$ by the cone-wise construction, which is the generator. Note that $\left(\mu \mid S^{1} \times D^{2}\right)(x, \mathbf{v})=R(x) \mathbf{v}$.

Consider the embedding $e_{S^{1} \times(-1,1)}: S^{1} \times(-1,1) \rightarrow \mathbf{R}^{2}$ defined by $e_{S^{1} \times(-1,1)}(x, t)=(1-t) e^{\sqrt{-1} x}$. If we identify $T_{(x, t)}\left(S^{1} \times(-1,1)\right)$ with \mathbf{R}^{2} under the trivialization of $T S^{1}$ in Example 5.2 (1), then $d_{(x, t)} e_{S^{1} \times(-1,1)}$ is identified with $R(x)$. When we recall the trivialization $t_{S^{1}}$ of $\tau_{S^{1}} \oplus \nu_{S^{1}}$, considered before defining duality maps in Section $2, t_{S^{1}} \circ\left(\tau\left(f^{1}\right) \oplus \nu\left(f^{1}\right)\right) \circ t_{S^{1}}^{-1}$ must be homotopic to the identity of $\theta_{S^{1}}^{2 k}$. Therefore, since $M\left(f^{1}\right)$ is homotopic to the map $x \mapsto R(2 x), \nu\left(f^{1}\right): \nu_{S^{1}} \rightarrow \nu_{S^{1}}$ must be identified with $b_{\beta}^{0}: \theta_{S^{1}}^{k} \rightarrow \theta_{S^{1}}^{k}$.

The case $n=1$. Consider the embedding $e: S^{1} \rightarrow \mathbf{R}^{1+k}$ with normal bundle $S^{1} \times D^{k}$. Let $b: S^{1} \times D^{k} \rightarrow D^{k}$ be the bundle map defined by $b(x, \mathbf{v})=$ $\beta(x) \mathbf{v}$, where $\beta: S^{1} \rightarrow S O(k)$ represents a generator of $\pi_{1}(S O)$. Then it is known from the observation above concerning the generator of π_{1}^{s} that $\mathcal{D}(\{T(b)$ $\left.\left.\circ \alpha_{S^{1}}\right\}\right) \in\left\{S^{1+k}, S^{k}\right\}$ is a generator of π_{1}^{s}. Let $\hat{b}:(1,0) \times D^{k} \rightarrow S^{1} \times D^{k}$ be the bundle map $i_{(1,0)} \times i d_{D^{k}}$, where $(1,0)$ is the point of S^{1} and $i_{(1,0)}$ is the inclusion. Then since $\nu\left(f^{1}\right) \simeq \hat{b} \circ b$, we have that

$$
\begin{aligned}
\omega_{0}\left(f^{1}\right) & =c_{F^{0}}\left(\mathcal{D}\left(v_{S^{1}}\right)\left(\left\{T(\hat{b} \circ b) \circ \alpha_{S^{1}}\right\}\right)\right) \\
& =c_{F^{0}}\left(\mathcal{D}\left(v_{S^{1}}\right)\left(\left\{T(b) \circ \alpha_{S^{1}}\right\}\right) \circ \mathcal{D}\left(v_{S^{1}}\right)(\{T(\hat{b})\})\right) .
\end{aligned}
$$

It follows from $\left[\mathrm{Sp} 2\right.$, Theorem 6.1] that $\mathcal{D}\left(v_{S^{1}}\right)(\{T(\hat{b})\}) \in\left\{\left(S^{1}\right)^{0}, S^{1}\right\}$ is represented by a base point preserving map $j_{S^{1}}:\left(S^{1}\right)^{0} \rightarrow S^{1}$ with $j_{S^{1}} \mid S^{1}=i d_{S^{1}}$. Indeed, $\left(\mathcal{D}\left(v_{S^{1}}\right)(\{T(\hat{b})\})\right)_{*}: H_{1}\left(\left(S^{1}\right)^{0}\right) \rightarrow H_{1}\left(S^{1}\right)$ is the identity of \mathbf{Z}. This implies the assertion for f^{1}.

Next we deal with $f^{1, m}$ for $m \neq 0$. Let $m_{\left(S^{1}\right)^{0}}:\left(S^{1}\right)^{0} \rightarrow\left(S^{1}\right)^{0}$ be the map $m_{\left(S^{1}\right)} \cup i d_{*_{1^{1}}}$. Let $b^{m}: \theta_{S^{1}}^{k} \rightarrow \theta_{S^{1}}^{k}$ be the map defined by $b^{m}(x, \mathbf{v})=$ $(m x, \mathbf{v})$. We have that $b_{\beta}^{m}=b^{m} \circ b_{\beta}^{1}$. Since $\pi_{1}(S O) \cong \mathbf{Z} / 2 \mathbf{Z}$, we have that $\mathcal{D}\left(v_{S^{1}}\right)\left(\left\{T\left(b_{\beta}^{1}\right)\right\}\right)=\left\{T\left(b_{\beta}^{1}\right)\right\}$. Since $T\left(b^{m}\right)$ is homotopic to $m_{\left(S^{1}\right)^{0}} \wedge i d_{S^{k}}$,
we have that $\mathcal{D}\left(v_{S^{1}}\right)\left(\left\{T\left(b^{m}\right)\right\}\right) \in\left\{\left(S^{1}\right)^{0},\left(S^{1}\right)^{0}\right\}$ is represented by a map Υ : $S\left(\left(S^{1}\right)^{0}\right) \rightarrow S\left(\left(S^{1}\right)^{0}\right)$ by [Sp2, Theorem 6.1] such that
(1) $\Upsilon^{*}: H^{1}\left(S\left(\left(S^{1}\right)^{0}\right) ; \mathbf{Z}\right) \rightarrow H^{1}\left(S\left(\left(S^{1}\right)^{0}\right) ; \mathbf{Z}\right)$ maps 1 to m,
(2) $\Upsilon^{*}: H^{2}\left(S\left(\left(S^{1}\right)^{0}\right) ; \mathbf{Z}\right) \rightarrow H^{2}\left(S\left(\left(S^{1}\right)^{0}\right) ; \mathbf{Z}\right)$ maps 1 to 1 .
since $S\left(\left(S^{1}\right)^{0}\right)$ is homotopy equivalent to $S^{2} \vee S^{1}$, we may suppose that $\Upsilon \mid S^{2}=$ $i d_{S^{2}}$ and that $\Upsilon \mid S(\{x\} \cup\{*\}): S(\{x\} \cup\{*\}) \rightarrow S(\{x\} \cup\{*\})$ is of degree m. Thus, $\mathcal{D}\left(v_{S^{1}}\right)\left(\left\{T\left(b^{m}\right)\right\}\right) \in\left\{\left(S^{1}\right)^{0},\left(S^{1}\right)^{0}\right\}$ is represented by the map $S^{k-1}(\Upsilon)$. Hence, we have

$$
\begin{aligned}
\omega_{m}\left(f^{1, m}\right) & =c_{F^{m}}\left(\mathcal{D}\left(v_{S^{1}}\right)\left(\left\{T\left(\nu\left(f^{1, m}\right)\right) \circ \alpha_{S^{1}}\right\}\right)\right) \\
& =c_{F^{m}}\left(\mathcal{D}\left(v_{S^{1}}\right)\left(\left\{T\left(b^{m} \circ b_{\beta}^{1}\right) \circ \alpha_{S^{1}}\right\}\right)\right) \\
& =c_{F^{m}}\left(\mathcal{D}\left(v_{S^{1}}\right)\left(\left\{\alpha_{S^{1}}\right\}\right) \circ\left\{T\left(b_{\beta}^{1}\right)\right\} \circ \mathcal{D}\left(v_{S^{1}}\right)\left(\left\{T\left(b^{m}\right)\right\}\right)\right) \\
& =c_{F^{m}}\left(\left\{c_{\left(S^{1}\right)^{0}}\right\} \circ\left\{T\left(b_{\beta}^{1}\right) \circ S^{k-1}(\Upsilon)\right\}\right) .
\end{aligned}
$$

Since

$$
\left(S^{k-1}\left(c_{\left(S^{1}\right)^{0}}\right) \circ T\left(b_{\beta}^{1}\right) \circ S^{k-1}(\Upsilon)\right) \mid S^{k} \wedge S\left(\{x\} \cup *_{S^{1}}\right)=T(\beta(x)) \circ m_{\left(S^{k}\right)}
$$

we have that $\omega_{0}\left(f^{1, m}\right)=\left(h_{F^{1}, F^{m}}\right)_{*}([\beta])$, where $T(\beta(x))$ is the Thom map of $\beta(x): \mathbf{R}^{k} \rightarrow \mathbf{R}^{k}$ and β is considered as an element of $\left[S^{1}, F^{1}\right]$.

The case $n=2$. Consider the embedding $e^{\prime}: S^{1} \times S^{1} \rightarrow \mathbf{R}^{2+k}$ with normal bundle $S^{1} \times S^{1} \times D^{k}$. Let $B: S^{1} \times S^{1} \times D^{k} \rightarrow D^{k}$ be the bundle map defined by $B(x, y, \mathbf{v})=R(x) R(y) \mathbf{v}$. Then it is known that both $\left\{T(B) \circ \alpha_{S^{1} \times S^{1}}\right\}$ and $\mathcal{D}\left(v_{S^{1} \times S^{1}}\right)\left(\left\{T(B) \circ \alpha_{S^{1} \times S^{1}}\right\}\right)$ are the generator of π_{2}^{s} (see [To, Propositions 3.1 and 5.3]). Let $\mathbf{a}=(1,0,0), i_{\mathrm{a}}^{\prime}: \mathbf{a} \rightarrow S^{2}$ be the inclusion and $\hat{B}: \mathbf{a} \times D^{k} \rightarrow$ $S^{2} \times D^{k}$ be the bundle map $i_{\mathbf{a}}^{\prime} \times i d_{D^{k}}$. Then we have by Example 5.2 (2) that

$$
\begin{aligned}
\omega_{0}\left(f^{2}\right) & =c_{F^{0}}\left(\mathcal{D}\left(v_{S^{1} \times S^{1}}\right)\left(\{T(\hat{B} \circ B)\} \circ\left\{\alpha_{S^{1} \times S^{1}}\right\}\right)\right) \\
& =c_{F^{0}}\left(\mathcal{D}\left(v_{S^{1} \times S^{1}}\right)\left(\left\{T(B) \circ \alpha_{S^{1} \times S^{1}}\right\}\right) \circ \mathcal{D}\left(v_{S^{1} \times S^{1}}\right)(\{T(\hat{B})\})\right) .
\end{aligned}
$$

It follows from $\left[\mathrm{Sp} 2\right.$, Theorem 6.1] that $\mathcal{D}\left(v_{S^{1} \times S^{1}}\right)(\{T(\hat{B})\}) \in\left\{\left(S^{2}\right)^{0}, S^{2}\right\}$ is represented by a base point preserving map $j_{S^{2}}:\left(S^{2}\right)^{0} \rightarrow S^{2}$ with $j_{S^{2}} \mid S^{2}=$ $i d_{S^{2}}$. Indeed, $\mathcal{D}\left(v_{S^{1} \times S^{1}}\right)(\{T(\hat{B})\})_{*}: H_{2}\left(\left(S^{2}\right)^{0}\right) \rightarrow H_{2}\left(S^{2}\right)$ is the identity of \mathbf{Z}. This implies the assertion.

Remark 5.4. Let $f: N_{i} \rightarrow P(i=1,2)$ be fold-maps of degree 0 . Then the disjoint union $f_{1} \cup f_{2}: N_{1} \cup N_{2} \rightarrow P$ is also a fold-map of degree 0 . We define the sum $\left[f_{1}\right]+\left[f_{2}\right]$ to be $\left[f_{1} \cup f_{2}\right]$. By this additive structure on $\Omega_{f o l d, 0}(P)$ we can define the Grothendieck group for $\Omega_{\text {fold }, 0}(P)$, which is denoted by $K(f o l d, 0)(P)$. Let S^{n} be the unit sphere in \mathbf{R}^{n+1} with coordinates $\left(x_{1}, \ldots, x_{n+1}\right)$. Let $p_{S^{n}}: S^{n} \rightarrow \mathbf{R}^{n}$ be the projection $\left(x_{1}, \ldots, x_{n+1}\right) \mapsto$ $\left(x_{1}, \ldots, x_{n}\right)$. Let $e_{\mathbf{R}^{n}}: \mathbf{R}^{n} \rightarrow P$ be any local chart of P. Then $\left[e_{\mathbf{R}^{n}} \circ p_{S^{n}}\right]$ becomes the null element. Furthermore, the map ω_{0} induces the homomorphism $K($ fold, 0$)(P) \rightarrow\left[P, F^{0}\right]$. For example, if $P=S^{1}$, then it is not difficult to prove that $\Omega_{\text {fold }, 0}\left(S^{1}\right) \cong K($ fold, 0$)\left(S^{1}\right) \cong\left[S^{1}, F^{0}\right] \cong \mathbf{Z} / 2 \mathbf{Z}$.

Remark 5.5. For the case $P=\mathbf{R}^{n}$, it has been observed in [Sa, Section $5]$ by using $[\mathrm{K}-\mathrm{M}]$ that the set of fold-cobordism classes of fold-maps into \mathbf{R}^{n} forms a non-trivial group in many dimensions.

6. Proof of Proposition 4.6

In this section any homotopy h_{λ} in $\Gamma(X, P)$ refers to a homotopy h_{λ} relative to $X \cap\left(\mathbf{R}^{n} \backslash \operatorname{Int} D_{2 r}\right)$ in $\Gamma(X, P)$, where X is a submanifold in \mathbf{R}^{n}.

For a Riemannian manifold X without boundary, consider the exponential map $\exp _{X}: T X \rightarrow X$ defined by the Levi-Civita connection (see $[\mathrm{K}-\mathrm{N}]$). Let E be a subbundle of $T X$. Let δ be some sufficiently small positive smooth function on X. In this paper $D_{\delta}(E)$ always denotes the associated δ-disk bundle of E with radius δ such that $\exp _{X} \mid D_{\delta}(E)_{x}$ is an embedding for any $x \in X$.

Let $L_{i}(i=1,2)$ be two oriented lines of \mathbf{R}^{n}. If $\mathbf{e}\left(L_{1}\right)$ and $\mathbf{e}\left(L_{2}\right)$ are independent, then they uniquely determine a curve $r_{\lambda}\left(L_{1}, L_{2}\right)$ in $S O(n)$ defined as follows. Let θ be the angle of $\mathbf{e}\left(L_{1}\right)$ and $\mathbf{e}\left(L_{2}\right)$ less than π. Then we have the great circle of S^{n-1} through $\mathbf{e}\left(L_{1}\right)$ and $\mathbf{e}\left(L_{2}\right)$, and the rotation $r_{\lambda}\left(L_{1}, L_{2}\right)$ is the identity on the space orthogonal to $\mathbf{e}\left(L_{1}\right)$ and $\mathbf{e}\left(L_{2}\right)$ and rotates this great circle to the direction of $\mathbf{e}\left(L_{1}\right)$ to $\mathbf{e}\left(L_{2}\right)$ so as to carry $\mathbf{e}\left(L_{1}\right)$ to the point with rotated angle $\lambda \theta$, which is, in particular, equal to $\mathbf{e}\left(L_{2}\right)$ when $\lambda=1$. Thus $r_{1}\left(L_{1}, L_{2}\right)\left(\mathbf{e}\left(L_{1}\right)\right)=\mathbf{e}\left(L_{2}\right)$. If $L_{1}=L_{2}$ and $\mathbf{e}\left(L_{1}\right)=\mathbf{e}\left(L_{2}\right)$, then we set $r_{\lambda}\left(L_{1}, L_{2}\right)=E_{n}$ for all λ, where E_{n} is the unit matrix of rank n.

Lemma 6.1. Let $s \in \Gamma^{t r}\left(\mathbf{R}^{n}, P\right)$ be a section satisfying (H-i) and (H-ii) of Proposition 4.6. For any positive number ε such that $O\left(p_{j} ; 2 \varepsilon\right)(1 \leq j \leq m)$ are all disjoint each other, we set $S(s)_{0}=S(s) \backslash\left(\cup_{j=1}^{m} O\left(p_{j} ; \varepsilon\right)\right)$. Then there exists a homotopy s_{λ} relative to $\mathbf{R}^{n} \backslash \operatorname{Int} D_{2 r}$ in $\Gamma^{t r}\left(\mathbf{R}^{n}, P\right)$ with $s_{0}=s$ satisfying
(6.1.1) $S\left(s_{\lambda}\right)=S(s)$ for any λ,
(6.1.2) for any point $c \in S\left(s_{1}\right)_{0}$ the angle of $\mathbf{e}\left(K\left(s_{1}\right)_{c}\right)$ and $\mathbf{e}\left(\nu\left(s_{1}\right)_{c}\right)$ is less than $\pi / 2$,
(6.1.3) for any point $c \in S\left(s_{1}\right)_{0} \cap D_{r}$, we have $\mathbf{e}\left(K\left(s_{1}\right)_{c}\right)=\mathbf{e}\left(\nu\left(s_{1}\right)_{c}\right)$.

Proof. Let $\exp _{\mathbf{R}^{n}, x}: T_{x} \mathbf{R}^{n} \rightarrow \mathbf{R}^{n}$ denote the exponential map defined near $x \in \mathbf{R}^{n}$. Since $\nu(s)$ is a trivial bundle, its element is written as (c, t). There exists a small positive number δ such that the map

$$
e:\left.D_{\delta}(\nu(s))\right|_{S(s) \cap D_{2 r}} \rightarrow \mathbf{R}^{n}
$$

defined by $e(c, t)=\exp _{\mathbf{R}^{n}, c}(c, t)$ is an embedding, where $c \in S(s) \cap D_{2 r}$ and $(c, t) \in D_{\delta}\left(\nu(s)_{c}\right)$ (note that $\left.e \mid S(s)=i d_{S(s)}\right)$. Since for $c \notin \mathbf{e}(s)^{-1}\left(\Delta^{-}\right)$, we have that $\mathbf{e}\left(K(s)_{c}\right) \neq-\mathbf{e}\left(\nu(s)_{c}\right)$, we can consider the rotation $r_{\lambda}\left(\nu(s)_{c}, K(s)_{c}\right)$. Let $\phi:[0, \infty) \rightarrow \mathbf{R}$ be a decreasing smooth function such that $0 \leq \phi(u) \leq 1$, $\phi(u)=0$ if $u \geq 3 r / 2$, and $\phi(u)=1$ if $u \leq r$. Let $\psi:[0, \infty) \rightarrow \mathbf{R}$ be a decreasing smooth function such that $0 \leq \psi(t) \leq 1, \psi(0)=1$, and $\psi(t)=0$ if $t \geq \delta$. Let ℓ_{a} be the parallel translation of \mathbf{R}^{n} defined by $\ell_{a}(x)=x+a$.

If we represent $s(x) \in \Omega^{10}\left(\mathbf{R}^{n}, P\right)$ by a jet $j_{x}^{2} \sigma_{x}$ for a germ $\sigma_{x}:\left(\mathbf{R}^{n}, x\right) \rightarrow$
$(P, \sigma(x))$, then we define the homotopy s_{λ}^{\prime} of $\Gamma^{t r}\left(\mathbf{R}^{n} \backslash\left\{p_{1}, \ldots, p_{m}\right\}, P\right)$ by

$$
\left\{\begin{array}{l}
s_{\lambda}^{\prime}(e(c, t))=j_{e(c, t)}^{2}\left(\sigma_{e(c, t)} \circ \ell_{e(c, t)} \circ r_{\phi(\|c\|) \psi(|t|) \lambda}\left(\nu(s)_{c}, K(s)_{c}\right) \circ \ell_{-e(c, t)}\right) \\
\\
\quad \text { if } c \in S(s) \cap D_{2 r} \text { and }|t| \leq \delta, \\
s_{\lambda}^{\prime}(x)=s(x) \quad \text { if } x \notin \operatorname{Im}(e) .
\end{array}\right.
$$

If either $|t| \geq \delta$, or $\|c\| \geq 3 r / 2$, then we have

$$
\left.s_{\lambda}^{\prime}(e(c, t))=j_{e(c, t)}^{2}\left(\sigma_{e(c, t)} \circ \ell_{e(c, t)} \circ \ell_{-e(c, t)}\right)\right)=j_{e(c, t)}^{2}\left(\sigma_{e(c, t)}\right)=s(e(c, t)) .
$$

Hence, s_{λ}^{\prime} is well defined. Furthermore, we have that
(1) $\pi_{P}^{2} \circ s_{\lambda}^{\prime}(x)=\pi_{P}^{2} \circ s(x)$,
(2) $s_{\lambda}^{\prime}|S(s)=s| S(s)$ and $S\left(s_{\lambda}^{\prime}\right)=S(s)$,
(3) if $c \in S(s)_{0} \cap D_{r}$, then we have that $\mathbf{e}\left(K\left(s_{1}^{\prime}\right)_{c}\right)=r_{1}\left(K(s)_{c}, \nu(s)_{c}\right)$ $\left(\mathbf{e}\left(K(s)_{c}\right)\right)=\mathbf{e}\left(\nu(s)_{c}\right)$ and
(4) $s_{\lambda}^{\prime} \mid \mathbf{R}^{n} \backslash\left\{p_{1}, \ldots, p_{m}\right\}$ is transverse to $\Sigma^{10}(N, P)$.

The property (6.1.2) is satisfied for s_{1}^{\prime} inside of $D_{2 r}$ by the construction and outside of $D_{2 r}$ by Remark 4.4. Applying the homotopy extension property to s and $s_{\lambda}^{\prime} \mid \mathbf{R}^{n} \backslash\left(\cup_{j=1}^{m} O\left(p_{j} ; \varepsilon\right)\right)$ together with the property (4), we obtain the required homotopy s_{λ} in $\Gamma^{t r}\left(\mathbf{R}^{n}, P\right)$ such that $s_{0}=s$ and $s_{\lambda} \mid \mathbf{R}^{n} \backslash\left(\cup_{j=1}^{m} O\left(p_{j} ; \varepsilon\right)\right)=$ $s_{\lambda}^{\prime} \mid \mathbf{R}^{n} \backslash\left(\cup_{j=1}^{m} O\left(p_{j} ; \varepsilon\right)\right)$.

Lemma 6.2. Let s be a section of $\Gamma^{t r}\left(\mathbf{R}^{n}, P\right)$ satisfying the properties (6.1.2) and (6.1.3) for s (in place of s_{1}) of Lemma 6.1. Then there exists a homotopy s_{λ} relative to $\mathbf{R}^{n} \backslash \operatorname{Int} D_{2 r}$ in $\Gamma^{t r}\left(\mathbf{R}^{n}, P\right)$ with $s_{0}=s$ such that
(6.2.1) $S\left(s_{\lambda}\right)=S(s)$ for any λ,
(6.2.2) $\pi_{P}^{2} \circ s_{1} \mid S(s)_{0}$ is an immersion into P such that $d\left(\pi_{P}^{2} \circ s_{1} \mid S(s)_{0}\right)$: $T S(s)_{0} \rightarrow T P$ is equal to $d^{1}\left(s_{1}\right) \mid T S(s)_{0}$.

Proof. Recall $d^{1}(s) \mid T S(s)_{0}: T S(s)_{0} \rightarrow T P$ in Section 1. Since by the assumption (6.1.2) for s the restriction $d^{1}(s) \mid T S(s)_{0}$ is injective. By the Hirsch Immersion Theorem (see [H1]) we have a homotopy $b_{\lambda}: T S(s)_{0} \rightarrow T P$ of bundle monomorphisms over $i_{\lambda}: S(s)_{0} \rightarrow P$ relative to $S(s)_{0} \backslash \operatorname{Int} D_{2 r}$ such that $b_{0}=d^{1}(s) \mid T S(s)_{0}$ and that i_{1} is an immersion with $d\left(i_{1}\right)=b_{1}$.

We extend b_{λ} to a homotopy $m_{\lambda}^{\prime}:\left.T \mathbf{R}^{n}\right|_{S(s)_{0}} \rightarrow T P$ so that $m_{\lambda}^{\prime} \mid K(s)_{S(s)_{0}}$ is the null-homomorphism and $m_{\lambda}^{\prime} \mid T S(s)_{0}=b_{\lambda}$. It is clear that m_{λ}^{\prime} is of rank $n-1$. Hence, it induces a map $m_{\lambda}^{\prime}: S(s)_{0} \rightarrow \Sigma^{1}\left(\mathbf{R}^{n}, P\right)$ denoted by the same symbol m_{λ}^{\prime}, where $\Sigma^{1}\left(\mathbf{R}^{n}, P\right)$ refers to the submanifold in $J^{1}\left(\mathbf{R}^{n}, P\right)$. By applying the covering homotopy property of the fibre bundle $\pi_{1}^{2} \mid \Sigma^{10}\left(\mathbf{R}^{n}, P\right)$: $\Sigma^{10}\left(\mathbf{R}^{n}, P\right) \rightarrow \Sigma^{1}\left(\mathbf{R}^{n}, P\right)$ to $s \mid S(s)_{0}: S(s)_{0} \rightarrow \Sigma^{10}\left(\mathbf{R}^{n}, P\right)$ and m_{λ}^{\prime}, we obtain a homotopy $m_{\lambda}: S(s)_{0} \rightarrow \Sigma^{10}\left(\mathbf{R}^{n}, P\right)$ such that $m_{0}=s \mid S(s)_{0}$ and $\pi_{1}^{2} \circ m_{\lambda}=m_{\lambda}^{\prime}$. Since s is transverse to $\Sigma^{10}\left(\mathbf{R}^{n}, P\right)$, there are small tubular neighborhoods $U(S(s))$ of $S(s)$ and $U\left(\Sigma^{10}\left(\mathbf{R}^{n}, P\right)\right)$ of $\Sigma^{10}\left(\mathbf{R}^{n}, P\right)$ with projections $p_{S}: U(S(s)) \rightarrow S(s)$ and $p_{\Sigma}: U\left(\Sigma^{10}\left(\mathbf{R}^{n}, P\right)\right) \rightarrow \Sigma^{10}\left(\mathbf{R}^{n}, P\right)$, which induces structures of fibre bundles with fibre $[-\delta, \delta]$ respectively so that $s \mid U(S(s)): U(S(s)) \rightarrow U\left(\Sigma^{10}\left(\mathbf{R}^{n}, P\right)\right)$ becomes a bundle map over $s \mid S(s)$.

By applying the covering homotopy property of the bundle map $s \mid p_{S}^{-1}(S($ $\left.s)_{0}\right): p_{S}^{-1}\left(S(s)_{0}\right) \rightarrow U\left(\Sigma^{10}\left(\mathbf{R}^{n}, P\right)\right)$ over $s \mid S(s)_{0}$ to $s \mid p_{S}^{-1}\left(S(s)_{0}\right)$ and m_{λ}, we
obtain a smooth homotopy of bundle maps $h_{\lambda}^{\prime}: p_{S}^{-1}\left(S(s)_{0}\right) \rightarrow U\left(\Sigma^{10}\left(\mathbf{R}^{n}, P\right)\right)$ over m_{λ} with $h_{0}^{\prime}=s \mid p_{S}^{-1}\left(S(s)_{0}\right)$. By the homotopy extension property applied to the bundle map $s \mid U(S(s))$ and the homotopy h_{λ}^{\prime}, we can extend h_{λ}^{\prime} to the smooth homotopy of bundle maps $h_{\lambda}: U(S(s)) \rightarrow U\left(\Sigma^{10}\left(\mathbf{R}^{n}, P\right)\right)$ with $h_{0}=$ $s \mid U(S(s))$.

By applying finally the homotopy extension property to s and

$$
h_{\lambda}:(U(S(s)), \partial U(S(s))) \rightarrow\left(U\left(\Sigma^{10}\left(\mathbf{R}^{n}, P\right)\right), \partial U\left(\Sigma^{10}\left(\mathbf{R}^{n}, P\right)\right)\right),
$$

we obtain the extended homotopy $s_{\lambda}: \mathbf{R}^{n} \rightarrow \Omega^{10}\left(\mathbf{R}^{n}, P\right)$ of s. By the construction of s_{λ}, s_{1} satisfies the required property.

Here we give two lemmas necessary for the proof of Proposition 4.6. Their proofs will be elementary and so are left to the reader.

Lemma 6.3. Let S be a manifold of dimension $n-1$ with empty boundary. Let $f_{i}: S \times(-a, a) \rightarrow P, a>0(i=1,2)$ be fold-maps which fold only on $S \times 0$ such that
(i) $f_{1}\left|S \times 0=f_{2}\right| S \times 0$,
(ii) $d_{(c, 0)} f_{1}=d_{(c, 0)} f_{2}$ and $d_{(c, 0)}^{2} f_{1}=d_{(c, 0)}^{2} f_{2}$ for any $c \in S$ and
(iii) $K\left(j^{2} f_{i}\right)_{(c, 0)}$ are tangent to $c \times(-a, a)$ and are oriented by the canonical direction of $(-a, a)$.
Let $\eta: S \rightarrow \mathbf{R}$ be any smooth function. Then there exists a positive function $\varepsilon: S \rightarrow \mathbf{R}$ such that the map $(1-\eta) f_{1}+\eta f_{2}$, defined by $\left((1-\eta) f_{1}+\eta f_{2}\right)(c, t)=$ $(1-\eta(c)) f_{1}(c, t)+\eta(c) f_{2}(c, t)$ for $t \in(-\varepsilon(c), \varepsilon(c))$, is a fold-map which folds only on $S \times 0$, that $d_{(c, 0)}\left((1-\eta) f_{1}+\eta f_{2}\right)=d_{(c, 0)} f_{i}$, and that $d_{(c, 0)}^{2}\left((1-\eta) f_{1}+\right.$ $\left.\eta f_{2}\right)=d_{(c, 0)}^{2} f_{i}$.

Lemma 6.4. Let $E \rightarrow S$ be an oriented smooth line bundle with metric over an ($n-1$)-dimensional manifold, where S is identified with the zero-section, and let (Ω, Σ) be a pair of a smooth manifold and its submanifold of codimension 1. Let $\varepsilon: S \rightarrow \mathbf{R}$ be a positive smooth function and $D_{\varepsilon}(E)$ be the associated disk bundle of E with radius ε. Let $h_{i}: D_{\varepsilon}(E) \rightarrow(\Omega, \Sigma)(i=0,1)$ be smooth maps such that $S=h_{0}^{-1}(\Sigma)=h_{1}^{-1}(\Sigma), h_{0}\left|S=h_{1}\right| S$ and that h_{i} are transverse to Σ. Assume that for any $c \in S$, the monomorphisms $T_{c} E / T_{c} S \rightarrow T_{h_{i}(c)} \Omega / T_{h_{i}(c)} \Sigma$ induced from $d_{c}\left(h_{i}\right)$ send a unit vector to vectors with the same direction on $T_{h_{i}(c)} \Omega / T_{h_{i}(c)} \Sigma$. Then for a sufficiently small positive function $\varepsilon: S \rightarrow \mathbf{R}$, there exists a homotopy $h_{\lambda}:\left(D_{\varepsilon}(E), S\right) \rightarrow(\Omega, \Sigma)$ such that
(1) $h_{\lambda}\left|S=h_{0}\right| S, h_{\lambda}^{-1}(\Sigma)=h_{0}^{-1}(\Sigma)$ for any λ,
(2) h_{λ} is smooth and is transverse to Σ for any λ.

For a vector bundle \mathcal{F} over Σ and a map $\iota: S \rightarrow \Sigma$, the induced bundle map $\iota^{*}(\mathcal{F}) \rightarrow \mathcal{F}$ over ι is denoted by $(\iota)_{\mathcal{F}}$ in the proof below.

Proof of Proposition 4.6. By Lemmas 6.1 and 6.2 we may assume that s satisfies the properties (6.1.2), (6.1.3) and (6.2.2) with s_{1} being replaced by s. Since s is smooth near $S(s)$ and is an embedding near $S(s)$, we can choose a Riemannian metric on $\Omega^{10}\left(\mathbf{R}^{n}, P\right)$ so that the induced metric by s near $S(s)$ coincides with the metric on \mathbf{R}^{n} near $S(s)$. Take any Riemannian metric on P. Set
$\exp _{\Omega}=\exp _{\Omega^{10}\left(\mathbf{R}^{n}, P\right)}$ for simplicity. We set $E\left(S(s)_{0}\right)=\exp _{\mathbf{R}^{n}}\left(D_{\delta}\left(K(s)_{S(s)_{0}}\right)\right)$, where $\delta: \Sigma^{10}\left(\mathbf{R}^{n}, P\right) \rightarrow \mathbf{R}$ is a sufficiently small positive function such that $\delta \circ s \mid S(s)_{0} \cap D_{2 r}$ is constant. Furthermore, if we identify $\left.Q(s)\right|_{S(s)_{0}}$ with the orthogonal normal line bundle to the immersion $\pi_{P}^{2} \circ s \mid S(s)_{0}: S(s)_{0} \rightarrow P$, then $\exp _{P} \mid D_{\gamma}\left(\left.Q(s)\right|_{S(s)_{0}}\right)$ is an immersion for some positive function γ. In the proof we represent points $E\left(S(s)_{0}\right)$ and $\exp _{P}\left(D_{\gamma}\left(\left.Q(s)\right|_{S(s)_{0}}\right)\right)$ as (c, t) and (c, u), where $c \in S(s)_{0},|t| \leq \delta(s(c))$ and $|u| \leq \gamma(c)$ respectively. In the proof we say that a smooth homotopy

$$
h_{\lambda}:\left(E\left(S(s)_{0}\right), \partial E\left(S(s)_{0}\right)\right) \rightarrow\left(\Omega^{10}\left(\mathbf{R}^{n}, P\right), \Sigma^{0}\left(\mathbf{R}^{n}, P\right)\right)
$$

has the property (C) if it satisfies that for any λ
(C-1) $h_{\lambda}^{-1}\left(\Sigma^{10}\left(\mathbf{R}^{n}, P\right)\right)=S(s)_{0}$ and $h_{\lambda}\left|S(s)_{0}=h_{0}\right| S(s)_{0}$ and
(C-2) h_{λ} is smooth and transverse to $\Sigma^{10}\left(\mathbf{R}^{n}, P\right)$.
For a point $c \in S(s)_{0}$, the intrinsic derivative $d_{c}^{2}(s): K(s)_{c} \rightarrow \operatorname{Hom}\left(K(s)_{c}\right.$, $\left.Q(s)_{c}\right)$ defines the positive function $b: S(s)_{0} \rightarrow \mathbf{R}$ by the equation

$$
\left(d_{c}^{2}(s)\left(\mathbf{e}\left(K(s)_{c}\right)\right)\right)\left(\mathbf{e}\left(K(s)_{c}\right)\right)=2 b(c)\left(\mathbf{e}\left(Q(s)_{c}\right)\right) .
$$

If we choose δ sufficiently small compared with γ, then we can define the foldmap $g_{0}: E\left(S(s)_{0}\right) \rightarrow P$ by

$$
g_{0}(c, t)=\left(c, b(c) t^{2}\right)\left(=\exp _{P}\left(c, b(c) t^{2}\right)\right) .
$$

Let r_{0} be a small positive real number with $r_{0}<r / 10$. Now we need to modify g_{0} by using Lemma 6.3 so that g_{0} is compatible with f_{0}. Let $\eta: S(s)_{0} \rightarrow \mathbf{R}$ be a smooth function such that
(i) $0 \leq \eta(c) \leq 1$,
(ii) $\eta(c)=0$ for $x \in \mathbf{R}^{n} \backslash \operatorname{Int} D_{2 r-r_{0}}$,
(iii) $\eta(c)=1$ for $x \in D_{2 r-2 r_{0}}$.

Then consider the map $G:\left(\mathbf{R}^{n} \backslash \operatorname{Int} D_{2 r-r_{0}}\right) \cup E\left(S(s)_{0}\right) \rightarrow P$ defined by

$$
\begin{cases}G(x)=f_{0}(x) & \text { if } \quad x \in \mathbf{R}^{n} \backslash \operatorname{Int} D_{2 r-r_{0}}, \\ G(c, t)=(1-\eta(c)) f_{0}(c, t)+\eta(c) g_{0}(c, t) & \text { if } \quad(c, t) \in E\left(S(s)_{0}\right) .\end{cases}
$$

It follows from Lemma 6.3 that G is a fold-map defined on a neighborhood of $\left(\mathbf{R}^{n} \backslash \operatorname{Int} D_{2 r}\right) \cup E\left(S(s)_{0}\right)$, where δ is replaced by a smaller one if necessary so that $G \mid E\left(S(s)_{0}\right)$ folds only on $S(s)_{0}$, and that $d_{c}^{i}(G)=d_{c}^{i}\left(g_{0}\right)$ for any $c \in S(s)_{0} \cap D_{2 r}$ $(i=1,2)$. Furthermore, we note that if $\|c\| \geq 2 r-r_{0}$, then $G(c, t)=f_{0}(c, t)$.

Next we shall construct a homotopy h_{λ} relative to $E\left(S(s)_{0}\right) \cap \operatorname{Int}\left(D_{2 r} \backslash\right.$ $\left.D_{2 r-r_{0}}\right)$ in $\Gamma^{t r}\left(E\left(S(s)_{0}\right) \cap \operatorname{Int} D_{2 r}, P\right)$ satisfying the property (C) restricted to $E\left(S(s)_{0}\right) \cap \operatorname{Int} D_{2 r}$ such that $h_{0}=s$ and $h_{1}=j^{2} G$ on $E\left(S(s)_{0}\right) \cap \operatorname{Int} D_{2 r}$.

By applying Lemma 6.4 to the section s, we first obtain a homotopy $h_{\lambda}^{\prime} \in \Gamma^{t r}\left(E(S(s))_{0}, P\right)$ with $h_{0}^{\prime}=s$ and $h_{1}^{\prime}=\exp _{\Omega} \circ d s \circ \exp _{\mathbf{R}^{n}}^{-1}$ on $E\left(S(s)_{0}\right)$ satisfying the properties (1) and (2) of Lemma 6.4. Since $d s \mid\left(\left.K(s)\right|_{S(s)_{0}}\right)$: $\left.K(s)\right|_{S(s)_{0}} \rightarrow T \Omega^{10}\left(\mathbf{R}^{n}, P\right)$ and $\left(s \mid S(s)_{0}\right)_{\mathbf{K}}:\left.K(s)\right|_{S(s)_{0}} \rightarrow \mathbf{K} \subset T \Omega^{10}\left(\mathbf{R}^{n}, P\right)$ are homotopic by a homotopy of monomorphisms transverse to $T \Sigma^{10}\left(\mathbf{R}^{n}, P\right)$,
we can construct a homotopy $h_{\lambda}^{\prime \prime}$ in $\Gamma^{t r}\left(E\left(S(s)_{0}\right), P\right)$ satisfying the property (C) such that $h_{0}^{\prime \prime}=h_{1}^{\prime}$ and $h_{1}^{\prime \prime}=\exp _{\Omega} \circ\left(s \mid S(s)_{0}\right)_{\mathbf{K}} \circ \exp _{\mathbf{R}^{n}}^{-1}$ on $E\left(S(s)_{0}\right)$. By pasting h_{λ}^{\prime} and $h_{\lambda}^{\prime \prime}$ we obtain a homotopy $h_{\lambda}^{1} \in \Gamma^{\operatorname{tr}}\left(E\left(S(s)_{0}\right), P\right)$ satisfying the property (C) with $h_{0}^{1}=s$ and $h_{1}^{1}=\exp _{\Omega} \circ\left(s \mid S(s)_{0}\right)_{\mathbf{K}} \circ \exp _{\mathbf{R}^{n}}^{-1}$ on $E\left(S(s)_{0}\right)$.

Now recall the additive structure of $J^{2}\left(\mathbf{R}^{n}, P\right)$ defined by using the fixed Riemannian metric on P in [An2, Section 1]. Then we have the homotopy $j_{\lambda}: S(s)_{0} \rightarrow J^{2}\left(\mathbf{R}^{n}, P\right)$ defined by

$$
j_{\lambda}(c)=(1-\lambda) s(c)+\lambda j^{2} G(c) \quad \text { covering } i_{1}: S(s)_{0} \rightarrow P .
$$

Since $K(s)_{c}=K\left(j^{2} G\right)_{c}$ and $Q(s)_{c}=Q\left(j^{2} G\right)_{c}$ by the construction of the immersion i_{1} and the fold-map G, it follows that for any $c \in S(s)_{0}$ we have $K\left(j_{\lambda}\right)_{c}=K(s)_{c}$ and $Q\left(j_{\lambda}\right)_{c}=Q(s)_{c}$. Hence, we have that

$$
d_{c}^{i}\left(j_{\lambda}\right)=(1-\lambda) d_{c}^{i}(s)+\lambda d_{c}^{i}\left(j^{2} G\right)=d_{c}^{i}(s)=d_{c}^{i}\left(j^{2} G\right) .
$$

This implies that j_{λ} is a map of $S(s)_{0}$ into $\Sigma^{10}\left(\mathbf{R}^{n}, P\right)$. Therefore, the homotopy of bundle maps $\left(j_{\lambda}\right)_{\mathbf{K}}:\left.K(s)\right|_{S(s)_{0}} \rightarrow(\mathbf{K} \subset) T \Omega^{10}\left(\mathbf{R}^{n}, P\right)$ induces the homotopy h_{λ}^{2} satisfying the property (C) defined by

$$
h_{\lambda}^{2}=\exp _{\Omega} \circ\left(j_{\lambda}\right)_{\mathbf{K}} \circ \exp _{\mathbf{R}^{n}}^{-1} \mid E\left(S(s)_{0}\right)
$$

such that $h_{0}^{2}=h_{1}^{1}=\exp _{\Omega} \circ\left(s \mid S(s)_{0}\right)_{\mathbf{K}} \circ \exp _{\mathbf{R}^{n}}^{-1}$ and $h_{1}^{2}=\exp _{\Omega} \circ\left(j^{2} G \mid S(s)_{0}\right)_{\mathbf{K}} \circ$ $\exp _{\mathbf{R}^{n}}{ }^{-1}$ on $E\left(S(s)_{0}\right)$.

By applying Lemma 6.4 to $j^{2} G \mid E\left(S(s)_{0}\right)$ similarly as in the case of $s \mid$ $E\left(S(s)_{0}\right)$, we have a homotopy h_{λ}^{3} satisfying the property (C) such that $h_{0}^{3}=$ $h_{1}^{2}=\exp _{\Omega} \circ\left(j^{2} G \mid S(s)_{0}\right)_{\mathbf{K}} \circ \exp _{\mathbf{R}^{n}}^{-1}$ and $h_{1}^{3}=j^{2} G$ on $E\left(S(s)_{0}\right)$.

Let h_{λ} be a homotopy in $\Gamma^{t r}\left(E\left(S(s)_{0}\right) \cap \operatorname{Int} D_{2 r}, P\right)$ satisfying the property (C) defined by

$$
h_{\lambda}=\left\{\begin{array}{lll}
h_{3 \lambda}^{1} \mid E\left(S(s)_{0}\right) \cap \operatorname{Int} D_{2 r} & \text { for } & 0 \leq \lambda \leq 1 / 3 \\
h_{3 \lambda-1}^{2} \mid E\left(S(s)_{0}\right) \cap \operatorname{Int} D_{2 r} & \text { for } & 1 / 3 \leq \lambda \leq 2 / 3, \\
h_{3 \lambda-2}^{3} \mid E\left(S(s)_{0}\right) \cap \operatorname{Int} D_{2 r} & \text { for } & 2 / 3 \leq \lambda \leq 1
\end{array}\right.
$$

By modifying h_{λ} on $E\left(S(s)_{0}\right) \cap\left(D_{2 r} \backslash \operatorname{Int} D_{2 r-2 r_{0}}\right)$ via Lemma 6.4, we can construct a homotopy H_{λ} in $\Gamma^{t r}\left(\left(\mathbf{R}^{n} \backslash \operatorname{Int} D_{2 r}\right) \cup E\left(S(s)_{0}\right), P\right)$ satisfying the property (C) such that
(1) $H_{\lambda}(x)=s(x)$ for $x \in \mathbf{R}^{n} \backslash \operatorname{Int} D_{2 r}$,
(2) $H_{\lambda}(c, t)=h_{\lambda}(c, t)$ for $(c, t) \in E\left(S(s)_{0}\right) \cap \operatorname{Int} D_{2 r}$,
(3) $H_{0}(x)=s(x)$,
(4) $H_{1}(x)=j^{2} G(x)$.

By applying the homotopy extension property to s and H_{λ}, we obtain a homotopy

$$
s_{\lambda}:\left(\mathbf{R}^{n}, S(s)\right) \rightarrow\left(\Omega^{10}\left(\mathbf{R}^{n}, P\right), \Sigma^{10}\left(\mathbf{R}^{n}, P\right)\right)
$$

such that
(i) $s_{0}=s$,
(ii) $s_{\lambda}(x)=H_{\lambda}(x)$ for $x \in\left(\mathbf{R}^{n} \backslash \operatorname{Int} D_{2 r}\right) \cup E\left(S(s)_{0}\right)$,
(iii) s_{λ} is transverse to $\Sigma^{10}\left(\mathbf{R}^{n}, P\right)$ with $s_{\lambda}^{-1}\left(\Sigma^{10}\left(\mathbf{R}^{n}, P\right)\right)=S(s)$,
(iv) if $(c, t) \in E\left(S(s)_{0}\right)$, then $s_{1}(c, t)=j^{2} G(c, t)$.

Hence, s_{λ} is a required homotopy in $\Gamma^{t r}\left(\mathbf{R}^{n}, P\right)$.

7. Proof of Proposition 4.7

For a section $s \in \Gamma^{t r}\left(\mathbf{R}^{n}, P\right)$ given in Proposition 4.7, let $S(s) \cap D_{2 r}$ be decomposed into the connected components M_{1}, \ldots, M_{w}. In this section any one of M_{j} 's will be often denoted by M, which may have non-empty boundary. Then by Remark 4.4 the image $\mathbf{e}(s)(\partial M)$ is contained in $S^{n-1} \times S^{n-1} \backslash \Delta^{-}$. Hence we can define the homomorphism

$$
\begin{aligned}
& (\mathbf{e}(s) \mid M)_{*}: H_{n-1}(M, \partial M ; \mathbf{Z}) \\
& \quad \rightarrow H_{n-1}\left(S^{n-1} \times S^{n-1}, S^{n-1} \times S^{n-1} \backslash \Delta^{-} ; \mathbf{Z}\right) \cong \mathbf{Z}
\end{aligned}
$$

Let $[M]$ denote the fundamental class of M. The number $(\mathbf{e}(s) \mid M)_{*}([M])$ is called the degree of $\mathbf{e}(s) \mid M$ and denoted by $\operatorname{deg}(\mathbf{e}(s) \mid M)$. If for a point $p \in \mathbf{e}(s)^{-1}\left(\Delta^{-}\right)$,

$$
\begin{aligned}
(\mathbf{e}(s) \mid O(p ; \varepsilon))_{*} & : H_{n-1}(O(p ; \varepsilon), \partial O(p ; \varepsilon) ; \mathbf{Z}) \\
& \rightarrow H_{n-1}\left(S^{n-1} \times S^{n-1}, S^{n-1} \times S^{n-1} \backslash \Delta^{-} ; \mathbf{Z}\right) \cong \mathbf{Z}
\end{aligned}
$$

is of degree +1 (resp. -1), then we shall say that the degree of $\mathbf{e}(s)$ at p is equal to +1 (resp. -1).

Proposition 7.1. Let $n \geq 1$. Let s be the section of $\Gamma^{t r}\left(\mathbf{R}^{n}, P\right)$ given in Proposition 4.7. If $\operatorname{deg}\left(\mathbf{e}(s) \mid M_{j}\right)=0(j=1,2, \ldots, w)$, then there exists a homotopy s_{λ} relative to $\mathbf{R}^{n} \backslash \operatorname{Int} D_{r}$ in $\Gamma^{t r}\left(\mathbf{R}^{n}, P\right)$ such that
(1) $S\left(s_{\lambda}\right)$ coincides with $S(s)$ for any λ and
(2) $\mathbf{e}\left(s_{1}\right)^{-1}\left(\Delta^{-}\right)$is empty.

Proof. We first consider the case where P is orientable and here choose the orientation of P compatible with $\theta^{n}(P)$, which appeared before Remark 4.4. For an element $z=j_{c}^{2} \sigma \in \Sigma^{10}\left(\mathbf{R}^{n}, P\right)$, let $K(z)_{c}$ denote the subspace $\left(j^{2} \sigma\right)^{*}\left(\mathbf{K}_{z}\right)$ of $T_{c}\left(\mathbf{R}^{n}\right)$, which is identified with a line of \mathbf{R}^{n}. Then we define the map $\kappa: \Sigma^{10}\left(\mathbf{R}^{n}, P\right) \rightarrow S^{n-1}$ by $\kappa(z)=\mathbf{e}\left(K(z)_{c}\right)$, which becomes a smooth fibre bundle. It is easy to see that the composition map $\kappa \circ s \mid S(s): S(s) \rightarrow$ S^{n-1} satisfies $\kappa \circ s(c)=\mathbf{e}\left(K(s)_{c}\right)$.

Let p_{1} or p_{2} be the projection of $S^{n-1} \times S^{n-1}$ onto the first or second component respectively. The restriction $p_{2}: S^{n-1} \times S^{n-1} \backslash \Delta^{-} \rightarrow S^{n-1}$ is a subbundle of p_{2}. Then consider the induced bundle

Here, we regard $\mathbf{e}(s) \mid M$ as a section of the bundle $\left(p_{2} \circ \mathbf{e}(s) \mid M\right)^{*}\left(S^{n-1} \times S^{n-1}\right)$. Then the unique obstruction for the section $\mathbf{e}(s) \mid M$ to be deformed relative to $\mathbf{R}^{n} \backslash \operatorname{Int} D_{r}$ to a section of the bundle $\left(p_{2} \circ \mathbf{e}(s) \mid M\right)^{*}\left(S^{n-1} \times S^{n-1} \backslash \Delta^{-}\right)$is equal to $\operatorname{deg}(\mathbf{e}(s) \mid M)$. Since $\operatorname{deg}(\mathbf{e}(s) \mid M)=0$, there is a homotopy $\mathbf{e}_{\lambda}: M \rightarrow S^{n-1} \times$ S^{n-1} relative to $\mathbf{R}^{n} \backslash \operatorname{Int} D_{r}$ with $\mathbf{e}_{0}=\mathbf{e}(s) \mid M$ such that $p_{2} \circ \mathbf{e}_{\lambda}\left|M=p_{2} \circ \mathbf{e}(s)\right|$ M for any λ and $\left(\mathbf{e}_{1}\right)^{-1}\left(\Delta^{-}\right)=\emptyset$. Then $p_{1} \circ \mathbf{e}_{1}(c)$ is not equal to $-\mathbf{e}\left(\nu(s)_{c}\right)$ for any $c \in M$.

By the covering homotopy property of the fibre bundle $\kappa: \Sigma^{10}\left(\mathbf{R}^{n}, P\right) \rightarrow$ S^{n-1} applied to $s \mid S(s)$ and $p_{1} \circ \mathbf{e}_{\lambda}$, we obtain a smooth homotopy $k_{\lambda}: S(s) \rightarrow$ $\Sigma^{10}\left(\mathbf{R}^{n}, P\right)$ relative to $S(s) \backslash \operatorname{Int} D_{r}$ such that $k_{0}=s \mid S(s)$ and $\kappa \circ k_{\lambda}=p_{1} \circ \mathbf{e}_{\lambda}$.

Next consider the case where P is non-orientable and connected. In this case we need the double covering $\Upsilon_{P}: \widetilde{P} \rightarrow P$ associated to the first StiefelWhitney class $W_{1}(P)$. If we choose an orientation of \widetilde{P}, then we have the map $\widetilde{\kappa}: \Sigma^{10}\left(\mathbf{R}^{n}, \widetilde{P}\right) \rightarrow S^{n-1}$ defined similarly as κ. Recall that we have fixed the orientation of $\theta^{n}(P)=\left(\pi_{P}^{2} \circ s\right)^{*}(T P)$ in Section 4, which induces a lift $\widetilde{s \mid S(s)}: S(s) \rightarrow \Sigma^{10}\left(\mathbf{R}^{n}, \widetilde{P}\right)$ of $s \widetilde{P} \mid S(s)$. Indeed, a jet $j_{c}^{2} \sigma$ defines the jet $j_{c}^{2} \widetilde{\sigma}$ with map germ $\tilde{\sigma}:\left(\mathbf{R}^{n}, c\right) \rightarrow(\widetilde{P}, \widetilde{\sigma}(c))$ such that the orientation of $\theta^{n}(P)$ is compatible with that of $(\widetilde{P}, \widetilde{\sigma}(c))$. Hence, we have the following commutative diagram, where $\widetilde{\Upsilon_{P}}$ is induced from Υ_{P}.

Therefore, by an analogous argument as above, we have a smooth homotopy $\widetilde{k}_{\lambda}^{\prime}: S(s) \rightarrow \Sigma^{10}\left(\mathbf{R}^{n}, \widetilde{P}\right)$ relative to $S(s) \backslash \operatorname{Int} D_{r}$ covering $p_{1} \circ \mathbf{e}_{\lambda}: S(s) \rightarrow S^{n-1}$ such that $\widetilde{k}_{0}^{\prime}=\widetilde{s \mid S(s)}$ and $\widetilde{\kappa} \circ \widetilde{k}_{\lambda}^{\prime}=p_{1} \circ \mathbf{e}_{\lambda}$. Thus we obtain a smooth homotopy $k_{\lambda}: S(s) \rightarrow \Sigma^{10}\left(\mathbf{R}^{n}, P\right)$ defined by $k_{\lambda}=\widetilde{\Upsilon_{P}} \circ \widetilde{k_{\lambda}^{\prime}}$ such that $k_{0}=s \mid S(s)$, that $\kappa \circ k_{\lambda}=p_{1} \circ \mathbf{e}_{\lambda}$, and that $p_{1} \circ \mathbf{e}_{1}(c)$ is not equal to $-\mathbf{e}\left(\nu(s)_{c}\right)$ for any $c \in S(s)$.

Since s is transverse to $\Sigma^{10}\left(\mathbf{R}^{n}, P\right)$, there exists a bundle map $s \mid U(S(s))$: $U(S(s)) \rightarrow U\left(\Sigma^{10}\left(\mathbf{R}^{n}, P\right)\right)$ introduced in the proof of Lemma 6.2. By applying the homotopy extension property of this bundle map to $s \mid U(S(s))$ and k_{λ}, we have a smooth homotopy of bundle maps

$$
s_{\lambda}^{\prime}: U(S(s)) \rightarrow U\left(\Sigma^{10}\left(\mathbf{R}^{n}, P\right)\right)
$$

relative to $U(S(s)) \backslash \operatorname{Int} D_{r}$ covering k_{λ} with $s_{0}^{\prime}=s \mid U(S(s))$. By the homotopy extension property, we extend s_{λ}^{\prime} to a homotopy s_{λ} relative to $\mathbf{R}^{n} \backslash$ $\operatorname{Int} D_{r}$ in $\Gamma^{t r}\left(\mathbf{R}^{n}, P\right)$ by considering $s \mid\left(\mathbf{R}^{n} \backslash \operatorname{Int} U(S(s))\right)$ and $s_{\lambda}^{\prime} \mid \partial U(S(s))$ into $\Omega^{10}\left(\mathbf{R}^{n}, P\right) \backslash \operatorname{Int} U\left(\Sigma^{10}\left(\mathbf{R}^{n}, P\right)\right)$ such that $s_{\lambda}\left(\mathbf{R}^{n} \backslash \operatorname{Int} U(S(s))\right)$ is contained in $\Omega^{10}\left(\mathbf{R}^{n}, P\right) \backslash \operatorname{Int} U\left(\Sigma^{10}\left(\mathbf{R}^{n}, P\right)\right)$. By the construction, it follows that s_{1} is the required section.

By Proposition 7.1 it is enough for Proposition 4.7 to show that the given

Fig. 1

Fig. 2
section s is homotopic relative to $\mathbf{R}^{n} \backslash \operatorname{Int} D_{2 r}$ to a section s_{1} in $\Gamma^{t r}\left(\mathbf{R}^{n}, P\right)$ such that $\operatorname{deg}\left(\mathbf{e}\left(s_{1}\right) \mid M_{j}\right)$ is equal to 0 for each j.

We begin by defining several spaces in \mathbf{R}^{n}. Let \mathcal{S}_{2}^{i-1} denote the $(i-1)$ sphere of radius 2 in $\mathbf{R}^{i} \times \mathbf{0}_{n-i}$, which consists of all points $a=\left(a_{1}, \ldots, a_{i}, 0\right.$, $\ldots, 0)$ with $\|a\|=2$. Let \mathcal{D}_{2}^{i} denote the upper hemi-sphere of $\mathbf{R}^{i} \times \mathbf{0}_{n-i-1} \times \mathbf{R}$, which consists of all points $a=\left(a_{1}, \ldots, a_{i}, 0, \ldots, 0, a_{n}\right)$ with $\|a\|=2$ and $a_{n} \geq$ 0 . Let $U\left(\mathcal{S}_{2}^{i-1}\right)$ denote the tubular neighborhood of \mathcal{S}_{2}^{i-1} in $\mathbf{R}^{n-1} \times 0$, which consists of all points $\left(x_{1}, \ldots, x_{n-1}, 0\right)$ such that $x_{j}=(1+t / 2) a_{j}(1 \leq j \leq i)$ with $a \in \mathcal{S}_{2}^{i-1}$ and $\left\|\left(x_{i+1}, \ldots, x_{n-1}, t\right)\right\| \leq 1$. Let $H\left(\mathcal{D}_{2}^{i}\right)$ denote the i-handle, which consists of all points $\left(x_{1}, \ldots, x_{n}\right)$ such that $x_{j}=(1+t / 2) a_{j}(1 \leq j \leq i$ or $j=n)$ with $a \in \mathcal{D}_{2}^{i}, x_{n} \geq 0$ and $\left\|\left(x_{i+1}, \ldots, x_{n-1}, t\right)\right\| \leq 1$.

For the cases where $n \geq 3$ and $1 \leq i<n-1$, we consider the union $\mathbf{R}^{n-1} \times$ $0 \cup \partial H\left(\mathcal{D}_{2}^{i}\right) \backslash \operatorname{Int} U\left(\mathcal{S}_{2}^{i-1}\right)$. Let H^{i} denote the submanifold of codimension 1 in \mathbf{R}^{n} obtained from this union by rounding the corners by a slight deformation. We should note that H^{i} is connected (see Fig. 1).

For the case $n=3$ and $i=2$, let $\mathcal{D}_{2}^{1^{\prime}}$ denote the upper hemi-sphere of $0 \times \mathbf{R}^{2}$, which consists of all points $b=\left(0, b_{2}, b_{3}\right)$ with $\|b\|=2$ and $b_{3} \geq 0$. Let $\mathcal{S}_{2}^{0^{\prime}}$ denote the boundary of $\mathcal{D}_{2}^{1^{\prime}}$. Let $U\left(\mathcal{S}_{2}^{0^{\prime}}\right)$ denote the tubular neighborhood of $\mathcal{S}_{2}^{0^{\prime}}$ in $\mathbf{R}^{2} \times 0$, which consists of all points $\left(x_{1}, x_{2}, 0\right)$ with $x_{1}^{2}+\left(x_{2}-2\right)^{2} \leq 1$ or $x_{1}^{2}+\left(x_{2}+2\right)^{2} \leq 1$. Let $H\left(\mathcal{D}_{2}^{1^{\prime}}\right)$ denote the 1-handle, which consists of all points $\left(x_{1}, x_{2}, x_{3}\right)$ such that $x_{j}=(1+t / 2) b_{j}(j=2,3)$ with $b \in \mathcal{D}_{2}^{1^{\prime}}, x_{3} \geq 0$ and $x_{1}^{2}+t^{2} \leq 1$. Then consider the union $\mathbf{R}^{2} \times 0 \cup \partial\left(H\left(\mathcal{D}_{2}^{1}\right) \cup H\left(\mathcal{D}_{2}^{1^{\prime}}\right)\right) \backslash$ $\operatorname{Int}\left(U\left(\mathcal{S}_{2}^{0}\right) \cup U\left(\mathcal{S}_{2}^{0^{\prime}}\right)\right)$. Let H^{\prime} denote the submanifold of \mathbf{R}^{3} obtained from this union by rounding the corners by a slight modification. We should note that H^{\prime} is connected (see Fig. 2).

We shall explain an outline of the proof of Proposition 4.7 for $n \geq 3$ and $1 \leq i<n-1$. We start with the fold-map $\sigma: \mathbf{R}^{n} \rightarrow \mathbf{R}^{n}$ defined by $\sigma\left(x_{1}, \ldots, x_{n-1}, x_{n}\right)=\left(x_{1}, \ldots, x_{n-1}, x_{n}^{2}\right)$. Then $S(\sigma)$ coincides with $\mathbf{R}^{n-1} \times 0$, which we orient by $\left(x_{1}, \ldots, x_{n-1}\right)$. The usual surgery of $\mathbf{R}^{n-1} \times 0$ by the embedded sphere \mathcal{S}_{2}^{i-1} and the handle $H\left(\mathcal{D}_{2}^{i}\right)$ induces a new connected and oriented manifold \mathbf{H}^{i}, that is, $\mathbf{R}^{n-1} \times 0 \cup \partial H\left(\mathcal{D}_{2}^{i}\right) \backslash \operatorname{Int} U\left(\mathcal{S}_{2}^{i-1}\right)$ with rounded corners. This procedure of the surgery is realized by a homotopy σ_{λ} in $\Gamma\left(\mathbf{R}^{n}, \mathbf{R}^{n}\right)$ with
$\sigma_{0}=j^{2} \sigma$ such that
(1) $S\left(\sigma_{0}\right)=\mathbf{R}^{n-1}$ and $S\left(\sigma_{1}\right)=\mathrm{H}^{i}$,
(2) $\mathbf{e}\left(\sigma_{1}\right)^{-1}\left(\Delta^{-}\right)$consists of a single point $(0, \ldots, 0,1)$,
(3) $\operatorname{deg}\left(\mathbf{e}\left(\sigma_{1}\right) \mid S\left(\sigma_{1}\right)\right)=(-1)^{i}$.

Next for the given section s in Proposition 4.7 we take disjoint embeddings $e_{\ell}:\left(\mathbf{R}^{n}, \mathbf{R}^{n-1} \times 0\right) \rightarrow\left(\mathbf{R}^{n} \backslash\left(\cup_{j=1}^{m} O\left(p_{j} ; \varepsilon\right)\right), S(s)\right)$ such that $\pi_{P} \circ s \circ e_{\ell}\left(\mathbf{R}^{n}\right)$ is contained in a local chart of $P(1 \leq \ell \leq|\operatorname{deg}(\mathbf{e}(s) \mid M)|)$. Then we can deform s on each $e_{\ell}\left(\mathbf{R}^{n}\right)$ by using σ_{λ} so that the degrees become 0 . The proof of the case $n=3$ and $i=2$ is similar, though the case $n=2$ is very exceptional.

Let $\mu: \mathbf{R}^{n} \rightarrow \mathbf{R}$ be a smooth map such that 0 is a regular value and $\mu(x)=2 x_{n}$ outside of D_{4}^{n}. We can orient $\mu^{-1}(0)$ by using grad μ. Then we can consider the map $\mathbf{e}(\mu):\left(\mu^{-1}(0), \mu^{-1}(0) \backslash D_{4}^{n}\right) \rightarrow\left(S^{n-1}, \mathbf{e}_{n}\right)$ defined by

$$
\mathbf{e}(\mu)(c)=(\operatorname{grad} \mu)(c) /\|(\operatorname{grad} \mu)(c)\|, c \in \mu^{-1}(0) .
$$

We define the degree of $\mathbf{e}(\mu)$ by $\mathbf{e}(\mu)_{*}\left(\left[\mu^{-1}(0)\right]\right)=\operatorname{deg} \mathbf{e}(\mu)\left[S^{n-1}\right]$, where $\left[\mu^{-1}(0)\right]$ is the fundamental class of $H^{n-1}\left(\mu^{-1}(0), \mu^{-1}(0) \backslash D_{4}^{n} ; \mathbf{Z}\right)$.

Lemma 7.2. Let $n \geq 3$. For $i=1, \ldots, n-1$, there exist functions $\mu_{\lambda}^{i}: \mathbf{R}^{n} \rightarrow \mathbf{R}, \lambda \in \mathbf{R}$, which are smooth with respect to the variables x_{1}, \ldots, x_{n} and λ such that
(1) $\mu_{\lambda}^{i}(x)=2 x_{n}$ if $\lambda \leq-1 / 2$ or $\left\|\left(x_{1}, \ldots, x_{n}\right)\right\| \geq 4$,
(2) $\mu_{\lambda}^{i}(x)=\mu_{1}^{i}(x)$ if $\lambda \geq 1 / 2$,
(3) if $|\lambda| \geq 1 / 2$, then 0 is a regular value of μ_{λ}^{i},
(4) if $n \geq 3$ and $1 \leq i<n-1$ (resp. $n=3$ and $i=2$), then the oriented manifold $\left(\mu_{1}^{i}\right)^{-1}(0)$ coincides with the connected and oriented manifold \mathbf{H}^{i} (resp. $\left.\mathrm{H}^{\prime}\right)$ and
(5) μ_{1}^{i} has a unique point $(0, \ldots, 0,1)$ such that $\mathbf{e}\left(\mu_{1}^{i}\right)(0, \ldots, 0,1)=-\mathbf{e}_{n}$ and the degree of $\mathbf{e}\left(\mu_{1}^{i}\right)$ is equal to $(-1)^{i}$ (resp. 1).

Proof. In \mathbf{R}^{n+1} with coordinates $\left(x_{1}, \ldots, x_{n}, \lambda\right)$, consider the subspace \mathcal{H}, which is the union

$$
\begin{gathered}
\mathbf{R}^{n-1} \times 0 \times(-\infty, 0] \cup H\left(\mathcal{D}_{2}^{i}\right) \times 0 \\
\cup\left\{\mathbf{R}^{n-1} \times 0 \cup \partial H\left(\mathcal{D}_{2}^{i}\right) \backslash \operatorname{Int} U\left(\mathcal{S}_{2}^{i-1}\right)\right\} \times[0, \infty)
\end{gathered}
$$

We shall round the corner of \mathcal{H} by a slight modification, which is denoted by the same letter \mathcal{H}, so that $\mathcal{H} \cap\left(\mathbf{R}^{n} \times \lambda\right)=\mathrm{H}^{i} \times \lambda$, for $\lambda \geq 1 / 2$. Let $\nu_{\mathcal{H}}$ denote the orthogonal normal bundle of \mathcal{H}. Then \mathcal{H} has the Riemannian metric and $\nu_{\mathcal{H}}$ has the metric, which are induced from the metric on \mathbf{R}^{n+1}. Then we have the embedding $\exp _{\mathbf{R}^{n+1}} \mid D_{\varepsilon}\left(\nu_{\mathcal{H}}\right): D_{\varepsilon}\left(\nu_{\mathcal{H}}\right) \rightarrow \mathbf{R}^{n+1}$ for a small positive number ε, which preserves the metrics. Since $\nu_{\mathcal{H}}$ is trivial, we can choose a trivialization $t\left(\nu_{\mathcal{H}}\right): \nu_{\mathcal{H}} \rightarrow \mathcal{H} \times \mathbf{R}$ preserving the metrics of the vector bundles. Let $p_{2}: \mathcal{H} \times \mathbf{R} \rightarrow \mathbf{R}$ be the projection onto the second component. Then we set

$$
\mu^{\prime}=2 p_{2} \circ t\left(\nu_{\mathcal{H}}\right) \circ \exp _{\mathbf{R}^{n+1}}^{-1} \mid \exp _{\mathbf{R}^{n+1}}\left(D_{\varepsilon}\left(\nu_{\mathcal{H}}\right)\right) .
$$

This map satisfies that $\mu^{\prime}\left(x_{1}, \ldots, x_{n}, \lambda\right)=2 x_{n}$ if $\lambda<-1 / 2$ or $\left\|\left(x_{1}, \ldots, x_{n}\right)\right\| \geq$ 4 , and $\left|x_{n}\right|<\varepsilon$. Furthermore, if $\lambda>1 / 2$, then we have $D_{\varepsilon}\left(\left.\nu_{\mathcal{H}}\right|_{\boldsymbol{H}^{i} \times \lambda}\right)=$ $D_{\varepsilon}\left(\nu_{\mathbf{H}^{i}}\right) \times \lambda$ and $\mathcal{H} \cap\left(\mathbf{R}^{n} \times \lambda\right)=\mathrm{H}^{i} \times \lambda$. Hence, $\mu^{\prime} \mid \exp _{\mathbf{R}^{n+1}}\left(D_{\varepsilon}\left(\nu_{\mathbf{H}^{i}} \times \lambda\right)\right)$ is regular on $\mathrm{H}^{i} \times \lambda$ with regular value 0 for $\lambda>1 / 2$.

Now we can extend μ^{\prime} to the map $\mu: \mathbf{R}^{n+1} \rightarrow \mathbf{R}$ so that $\mu\left(x_{1}, \ldots, x_{n}, \lambda\right)=$ $2 x_{n}$ for any $\lambda<-1 / 2$ or $\left\|\left(x_{1}, \ldots, x_{n}\right)\right\| \geq 4$ and that $\mu^{-1}(0)=\left(\mu^{\prime}\right)^{-1}(0)$. Set $\mu_{\lambda}(x)=\mu(x, \lambda)$. Then μ_{λ} is the required map. The assertions (1) to (4) have already been proved. Since $x_{j}=(1+t / 2) a_{j}$ for $1 \leq j \leq i$ and $j=n$, the length of the vector

$$
\begin{aligned}
& \left(x_{1}, \ldots, x_{n}\right)-\left(a_{1}, \ldots a_{i}, 0, \ldots, 0, a_{n}\right) \\
& \\
& \quad=\left(t a_{1} / 2, \ldots, t a_{i} / 2, x_{i+1}, \ldots, x_{n-1}, t a_{n} / 2\right)
\end{aligned}
$$

is equal to $\sqrt{x_{i+1}^{2}+\cdots+x_{n-1}^{2}+t^{2}}$. Hence, $\mu_{1}\left(x_{1}, \ldots, x_{n}\right)$ is equal to $2\left(\sqrt{x_{i+1}^{2}+\cdots+x_{n-1}^{2}+t^{2}}-1\right)$ on a neighborhood of H^{i} with $x_{n}>0$ except for the rounded corners. Furthermore, we have $t=\sqrt{x_{1}^{2}+\cdots+x_{i}^{2}+x_{n}^{2}}-2$. Hence,
$\partial \mu_{1}\left(x_{1}, \ldots, x_{n}\right) / \partial x_{j}$ is equal to

If the gradient vector of μ_{1} on a point $\left(x_{1}, \ldots, x_{n}\right) \in \mu_{1}^{-1}(0)$ is equal to $(0, \ldots, 0,-1)$ up to length, then we have that $\left(x_{1}, \ldots, x_{n}\right)=(0, \ldots, 0,1)$. We should note here that ($-x_{1}, x_{2}, \ldots, x_{n-1}$) can be oriented local coordinates of both spaces $\mu^{-1}(0)$ and S^{n-1} near the point $(0, \ldots, 0,1)$, since the normal vectors at the point $(0, \ldots, 0,1)$ are directed to $-\mathbf{e}_{n}$.

Therefore, we calculate the gradient vector of μ_{1} on those points of $t=-1$ and obtain that the degree of $\mathbf{e}\left(\mu_{1}\right)$ is equal to $(-1)^{i}$. This proves the assertion except for the case $n=3$ and $i=2$.

If $n=3$ and $i=2$, then H^{2} is not connected. This is the reason why we need to consider H^{\prime} defined before. Here we define the subspace \mathcal{H}^{\prime} of \mathbf{R}^{4} to be the union

$$
\begin{gathered}
\mathbf{R}^{2} \times 0 \times(-\infty, 0] \cup\left(H\left(\mathcal{D}_{2}^{1}\right) \cup H\left(\mathcal{D}_{2}^{\prime}\right)\right) \times 0 \\
\cup\left\{\mathbf{R}^{2} \times 0 \cup \partial\left(H\left(\mathcal{D}_{2}^{1}\right) \cup H\left(\mathcal{D}_{2}^{\prime}\right)\right) \backslash \operatorname{Int}\left(U\left(\mathcal{S}_{0}\right) \cup U\left(\mathcal{S}_{0}^{\prime}\right)\right)\right\} \times[0, \infty) .
\end{gathered}
$$

We can round the corner of \mathcal{H}^{\prime} by a slight modification to be a smooth submanifold, which is denoted by the same symbol, so that $\mathcal{H}^{\prime} \cap \mathbf{R}^{3} \times \lambda=\mathrm{H}^{\prime} \times \lambda$ for $\lambda \geq 1 / 2$. The rest of the proof in this case is quite analogous to the proof given above. Therefore it is left to the reader.

Proposition 7.3. Let $n \geq 3$. Consider the fold-map $\sigma: \mathbf{R}^{n} \rightarrow \mathbf{R}^{n}$ defined by $\sigma\left(x_{1}, \ldots, x_{n-1}, x_{n}\right)=\left(x_{1}, \ldots, x_{n-1}, x_{n}^{2}\right)$. Then there exists a homotopy σ_{λ} relative to $\mathbf{R}^{n} \backslash \operatorname{Int} D_{4 r}$ in $\Gamma\left(\mathbf{R}^{n}, \mathbf{R}^{n}\right)$ such that
(1) $\sigma_{0}=j^{2} \sigma$,
(2) σ_{1} is a smooth section transverse to $\Sigma^{10}\left(\mathbf{R}^{n}, \mathbf{R}^{n}\right)$ and $S\left(\sigma_{1}\right)$ is connected,
(3) $\mathbf{e}\left(\sigma_{1}\right)^{-1}\left(\Delta^{-}\right)$consists of a single point such that $\operatorname{deg}\left(\mathbf{e}\left(\sigma_{1}\right) \mid S\left(\sigma_{1}\right)\right)$ is equal to any one of 1 and -1 .

Proof. Recall the identifications

$$
\begin{gathered}
\pi_{\mathbf{R}^{n}}^{2} \times \pi_{\mathbf{R}^{n}}^{2} \times \pi_{\Omega}: \Omega^{10}\left(\mathbf{R}^{n}, \mathbf{R}^{n}\right) \rightarrow \mathbf{R}^{n} \times \mathbf{R}^{n} \times \Omega^{10}(n, n), \\
J^{2}(n, n) \cong \operatorname{Hom}\left(\mathbf{R}^{n}, \mathbf{R}^{n}\right) \oplus \operatorname{Hom}\left(S^{2} \mathbf{R}^{n}, \mathbf{R}^{n}\right)
\end{gathered}
$$

in Section 1. Then

$$
j_{x}^{2} \sigma=(x, \sigma(x), E_{n-1} \dot{+}\left(2 x_{n}\right),(\overbrace{\mathbf{0}, \ldots, \mathbf{0}}^{n-1}, \Delta(0, \ldots, 0,2)),
$$

where $\mathbf{0}$ denotes the zero $n \times n$-matrix and $\Delta(0, \ldots, 0,2)$ denotes the diagonal $n \times n$-matrix with diagonal components $(0, \ldots, 0,2)$. Let $\mu_{\lambda}^{i}(x)$ be the function considered in Lemma 7.2. Then we define the required homotopy σ_{λ} with $\sigma_{0}=j^{2} \sigma$ by

$$
\sigma_{\lambda}(x)=\left(x, \sigma(x), E_{n-1} \dot{+}\left(\mu_{\lambda}^{i}(x)\right),(\mathbf{0}, \ldots, \mathbf{0}, \Delta(0, \ldots, 0,2)) .\right.
$$

It is clear that $S\left(\sigma_{1}\right)=\mu_{1}^{-1}(0)$. On any point $c \in S\left(\sigma_{1}\right)$, the 2 -jet $\pi_{\Omega} \circ \sigma_{1}(c)$ is represented by the germ $\sigma:\left(\mathbf{R}^{n}, 0\right) \rightarrow\left(\mathbf{R}^{n}, 0\right)$. Hence, $\mathbf{Q}_{\sigma_{1}(c)}$ and $\mathbf{K}_{\sigma_{1}(c)}$ are generated and oriented by \mathbf{e}_{n}. Therefore, $\operatorname{Hom}\left(\mathbf{K}_{\sigma_{1}(c)}, \mathbf{Q}_{\sigma_{1}(c)}\right) \cong \mathbf{R}$ and by the definition of the intrinsic derivative we have that $d_{c}\left(\mu_{1}^{i}\right)$ is identified with $\mathbf{d}_{\sigma_{1}(c)}^{2}{ }^{\circ}$ $d_{c} \sigma_{1}: T_{c} \mathbf{R}^{n} \rightarrow \operatorname{Hom}\left(\mathbf{K}_{\sigma_{1}(c)}, \mathbf{Q}_{\sigma_{1}(c)}\right) \cong \mathbf{R}$. This shows that $\mathbf{e}\left(\sigma_{1}\right)^{-1}\left(\Delta^{-}\right)=$ $\mathbf{e}\left(\mu_{1}^{i}\right)^{-1}\left(-\mathbf{e}_{n}\right)$, which consists of a single point $(0, \ldots, 0,1)$ by Lemma 7.2 (5). Furthermore, we have that the degrees of $\mathbf{e}\left(\sigma_{1}\right)$ and $\mathbf{e}\left(\mu_{1}^{i}\right)$ are equal to $(-1)^{i}$. This proves the proposition.

Proof of the case $n \geq 3$ of Proposition 4.7. We give a proof for the case $n \geq 3$. Let M be any one of M_{j} 's. For the given section s, we take distinct points $c_{\ell} \in M$ and disjoint embeddings $e_{\ell}: \mathbf{R}^{n} \rightarrow \mathbf{R}^{n} \backslash\left(\cup_{j=1}^{m} O\left(p_{j} ; \varepsilon\right)\right)$ with $e_{\ell}(0)=c_{\ell}$ such that $\pi_{P} \circ s \circ e_{\ell}\left(\mathbf{R}^{n}\right)$ is contained in a local chart of P, which can be identified with \mathbf{R}^{n} in the proof $(1 \leq \ell \leq|\operatorname{deg}(\mathbf{e}(s) \mid M)|)$. By Proposition 4.6 (2) we may suppose that $s \circ e_{\ell}$ coincides with $j^{2} \sigma$, where $\sigma\left(x_{1}, \ldots, x_{n-1}, x_{n}\right)=\left(x_{1}, \ldots, x_{n-1}, x_{n}^{2}\right)$. For each $e_{\ell}\left(\mathbf{R}^{n}\right)$, we can construct the homotopy $\sigma\left(e_{\ell}\right)_{\lambda} \in \Gamma\left(e_{\ell}\left(\mathbf{R}^{n}\right), P\right)$ defined by $\sigma\left(e_{\ell}\right)_{\lambda}(x)=\sigma_{\lambda}\left(e_{\ell}^{-1}(x)\right)$. By Proposition 7.3 we can take σ_{λ} so that

$$
\operatorname{deg}\left(\mathbf{e}\left(\sigma\left(e_{\ell}\right)_{1}\right)\right)=-\frac{\operatorname{deg}(\mathbf{e}(s) \mid M)}{|\operatorname{deg}(\mathbf{e}(s) \mid M)|}
$$

By using $\sigma\left(e_{\ell}\right)_{\lambda}$ for each M_{j}, we have a homotopy s_{λ}^{\prime} in $\Gamma\left(\mathbf{R}^{n}, P\right)$ defined by $s_{\lambda}^{\prime} \mid e_{\ell}\left(\mathbf{R}^{n}\right)=\sigma\left(e_{\ell}\right)_{\lambda}$ on each $e_{\ell}\left(\mathbf{R}^{n}\right)$ and $s_{\lambda}^{\prime} \mid\left(\mathbf{R}^{n} \backslash \cup_{\ell=1}^{|\operatorname{deg}(\mathbf{e}(s) \mid M)|} e_{\ell}\left(\mathbf{R}^{n}\right)\right)=$
$s \mid\left(\mathbf{R}^{n} \backslash \cup_{\ell=1}^{|\operatorname{deg}(\mathbf{e}(s) \mid M)|} e_{\ell}\left(\mathbf{R}^{n}\right)\right)$ outside of all $e_{\ell}\left(\mathbf{R}^{n}\right)$ for all M_{j} 's. Then it is easy to see from the additive property of the degree that the degree of $\mathbf{e}\left(s_{1}^{\prime}\right)$ on each connected component M_{j} is equal to 0 . By Proposition 7.1 we obtain the required homotopy s_{λ}.

Next we shall prove the case $n=2$ of Proposition 4.7. This case is very exceptional and the arguments above for $n \geq 3$ are not available. We need to use the properties of the embedding $i_{2}: S O(3) \rightarrow \Omega^{10}(2,2)$ in Theorem 3.1 described in Remark 7.4 and Proposition 7.7 below.

Remark 7.4. We interpret the following properties concerning the embedding $i_{2}: S O(3) \rightarrow \Omega^{10}(2,2)$. Let $\Sigma_{+}^{0}(2,2)$ and $\Sigma_{-}^{0}(2,2)$ be the subsets of $\Sigma^{0}(2,2)$ consisting of all regular jets preserving and reversing the orientation respectively. According to [An2], there exists a deformation retraction R_{λ} : $\Omega^{10}(2,2) \rightarrow \Omega^{10}(2,2)$ such that $R_{0}=i d_{\Omega^{10}(2,2)}$, the image of R_{1} coincides with the image of i_{2} and that R_{λ} preserves $\Sigma_{+}^{0}(2,2), \Sigma_{-}^{0}(2,2)$ and $\Sigma^{10}(2,2)$.

Let $\pi: S O(3) \rightarrow S O(3) / S O(2) \times(1) \cong S^{2}$ be the fibre bundle defined by mapping $M \mapsto M \mathbf{e}_{3}$. Let D_{+}, D_{-}and $S^{1} \times 0$ be the subsets consisting of all points ${ }^{t}\left(x_{1}, x_{2}, x_{3}\right) \in S^{2}$ with $x_{3} \geq 0, x_{3} \leq 0$ and $x_{3}=0$ respectively. Let $q: \Sigma^{10}(2,2) \rightarrow S^{1} \times 0$ be defined by $q\left(j_{0}^{2} f\right)=\mathbf{e}\left(\operatorname{Im}\left(d_{0} f\right)^{\perp}\right)$. Then the embedding i_{2} has the properties ([An2, Proposition 3.4 and Section 4]):
(i) $i_{2}^{-1}\left(\Sigma_{+}^{0}(2,2)\right)=\pi^{-1}\left(\operatorname{Int} D_{+}\right), i_{2}^{-1}\left(\Sigma_{-}^{0}(2,2)\right)=\pi^{-1}\left(\operatorname{Int} D_{-}\right)$and $i_{2}^{-1}\left(\Sigma^{10}(2,2)\right)=\pi^{-1}\left(S^{1} \times 0\right)$,
(ii) i_{2} is smooth near $\pi^{-1}\left(S^{1} \times 0\right)$ and is transverse to $\Sigma^{10}(2,2)$,
(iii) we have that $q \circ i_{2}=\pi$ on $\pi^{-1}\left(S^{1} \times 0\right)$ and,
(iv) there exists a trivialization $t: \pi^{-1}\left(S^{1} \times 0\right) \rightarrow S^{1} \times S O(2)$ such that if $t(M)=(x, U)$ and $i_{2}(M)=j_{0}^{2} f$, then we have that ${ }^{t} U \mathbf{e}\left(\operatorname{Im}\left(d_{0} f\right)^{\perp}\right)=$ $\mathbf{e}\left(\operatorname{Ker}\left(d_{0} f\right)\right)$ and $x=\mathbf{e}\left(\operatorname{Im}\left(d_{0} f\right)^{\perp}\right)$.
We should note that $\pi^{-1}\left(D_{-}\right)$and $\pi^{-1}\left(D_{+}\right)$are pasted by the transformation $T: \pi^{-1}\left(\partial D_{-}\right) \rightarrow \pi^{-1}\left(\partial D_{+}\right)$defined by $T((\cos \theta, \sin \theta), U)=((\cos \theta, \sin \theta)$, $R(-2 \theta) U)$ by [Ste, 23.4 Theorem and 27.2 Theorem], where

$$
R(-2 \theta)=\left(\begin{array}{cc}
\cos 2 \theta & \sin 2 \theta \\
-\sin 2 \theta & \cos 2 \theta
\end{array}\right)
$$

In the following we use the maps $G L^{ \pm}(2) \rightarrow S^{1}$ sending $U \mapsto U \mathbf{e}_{2} /\left\|U \mathbf{e}_{2}\right\|$ in dealing with degrees.

Lemma 7.5. Let D^{2} be the disk centred at the origin with radius 1 in \mathbf{R}^{2} and let $\mathbf{r}: D^{2} \rightarrow D^{2}$ be the map defined by $\mathbf{r}\left(x_{1}, x_{2}\right)=\left(-x_{1}, x_{2}\right)$. Let $h: D^{2} \rightarrow \mathbf{R}^{2}$ be the fold-map defined by $h\left(x_{1}, x_{2}\right)=e^{\left(-x_{1}^{2}-x_{2}^{2}\right)}\left(-x_{1}, x_{2}\right)$. Then we have that
(1) h folds only on the circle $S_{1 / \sqrt{2}}^{1}$ with radius $1 / \sqrt{2}$,
(2) $\quad h$ preserves the orientation outside of $S_{1 / \sqrt{2}}^{1}$ and reverses the orientation inside of $S_{1 / \sqrt{2}}^{1}$ and
(3) if we canonically identify $T_{x} \mathbf{R}^{2}$ with \mathbf{R}^{2}, then the maps $T^{ \pm}(d h)$:
$\partial D^{2} \rightarrow G L^{ \pm}(2)$ defined by $T^{+}(d h)(x)=d_{x} h$ and $T^{-}(d h)(x)=d_{x}(h \circ \mathbf{r})$ are of degree -2 and 2 respectively.

Proof. We have that

$$
d_{\left(x_{1}, x_{2}\right)} h=e^{\left(-x_{1}^{2}-x_{2}^{2}\right)}\left(\begin{array}{cc}
-1+2 x_{1}^{2} & 2 x_{1} x_{2} \\
-2 x_{1} x_{2} & 1-2 x_{2}^{2}
\end{array}\right),
$$

whose determinant is equal to $e^{-2\left(x_{1}^{2}+x_{2}^{2}\right)}\left(2\left(x_{1}^{2}+x_{2}^{2}\right)-1\right)$. Therefore, h folds only on $S_{1 / \sqrt{2}}^{1}$ and $T^{+}(d h)(\cos \theta, \sin \theta)$ is equal to the matrix $e^{-1} R(-2 \theta)$. Hence, the degree of $T^{+}(d h)$ is equal to -2 . The assertion for $T^{-}(d h)$ is similar.

For a positive real number A, let $C(A)$ be the subspace of \mathbf{R}^{2} consisting of all points $y=\left(y_{1}, y_{2}\right)$ with $\left|y_{i}\right| \leq A(i=1,2)$. Let $J=[-A, A]$ and δ be a sufficiently small positive real number with $\delta<A / 4$. Let $\iota=1$ or -1 . We need the fold-map $\sigma: C(A) \rightarrow \mathbf{R}^{2}$ defined by $\sigma\left(y_{1}, y_{2}\right)=\left(y_{1}, y_{2}^{2}\right)$. Suppose that $\omega \in \Gamma^{t r}\left(C(A), \mathbf{R}^{2}\right)$ satisfies the properties:
(i) $S(\omega)=J \times 0,\left(\pi_{\Omega} \circ \omega\right)^{-1}\left(\Sigma_{+}^{0}(2,2)\right)=J \times(0, A]$ and $\left(\pi_{\Omega} \circ \omega\right)^{-1}\left(\Sigma_{-}^{0}(2,2)\right)$ $=J \times[-A, 0)$.
(ii) $\omega\left|(J \times[-2 \delta, 2 \delta] \backslash C(A / 2))=j^{2} \sigma\right|(J \times[-2 \delta, 2 \delta] \backslash C(A / 2))$.
(iii) The degree of $\mathbf{e}(\omega) \mid S(\omega)$ is ι and $(\mathbf{e}(\omega) \mid S(\omega))^{-1}\left(\Delta^{-}\right)$consists of a single point $(0,0)$.
(iv) Let $p_{2}: \pi^{-1}\left(\partial D_{-} \times 0\right) \rightarrow S O(2)$ be the projection through the trivialization t. The degree of $p_{2} \circ i_{2}^{-1} \circ R_{1} \circ \pi_{\Omega} \circ \omega \mid J \times 0: J \times 0 \rightarrow S O(2)$ is equal to d.

By (ii), (iii), $K(\omega)_{(-A, 0)}$ and $K(\omega)_{(A, 0)}$ are generated and oriented by \mathbf{e}_{2}. Since the point $(0,0)$ lies in $(\mathbf{e}(\omega) \mid S(\omega))^{-1}\left(\Delta^{-}\right), \nu(\omega)_{(0,0)}$ and $K(\omega)_{(0,0)}$ are generated and oriented by \mathbf{e}_{2} and $-\mathbf{e}_{2}$ respectively. We can consider the degree of $\pi_{\Omega} \circ \omega \mid J \times\{ \pm \delta\}:(J \times\{ \pm \delta\}, \partial J \times\{ \pm \delta\}) \rightarrow\left(\Sigma_{ \pm}^{0}(2,2), \pi_{\Omega}(\omega(\pm A, \pm \delta))\right)$ by noting $\pi_{1}\left(\Sigma_{ \pm}^{0}(2,2)\right) \cong \pi_{1}\left(G L^{ \pm}(2)\right) \cong \mathbf{Z}$.

Lemma 7.6. Let ω be the section given above. Then the degree $\pi_{\Omega} \circ$ $\omega \mid J \times\{-\delta\}: J \times\{-\delta\} \rightarrow \Sigma_{-}^{0}(2,2) \simeq G L^{-}(2)$ is equal to d and the degree of $\pi_{\Omega} \circ \omega \mid J \times \delta: J \times \delta \rightarrow \Sigma_{+}^{0}(2,2) \simeq G L^{+}(2)$ is equal to $-d-2 \iota$.

Proof. By Remark 7.4 (iv), the degree of $\left(q \circ \pi_{\Omega} \circ \omega\right) \mid S(\omega)$ is equal to $d+\iota$. The degree of the map $S^{1} \rightarrow S^{1}$ sending $(\cos \theta, \sin \theta)$ to $R(-2 \theta) \mathbf{e}_{2}$ is equal to -2 . By the properties of i_{2} and [Ste, 23.4 Theorem] stated in Remark 7.4, it follows that $\operatorname{deg}\left(\pi_{\Omega} \circ \omega \mid J \times \delta\right)=d+(-2)(d+\iota)=-d-2 \iota$.

Proposition 7.7. Let ω^{ι} be the section ω given above for $d=1-\iota$ $(\iota=1$ or -1$)$. Then there exists a homotopy ω_{λ}^{ι} relative to $C(A) \backslash C(A / 2)$ in $\Gamma\left(C(A), \mathbf{R}^{2}\right)$ such that $\omega_{0}^{L}=\omega^{\iota}, \omega_{1}^{L} \in \Gamma^{t r}\left(C(A), \mathbf{R}^{2}\right)$ and that $S\left(\omega_{1}^{L}\right)$ is the disjoint union of $J \times 0$ and a circle L in $\operatorname{Int} C(A / 2)$ with $\left(\mathbf{e}\left(\omega_{1}^{\iota}\right) \mid J \times 0\right)^{-1}\left(\Delta^{-}\right)=$ \emptyset and $\left(\mathbf{e}\left(\omega_{1}^{\iota}\right) \mid L\right)^{-1}\left(\Delta^{-}\right)=\emptyset$.

Proof. Let C^{+}(resp. C^{-}) be the subspace consisting of all points $\left(y_{1}, y_{2}\right)$ with $\left|y_{1}\right| \leq A / 2$ and $\delta \leq y_{2} \leq 2 \delta$ (resp. $-2 \delta \leq y_{2} \leq-\delta$). We first construct a
$\operatorname{map} v_{1}^{\ell}: C(A) \rightarrow \Omega^{10}(2,2)$ as in (i) through (iv) below. Since $\pi_{2}\left(\Omega^{10}(2,2)\right) \cong$ $\pi_{2}(S O(3)) \cong\{0\}$ by Theorem 3.1, we have a homotopy $v_{\lambda}^{\iota}: C(A) \rightarrow \Omega^{10}(2,2)$ relative to $C(A) \backslash C(A / 2)$ with $v_{0}^{L}=\pi_{\Omega} \circ \omega^{\iota}$. Then we obtain a required homotopy ω_{λ}^{ι} by $\omega_{\lambda}^{\iota}=\left(\pi_{\mathbf{R}^{2}}^{2} \circ \omega^{\iota}, \pi_{\mathbf{R}^{2}}^{2} \circ \omega^{\iota}, v_{\lambda}^{\iota}\right)$.
(i) $v_{1}^{L}\left(y_{1}, y_{2}\right)=\pi_{\Omega} \circ \omega^{\iota}\left(y_{1}, y_{2}\right)$ outside of $[-A / 2, A / 2] \times[-2 \delta, 2 \delta]$.
(ii) $v_{1}^{L}\left(y_{1}, y_{2}\right)=\pi_{\Omega} \circ j^{2} \sigma\left(y_{1}, y_{2}\right)$ for $\left(y_{1}, y_{2}\right) \in J \times[-\delta, \delta]$.
(iii) Let $\iota=1$. Since the degrees of $\pi_{\Omega} \circ \omega^{1} \mid J \times\{-\delta\}$ and $\pi_{\Omega} \circ j^{2} \sigma \mid J \times\{-\delta\}$ in $G L^{-}(2)$ are equal to 0 , we can find an extension $v_{1}^{1} \mid C^{-}: C^{-} \rightarrow \Sigma_{-}^{0}(2,2)$.

The degree of the map $\partial C^{+} \rightarrow \Sigma_{+}^{0}(2,2)$ is equal to 2 , which is the sum of $-\operatorname{deg}\left(\pi_{\Omega} \circ \omega^{1} \mid\left(\partial C^{+} \backslash[-A / 2, A / 2] \times \delta\right)\right)(=2)$ and $\operatorname{deg}\left(\pi_{\Omega} \circ j^{2} \sigma \mid[-A / 2, A / 2] \times \delta\right)$ $(=0)$. Hence, if we identify C^{+}with D_{2}^{2}, then we can paste the map $\pi_{\Omega} \circ \omega^{1}$ ∂C^{+}and the map $\pi_{\Omega} \circ j^{2} h \circ \mathbf{r}$ defined on D^{2} in C^{+}by a homotopy $D_{2}^{2} \backslash D^{2} \rightarrow$ $\Sigma_{+}^{0}(2,2)$. The circle L becomes $S_{1 / \sqrt{2}}^{1}$. Thus we obtain a map $v_{1}^{1} \mid C^{+}: C^{+} \rightarrow$ $\Omega^{10}(2,2)$. Since $d \mathbf{r}$ reverses the orientation of $T D^{2}$, we should note that $K\left(j^{2} h\right.$ $\circ \mathbf{r})=(d \mathbf{r})^{-1}\left(K\left(j^{2} h\right)\right)$, which is different from $\mathbf{r}^{*}\left(K\left(j^{2} h\right)\right)$. Hence, we have that $\nu\left(j^{2} h \circ \mathbf{r}\right)=K\left(j^{2} h \circ \mathbf{r}\right)$, and so $\left(\mathbf{e}\left(\omega_{1}^{1}\right) \mid L\right)^{-1}\left(\Delta^{-}\right)=\emptyset$.
(iv) Let $\iota=-1$. Since the degrees of $\pi_{\Omega} \circ \omega^{-1} \mid J \times \delta$ and $\pi_{\Omega} \circ j^{2} \sigma \mid J \times \delta$ in $G L^{+}(2)$ are equal to 0 , we can find an extension $v_{1}^{-1} \mid C^{+}: C^{+} \rightarrow \Sigma_{+}^{0}(2,2)$.

The degree of the map $\partial C^{-} \rightarrow \Sigma_{-}^{0}(2,2)$ is the sum of the degree of $\pi_{\Omega} \circ$ $\omega^{-1} \mid\left(\partial C^{-} \backslash[-A / 2, A / 2] \times\{-\delta\}\right)(=2)$ and the degree of $\pi_{\Omega} \circ j^{2} \sigma \mid[-A / 2, A / 2] \times$ $\{-\delta\}(=0)$. Hence, if we identify C^{-}with D_{2}^{2}, then we can paste the map $\pi_{\Omega} \circ \omega^{-1} \mid \partial C^{-}$and the map $\pi_{\Omega} \circ j^{2}(h \circ \mathbf{r})$ defined on D^{2} in C^{-}by a homotopy $D_{2}^{2} \backslash D^{2} \rightarrow \Sigma_{-}^{0}(2,2)$. Thus we obtain a map $v_{1}^{-1} \mid C^{-}: C^{-} \rightarrow \Omega^{10}(2,2)$.

Proof of the case $n=2$ of Proposition 4.7. By Remark 7.4, $\Sigma^{10}(2,2)$ is homotopy equivalent to $\pi^{-1}\left(S^{1} \times 0\right)=S^{1} \times S O(2)$. Let p be any one of the points p_{j} 's. Since the normal bundle of $S(s)$ is trivial as is explained in Section 4, we can take local coordinates $y=\left(y_{1}, y_{2}\right)$ under which we consider $C(A)$ such that $y(p)=(0,0)$ and that $S(s) \cap C(A)$ is on the line $y_{2}=0$. If ε is sufficiently small in Proposition 4.6, then we may deform s so that $O(p ; \varepsilon)$ is contained in $C(A / 2)$ and that s coincides with $j^{2} \sigma$ on $J \times[-2 \delta, 2 \delta] \backslash O(p ; \varepsilon)$. That is, $K(s)_{(-A, 0)}$ and $K(s)_{(A, 0)}$ are generated and oriented by \mathbf{e}_{2}. Since $(\mathbf{e}(s) \mid J \times 0)^{-1}\left(\Delta^{-}\right)$consists of a single point $(0,0), \nu(s)_{(0,0)}$ and $K(s)_{(0,0)}$ are generated and oriented by \mathbf{e}_{2} and $-\mathbf{e}_{2}$ respectively. Recall the fibre bundle $\kappa: \Sigma^{10}(2,2) \rightarrow S^{1}$ sending $j_{0}^{2} f$ to $\mathbf{e}\left(K\left(j_{0}^{2} f\right)\right)$ in the proof of Proposition 7.1, which is a trivial bundle by Remark 7.4 (iv). Since A is sufficiently small and J is an interval, we can deform s so that the degree of $p_{2} \circ i_{2}^{-1} \circ R_{1} \circ \pi_{\Omega} \circ s \mid J \times 0$ is equal to $1-\iota$ without changing $\kappa \circ \pi_{\Omega} \circ s \mid J \times 0$. This implies that the degree of $\pi_{\Omega} \circ s \mid J \times\{-\delta\}:(J \times\{-\delta\}, \partial J \times\{-\delta\}) \rightarrow\left(\Sigma_{-}^{0}(2,2), \pi_{\Omega}(s(\pm A,-\delta))\right)$ is equal to $1-\iota$. Now we again apply Proposition 4.6 to this deformed section s. Thus we may assume that s satisfies the assumption of Proposition 7.7. Consequently, we obtain a homotopy $s_{\lambda} \mid C(A) \in \Gamma\left(C(A), \mathbf{R}^{2}\right)$ such that $s_{1} \mid C(A) \in \Gamma^{t r}\left(C(A), \mathbf{R}^{2}\right)$ and that $S\left(s_{1} \mid C(A)\right)$ is the union of $J \times 0$ and a circle L contained in $\operatorname{Int} C(A / 2)$ and that $\left(\mathbf{e}\left(s_{1}\right) \mid J \times 0\right)^{-1}\left(\Delta^{-}\right)$and $\left(\mathbf{e}\left(s_{1}\right) \mid L\right)^{-1}\left(\Delta^{-}\right)$ are empty.

For any point p_{j}, we consider the homotopy $\left(s_{\lambda} \mid C(A)\right)_{j} \in \Gamma\left(C(A), \mathbf{R}^{2}\right)$,
which is the homotopy $s_{\lambda} \mid C(A)$ defined above for p. Now we are ready to construct a homotopy h_{λ} of s. We set $h_{\lambda}=s$ outside of the union of all $C(A)_{j}$'s for any $\lambda \in[0,1]$ and $h_{\lambda}=s_{\lambda} \mid C(A)_{j}$ on any one of $C(A)_{j}$'s. By construction, h_{λ} satisfies the required properties.

8. Fold-degree and Gauss maps

Let ξ be an oriented vector bundle of dimension $n+1$ with metric over a space X and $S^{n}(\xi)$ be its associated n-sphere bundle over X. The fibre $S^{n}\left(\xi_{x}\right)$ over x of X is canonically identified with the space of all oriented n-subspaces of ξ_{x}. For an oriented n-space a of ξ_{x}, we shall write the corresponding point of $S^{n}\left(\xi_{x}\right)$ by $[a]$. Let N be connected, closed and oriented, and P be oriented in this section. Let $f: N \rightarrow P$ be a fold-map. We shall construct two continuous sections of $S^{n}\left(f^{*}\left(T P \oplus \theta_{P}\right)\right)$ over N as follows. For any point x of N, the space $T_{f(x)} P$ gives a point of $S^{n}\left(T_{f(x)} P \oplus \mathbf{R}\right)$ and so we define the first section $s_{0}(f)$ by

$$
s_{0}(f)(x)=\left(x,\left[T_{f(x)} P\right]\right) .
$$

Next the homomorphism $\mathcal{T}(f): T N \oplus \theta_{N} \rightarrow T P \oplus \theta_{P}$ given in Theorem 3.2 defines the second section $s_{1}(\mathcal{T}(f))$ by

$$
s_{1}(\mathcal{T}(f))(x)=\left(x,\left[\operatorname{Im}\left(\mathcal{T}(f) \mid T_{x} N\right)\right]\right) .
$$

By applying the obstruction theory of fibre bundles for these two sections, it follows from [Ste, 37.5 Classification Theorem] that the difference cocycle $d\left(s_{0}(f), s_{1}(\mathcal{T}(f))\right)$ defines an element of $H^{n}\left(N, \pi_{n}\left(S^{n}\right)\right) \cong \mathbf{Z}$. We shall call this number the fold-degree of f, which is denoted by $\mathrm{D}^{\text {fold }}(f)$.

We have another interpretation of the fold-degree in the case where P is \mathbf{R}^{n} or S^{n}. In this case the associated homomorphism $\mathcal{T}(f)$ of a fold-map f determines a monomorphism $\mathcal{T}(f) \mid T N$ into $T(P \times \mathbf{R})$. Here if P is S^{n}, then $P \times \mathbf{R}$ is canonically embedded in \mathbf{R}^{n+1} as the tubular neighborhood of the unit sphere. By applying the Hirsch Immersion Theorem ([H1]) to $\mathcal{T}(f) \mid T N$ we obtain an immersion of N into $P \times \mathbf{R}$ and its Gauss map $N \rightarrow S^{n}$, which is denoted by $G(f)$. If P is \mathbf{R}^{n} (resp. S^{n}), then the degree of $G(f)$ is nothing but $\mathrm{D}^{\text {fold }}(f)\left(\right.$ resp. $\left.\mathrm{D}^{\text {fold }}(f)+\operatorname{deg}(f)\right)$. In fact, if $P=S^{n}$, then let $c_{0}(f)$ be the map defined by $c_{0}(f)(x)=\left(x,\left[\mathbf{R}^{n} \times 0\right]\right)$. The degree of $G(f)$ is equal to the difference cocycle $d\left(c_{0}(f), s_{1}(\mathcal{T}(f))\right)=d\left(c_{0}(f), s_{0}(f)\right)+d\left(s_{0}(f), s_{1}(\mathcal{T}(f))\right)$ and $d\left(c_{0}(f), s_{0}(f)\right)$ is equal to the degree of f. It is known that if n is even, then the degree of $G(f)$ is equal to $(1 / 2) \chi(N)$ (see, for example, [L2, Theorem 2]).

We shall show that the fold-degree is nontrivial in odd dimensions. Let $p: S O(n+1) \rightarrow S^{n}$ be the map sending a rotation T of $S O(n+1)$ onto its first column vector. The following lemma is well known ([Ste, 8.6 Theorem and 23.5 Corollary]).

Lemma 8.1. The image of $\left(p_{*}\right)_{n}: \pi_{n}(S O(n+1)) \rightarrow \pi_{n}\left(S^{n}\right)=\mathbf{Z}$ is the whole integers \mathbf{Z} if $n=1,3$ or 7 and is $2 \mathbf{Z}$ if n is odd other than 1,3 and 7 .

Proposition 8.2. Let N and P be the manifolds as above of odd dimension n other than 1 and $f: N \rightarrow P$ be a fold-map. Then we have the following.
(1) If n is not 1,3 or 7 , then any integer of $\mathrm{D}^{\text {fold }}(f)+2 \mathbf{Z}$ can be a fold-degree of a fold-map homotopic to f.
(2) If n is 3 or 7 , then any integer of \mathbf{Z} can be a fold-degree of a fold-map homotopic to f.

Proof. Let m be any integer (resp. even integer) for the case (2) (resp. (1)). There exists a section s of $S^{n}\left(f^{*}\left(T P \oplus \theta_{P}\right)\right)$ such that the difference cocycle $d\left(s_{1}(\mathcal{T}(f)), s\right)=m$ by [Ste, 37.5]. By the assumption there is a map $m^{\prime}: N \rightarrow S O(n+1)$ with degree of $p \circ m^{\prime}$ being m by Lemma 8.1. We here have a bundle map $b_{m}: T N \oplus \theta_{N} \rightarrow T N \oplus \theta_{N}$ coming from m^{\prime}. For the bundle homomorphism $\mathcal{T}(f): T N \oplus \theta_{N} \rightarrow T P \oplus \theta_{P}$, consider the composition $\mathcal{T}(f) \circ b_{m}: T N \oplus \theta_{N} \rightarrow T P \oplus \theta_{P}$ such that $s_{1}\left(\mathcal{T}(f) \circ b_{m}\right)$ is homotopic to s. By Theorem 4.1 there is a fold-map g such that $\mathcal{T}(g)$ is homotopic to $\mathcal{T}(f) \circ b_{m}$ and that $\mathrm{D}^{\text {fold }}(g)=\mathrm{D}^{\text {fold }}(f)+m$ by

$$
\begin{aligned}
\mathrm{D}^{\text {fold }}(g) & =d\left(s_{0}(g), s_{1}(\mathcal{T}(g))\right) \\
& =d\left(s_{0}(f), s_{1}(\mathcal{T}(f))\right)+d\left(s_{1}(\mathcal{T}(f)), s\right) \\
& =\mathrm{D}^{\text {fold }}(f)+m .
\end{aligned}
$$

Corollary 8.3. Suppose $N=P$ in addition to the hypothesis of Proposition 8.2. Consider the identity of P. Then we have the following.
(1) If n is not 1,3 or 7, then any even integer can be a fold-degree of a fold-map homotopic to the identity of P.
(2) If n is 3 or 7, then any integer can be a fold-degree of a fold-map homotopic to the identity of P.

Proof. By Proposition 8.2 it is enough to prove that the fold-degree of $i d_{P}$ is equal to 0 . This follows from the fact that $\mathcal{T}\left(i d_{P}\right)$ is homotopic to the identity of $T P \oplus \theta_{P}$, which is a consequence of the property that $i_{n}\left(E_{n+1}\right)$ is equal to $j_{0}^{2} \sigma$ with $\sigma\left(x_{1}, \ldots, x_{n}\right)=(1 / n)\left(x_{1}, \ldots, x_{n}\right)$ (see [An3, Section 2]).

Example 8.4. A 2 -jet $z=j_{0}^{2} f \in \Omega^{10}(1,1)$ is represented by the coordinates $\left(f^{\prime}(0), f^{\prime \prime}(0)\right) \in \mathbf{R}^{2} \backslash\{(0,0)\}$. Recall the embedding $i_{1}: S O(2) \rightarrow$ $\Omega^{10}(1,1)$, which sends $R(\theta)$ to $(\cos \theta,-\sin \theta) \in \Omega^{10}(1,1)$ by [An3, Section 2]. We here consider fold-maps f of S^{1} into S^{1} or \mathbf{R}. The map $\mathcal{T}(f)$ is identified with the following map $R \circ \theta: S^{1} \rightarrow S O(2)$. First $\pi_{\Omega}\left(j_{x}^{2} f\right) \in \Omega^{10}(1,1)$ has the coordinates $\left(f^{\prime}(x), f^{\prime \prime}(x)\right)$. Define the angle $\theta(x)$ by $(\cos \theta(x),-\sin \theta(x))=$ $\left(f^{\prime}(x), f^{\prime \prime}(x)\right) /\left\|\left(f^{\prime}(x), f^{\prime \prime}(x)\right)\right\|$. Then it follows from the definition of $i_{1}: S O(2)$ $\rightarrow \Omega^{10}(1,1)$ in [An2, Section 5] and [An3, Section 2] that $R \circ \theta: S^{1} \rightarrow S O(2)$ is homotopic to $i_{1}{ }^{-1} \circ R_{1} \circ \pi_{\Omega} \circ j^{2} f: S^{1} \rightarrow S O(2)$ with

$$
R \circ \theta(x)=\left(\begin{array}{cc}
\cos \theta(x) & -\sin \theta(x) \\
\sin \theta(x) & \cos \theta(x)
\end{array}\right) .
$$

(1) If $f: S^{1} \rightarrow \mathbf{R}$ is defined by $f(x)=\cos x$, then $\theta(x)=\pi / 2+x$. Hence, we have that $\mathrm{D}^{\text {fold }}(f)=1$.
(2) Let $f: S^{1} \rightarrow S^{1}$ be a fold-map of degree 1 . Let a_{1} be the generator of $H^{1}\left(F^{1} ; \mathbf{Z} / 2 \mathbf{Z}\right) \cong \mathbf{Z} / 2 \mathbf{Z}$. We can prove that $\mathrm{D}^{\text {fold }}(f)$ or $\sharp S(f) / 2$ modulo 2 , where \sharp denotes the number of fold singularities, is equal to $\omega_{1}(f)^{*}\left(a_{1}\right) \in$ $H^{1}\left(S^{1} ; \mathbf{Z} / 2 \mathbf{Z}\right)$ in Corollary 5. More generally, consider a fold-map $f: N \rightarrow P$ of degree 1. The element $\omega_{1}(f)^{*}\left(a_{1}\right)$ is identified with the element of $\operatorname{Hom}\left(H_{1}(P\right.$; $\mathbf{Z} / 2 \mathbf{Z}), \mathbf{Z} / 2 \mathbf{Z})$. Any element $u \in H_{1}(P ; \mathbf{Z} / 2 \mathbf{Z})$ has an embedding $i_{u}: S^{1} \rightarrow$ P with $\left(i_{u}\right)_{*}\left(\left[S^{1}\right]\right)=u$ such that i_{u} is transverse to $f(S(f))$ and does not intersect with the subset in $f(S(f))$ consisting of double points of $f \mid S(f)$. Let $S_{u}=i_{u}\left(S^{1}\right)$ and S_{N} be the manifold $f^{-1}\left(S_{u}\right)$, which may not be connected. Then $i_{u}^{-1} \circ f \mid S_{N}: S_{N} \rightarrow S^{1}$ is a fold-map of degree 1. Then we have that $\omega_{1}(f)^{*}\left(a_{1}\right)(u)$ is equal to $\sharp S\left(i_{u}^{-1} \circ f \mid S_{N}\right) / 2$ modulo 2 .

We shall give an outline of the proof. Recall the notations in Section 3 and the definition of ω exactly before Lemma 3.5. Let $\nu_{S_{u} \subset P}$ be the normal bundle of S_{u} in P. We identify $D\left(\nu_{S_{u} \subset P}\right)$ with a tubular neighborhood of S_{u} in P. Similarly we have the normal bundle $\nu_{S_{N} \subset N}$ and a tubular neighborhood $D\left(\nu_{S_{N} \subset N}\right)$ of S_{N} in N with natural bundle maps $\nu_{S_{N} \subset N} \rightarrow \nu_{S_{u} \subset P}$ and $D\left(\nu_{S_{N} \subset N}\right) \rightarrow D\left(\nu_{S_{u} \subset P}\right)$ induced from f. We can construct the collapsing maps $\mathbf{a}_{N}: T\left(\nu_{N}\right) \rightarrow T\left(\left.\nu_{N}\right|_{S_{N}} \oplus \nu_{S_{N} \subset N}\right)$ and $\mathbf{a}_{P}: T\left(\nu_{P}\right) \rightarrow T\left(\left.\nu_{P}\right|_{S_{u}} \oplus \nu_{S_{u} \subset P}\right)$ by collapsing $T\left(\left.\nu_{N}\right|_{N \backslash \operatorname{Int} D\left(\nu_{S_{N} \subset N}\right)}\right)$ and $T\left(\left.\nu_{P}\right|_{P \backslash \operatorname{Int} D\left(\nu_{S_{u} \subset P}\right)}\right)$ respectively. Let $h: \nu_{P} \rightarrow \nu_{P}$ be an automorphism such that $T(h)_{*}\left(\left[\alpha_{P}\right]\right)=T(\nu(f))_{*}\left(\left[\alpha_{N}\right]\right)$ and that $h \oplus i d_{\theta_{P}^{k}} \simeq i d_{\nu_{P}} \oplus h_{\beta}$. Then we have that $\left.h\right|_{S_{u}} \oplus i d_{\nu_{S_{u} \subset P}} \oplus i d_{\theta_{S_{u}}^{k}} \simeq$ $i d_{\nu S_{u}} \oplus h_{\beta \circ i_{u}}$ and that

$$
\begin{aligned}
\left(\mathbf{a}_{P}\right)_{*} \circ T(h)_{*}\left(\left[\alpha_{P}\right]\right) & =T\left(\left.h\right|_{S_{u}} \oplus i d_{\nu_{S_{u} \subset P}}\right)_{*} \circ\left(\mathbf{a}_{P}\right)_{*}\left(\left[\alpha_{P}\right]\right) \\
& =T\left(\left.h\right|_{S_{u}} \oplus i d_{\nu_{S_{u} \subset P}}\right)_{*}\left(\left[\alpha_{S_{u}}\right]\right) \\
\left(\mathbf{a}_{P}\right)_{*} \circ T(\nu(f))_{*}\left(\left[\alpha_{N}\right]\right) & =T\left(\left.\nu(f)\right|_{S_{N}} \oplus i d_{\nu_{S_{N} \subset N}}\right)_{*} \circ\left(\mathbf{a}_{N}\right)_{*}\left(\left[\alpha_{N}\right]\right) \\
& =T\left(\left.\nu(f)\right|_{S_{N}} \oplus i d_{\nu_{S_{N} \subset N}}\right)_{*}\left(\left[\alpha_{S_{N}}\right]\right) .
\end{aligned}
$$

Since $\omega(f)=[\beta]$ by the definition of ω, we have that

$$
\left(i_{u}\right)^{*} \circ \omega(f)=i_{u}^{*}([\beta])=\left[\beta \circ i_{u}\right]=\omega\left(i_{u}^{-1} \circ f \mid S_{N}\right) \in\left[S^{1}, S G\right]
$$

where $i_{u}^{*}:[P, S G] \rightarrow\left[S^{1}, S G\right]$. Furthermore, $\omega\left(i_{u}^{-1} \circ f \mid S_{N}\right)^{*}\left(a_{1}\right)\left(\left[S^{1}\right]\right)$ is identified with $\sharp S\left(i_{u}^{-1} \circ f \mid S_{N}\right) / 2$ modulo 2 .

Remark 8.5. Since the C^{∞}-equivalence classes of fold-germs in $\Omega^{10}(1,1)$ are $x \mapsto \pm x^{2}$, it follows that the fold-degree of f must be positive. This positiveness is essentially suggested to the author by Professor O. Saeki.

Department of Mathematics
Faculty of Science
Yamaguchi University
Yamaguchi 753-8512, Japan
e-mail: andoy@po.cc.yamaguchi-u.ac.jp

References

[Ad] J. F. Adams, On the groups $J(X)$ I-IV, Topology, 2 (1963), 181-195; 3 (1964), 137-171, 193-222; 5 (1966), 21-71.
[An1] Y. Ando, On the elimination of Morin singularities, J. Math. Soc. Japan, 37 (1985), 471-487.
[An2] Y. Ando, The homotopy type of the space consisting of regular jets and folding jets in $J^{2}(n, n)$, Japanese J. Math., 24 (1998), 169-181.
[An3] Y. Ando, Folding maps and the surgery theory on manifolds, to appear in J. Math. Soc. Japan.
[At1] M. F. Atiyah, Thom complexes, Proc. London Math. Soc., 11 (1961), 291-310.
[At2] M. F. Atiyah, K-theory, Benjamin, 1969.
[Bo] J. M. Boardman, Singularities of differentiable maps, IHES Publ. Math., 33 (1967), 21-57.
[Br1] W. Browder, The Kervaire invariant of framed manifolds and its generalization, Ann. of Math., 90 (1969), 157-186.
[Br2] W. Browder, Surgery on Simply-Connected Manifolds, Springer-Verlag, 1972.
[E] J. M. Èliašberg, On singularities of folding type, Math USSR. Izv., 4 (1970), 1119-1134.
[G1] M. Gromov, Stable mappings of foliations into manifolds, Math. USSRIzv., 3 (1969), 671-694.
[G2] M. Gromov, Partial Differential Relations, Springer-Verlag, 1986.
[H1] M. W. Hirsch, Immersions of manifolds, Trans. Amer. Math. Soc., 93 (1959), 242-276.
[H2] M. W. Hirsch, Differential Topology, Springer-Verlag, 1976.
$[\mathrm{K}-\mathrm{M}]$ M. Kervaire and J. Milnor, Groups of homotopy spheres I, Ann. of Math., 77 (1963), 504-537.
[K-N] S. Kobayashi and K. Nomizu, Foundations of Differential Geometry, Vol. 1, Interscience Publishers, 1963.
[L1] H. I. Levine, Singularities of differentiable maps, Proc. Liverpool Singularities Symposium, Springer Lecture Notes 192, 1971, 1-85.
[L2] H. I. Levine, Blowing up singularities, Proc. Liverpool Singularities Symposium, Springer Lecture Notes 209, 1971, 90-103.
[M] J. P. May, The homology of E_{∞} ring spaces, Springer Lecture Notes 533, 1976, 69-206.
[M-M] I. Madsen and R. J. Milgram, The Classifying Spaces for Surgery and Cobordism of Manifolds, Princeton, 1979.
[M-S] J. Milnor and E. Spanier, Two remarks on fiber homotopy type, Pacific J. Math., 10 (1960), 585-590.
[Sa] O. Saeki, Topology of special generic maps into \mathbf{R}^{3}, Mat. Contemp., $\mathbf{5}$ (1993), 161-186.
[Sp1] E. Spanier, Infinite symmetric products, function spaces, and duality, Ann. of Math., 69 (1959), 142-198.
[Sp2] E. Spanier, Function spaces and duality, Ann. of Math., 70 (1959), 338-378.
[Ste] N. Steenrod, The Topology of Fibre Bundles, Princeton Univ. Press, 1951.
[Su] D. Sullivan, Triangulating Homotopy Equivalences, Thesis, Princeton Univ., 1965.
[To] H. Toda, Composition methods in homotopy groups of spheres, Ann. of Math. Stud. 49, 1962, Princeton.
[Tsu] A. Tsuchiya, Characteristic classes for spherical fiber spaces, Nagoya Math. J., 43 (1971), 1-39.
[W1] C. T. C. Wall, Poincaré complexes: I, Ann. of Math., 86 (1967), 213245.
[W2] C. T. C. Wall, Surgery on Compact Manifolds, Academic Press, London and New York, 1970.

[^0]: Communicated by Prof. G. Nishida, February 8, 2000
 Revised August 9, 2000
 *This research was partially supported by Grant-in-Aid for Scientific Research (No. 11640081), Ministry of Education, Science and Culture, Japan.

