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A fixed point formula for compact almost
complex manifolds

By

Kenji Tsuboi

Abstract

In this paper, using the group structures of the spheres S1, S3 and
the results of Atiyah-Patodi-Singer, Donnelly and Morita, we introduce a
fixed point formula for periodic automorphisms of compact almost com-
plex manifolds. Our main result is Theorem 1.3. The theorem is refined
for a certain case if the almost complex manifold admits an Einstein-
Kähler metric.

1. Introduction and Main Theorem

Let M be a compact 2m-dimensional almost complex manifold with the
almost complex structure J and P → M the associated principal GL(m; C)-
bundle of M . We call a diffeomorphism ψ : M −→ M an automorphism of
M if ψ commutes with J and denote the topological group consisting of all
automorphisms of M by A(M). The group A(M) naturally acts on P on the
left.

Definition 1.1. Let S(n) be the set of symmetric homogeneous poly-
nomials in x1, x2, . . . , xm of order n with integral coefficients. Let

φ = φ(τ1, τ2, . . . , τm)

be any element of S(n) where τj = σj(x1, x2, . . . , xm) is the j-th elmentary
symmetric polynomial in {xi}mi=1, whose degree is equal to j. Let Vφ be the
element of the representation ring R(GL(m; C)) of GL(m; C) defined by

Vφ = φ(τ1, τ2, . . . , τm) ∈ R(GL(m; C))
⊂ R(T m) = Z[t1, t−1

1 , t2, t
−1
2 , . . . , tm, t

−1
m ],

where T m is the maximal torus of GL(m; C), ti : T m → S1 is the i-th factor
projection and τj = σj(t1−1, t2−1, . . . , tm−1) is the j-th elementary symmetric
polynomial in t1 − 1, t2 − 1, . . . , tm − 1. Note that σj = σj(t1, t2, . . . , tm) is
isomorphic to the GL(m; C)-representation ∧jCm. Hence, setting

φ̂(σ1, σ2, . . . , σm) = φ(τ1, τ2, . . . , τm) ,
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2 Kenji Tsuboi

we have
Vφ = φ̂(∧1

C
m,∧2

C
m, . . . ,∧mC

m) ∈ R(GL(m; C)) .

Using this virtual GL(m; C)-representation Vφ, we can define a virtual complex
vector bundle Eφ on M by

Eφ = P ×GL(m;C) Vφ = φ̂(∧1TM,∧2TM, . . . ,∧mTM) ∈ K(M)(1.1)

where TM is the tangent bundle of M and K(M) is the K-group of M . Then
the action of A(M) on P naturally defines the action of A(M) on Eφ and Eφ
is a virtual complex A(M)-vector bundle.

Definition 1.2. Let a be any periodic element of A(M), G the cyclic
subgroup of A(M) generated by a and Ω the fixed point set of a consisting of
compact connected submanifolds N of M . Then the restriction of J defines an
almost complex structure of N and the Todd class Td(TN) of TN is defined
by

Td(TN) =
d∏
k=1

xk
1− e−xk

∈ H∗(N ; C),

where 2d is the dimension of N and
∏d
k=1(1 + xk) equals to the total Chern

class of TN . Note that Td(TN) = 1 if N is a point. On the other hand,
a complex G-vector bundle E over N is decomposed into the direct sum of
subbundles

E = E1 ⊕ E2 ⊕ · · · ⊕Es,
where a acts on the subbundle Ej via multiplication by e

√−1θj . Then we can
define the characteristic class Ch(E, a) by

Ch(E, a) =
s∑
j=1

e
√−1θj Ch(Ej) ∈ H∗(N ; C),

where Ch(Ej) is the Chern character of Ej . This definition is extended to the
case of virtual vector bundles by

Ch(E − F, a) = Ch(E, a)− Ch(F, a) ∈ H∗(N ; C)

and Ch(∗ , a) defines a ring homomorphism

Ch(∗ , a) : K(N) −→ H∗(N ; C) ,

namely, satisfies the following equalities:

Ch(E ± F, a) = Ch(E, a)± Ch(F, a) , Ch(E ⊗ F, a) = Ch(E, a) Ch(F, a) .
(1.2)

We can also define the characteristic class U(E, a) by

U(E, a) =
s∏
j=1

rj∏
k=1

1
1− e−xk−

√−1θj
∈ H∗(N ; C),

where rj = rank(Ej) and
∏rj

k=1(1 + xk) equals to the total Chern class of Ej .
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A fixed point formula 3

Our main result is the following theorem.

Theorem 1.3. Let � be 0, 1 or 2 and φ any element of S(n). Let ψ be
any periodic element of A(M) and assume that the order of ψ is p. Let γ be
any natural number which is prime to p. Let Ω(k) be the fixed point set of ψk

(1 � k � p− 1) consisting of compact connected almost complex manifolds N ,
ν(N,M) the normal bundle of N in M and [N ] the fundamental cycle of N .
Then the equality

p−1∑
k=1

C�(k, γ)
∑

N⊂Ω(k)

Ch(Eφ|N , ψk) Td(TN) U(ν(N,M), ψk)[N ] ≡ 0 (mod p)

holds for any n > m+ �, where

C0(k, γ) = 1 , C1(k, γ) =
1

1− e−2π
√−1γk/p

, C2(k, γ) =
1

|1− e−2π
√−1γk/p|2 .

Let N be a connected component of the fixed point set of the action of
a periodic automorphism a of M . Assume that the restriction of the tangent
bundle TM to N splits into the direct sum of complex line bundles

TM |N = L1 ⊕ · · · ⊕ Lm
where a acts on Lj via multiplication by e

√−1θj . Let σj be the j-th elemen-
tary symmetric polynomial in {e

√−1θjec1(Lj)}mj=1 and τj the j-th elementary
symmetric polynomial in {e

√−1θjec1(Lj) − 1}mj=1. Then since

Ch(Lj , a) = e
√−1θjec1(Lj) ,

it follows from (1.1) and (1.2) that

Ch(Eφ|N , a) = φ̂(σ1, σ2, . . . , σm) = φ(τ1, τ2, . . . , τm) .(1.3)

The next corollary is deduced from Theorem 1.3 and (1.3).

Corollary 1.4. Assume that Ω(k) in Theorem 1.3 consists of points
{qs}N(k)

s=1 for any k. Then the automorphism ψk acts on the tangent space Tqs
M

via multiplication by some periodic diagonal unitary matrix, which we assume
is the diagonal matrix with diagonal entries {e 2π

√−1hk
js/p}mj=1 (hkjs ∈ Z). Let

τj be the j-th elementary symmetric polynomial in {e 2π
√−1hk

js/p−1}mj=1. Then
under the notation in Theorem 1.3, the equality

p−1∑
k=1

C�(k, γ)
N(k)∑
s=1

φ(τ1, τ2, . . . , τm)
m∏
j=1

1

1− e−2π
√−1hk

js/p
≡ 0 (mod p)

holds for any n > m+ �.
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Proof. For any qs ∈ Ω(k), the tangent space Tqs
M splits into the direct

sum of m-copies of C1

Tqs
M = C

1
1 ⊕ C

1
2 ⊕ · · · ⊕ C

1
m,

where ψk acts on C1
j via multiplication by e 2π

√−1hk
js/p. Hence it follows from

(1.3) that
Ch(Eφ|qi

, ψk) = φ(τ1, τ2, . . . , τm),

where τj is the j-th elementary symmetric polynomial in {e 2π
√−1hk

js/p−1}mj=1.
Moreover, since Td(Tqs) = 1 for any s, the equality in Corollary 1.4 immedi-
ately follows from the equality in Theorem 1.3.

Remark 1.5. As we will see in Remarks 3.3 and 4.2, the equality in
Theorem 1.3 does not hold in general if n = m+ �.

Remark 1.6. The author does not know whether the equality in The-
orem 1.3 holds for � � 3 by introducing some appropriate C�(k, γ).

2. Proof of the Theorem

In this section we give the proof of Theorem 1.3. Let G be the cyclic
subgroup of A(M) generated by ψ. We give a G-invariant Hermitian metric on
M and let Q −→ M be the subbundle of P consisting of unitary frames with
respect to the metric. Let ∇ be a G-invariant connection in Q. Then since Vφ is
considered as a virtual representation of U(m) and Eφ equals to Q×U(m)Vφ, the
natural U(m)-invariant inner product in Vφ defines a G-invariant inner product
in Eφ and ∇ defines a unitary connection of Eφ. The connection ∇ also defines
a G-invariant connection of the half spinor bundles S± = Q×U(m)
± over M
where 
± are the half spin representations of spinc(2m). (For details of spinor
bundles and spinc-Dirac operators, see [6].) Using the connections defined
above, we can define the G-equivariant spinc-Dirac (Dolbeault) operator

D : Γ(S+ ⊗ Eφ) −→ Γ(S− ⊗ Eφ)
and it follows from the Riemann-Roch theorem (see (4.3) in [2]) that

Index(D) := dim ker(D)− dim coker(D) =
∫
M

Ch(Eφ,∇) Td(TM,∇),(2.1)

where Ch(Eφ,∇) is the Chern character form of Eφ with respect to ∇, Td(TM,
∇) is the Todd form of TM with respect to ∇. Here for any 1 � j � m, we
can see that

Ch(∧jTM,∇) = σj(ex1 , ex2 , . . . , exm),

where by definition the j-th Chern form cj(TM,∇) is the j-th elementary
symmetric polynomial in x1, x2, . . . , xm. Hence it follows from (1.1) and (1.2)
that

Ch(Eφ,∇) = φ̂(σ1, σ2, . . . , σm) = φ(τ1, τ2, . . . , τm)
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where τj is the j-th elementary symmetric polynomial in ex1 − 1, ex2 − 1, . . . ,
exm − 1 for 1 � j � m. Since

τj = σj(ex1 − 1, ex2 − 1, . . . , exm − 1)(2.2)
= σj(x1, x2, . . . , xm) + higher order terms
= cj(TM,∇) + higher order terms ,

we have

Ch(Eφ,∇) = φ(c1(TM,∇), c2(TM,∇), . . . , cm(TM,∇)) + higher order terms

and therefore it follows that∫
M

Ch(Eφ,∇)Td(TM,∇) = 0(2.3)

because the order of φ is greater than m and the dimension of M is 2m. On
the other hand, it follows from (4.6) in [2] that

Index(D,ψk) := Tr(ψk|ker(D))− Tr(ψk|coker(D))(2.4)

=
∑

N⊂Ω(k)

Ch(Eφ|N , ψk)Td(TN)U(ν(N,M), ψk)[N ]

for 1 � k � p− 1. Now let V be any finite dimensional complex G-module and
β an eigenvalue of ψ|V . Then since βp = 1, it follows that

p∑
k=1

βk ≡ 0 (mod p)

and hence it follows that

p∑
k=1

Tr(ψk|V ) ≡ 0 (mod p) .(2.5)

Therefore we have

p∑
k=1

Index(D,ψk) ≡ 0 (mod p)

and hence it follows from (2.1), (2.3) and (2.4) that

p−1∑
k=1

∑
N⊂Ω(k)

Ch(Eφ|N , ψk) Td(TN)U(ν(N,M), ψk)[N ]

=
p−1∑
k=1

Index(D,ψk) =
p∑
k=1

Index(D,ψk) ≡ 0 (mod p)
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6 Kenji Tsuboi

because Index(D,ψp) = Index(D) = 0. This completes the proof of the equality
in Theorem 1.3 for � = 0.

Now assume that � = 1 or 2 and let D2� and ∂D2� = S2�−1 be the unit
disk and the unit sphere in C

� respectively. Let H be the set of quaternions,
which is identified with C2 as follows:

H � a+ bi+ cj + dk = (a+ bi) + (c+ di)j ←→ (a+ bi, c+ di) ∈ C
2 .

Then C1 is contained in H by a+ bi = a+ bi+ 0j + 0k. Let α := e2π
√−1/p be

the primitive p-th root of 1. Then G acts on H by ψ · h = hαγ (h ∈ H), which
corresponds to the SU(2)-transformation

C
2 � (z1, z2) −→ (αγz1, αγz2) ∈ C

2

under the identification above because jαγ = αγj. This G-action defines G-
actions onD2�, S2�−1 for � = 1, 2. We give the standard metric on S2�−1, which
is G-invariant, and give a G-invariant Hermitian metric on D2� such that it is
a product metric of S2�−1 × [0, δ) near ∂D2� = S2�−1. Here since � equals to
1 or 2, the sphere S2�−1 has a group structure. Actually the group structure
of S3 is induced from the multiplication in the quaternions H and S1 is the
subgroup of S3 consisting of complex numbers. Using this group structure,
we can construct a global orthonormal frame field {F 1

A, F
2
A, F

3
A}A∈S3 on S3 as

follows:
F 1
A = i ·A , F 2

A = j ·A , F 3
A = k ·A ∈ H .

It is clear that {F 1
A}A∈S1 defines a global orthonormal frame field on S1. Now

considering the associativity of the multiplication in H, we can see that the
frame field above is invariant under the action of G. Hence the trivialization of
the tangent bundle TS3:

TS3 � (A,w = aF 1
A + bF 2

A + cF 3
A) −→ (A, (a, b, c)) ∈ S3 × R

3

(A ∈ S3, w ∈ TAS
3) is G-invariant and therefore the unique trivial spinc-

structure of S2�−1 is G-invariant. Moreover F 0
A := A defines the outward unit

normal vector field on S2�−1 and the trivialization of TD4|S3 :

TD4|S3 � (A, v = aF 0
A + bF 1

A + cF 2
A + dF 3

A)
−→ (A, ((a+ bi), (c+ di))) ∈ S3 × C

2

(A ∈ S3, v ∈ TAD
4) is G-invariant. Therefore the quotient (TS2�−1)/G is

the trivial real vector bundle and the quotient (TD2�|S2�−1)/G is the trivial
complex vector bundle.

Set X = M × D2� and Y = ∂X = M × S2�−1. Then the metric on M
and the metrics on D2�, S2�−1 define the G-invariant product metrics on X, Y
respectively and the G-actions on D2�, S2�−1 define the diagonal G-actions on
X, Y as follows:

ψ · (q , h) = (ψ · q , hαγ) (q ∈M, h ∈ H) .(2.6)
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Moreover the tangent bundle TX, TY splits as

TX = q∗XTM ⊕ r∗XTD
2� = q∗XTM ⊕ ε�C ,

TY = q∗Y TM ⊕ r∗Y TS
2�−1 = q∗Y TM ⊕ ε2�−1,

where qX : X −→ M , qY : Y −→ M denote the first factor projections,
rX : X −→ D2�, rY : Y −→ S2�−1 denote the second factor projections
and εk

C
(εk) denotes the trivial complex (real) vector bundle of rank k with

a G-invariant trivialization. Therefore spinc-structures on X, Y are defined
by the U(m)-structures q∗XQ, q

∗
YQ respectively and connections ∇X , ∇Y in

q∗XQ, q
∗
YQ are induced from the connection∇ inQ. These connections∇X , ∇Y

define G-invariant metric connections of TX, TY , which are the direct sum
of the connection ∇ of TM and the globally flat connections of the trivial
bundles. These connections ∇X , ∇Y also define G-invariant connections of the
half spinor bundles S±

X = q∗XQ×U(m)
± over X and a G-invariant connection
of the spinor bundle SY = S+

X |Y = S−
X |Y = q∗YQ×U(m)
 over Y where 
± are

the half spin representations of spinc(2m+2�) and 
 is the spin representation
of spinc(2m+ 2�− 1).

Set Eφ,X = q∗XEφ = q∗XQ ×U(m) Vφ and Eφ,Y = q∗Y Eφ = q∗YQ ×U(m) Vφ.
Then Eφ,X and Eφ,Y are virtual G-vector bundles with G-invariant unitary
connections ∇X , ∇Y and the restriction of Eφ,X to Y coincides with Eφ,Y .
Using the spinc-structures and the connections defined above, we can define
the G-equivariant spinc-Dirac operators

DX : Γ(S+
X ⊗ Eφ,X) −→ Γ(S−

X ⊗ Eφ,X) ,
DY : Γ(SY ⊗ Eφ,Y ) −→ Γ(SY ⊗ Eφ,Y ) .

Since the metric and the connection ∇X is product near ∂X = Y , DX can be
expressed as

DX = σ

(
∂

∂u
+ DY

)
on the collar Y × [0, δ) ⊂ X where u is the coordinate of [0, δ) and σ is a
bundle isomorphism defined by the Clifford multiplication (see [1]). Hence the
following equality is deduced from (4.3) in [1] (see also (4.6) in [2] and Lemma
3.5.4 in [6]):

Index(DX) =
∫
X

Ch(Eφ,X ,∇X)Td(TX,∇X)− 1
2
(ηY + dim kerDY ),(2.7)

where Index(DX) is the index of DX with a certain global boundary condition,
which is an integer, Ch(Eφ,X ,∇X) is the Chern character form of Eφ,X with
respect to ∇X , Td(TX,∇X) is the Todd form of TX with respect to ∇X and
ηY is the eta invariant of DY . (For details of eta invariants, see [1], [3].) Here
the same argument as was used to prove (2.3) shows that∫

X

Ch(Eφ,X ,∇X) Td(TX,∇X) = 0(2.8)
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because the order of φ is greater than m+ � and the dimension of X is 2m+2�.
Therefore it follows from (2.7) that

1
2
ηY = −Index(DX)− 1

2
dim kerDY .(2.9)

Let O be the origin of C
�. Then M is regarded as an almost complex

submanifold of X by the identification of M with M ×{O} and hence N is also
regarded as an almost complex submanifold of X. Note that the fixed point
set of the G-action on X is contained in M and coincides with the fixed point
set of the G-action on M . Let ν(N,X) be the normal bundle of N in X. Then
ν(N,X) is decomposed into the direct sum of complex subbundles

ν(N,X) = ν(N,M)⊕ ε�C = ⊕jνj(N,M)⊕ ε�C ,

where ψk acts on νj(N,M) via multiplication by e
√−1θj and acts on the trivial

complex line bundle ε�
C

= N × C� by

ψk · (q, (z1, . . . , z�)) =

{
(q, (αγkz1)) (� = 1) ,
(q, (αγkz1, αγkz2)) (� = 2)

(q ∈ N, (z1, . . . , z�) ∈ C�). Hence the following equality is deduced from The-
orem 1.2 in [3] (see also (4.6) in [2] and Lemma 3.5.4 in [6]):

Index(DX , ψ
k)(2.10)

=
∑

N⊂Ω(k)

Ch(Eφ|N , ψk)Td(TN)U(ν(N,M), ψk)C�(k, γ)[N ]

− 1
2
{ηY (ψk) + Tr(ψk|kerDY

)}

for 1 � k � p − 1, where Index(DX , ψ
k) is the index of DX with a certain

global boundary condition evaluated at ψk, namely,

Index(DX , ψ
k) := Tr(ψk|kerDX

)− Tr(ψk|coker DX
) ,

ηY (ψk) is the eta invariant of DY evaluated at ψk and

C1(k, γ) =
1

1− α−γk , C2(k, γ) =
1

1− α−γk
1

1− α−γk =
1

|1− α−γk|2 .

Note that Index(DX , ψ
p), ηY (ψp) coincide with Index(DX), ηY in (2.7) respec-

tively.
Since the restriction of the G-action to Y is free and preserves the metric

and the spinc-structure of Y , the quotient space MS = Y/G is a smooth man-
ifold with the metric and the spinc-structure inherited from those of Y . The
quotient space X/G also has the metric and the spinc-structure inherited from
those of X near ∂(X/G) = MS , whose restriction to MS coincides with those of
MS . Moreover the G-invariant metric connections ∇Y , ∇X of TY , TX define
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a metric connection ∇S of TMS , a unitary connection ∇X/G of T (X/G) near
MS respectively. We can show that MS is the boundary of an almost complex
manifold W as follows. Let ε1 be the normal bundle of S2�−1 in C�, which has
a G-invariant trivialization, and ε1S the quotient bundle (r∗Y ε

1)/G. Note that
both of ε1 and ε1S are trivial real line bundles. Since TS2�−1⊕ ε1 = TD2�|S2�−1

has the standard complex structure, which is invariant under the action of G,

TMS ⊕ ε1S ∼= (q∗Y TM ⊕ r∗Y TS2�−1 ⊕ r∗Y ε1)/G
∼= (q∗Y TM ⊕ r∗Y (TD2�|S2�−1))/G

has a complex structure. Hence the (2m+ 2�− 1)-dimensional compact mani-
fold MS is stably almost complex manifold and therefore it follows from the
result of Morita [8] that there exists a compact (2m+ 2�)-dimensional almost
complex manifold W such that ∂W = MS and W = X/G near MS as an
almost complex manifold with Hermitian metric. The Hermitian metric of X/G
near MS is extended to a Hermitian metric on W . Let QW be the principal
U(m+ �)-bundle of unitary frames on W . Then the connection ∇X/G extends
to a unitary connection ∇W in QW . On the other hand, we can see that
TW |MS

= (TX/G)|MS
is orthogonally decomposed into

TW |MS
∼= (q∗Y TM ⊕ r∗Y (TD2�|S2�−1))/G ∼= (TM)S ⊕ ε�C ,(2.11)

where (TM)S is the vector bundle over MS defined by (TM)S = (q∗Y TM)/G
and ε�

C
is the trivial complex line bundle of rank �. Then the connection ∇W

splits according to (2.11) as

∇W |TMS
= ∇X/G|TMS

= ∇(TM)S ⊕∇0,(2.12)

where ∇(TM)S denotes the connection of (TM)S naturally defined by ∇ and
∇0 denotes the globally flat connection of ε�

C
. Now let VWφ be the element of

the representation ring R(U(m+ �)) defined by

VWφ = φ(τ1, τ2, . . . , τm) ∈ R(U(m+ �))

⊂ Z[t1, t−1
1 , . . . , tm, t

−1
m , . . . , tm+�, t

−1
m+�] ,

where τj = σj(t1 − 1, . . . , tm − 1, tm+1 − 1, . . . , tm+� − 1) and set

EWφ = QW ×U(m+�) V
W
φ .

Then the connection ∇W naturally defines a unitary connection of EWφ and the
EWφ -valued spinc-Dirac operator DW is defined.

On the other hand, the quotient bundle Eφ,S = Eφ,Y /G is a virtual com-
plex vector bundle over MS with a unitary connection and the G-equivariant
Dirac operator DY naturally defines a differential operator DS , which is the
Eφ,S-valued spinc-Dirac operator on MS . Since QS = (q∗YQ)/G is the uni-
tary frame bundle associated to (TM)S , it follows from (2.11) and (2.12) that
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QW |MS
is reducible to QS with the connection. Since VWφ is isomorphic to Vφ

as a virtual U(m)-representation, it follows that

EWφ |MS
∼= (QW |MS

)×U(m+�) V
W
φ
∼= QS ×U(m) V

W
φ
∼= QS ×U(m) Vφ

∼= q∗Y (Q×U(m) Vφ)/G = (q∗YEφ)/G = Eφ,Y /G = Eφ,S ,

where ∼= denotes the isomorphism as a virtual vector bundle with an inner
product and a unitary connection. Hence, on the collar MS × [0, δ) ⊂W , DW

can be expressed as

DW = σ

(
∂

∂u
+ DS

)
,

where u is the coordinate of [0, δ) and σ is a bundle isomorphism defined by
the Clifford multiplication. Hence the following equality is deduced from (4.3)
in [1] as well as in (2.7):

Index(DW ) =
∫
W

Ch(EWφ ,∇W )Td(TW,∇W )− 1
2
(ηS + dim kerDS),(2.13)

where Index(DW ) is the index of DW with a certain global boundary condition,
Ch(EWφ ,∇W ) is the Chern character form of EWφ , Td(TW,∇W ) is the Todd
form of TW and ηS is the eta invariant of DS . Here since the spinc-structure
of MS comes from the U(m)-structure of Y which is naturally defined by that
of M , the spinor bundle SMS

= SY /G on MS splits into SMS
= S+

MS
⊕ S−

MS

and DS splits into DS = D+
S ⊕D−

S , where

D+
S : Γ(S+

MS
⊗ Eφ,S) −→ Γ(S−

MS
⊗ Eφ,S) ,

D−
S = (D+

S )∗ : Γ(S−
MS
⊗ Eφ,S) −→ Γ(S+

MS
⊗ Eφ,S) .(2.14)

Hence we have

dim kerDS = dim kerD+
S + dim kerD−

S .

On the other hand, since the dimension of Y is odd, it follows that

Index(D+
S ) = dim kerD+

S − dim ker(D+
S )∗ = 0(2.15)

(see Proposition 9.2 in [2]). Therefore we have

dim kerD−
S = dim ker(D+

S )∗ = dim kerD+
S

and hence it follows that

1
2

dim kerDS = dim kerD+
S ≡ 0 (mod Z) .

Moreover it follows from (3.6) in [3] that

1
2
ηS =

1
p

p∑
k=1

1
2
ηY (ψk) .



�

�

�

�

�

�

�

�

A fixed point formula 11

Hence it follows from (2.13) that

1
p

p−1∑
k=1

1
2
ηY (ψk) +

1
p

1
2
ηY ≡

∫
W

Ch(EWφ ,∇W )Td(TW,∇W ) (mod Z) .

(2.16)

Here it follows from (2.9) and (2.10) that

1
p

p−1∑
k=1

1
2
(ηY (ψk)) +

1
p

1
2
ηY(2.17)

=
1
p

p−1∑
k=1

C�(k, γ)
∑

N⊂Ω(k)

Ch(Eφ|N , ψk)Td(TN)U(ν(N,M), ψk)[N ]

− 1
p

p∑
k=1

Index(DX , ψ
k)− 1

p

p∑
k=1

1
2
Tr(ψk|kerDY

) .

Here since the spinc-structure of Y comes from the U(m)-structure of M , the
spinor bundle SY splits into SY = S+

Y ⊕S−
Y and DY splits into DY = D+

Y ⊕D−
Y

where

D+
Y : Γ(S+

Y ⊗ Eφ,Y ) −→ Γ(S−
Y ⊗ Eφ,Y ) ,

D−
Y = (D+

Y )∗ : Γ(S−
Y ⊗ Eφ,Y ) −→ Γ(S+

Y ⊗ Eφ,Y )

as in (2.14). Here since ψk (1 ≤ k ≤ p− 1) acts freely on Y , it follows from the
fixed point formula in [2] that

Index(D+
Y , ψ

k) := Tr(ψk|kerD+
Y
)− Tr(ψk|ker(D+

Y )∗) = 0

for any 1 � k � p− 1. Moreover, since the dimension of Y is odd, it follows as
in (2.15) that

Index(D+
Y ) = Tr(ψp|kerD+

Y
)− Tr(ψp|ker(D+

Y )∗) = 0

and hence that
p∑
k=1

1
2
Tr(ψk|kerDY

) =
p∑
k=1

1
2
{Tr(ψk|kerD+

Y
) + Tr(ψk|kerD−

Y
)}

=
p∑
k=1

1
2
{Tr(ψk|kerD+

Y
) + Tr(ψk|ker(D+

Y )∗)} =
p∑
k=1

Tr(ψk|kerD+
Y
) .

Therefore it follows from (2.5) that

p∑
k=1

Index(DX , ψ
k) +

p∑
k=1

1
2
Tr(ψk|kerDY

)(2.18)

=
p∑
k=1

Index(DX , ψ
k) +

p∑
k=1

Tr(ψk|kerD+
Y
) ≡ 0 (mod p) .
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Hence it follows from (2.16), (2.17) and (2.18) that

1
p

p−1∑
k=1

C�(k, γ)
∑

N⊂Ω(k)

Ch(Eφ|N , ψk)Td(TN)U(ν(N,M), ψk)[N ](2.19)

≡
∫
W

Ch(EWφ ,∇W )Td(TW,∇W ) (mod Z) .

Here the same argument as was used to prove (2.3) shows that∫
W

Ch(EWφ ,∇W )Td(TW,∇W ) = 0(2.20)

because the order of φ is greater than m+� and the dimension of W is 2m+2�.
Now the equality in Theorem 1.3 is deduced from (2.19) and (2.20). This
completes the proof of Theorem 1.3.

3. Examples

In this section, applying Theorem 1.3, we give certain fixed point formulae
for the standard torus T 2, the sphere S6 and the complex projective space
CPm, which can be verified by direct computation.

Example 3.1. Let T 2 be the standard torus defined by T 2 = C/(Z +√−1 Z). Let ψ be the automorphism of T 2 defined by the π/2-rotation with
center at (1 + i)/2. Then the order of ψ is 4 and the fixed point set Ω(k) of ψk

is as follows:

Ω(1) = Ω(3) =
{
A =

1 + i

2
, B = 1 + i

}
,

Ω(2) =
{
A =

1 + i

2
, B = 1 + i, C =

1
2

+ i, D = 1 +
i

2

}
.

Set � = 2, γ = 3 and φ = xn1 = τn1 ∈ S(n). Since ψk acts on TAT
2, TBT 2 via

multiplication by ik for 1 � k � 3 and ψ2 acts on TCT 2, TDT 2 via multiplication
by −1, it follows from Corollary 1.4 that the equality

1
|1− i−3|2

(
2(i− 1)n

1
1− i−1

)
(3.1)

+
1

|1− i−6|2
(

2(i2 − 1)n
1

1− i−2
+ 2(−1− 1)n

1
1− (−1)−1

)

+
1

|1− i−9|2
(

2(i3 − 1)n
1

1− i−3

)
≡ 0 (mod 4)

holds for any n > m + � = 3. The equality above can be easily verified as
follows:

the left-hand side of (3.1) = i(i− 1)n−1 + (−2)n + (i(i− 1)n−1)
= 2Re

(
i(i− 1)n−1

)
+ (−2)n ≡ 0 (mod 4),
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where Re denotes the real part because we can show that both of the real part
and the imaginary part of i(i− 1)n−1 are even for n � 3 by induction.

Example 3.2. Let O = H ⊕ H be the set of octonions with multipli-
cation defined by the rule

x · x′ = (q1, q2) · (q′1, q′2) ≡ (q1q′1 − q′2q2 , q′2q1 + q2q′1)

for any x, x′ ∈ O (see [7]). The conjugation x and the real part Re(x) of
x = (q1, q2) ∈ O are defined by x = (q1,−q2) and Re(x) = Re(q1) respectively.
Moreover the standard Euclidean inner product 〈x, x′〉 and its norm |x| are
defined for x, x′ ∈ O by

〈x, x′〉 = Re(x · x′) = Re(x · x′) , |x| =
√
〈x, x〉 = √x · x =

√
x · x

respectively. The map

O � ((z1, z2), (z3, z4)) −→ (z1, z2, z3, z4) ∈ C
4

gives an isomorphism as a complex vector space. We denote ((z1, z2), (z3, z4))
by (z1, z2, z3, z4) hereafter. Let Im(O) be the set of pure imaginary octonions,
namely,

Im(O) = {x ∈ O |x = −x} ,
which is isomorphic to R7 as a real vector space and S6 the standard 6-
dimensional sphere defined by

S6 = {A = (z1, z2, z3, z4) ∈ Im(O) | |A| = |z1|2 + |z2|2 + |z3|2 + |z4|2 = 1} .
Then, for any point A ∈ S6, the tangent space TAS6 is given by

TAS
6 = {B ∈ Im(O) | 〈A,B〉 = 0} .

For any A ∈ S6, B ∈ TAS
6, set JA(B) = A · B. Then since the equality

x · (x · y) = (x · x) · y = |x|2y holds for any x, y ∈ O, we have

JA(JA(B)) = A · (A ·B) = −A · (A ·B) = −(A ·A) ·B = −|A|2B = −B ,
which implies that JA(B) ∈ TAS6 and J2

A = −1 because A · (A ·B) = B implies
that 〈A,A ·B〉 = Re(A · (A ·B)) = Re(B) = 0. Hence this J defines an almost
complex structure of S6. Let p be any natural number, α = e2π

√−1/p the
primitive p-th root of 1 and ψ the periodic C-linear map of O of order p defined
by

O � (q1, q2) = (z1, z2, z3, z4) −→ (q1, αq2) = (z1, z2, αz3, αz4) .

Then ψ maps S6 to S6 and we have

ψ(x) · ψ(y) = (q1, αq2) · (q′1, αq′2) = (q1q′1 − αq′2αq2 , αq′2q1 + αq2q′1)
= (q1q′1 − q′2ααq2 , αq′2q1 + αq2q′1) = (q1q′1 − q′2q2 , α(q′2q1 + q2q′1))
= ψ(x · y)
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for any x = (q1, q2), y = (q′1, q′2) ∈ O. Hence it follows that

Jψ(A)(ψ∗(B)) = Jψ(A)(ψ(B)) = ψ(A) · ψ(B) = ψ(A ·B) = ψ∗(JA(B))

for any A ∈ S6, B ∈ TAS6, which implies that ψ commutes with J . Hence ψ
defines an automorphism of the almost complex manifold S6. The fixed point
set of ψk is independent of k and coincides with the standard 2-dimensional
sphere

S2 = {(z1, z2, z3, z4) ∈ S6 | z3 = z4 = 0}
for any 1 � k � p − 1. The normal bundle ν(S2, S6) is the trivial complex
vector bundle of rank 2 and ψk acts on ν(S2, S6) via multiplications by αk.

Set � = 0 and φ = (x1x2x3)n = τn3 ∈ S(3n). Since TS6|S2 splits into
the direct sum TS2 ⊕ ν(S2, S6) and ψk acts on TS2 via multiplication by 1, it
follows from (1.3) that

Ch(Eφ|S2 , ψk) = {(ec1(TS2) − 1)(αk − 1)2}n = {(e2x − 1)(αk − 1)2}n,
where x denotes the positive generator of H2(S2) ∼= Z. Hence it follows from
Theorem 1.3 that the equality

p−1∑
k=1

{(e2x − 1)(αk − 1)2}n x

1− e−x
(

1
1− α−k

)2

[S2](3.2)

= 2n
p−1∑
k=1

(αk − 1)2n
(

1
1− α−k

)2

(xn + higher order terms)[S2]

≡ 0 (mod p)

holds for any n such that 3n > m + � = 3. The equality above can also be
easily verified because 3n > 3 implies that n � 2 and hence that

(xn + higher order terms)[Sn] = 0 .

Remark 3.3. If 3n = m + � = 3 ⇐⇒ n = 1, it follows from (2.5) and
(3.2) that

p−1∑
k=1

(e2x − 1)(αk − 1)2
x

1− e−x
(

1
1− α−k

)2

[S2]

= 2
p−1∑
k=1

α2k = 2

(
p∑
k=1

α2k − 1

)
≡ −2 �= 0 (mod p)

if p �= 2.

Example 3.4. Let M be the m-dimensional complex projective space
CPm, p any natural number, α = e2π

√−1/p the primitive p-th root of 1 and ψ
the periodic automorphism of CPm of order p defined by

CP
m � [z0 : z1 : · · · : zm] −→ [αz0 : z1 : · · · : zm] .
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Then the fixed point set of ψk is independent of k and coincides with the disjoint
union of the point q = [1 : 0 : · · · : 0] and the hyperplane CPm−1 defined by
z0 = 0. Set � = 1, γ = 1 and φ = (x1 + x2 + · · ·+ xm)n = τn1 ∈ S(n). Then it
follows that φ = (t1 + t2 + · · ·+ tm −m)n and hence that

Eφ = ⊗n(TCP
m − εmC ),

where ψk acts on the trivial bundle εm
C

via multiplication by 1. Here ψk acts
on ν(q,CPm) ∼= Cm via multiplication by α−k and hence we have

Ch(TCP
m|q, ψk) = mα−k , Td(Tq) = 1 , U(ν(q,M), ψk) =

(
1

1− αk
)m

.

On the other hand, the normal bundle ν(CP
m−1,CP

m) is isomorphic to the re-
striction of the hyperplane bundle L to CPm−1 and ψk acts on ν(CPm−1,CPm)
∼= L|CPm−1 via multiplication by αk. Let x be the positive generator of
H2(CPm−1) ∼= Z which equals to the first Chern class c1(L|CPm−1). Then
since

TCP
m|CPm−1 = TCP

m−1 ⊕ (L|CPm−1),

where ψk acts on TCP
m−1 via multiplication by 1, it follows that

Ch(TCP
m|CPm−1 , ψk) = mex − 1 + αkex , Td(TCP

m−1) =
(

x

1− e−x
)m

,

U(ν(CP
m−1,CP

m), ψk) =
1

1− α−ke−x
.

Hence it follows from Theorem 1.3 that the equality

p−1∑
k=1

1
1− α−k

(
mα−k −m)n( 1

1− αk
)m

+ ϕ(x)[CP
m−1] ≡ 0 (mod p)

(3.3)

holds for any n > m+ � = m+ 1, where

ϕ(x) =
p−1∑
k=1

1
1− α−k (mex − 1 + αkex −m)n

(
x

1− e−x
)m 1

1− α−ke−x
.
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We can verify (3.3) as follows.

(3.4)
ϕ(x)[CP

m−1] = xm−1-coefficient of ϕ(x)
= x−1-coefficient of

ϕ(x)
xm

=
p−1∑
k=1

(mex − 1 + αkex −m)n

(1− α−k) (1− e−x)m (1− α−ke−x)

=
p−1∑
k=1

(αk)2

αk − 1
((m+ αk)ex − 1−m)n

(ex)m

(ex − 1)m
1

αkex − 1
ex

=
1

2πi

∮
C(x)

p−1∑
k=1

(αk)2

αk − 1
((m+ αk)ex − 1−m)n

(ex)m

(ex − 1)m
1

αkex − 1
ex dx

(C(x) is a sufficiently small counterclockwise simple loop around 0 ∈ C)

=
1

2πi

∮
C(y)

p−1∑
k=1

(αk)2

αk − 1
((m+ αk)(y + 1)− 1−m)n

(y + 1)m

ym
1

αk(y + 1)− 1
dy

(y = ex − 1 , C(y) is a counterclockwise simple loop around 0 ∈ C)
= y−1-coefficient of
p−1∑
k=1

(αk)2

αk − 1
((m+ αk)(y + 1)− 1−m)n

(y + 1)m

ym
1

αk(y + 1)− 1

= ym−1-coefficient of
p−1∑
k=1

(αk)2

αk − 1
((m+ αk)y + αk − 1)n(y + 1)m

1
αk − 1 + αky

= ym−1-coefficient of
p−1∑
k=1

(αk)2

(αk − 1)2

n∑
i=0

(
n
i

)
(m+ αk)iyi(αk − 1)n−i

m∑
j=0

(
m
j

)
yj

∞∑
s=0

( −αky
αk − 1

)s

= ym−1-coefficient of
p−1∑
k=1

n∑
i=0

m∑
j=0

∞∑
s=0

(
n
i

)(
m
j

)
(−1)s(αk)s+2(m+ αk)i(αk − 1)n−i−s−2yi+j+s

=
p−1∑
k=1

m−1∑
i=0

m−1−i∑
s=0

(
n
i

)(
m

m− 1− i− s
)

(−1)s(αk)s+2(m+ αk)i(αk − 1)n−i−s−2

=
p−1∑
k=1

(αk − 1)R(αk),

where R(z) is an integral polynomial defined by

R(z) =
m−1∑
i=0

m−1−i∑
s=0

(
n
i

)(
m

m− 1− i− s
)

(−1)szs+2(m+ z)i(z − 1)n−i−s−3.
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(Note that n > m+ 1 and i+ s � m− 1 imply that n− i− s− 3 � 0.)
Now since (α±ν)p = 1 for any nonnegative integer ν, it follows that

p−1∑
k=1

(α±k)ν =
p−1∑
k=1

(α±ν)k =
p∑
k=1

(α±ν)k − 1 ≡ −1 (mod p)

(see (2.5)). Hence, for any integral polynomial Q(z), we can see that

p−1∑
k=1

Q(αk) ≡
p−1∑
k=1

Q(α−k) ≡ −Q(1) (mod p)(3.5)

and therefore it follows from (3.4) that

ϕ(x)[CP
m−1] =

p−1∑
k=1

(αk − 1)R(αk) ≡ −(1− 1)R(1) = 0 (mod p) .

On the other hand, it follows from (3.5) that

p−1∑
k=1

1
1− α−k

(
mα−k −m)n( 1

1− αk
)m

=
p−1∑
k=1

(−mn)(α−k)m(α−k − 1)n−m−1 ≡ mn · 1m · (1− 1)n−m−1 = 0 (mod p)

because n−m− 1 > 0. Hence the equality (3.7) is verified.

4. Relation to the Einstein-Kähler metrics

If the Ricci form ρ(ω) of the Kähler form ω on a Kähler manifold M is a
constant multiple of ω, M is called an Einstein-Kähler manifold and the metric
corresponding to ω is called an Einstein-Kähler metric. In this section, we
refine the result of Theorem 1.3 for � = 1, γ = 1 and φ = τm+1

1 in the case that
M is an Einstein-Kähler manifold.

Let M be an m-dimensional complex manifold and A(M) the complex Lie
group consisting of all biholomorphic automorphisms of M . Assume that the
periodic element ψ ∈ A(M) of order p is contained in the identity component
of A(M) and hence is expressed as ψ = exp v by a holomorphic vector field v
on M . Then using the result of Futaki in [4] and the result in [9], we can prove
the next theorem.

Theorem 4.1. If M admits an Einstein-Kähler metric, then under the
notation in Theorem 1.3 the equality

p−1∑
k=1

C1(k, 1)
∑

N⊂Ω(k)

Ch(Eφ|N , ψk) Td(TN) U(ν(N,M), ψk)[N ] ≡ 0 (mod p)

(4.1)

holds for φ = (x1 + x2 + · · ·+ xm)m+1 = τm+1
1 ∈ S(m+ 1).
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Proof. Let G be the cyclic subgroup of A(M) generated by ψ. Set � = 1,
γ = 1 and φ = (x1 + x2 + · · · + xm)m+1 = τm+1

1 ∈ S(m + 1). Then G acts
freely on Y = M × S1 by

ψ · (q , z) = (ψ · q , zα) (q ∈M, z ∈ C) .

Let MS be the quotient space Y/G and W the (2m + 2)-dimensional almost
complex manifold whose boundary is MS as in Section 2. Then it follows from
Theorem 1.6 and Lemma 2.1 in [9] that the equality

f(v) ≡
∫
W

c1(TW,∇W )m+1 (mod Z)(4.2)

holds, where f(v) is the Futaki invariant of v (see [4]). Since

Ch(EWφ ,∇W ) = c1(TW,∇W )m+1 + higher order terms

(see (2.2)) it follows from (4.2) that

f(v) ≡
∫
W

Ch(EWφ ,∇W )Td(EWφ ,∇W ) (mod Z) .

Therefore it follows from (2.19) and the equality above that

f(v) ≡ 1
p

p−1∑
k=1

C1(k, 1)
∑

N⊂Ω(k)

Ch(Eφ|N , ψk) Td(TN)U(ν(N,M), ψk)[N ](4.3)

(mod Z) .

On the other hand, Futaki proved in [4] (see also [5]) that f(v) = 0 for any
holomorphic vector field v if M admits an Einstein-Kähler metric. Hence it
follows that

1
p

p−1∑
k=1

C1(k, 1)
∑

N⊂Ω(k)

Ch(Eφ|N , ψk) Td(TN)U(ν(N,M), ψk)[N ] ≡ 0 (mod Z)

if M admits an Einstein-Kähler metric. This completes the proof of Theorem
4.1.

Remark 4.2. Note that it follows from Theorem 1.3 that the equality
(4.1) holds for any almost complex manifold M if φ ∈ S(n) and n > m + � =
m+1. On the other hand, the equality in Theorem 1.3 does not hold in general
if n = m+ �. For example, let M be the blowing-up of CP2 at one point. Then
as was seen in [9] (see Theorem 1.6 and p. 215 in [9]) there exists a periodic
biholomorphic automorphism ψ = exp v ∈ A(M) such that f(v) is not an
integer. Hence it follows from (4.3) that

p−1∑
k=1

C1(k, 1)
∑

N⊂Ω(k)

Ch(Eφ|N , ψk) Td(TN)U(ν(N,M), ψk)[N ] �≡ 0 (mod p),

where φ = (x1 + x2 + · · ·+ xm)m+1 = τm+1
1 ∈ S(m+ 1) = S(m+ �).
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Example 4.3. Let M = CPm and ψ the periodic automorphism de-
fined in Example 3.4. Then the equality (4.1) holds for any periodic ψ ∈
A(CPm) because A(CPm) is connected and CPm admits an Einstein-Kähler
metric. In fact it follows as in (3.3) that the equality

the left-hand side of (4.1)

=
p−1∑
k=1

1
1− α−k

(
mα−k −m)m+1

(
1

1− αk
)m

+ ϕ(x)[CP
m−1] ≡ 0 (mod p)

holds, where

ϕ(x) =
p−1∑
k=1

1
1− α−k (mex − 1 + αkex −m)m+1

(
x

1− e−x
)m 1

1− α−ke−x
.

Hence it follows from the same argument as in Example 3.4 and (3.5) that

the left-hand side of (4.1)
≡ mm+1 · 1m · (1− 1)m+1−m−1

−
m−1∑
i=0

m−1−i∑
s=0

(
m+ 1
i

)(
m

m− 1− i− s
)

× (−1)s1s+2(m+ 1)i(1− 1)m+1−i−s−2 (mod p)

= mm+1 −
m−1∑
i=0

(
m+ 1
i

)(
m
0

)
(−1)m−1−i(m+ 1)i(1− 1)0

= mm+1

−
m+1∑
i=0

(
m+ 1
i

)
(−1)m+1−i(m+ 1)i + (m+ 1)m+1 −

(
m+ 1
m

)
(m+ 1)m

= mm+1 −
m+1∑
i=0

(
m+ 1
i

)
(−1)m+1−i(m+ 1)i = mm+1 − {(m+ 1)− 1}m+1

= mm+1 −mm+1 = 0 .

Thus the equality (4.1) holds for M = CP
m and

ψ : CP
m � [z0 : z1 : · · · : zm] −→ [αz0 : z1 : · · · : zm] .
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