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Direct limit Lie groups and manifolds
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Helge Glöckner

Abstract

We show that every countable strict directed system of finite-
dimensional Lie groups has a direct limit in the category of smooth Lie
groups modelled on sequentially complete, locally convex spaces. Similar
results are obtained for countable directed systems of finite-dimensional
manifolds, and for countable directed systems of finite-dimensional Lie
groups and manifolds over totally disconnected local fields. An uncount-
able strict directed system of finite-dimensional Lie groups has a direct
limit in the category of Lie groups in the sense of convenient differential
calculus, provided certain technical hypotheses are satisfied.

1. Introduction

Let M1 ⊆ M2 ⊆ · · · be an ascending sequence of finite-dimensional topo-
logical manifolds, where Mn is a closed submanifold of Mn+1 for all n, and
dimMn → ∞ as n → ∞. Then the direct limit topological space M :=
lim−→Mn =

⋃
n∈N

Mn is a topological manifold modelled on R∞, the real vector
space of finite sequences, equipped with the finite topology (Hansen [12], 1971).
Our main result is an analogue of this classical fact in the setting of smooth
manifolds: if each Mn is a smooth manifold and Mn a closed C∞-submanifold
of Mn+1 for all n, then M can be given a smooth manifold structure modelled
on R∞ making it the direct limit of the sequence (Mn)n∈N in the category of
smooth manifolds (Theorem 4.3). The charts for the direct limit manifolds
are limit maps of certain compatible families of charts of the finite-dimensional
manifolds; to obtain these compatible families, we start with a suitable chart
of M1 and inductively use tubular neighbourhoods to extend the chart already
constructed for Mn, restricted to a slightly smaller open set, to a chart of Mn+1.
The finite-dimensional manifolds Mn considered here need not be second count-
able, but we have to assume that each Mn is paracompact.

In the special case where Mn = Gn is a finite-dimensional Lie group, our
construction allows us to turn the direct limit topological group G := lim−→Gn

into a smooth Lie group modelled on R∞, which is the direct limit of the
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2 Helge Glöckner

sequence (Gn)n∈N in the category of smooth Lie groups. In contrast to earlier
constructions of direct limits of Lie groups, we do not use the direct limit
exponential function

expG := lim−→ expGn
: lim−→L(Gn) → lim−→Gn

to define charts for G (an approach followed by Natarajan et al. [27], 1991, [28],
1993, [29], 1994; Kriegl and Michor [22], 1997). Our method allows us to equip
the direct limit topological group G with a Lie group structure even if expG

does not induce a local homeomorphism at 0 (as in Example 5.5): this was
not possible before.*1 Direct limits of ascending sequences of manifolds or Lie
groups over totally disconnected local fields can be constructed along similar
lines (Section 8).

Now suppose that ((Gi)i∈I , (φij)i≥j) is an uncountable directed system
of finite-dimensional real Lie groups. Under certain technical assumptions
(cf. Definition 6.2, Remark 6.3), it was shown by Natarajan et al. that the direct
limit exponential map expG := lim−→ expGi

: lim−→L(Gi) → lim−→Gi =: G induces a
local homeomorphism at 0, which can be used to define charts for G, whose
transition maps are analytic on each finite-dimensional subspace ([27, Section
8]). Here, the direct limit group G and direct limit Lie algebra g := lim−→L(Gi)
are equipped with the respective topology of direct limit topological space. Ex-
amples show that G need not be a topological group, and g has discontinuous
addition and Lie bracket in general (Theorem 7.1); it is therefore not obvious
a priori in which sense G can be considered as a Lie group. The authors of [27]
were unaware of these problems, and gave incorrect proofs to the contrary in
[28], Appendix (see [30], Appendix for corrections; the main problem has also
been pointed out in Edamatsu [6]). We prove that G is a Lie group in the sense
of ‘convenient differential calculus,’ as defined in [21], [22] (a convenient Lie
group for short). We show that the charts specified by Natarajan et al. make
G the direct limit convenient Lie group of the directed system ((Gi), (φij)), if
the direct limit Lie algebra g is equipped with the finest locally convex topol-
ogy instead of the direct limit topology (Theorem 6.4).*2 Another definition of
Lie groups with separately analytic multiplication, modelled on topological Lie
algebras, is proposed in ([30, Definition A.8]). However, this definition does
not always apply in the situation we are interested in: neither the direct limit
topology nor the finest locally convex topology make g a topological Lie algebra
in general (Theorem 7.1 (b)). We remark that the direct limit convenient Lie
groups for certain countable strict directed systems of classical groups are al-
ready discussed in [22, Section 47], where it is shown that every Lie subalgebra
of gl(N,R) = R(N×N) is the Lie algebra of some smoothly arcwise connected Lie
subgroup of GL(N,R) ⊆ R(N×N) + 1 (loc. cit. Theorem 47.9).

*1Whenever the method of Natarajan et al. applies, the Lie group we construct is the
smooth Lie group underlying the analytic Lie group provided by that method.

*2It was already proposed to consider the finest locally convex topology on g in [28], but our
approach differs essentially since we do not transport the finest locally convex topology on g
to the group G, but only use it to make g a convenient vector space on which the manifold
is modelled in the sense of convenient differential calculus. Here, the c∞-refinement of the
finest locally convex topology on g is the finite topology (Lemma 6.1).
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Direct limit Lie groups and manifolds 3

Our abstract results are illustrated by a discussion of the infinite matrix
groups GL(I,R) ⊆ R(I×I) + 1 and their Lie algebras (Section 7); all of the
described pathologies occur even for these most natural examples of direct
limit Lie groups.

For more information concerning direct limits of topological groups, the
reader is referred to Tatsuuma et al. [34], 1998; discussions of specific exam-
ples of direct limits of Lie groups, considered as topological groups, can be
found in Kolomytsev and Samoilenko [20], 1977, Ol’shanskĭı [32], 1990, and
Yamasaki [36], 1998. Information concerning universal complexifications of di-
rect limit Lie groups can be found in [30] and [9].

2. Preliminaries and Notation

Let (I,≤) be a directed set and A a category. Recall that a directed system
is a pair S := ((Xi)i∈I , (φji)j≥i), where Xi ∈ obA and φji ∈ Mor(Xi, Xj) such
that φii = idXi

and φkj ◦ φji = φki, for all elements k ≥ j ≥ i of I. A
cone over S is a pair (X, (φi)i∈I), where X ∈ obA and φi : Xi → X such
that φj ◦ φji = φi whenever j ≥ i. A cone (X, (φi)i∈I) is a direct limit of S
(and we write X = lim−→S or X = lim−→Xi), if for every cone (Y, (ψi)i∈I) over
S, there exists a unique morphism ψ : X → Y such that ψ ◦ φi = ψi for all
i ∈ I. If T = ((Yi)i∈I , (ψji)j≥i) is another directed system over the same index
set, (Y, (ψi)i∈I) a cone over T , and (ηi)i∈I a family of morphisms ηi : Xi → Yi

which is compatible in the sense that ψji ◦ ηi = ηj ◦ φji for all j ≥ i, then
(Y, (ψi ◦ ηi)i∈I) is a cone over S. We write lim−→ ηi for the induced morphism
ψ : X → Y , determined by ψ ◦ φi = ψi ◦ ηi. The directed systems S and T
are called equivalent if there exists a compatible family (ηi)i∈I such that all
morphisms ηi are isomorphisms.

The existence of direct limits in many algebraic or topological categories
can be proved by standard category-theoretical arguments. For the following,
however, it is important that there are explicit realizations of the direct limits
in the categories SET (sets and maps), TOP (not necessarily Hausdorff topo-
logical spaces, and continuous maps), G (groups and homomorphisms), and in
the categories of vector spaces, Lie algebras, and semitopological groups (i.e.,
groups equipped with a topology which makes inversion continuous and the
group multiplication separately continuous; morphisms are continuous group
homomorphisms), cf. [24, Chapter IX.1], and [27]:

Suppose that S = ((Xi)i∈I , (φji)j≥i) is a directed system of sets. Let
Ω :=

∐
i∈I Xi ⊆ I ×

⋃
i∈I Xi be the disjoint union of the sets Xi, together

with the canonical inclusions λi : Xi → Ω, x �→ (i, x). We define an equivalence
relation on Ω via λi(x) ∼ λj(y) if there exists k ≥ i, j such that φki(x) = φkj(y).
Set X := Ω/ ∼ and φi := q ◦ λi, where q : Ω → Ω/ ∼ is the canonical quotient
map. Then (X, (φi)) is easily seen to be the direct limit of S in SET. Note that
X is the directed union of the sets imφi. If ((Yi)i∈I , (ψji)j≥i) is another directed
system in SET with the same index set, with direct limit (Y, (ψi)i∈I), then
clearly (X × Y, (φi ×ψi)i∈I) is the direct limit of ((Xi × Yi)i∈I , (φji ×ψji)j≥i).

If S = ((Xi), (φji)) is a directed system in TOP, the direct limit (X, (φi))
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4 Helge Glöckner

of S in SET becomes the direct limit in TOP if we give X the final topology
with respect to the family (φi)i∈I . Thus, by definition, a subset U ⊆ X is open
(resp., closed) if and only if φ−1

i (U) is open (resp., closed) in Xi, for all i ∈ I.
The directed system is called strict if all maps φji are topological embeddings;
then all maps φi are embeddings, see [28, Lemma A.5].

If S = ((Gi), (φji)) is a directed system of groups, let (G, (φi)) be its direct
limit in SET. There is a unique group structure on G which makes all maps φi

homomorphisms; the multiplication is µ = lim−→µi, the inversion is κ = lim−→κi,
where µi and κi denote multiplication and inversion on Gi, respectively. Direct
limits of vector spaces or Lie algebras can be treated similarly.

If S = ((Gi), (φji)) is a directed system of semitopological groups, the
direct limit (G, (φi)) in SET becomes the direct limit of S in the category of
semitopological groups if we equip it with the topology and group structure
which make it the direct limit of S in TOP and G, respectively. Following [28],
if all semitopological groups involved are topological Hausdorff groups, we call
the direct limit G of S in the category of semitopological groups the näıve direct
limit of S; it need not be Hausdorff, nor a topological group. Näıve direct limits
of topological vector spaces and topological Lie algebras are defined similarly,
equipping the algebraic direct limit with the final topology.

3. Direct limits of topological spaces

In this section, we assemble some basic facts concerning direct limits of
topological spaces for later use.

Let S = ((Xi)i∈I , (φji)j≥i) be a strict directed system of topological
spaces, with direct limit (X, (φi)i∈I). Then every map φi is a topological em-
bedding by [28, Lemma A.5], whence S is equivalent to the directed system
S ′ := ((Yi)i∈I , (ψji)j≥i), where Yi := imφi and ψji : Yi ↪→ Yj denotes inclusion;
furthermore, (X, (ψi)i∈I) is the direct limit of S ′, where ψi : Yi ↪→ X. Hence
the investigation of strict directed systems of topological spaces can be reduced
to the case that each Xi is a subspace of the direct limit X, all maps φji and φi

being the respective inclusion maps. Then, a subset U of X is open if and only
if U ∩Xi is open in Xi for all i, and a map f : X → Y into a topological space
Y is continuous if and only if all restrictions f |Xi

are so. If U is an open subset
of X, a subset V of U is open in U if and only if all intersections with the sub-
spaces Xi ∩U are open in Xi ∩U : hence U is the direct limit of the subspaces
Xi ∩ U . We shall need a slight generalization of this simple observation:

Lemma 3.1. Let ((Xi)i∈I , (φji)j≥i) be a strict directed system of topo-
logical spaces and Ui an open subset of Xi for i ∈ I, where φji(Ui) ⊆ Uj for
all i ≤ j. Then the maps ψji := φji|Uj

Ui
define a directed system ((Ui), (ψji)).

If (X, (φi)) and (U, (ψi)) denote the direct limits of the respective systems, the
map λ := lim−→λi : U → X induced by the family of inclusions λi : Ui ↪→ Xi is a
topological embedding onto an open subset of X.

Proof. As U =
⋃

i imψi and λ ◦ ψi = φi ◦ λi is injective for all i ∈ I,
we conclude that λ is injective. λ being continuous, it only remains to check
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Direct limit Lie groups and manifolds 5

that λ is an open map. To this end, let V be an open subset of U . Then,
for every i ∈ I, we have φ−1

i (λ(V )) =
⋃

j≥i φ
−1
i (λ(ψj(ψ−1

j (V )))). Since λ ◦
ψj = φj ◦ λj , we have λ(ψj(ψ−1

j (V ))) = φj(ψ−1
j (V )) for j ≥ i. Furthermore,

Wij := φ−1
i (φj(ψ−1

j (V ))) = φ−1
ji (ψ−1

j (V )). Now ψ−1
j (V ) is open in Uj , hence

in Xj , and by continuity of φji, the subset Wij of Xi is open. Hence so is
φ−1

i (λ(V )) =
⋃

j≥iWij .

Note that category-theoretical direct limits are unaffected by passage to
cofinal subsystems of the directed system. If the directed set I is countable, we
easily construct a cofinal sequence i1 ≤ i2 ≤ i3 ≤ · · · and can therefore assume
that I = (N,≤) whenever this is convenient.

Lemma 3.2. Let ((Xi)i∈I , (φji)j≥i) and ((Yi)i∈I , (ψji)j≥i) be strict di-
rected systems of topological spaces, with direct limits (X, (φi)) and (Y, (ψi)), re-
spectively. Let (P, (πi)) be the direct limit of S = ((Xi × Yi)i∈I , (φji × ψji)j≥i).
Then (X×Y, (φi×ψi)i∈I) is a cone over S, and the induced map η : P → X×Y ,
determined by η ◦ πi = φi × ψi, is a continuous bijection.

Proof. [5, Appendix 2, (1.9)(3)].

By Lemma 3.2, we can always identify lim−→Xi ×Yi with lim−→Xi × lim−→Yi, up
to a possible refinement of the topology. Under suitable hypotheses, also the
topologies will coincide:

Proposition 3.3. If, in the situation of Lemma 3.2, the set I is count-
able and all spaces Xi and Yi are locally compact Hausdorff, then η is a home-
omorphism.

Proof. We may assume without loss of generality that I = (N,≤) and
X1 ⊆ X2 ⊆ · · · ⊆ X and Y1 ⊆ Y2 ⊆ · · · ⊆ Y , all maps φji, φi, ψji, and ψi being
the respective inclusion maps. Let P = lim−→Xi × Yi; as a set, we can identify
P with X × Y by the preceding. Then also the maps πi are the respective
inclusion maps. Let (x, y) ∈ P and suppose that W is an open neighbourhood
of (x, y) in P . We show that W is a neighbourhood of (x, y) in X × Y as
well. Passing to a cofinal subsystem, we may assume without loss of generality
that (x, y) ∈ X1 × Y1. For i ∈ N, set Wi := W ∩ (Xi × Yi); then every Wi

is an open subset of Xi × Yi. Since W1 is an open neighbourhood of (x, y) in
X1 × Y1, there exist compact neighbourhoods C1, D1 of x and y in X1 and Y1,
respectively, such that C1 ×D1 ⊆ W1. Now W2 is an open neighbourhood of
C1×D1 in X2×Y2; therefore there exist compact subsets C2 and D2 of X2 and
Y2, respectively, such that C2 ×D2 is a neighbourhood of C1 ×D1 in X2 × Y2,
and C2 ×D2 ⊆ W2. Inductively, we find sequences of compact subsets Ci and
Di of Xi and Yi, respectively, such that C1 ×D1 is a neighbourhood of (x, y)
in X1 × Y1, Ci ×Di ⊆ Wi, and such that Ci+1 ×Di+1 is a neighbourhood of
Ci×Di in Xi+1×Yi+1, for all i ∈ N. For i ∈ N, let Ui and Vi denote the interior
of Ci and Di relative Xi and Yi, respectively. Set U :=

⋃
i∈N

Ui, V :=
⋃

i∈N
Vi.

Since U1 ⊆ U2 ⊆ · · · , Lemma 3.1 shows that U is open in X; similarly, V is
open in Y . Now U × V ⊆W is an open neighbourhood of (x, y) in X × Y .
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6 Helge Glöckner

Proposition 3.3 has been found independently by Hirai et al. [14] and the
author (as witnessed by [8]).

The following corollary is essential for the study of direct limit Lie groups,
since it allows us to form limits of continuous maps other than homomorphisms.

Corollary 3.4. Let S = ((Gi)i∈I , (φji)j≥i) be a countable, strict di-
rected system of locally compact Hausdorff groups Gi, with näıve direct limit
(G, (φi)i∈I). Then G is a topological Hausdorff group, and hence G is the direct
limit of S in TG.

Proof. (cf. [28, Corollary A.11 (a)]). For i ∈ I, let µi : Gi × Gi → Gi

denote the respective multiplication map. Then (µi)i∈I is a family of continuous
maps compatible with the directed systems T = ((Gi ×Gi), (φji ×φji)) and S.
By Proposition 3.3, (G× G, (φi × φi)) is the direct limit of T in the category
of topological spaces. Multiplication on G is the limit map lim−→µi, and hence is
continuous. By Proposition 3.6 below or [28, Corollary A.12], G is Hausdorff.

For an alternative proof of Corollary 3.4, we refer to [34, Theorem 2.7].
The hypotheses of local compactness of the groups and countability of the

directed system in Proposition 3.3 are essential:

Example 3.5. Let V be a real vector space, I its set of finite-
dimensional subspaces, with inclusion as the ordering. For i ∈ I, set Vi := i,
and, for j ≥ i, let φji denote the inclusion map Vi ↪→ Vj . We obtain a strict
directed system of finite-dimensional vector spaces (hence of Lie groups), and
V is its näıve direct limit if we equip it with the final topology with respect
to the inclusion maps φi : Vi ↪→ V . This topology is called the finite topology
on V , or also the topology of finitely open sets [13]; by definition, a subset U
of V is open in the finite topology if and only if all of its intersections with
finite-dimensional vector subspaces of V are open in these.

In addition to the finite topology on the real vector space V , certain par-
ticular vector space topologies will be relevant later on. There exists a finest
locally convex (vector space) topology on V ; the set of all balanced, absorb-
ing, convex subsets of V is a basis of 0-neighbourhoods for this topology (see,
e.g., [16, Proposition 7.25, Definition 7.27]). There is also a finest vector space
topology on V ; to see its existence, form the product P :=

∏
τ∈T (V, τ ), where

τ ranges through the set T of all vector space topologies on V , and give V the
topology making the diagonal map V → P , v �→ (v)τ∈T a topological embed-
ding. Clearly, we obtain a vector space topology on V which is finer than any
other vector space topology on V .

If dimV ≤ ℵ0, then the finite topology on V , the finest locally convex
topology, and the finest vector space topology coincide. If dimV > ℵ0, the
finest vector space topology is properly finer than the finest locally convex
topology ([16, Proposition A4.21]). Furthermore, in this case, the finite topol-
ogy on V is not a group topology, the addition map is not jointly continuous,
see [17], [2]. Thus the näıve direct limit V of the uncountable strict directed
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Direct limit Lie groups and manifolds 7

system of locally compact groups Vi fails to be a topological group here, and we
deduce that the mapping η : lim−→(Vi × Vi) → lim−→Vi × lim−→Vi defined in Lemma
3.2 is not a homeomorphism.

For an example of a countable strict directed system of non-locally compact
topological groups whose näıve direct limit is not a topological group, see [34,
Example 1.2]. For later use, we recall from [12, Lemma 2.4 and Proposition 4.1]:

Proposition 3.6. Let X be a topological space which is the direct limit
of an ascending sequence X1 ⊆ X2 ⊆ · · · of topological subspaces. Then the
following holds:

(a) If Xn is locally compact for all n ∈ N, then X is Hausdorff.
(b) If Xn is T1 for all n ∈ N, then every compact subset of X is contained

in some of the subspaces Xn.

4. Countable direct limits of manifolds

In this section, we construct the direct limit smooth manifolds of suitable
countable directed systems of finite-dimensional smooth manifolds. The direct
limit manifolds will be either finite-dimensional or modelled on R∞ := R(N),
equipped with the finite topology.

There are many different concepts of differentiability and differentiable
manifolds in infinite dimensions (and indeed we shall use two different ones).
In this section and the next, we consider infinite-dimensional manifolds and Lie
groups in the sense of Milnor [25], modelled on sequentially complete, locally
convex Hausdorff (s.c.l.c.) topological vector spaces, based on the concept of
smooth mappings in the Michal-Bastiani sense (also known as Keller’s C∞

c -
maps [19]). In Section 6, we consider manifolds and Lie groups in the sense of
convenient differential calculus.

LetX and Y be s.c.l.c. topological vector spaces, U be an open subset ofX,
and f : U → Y be a continuous map. Given x ∈ U and h ∈ X, the derivative of
f at x in the direction h is defined as df(x)(h) := limt→0 t

−1(f(x+ th)− f(x)),
whenever the limit exists. We say that f is differentiable at x if df(x)(h) exists
for all h ∈ X; it is C1 if it is differentiable at all x in U and df : U ×X → Y,
(x, h) �→ df(x)(h) is continuous. Higher derivatives are defined recursively
by means of the familiar formula dnf(x)(h1, . . . , hn) := limt→0 t

−1(dn−1f(x +
thn)(h1, . . . , hn−1)−dn−1f(x)(h1, . . . , hn−1)), provided that all limits involved
exist. The function f is said to be of class Cn if dnf : U×Xn → Y is continuous;
it is of class C∞ (or smooth) if it is of class Cn for all n. It can be shown that
composites of Cp-maps are of class Cp for p ∈ N ∪ {∞}, whence Cp-manifolds
modelled on s.c.l.c. topological vector spaces (and Cp-maps between these) can
be defined in the usual way [25], [31] (cf. also [11]).

In the above situation, suppose that X is a vector space of countable
dimension, equipped with the finite topology, and suppose that V1 ≤ V2 ≤ · · ·
is a sequence of finite-dimensional subspaces such that X =

⋃
i∈N

Vi; we set
Ui := U ∩ Vi. It is clear from the definitions that all derivatives (of a given
order) of f exist if and only if this holds for the derivatives of f |Ui

for all i. If
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this is the case, for a given n ∈ N the function dnf is continuous if and only if
all functions dnf

∣∣
Ui×V n

i
= dn (f |Ui

) are so, by Lemma 3.1 and Proposition 3.3.

Lemma 4.1. Let S = ((Mi)i∈N, (φji)j≥i) be a directed system of finite-
dimensional paracompact Cp-manifolds such that every map φji is a Cp-diffeo-
morphism onto a closed Cp-submanifold of Mj, where p ∈ N ∪ {∞}, p ≥ 3.
Let (M, (φi)i∈N) denote the direct limit of S in TOP. Set di := dimMi, and,
for j ≥ i, let λji denote the mapping Rdi → Rdj : v �→ (v, 0). Then, for
every x = φn(y) ∈ M , there exists an open neighbourhood Ox of x in M such
that, setting Ui := φ−1

i (Ox) for i ≥ n, there is a family (h(x)
i )i≥n of Cp−2-

diffeomorphisms h(x)
i : Rdi → Ui such that h(x)

j ◦ λji = φji|Uj

Ui
◦ h(x)

i for all

j ≥ i ≥ n, and h(x)
n (0) = y.

Proof. By the remarks in Section 3, we may assume w.l.o.g. that M1 ⊆
M2 ⊆ · · · ⊆ M , all maps φji and φi being the respective inclusion maps.
Then x = y. Passing to a cofinal subsystem, we may assume that x ∈ M1.
Choose r1 > r2 > · · · > 1. There is a Cp-diffeomorphism H1 : ]−r1, r1[d1→ W1

onto an open neighbourhood W1 of x in M1, such that H1(0) = x. By [23],
Corollary II 3.8 and Theorem IV 5.1, there exists a tubular neighbourhood of
M1 in M2, of class Cp−2. That is, there is a Cp−2-vector bundle π : E → M1

over M1, an open neighbourhood Z of the zero section η in E, and a Cp−2-
diffeomorphism f : Z → V onto an open neighbourhood V of M1 in M2 such
that f ◦ η|Z is the inclusion map M1 ↪→ M2. Set F := π−1(W1), Z ′ :=
F ∩ Z, and q := π|W1

F . Then q : F → W1 is a vector bundle of class Cp−2.
Being homeomorphic to ]−r1, r1[d1 , the topological space W1 is paracompact
and contractible. By [15], Corollary 2.5, F is a trivial bundle, i.e., we find a
fiber-preserving Cp−2-diffeomorphism g : W1 × Rs → F , where s + d1 = d2.
Now g−1(Z ′) is an open neighbourhood of the compact subset W ′

1 × {0} in
W1 × Rs, where W ′

1 := H1(]−r2, r2[d1), and after re-parametrization in the
Rs-directions, we may assume that W ′

1 ×J is contained in this neighbourhood,
where J :=]−r2, r2[s. We abbreviate W2 := f(g(W ′

1 × J)); then the map
H2 := f |W2

Z′ ◦ g|Z′
W ′

1×J ◦ (H1 × idJ )|W
′
1×J

]−r2,r2[d2
is a Cp−2-diffeomorphisms.

Proceeding in this fashion, we obtain open neighbourhoods Wi of x in Mi

and Cp−2-diffeomorphisms Hi : ]−ri, ri[di→Wi such that, for all i ∈ N,

Wi+1 ∩Mi = Hi(]−ri+1, ri+1[di) = Hi+1(]−ri+1, ri+1[di×{0})

and
Hi|Wi+1∩Mi

]−ri+1,ri+1[di
= Hi+1|Wi+1∩Mi

]−ri+1,ri+1[di×{0} ◦ θi,

where θi : ]−ri+1, ri+1[di ↪→]−ri+1, ri+1[di×{0}. Let Ui := Hi(]−1, 1[di) and
h

(x)
i := Hi|Ui

]−1,1[di
◦udi , where u : R →]−1, 1[ is a C∞-diffeomorphism such that

u(0) = 0. Then Ox :=
⋃

i∈N
Ui has the required properties.

For the remainder of this section, we introduce the following notation: we
suppose that M1 ⊆M2 ⊆ · · · is a directed system of Cp-manifolds, as described



�

�

�

�

�

�

�

�

Direct limit Lie groups and manifolds 9

in Lemma 4.1 and its proof, with direct limit topological space M =
⋃

i∈N
Mi.

We abbreviate V := lim−→Rdi . Given x ∈ M , x ∈ Mn(x), say, we let (h(x)
i )i≥n(x)

be a family of Cp−2-diffeomorphisms h
(x)
i : Rdi → U

(x)
i , as constructed in

Lemma 4.1, and define Ox :=
⋃

i≥n(x) U
(x)
i . We let hx := lim−→h

(x)
i : V → Ox

denote the homeomorphism whose restriction to Rdi is h(x)
i for all i ≥ n(x),

and we set gx := h−1
x .

Proposition 4.2. M is a Hausdorff space, and A := {gx : x ∈M} is an
atlas for M which makes M a Cp−2-manifold. For every i ∈ N, the inclusion
map φi : Mi ↪→ M is an embedding of Cp−2-manifolds. A map f : M → N
into a Cp−2-manifold N is of class Cp−2 if and only if f ◦ φi is of class Cp−2

for all i, whence M is the direct limit of the above system in the category of
Cp−2-manifolds.

Proof. For simplicity of notation, we regard each Rdi (and V =
⋃

i∈N
Rdi)

as a subspace of R∞ (via t �→ (t, 0)). Note that, for every x ∈ M and
i ≥ n(x), the bijection gx maps Ox ∩ Mi onto Rdi . Now given x, y ∈ M ,
let n := max{n(x), n(y)}. Then x, y ∈ Mn. Set τ := gy|Ox∩Oy

◦ g−1
x |Ox∩Oy

Q ,

where Q := gx(Ox ∩ Oy). Let (h(x)
i )i≥n and (h(y)

i )i≥n denote the families of
Cp−2-diffeomorphisms used to define hx = g−1

x and hy = g−1
y , respectively.

Then τ is of class Cp−2, since, by construction of the maps h(x)
i and h

(y)
i , for

every i ≥ n we have

τ |Q∩Rdi = λi ◦ (h(y)
i )−1|

U
(x)
i ∩U

(y)
i

◦ h(x)
i |U

(x)
i ∩U

(y)
i

Q∩Rdi
,

where h(x)
i and h(y)

i are Cp−2-diffeomorphisms onto the open submanifolds U (x)
i

and U
(y)
i of Mi, respectively, and λi : Rdi ↪→ V denotes inclusion. The transi-

tion functions being of class Cp−2, A is a Cp−2-atlas forM . SinceM is Hausdorff
by Proposition 3.6 (a), we obtain a manifold of class Cp−2.

Now suppose that f : M → N is a map into a Cp−2-manifold N such
that all maps fi := f |Mi

are of class Cp−2. Then f is continuous since the
maps fi are continuous, M being the direct limit of its subspaces Mi as a
topological space. Given x ∈ M , let gx : Ox → V be the chart as above.
Furthermore, let φ : W → U be a chart around f(x) in N , where U is an
open subset of the vector space on which N is modelled. Then there is an
open neighbourhood P ⊆ Ox of x in M such that f(P ) ⊆ W , since f is
continuous. Thus F := φ ◦ f |WP ◦ g−1

x |PQ is defined, where Q := gx(P ). Let E be
a finite-dimensional subspace of V ; without loss of generality E = Rdi for some
i ≥ n(x). Now g−1

x |E is a Cp−2-diffeomorphism of E onto an open submanifold
S of Mi, by the construction of g−1

x . Since fi is of class Cp−2 by assumption,
the formula F |Q∩E = (φ ◦ fi|WP∩S) ◦ g−1

x |P∩S
Q∩E shows that F is of class Cp−2.

Hence f is of class Cp−2. The remainder is obvious.
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As a special case, we obtain:

Theorem 4.3. Let M1 ⊆ M2 ⊆ · · · be an ascending sequence of finite-
dimensional paracompact smooth manifolds, where Mn is a closed C∞-
submanifold of Mn+1 for all n. Then there exists a unique smooth manifold
structure on the direct limit topological space M := lim−→Mn =

⋃
n∈N

Mn which
makes M the direct limit of its submanifolds Mn in the category of smooth
manifolds.

We conclude this section with further technical information.

Proposition 4.4. Let M1 ⊆M2 ⊆ · · · ⊆M be as in Lemma 4.1 above,
and x ∈Mn. Then the path component P of x in M is open, coincides with
the connected component C of x in M , and C = lim−→i≥nCi, where Ci is the
connected component of x in Mi for i ≥ n.

Proof. For i ≥ n, let Ui denote the path component of x in Mi. Then Ui

is open in Mi and coincides with the connected component of x in Mi. The
family (Ui)i≥n satisfies the requirements of Lemma 3.1; thus U :=

⋃
i≥n Ui is

open in M , is path connected, and contains x. If γ : [0, 1] → M is any path
starting at x, its image is contained in some Mi by Proposition 3.6 (b), whence
γ(1) ∈ Ui ⊆ U . Thus U is the path component of x in M . Since all path
components of M are open by the preceding, they coincide with the connected
components.

Here is an analogue of Proposition 3.3 for smooth manifolds.

Proposition 4.5. Let ((Mi)i∈N, (φji)j≥i) and ((Ni)i∈N, (ψji)j≥i) be
strict directed systems of finite-dimensional Cp-manifolds, as in Lemma 4.1,
with direct limit Cp−2-manifolds M and N , respectively. Then lim−→Mi × Ni =
M ×N in the category of Cp−2-manifolds.

Proof. If (x, y) ∈ M × N and gx, gy are the above-defined charts of N
and M around x and y, respectively, with respective domains of definition Ox

and Oy, then Ox × Oy is open in the direct limit manifold S := lim−→Mi × Ni,
and clearly gx × gy is a chart of S as constructed in Lemma 4.1.

5. Countable direct limits of Lie groups

A smooth Lie group is a group, equipped with a smooth manifold struc-
ture modelled on some s.c.l.c. topological vector space, such that the group
operations are smooth maps. LIE∞ denotes the category of smooth Lie groups
and smooth homomorphisms. As a consequence of Theorem 4.3, we deduce in
this section that every countable strict directed system of finite-dimensional Lie
groups has a direct limit in the category LIE∞ (Theorem 5.1). We then inves-
tigate continuous homomorphisms between direct limit Lie groups (Proposition
5.2), provide an alternative description of the Lie algebras of direct limit Lie
groups (Proposition 5.4), and describe a direct limit Lie group whose exponen-
tial function does not induce a local homeomorphism at 0 (Example 5.5).
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Theorem 5.1. Let S := ((Gi)i∈I , (φji)j≥i) be a countable strict di-
rected system of finite-dimensional Lie groups, with topological group direct
limit (G, (φi)). Then there is a unique smooth manifold structure on G which
makes G the direct limit of S in the category LIE∞. The maps φi are embed-
dings onto C∞-submanifolds of G.

Proof. The identity component K of a Lie group L is a σ-compact locally
compact space and therefore paracompact. Hence so is L, being the topological
coproduct of the open closed cosets of K. Theorem 4.3 yields a smooth man-
ifold structure on G which makes it a direct limit in the category of smooth
manifolds modelled on s.c.l.c. spaces. Since G is, at the same time, a direct
limit in the sense of abstract groups, and in the sense of sets, cones of smooth
homomorphisms induce smooth homomorphisms. The remainder is plain.

Proposition 5.2. Let G and L be the direct limits of countable strict
directed systems of finite-dimensional Lie groups Gi ≤ G and Li ≤ L, respec-
tively, and assume that H is a finite-dimensional Lie group. Then

(a) every continuous homomorphism f : H → G is smooth;
(b) every continuous homomorphism f : G→ L is smooth.

Proof. (a) We may assume w.l.o.g. that H is connected, since translations
inH andG are smooth andH has an open identity component. Let C be a com-
pact identity neighbourhood in H; then f(C) ⊆ Gi for some i by Proposition
3.6 (b). Hence f(H) ⊆ Gi, because C generates H. Since Gi is a submanifold
of G and the continuous homomorphism f |Gi between finite-dimensional Lie
groups is smooth, so is f .

(b) f is induced by the cone (L, (f |Gi
)i∈I), where each continuous homo-

morphism f |Gi
is smooth by Part (a).

5.3. Suppose that S and G are as in Theorem 5.1. Let (g, (ψi)i∈I) be
the direct limit of T := ((L(Gi))i∈I , (L(φji))j≥i) in the category of topological
Lie algebras, where L(Gi) = Hom(R, Gi) and L(φji) = Hom(R, φji). The set
underlying g being the direct limit of the sets L(Gi), the cone (Hom(R, G),
(Hom(R, φi))i∈I) over T in SET induces a mapping η : g → Hom(R, G). Let us
check that η is bijective: we may assume I = (N,≤) and G1 ⊆ G2 ⊆ · · · ⊆ G, all
maps φi and φji being the respective inclusion maps. Suppose X ∈ Hom(R, G).
By Proposition 3.6 (b), we have X([−1, 1]) ⊆ Gi for some i ∈ N, whence
imX ≤ Gi indeed since [−1, 1] generates R. We have proved that every one-
parameter subgroup of G is a one-parameter subgroup of some Gi. It follows
from this that η is surjective. All maps Hom(R, φi) being injective, so is η. We
use the bijection η to transport the topological Lie algebra structure of g to
Hom(R, G).

Note that g is isomorphic to the Lie algebra of G as defined in [25].

Proposition 5.4. In the above situation, the following holds :
(a) Addition and Lie bracket on Hom(R, G) are given by the Trotter Prod-

uct and Commutator Formulas, respectively (which do converge). Thus, given
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X,Y ∈ Hom(R, G), we have, for all t ∈ R,

(X + Y )(t) = lim
n→∞

(
X

(
t

n

)
Y

(
t

n

))n

and

[X,Y ](t2) = lim
n→∞

(
X

(
t

n

)
Y

(
t

n

)
X

(
−t
n

)
Y

(
−t
n

))n2

.

(b) The exponential map exp: Hom(R, G) → G : X �→ X(1) is smooth.

Proof. The function exp is induced by the compatible family of the
smooth maps expGi

: L(Gi) = Hom(R, Gi) → G : X �→ X(1) (via the univer-
sal property of lim−→L(Gi) in the category of smooth manifolds). Hence exp is
smooth. Hom(R, G) being the directed union of the Lie algebras Hom(R, Gi),
Part (a) easily follows from the finite-dimensional theory (cf. [4, Chapter 3,
Section 4.3, Proposition 4]).

In the situation of the preceding proposition, the exponential map of G
need not be locally regular at 0, nor locally injective at 0, nor locally open at
0: then the method of [27]–[30] cannot be used to produce a direct limit Lie
group (whenever the method applies, the exponential function will induce a
local diffeomorphism at 0). Here is an example of a direct limit group with a
bad exponential function:

Example 5.5. Let G := R � C∞, where R acts on C∞ via t.(zk)k∈N =
(eiktzk)k∈N. Then G is an infinite-dimensional Lie group in a natural way; its
manifold structure is determined by the global chart id : G → R × C∞, where
the real vector space R × C∞ is equipped with the finite topology. Clearly the
Lie group G is the direct limit of its subgroups R �Vk, where Vk := {(zj)j∈N ∈
C∞ : zj = 0 for all j > k}. The Lie algebra g of G can be identified with R�C∞,
with R acting on C∞ via t.(zk)k∈N = (iktzk)k∈N. Using this identification, the
exponential map is given by exp: g → G, (t, (zk)k∈N) �→ (t, (f(kt)zk)k∈N),
where f(s) = (eis − 1)/is. We set X := (2π, 0) ∈ g.

Suppose that U is an open 0-neighbourhood in g. Since k−1X → 0 as
k → ∞, there exists n ∈ N such that n−1X ∈ U . Since U is open, there is
ε > 0 such that n−1X+ ren ⊆ U for all r ∈]−ε, ε[, where en = δn,· ∈ C∞. Now
exp(n−1X + ren) = (2π/n, 0) for all r shows that exp is not injective on U .
Hence exp is not locally injective at 0.

If W is an open identity neighbourhood in G, the continuity of exp implies
that g := (2π/n, 0) = exp(n−1X) ∈ W for some n ∈ N. Since W is open,
there is r = 0 with g′ := g + ren ∈ W . We claim that g′ ∈ im exp. In fact,
suppose to the contrary that we could find some Z = (t, (zk)k∈N) ∈ g such
that exp(Z) = g′. The above explicit formula for exp shows that t = 2π/n and
r = ((eint − 1)/int)zn = 0. But r = 0. Hence indeed g′ ∈ im exp and therefore
W ⊆ im exp. We conclude: The exponential image im exp is not an identity
neighbourhood of G.
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Note that expGk
= exp |Gk

R×Vk
has a non-invertible derivative at k−1X.

Hence exp is not locally regular at 0: every 0-neighbourhood U in g contains
an element Y such that d exp(Y ) is not injective, hence not invertible.

In infinite-dimensional Lie theory, it is interesting (and in many cases hard
to decide) whether a given Lie algebra is integrable, i.e., isomorphic to the Lie
algebra of some Lie group. Clearly direct limit Lie groups are natural candidates
of Lie groups one would try to associate with locally finite Lie algebras, i.e.,
Lie algebras which are the direct limit of their finite-dimensional subalgebras.
From Theorem 5.1 above, we easily deduce the following integrability criterion:

Corollary 5.6. Let g be a locally finite real Lie algebra of countable
dimension. Suppose that there exists an ascending sequence g1 ⊆ g2 ⊆ · · · of

finite-dimensional subalgebras of g, a strict directed sequence G1

φ2,1
↪→ G2

φ3,2
↪→ · · ·

of finite-dimensional Lie groups, and isomorphisms γn : L(Gn) → gn of Lie
algebras for n ∈ N with the following properties :

(a) g =
⋃

n∈N
gn;

(b) εn+1,n◦γn = γn+1◦L(φn+1,n) holds for all n ∈ N, where εn+1,n denotes
the inclusion map gn ↪→ gn+1.
Then G := lim−→Gn exists as a smooth Lie group, and L(G) ∼= g.

6. Direct limit convenient Lie groups

We have already seen in Example 3.5 that the näıve direct limit of an un-
countable strict directed system of finite-dimensional Lie groups need not be a
topological group, in which case it cannot be made a Lie group in the ordinary
sense (as described in Section 5). In this situation, it is unclear whether the di-
rected system has a direct limit in the category LIE∞ of Lie groups modelled on
s.c.l.c. topological vector spaces, and the näıve direct limit group does not seem
to be helpful for its construction. However, the system still has a direct limit
in another category of Lie groups (under suitable hypotheses), the category of
Lie groups in the sense of ‘convenient differential calculus’ ([7], [22]), as defined
in [21] and [22]. These Lie groups are the group objects in the category of
smooth manifolds in the sense of convenient differential calculus; we call them
convenient Lie groups for brevity. Let us assemble the required preliminaries
concerning convenient differential calculus.

A sequence (xn)n∈N in a locally convex topological vector space V is called
a Mackey-Cauchy sequence if there exists a sequence (µn)n∈N in R converging
to 0, and a bounded absolutely convex subset B ⊆ V such that xn ∈ µnB
for all n ∈ N (cf. [22, Lemma 1.6]). A topological vector space V is said
to be convenient if it is locally convex, Hausdorff, and every Mackey-Cauchy
sequence converges ([22, Theorem 2.14 (5)]). If V is a convenient topological
vector space, we let C∞(R, V ) denote the set of smooth curves R → V . The
c∞-topology on V is the final topology on V with respect to the mappings in
C∞(R, V ); we write c∞(V ) for V , equipped with the c∞-topology. Note that
the c∞-topology is finer than the original topology. If V is a Fréchet-space,
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c∞(V ) = V holds ([22, Theorem 4.11]); in general, c∞(V ) is not a topological
vector space, and if V , W are convenient vector spaces, although the map
c∞(V ×W ) → c∞(V )× c∞(W ), (v, w) �→ (v, w) is easily seen to be continuous,
it need not be a homeomorphism. If V,W are convenient topological vector
spaces, U is a c∞-open subset of V , and f : V → W is a map, we say that
f is smooth if f ◦ c : R → W is smooth for all smooth maps c : R → V with
image in U . Then composites of smooth maps are smooth. A smooth manifold
(in the sense of convenient differential calculus) is a pair (M,A), where M is
a topological space and A is a set of homeomorphisms (called charts) φ : U →
W from an open subset U of M onto a c∞-open subset W of a convenient
topological vector space Vφ (equipped with the c∞-topology), such that M is
the union of the domains of the charts φ ∈ A and, for all charts φ : U1 → W1

and ψ : U2 → W2, the coordinate change τ := ψ|U1∩U2 ◦ φ−1|U1∩U2
φ(U1∩U2) is a

smooth map. If there is a convenient vector space V such that Vφ is linearly
diffeomorphic to V for all charts φ, we say that M is modelled on V .

Given smooth manifolds M and N , a map f : M → N is said to be smooth
if it is continuous and if, for every x ∈M and charts φ : U1 →W1 and ψ : U2 →
W2 around x and f(x), respectively, the mapping ψ ◦f |U2

Q ◦φ−1|Qφ(Q) is smooth,
where Q := f−1(U2) ∩ U1.

If (M1,A1) and (M2,A2) are smooth manifolds, we equip M1 ×M2 with
the final topology with respect to the maps φ−1

1 ×φ−1
2 : W1 ×W2 → U1 ×U2 ⊆

M1×M2, where φi : Ui →Wi is a chart ofMi for i = 1, 2 and U1×U2 is equipped
with its topology as a subspace of c∞(V1×V2), where Vi is the convenient vector
space such that Wi ⊆ Vi. Note that we do not use the topology induced by
c∞(V1) × c∞(V2): this is essential. Let C denote the collection of all the maps
φ1 × φ2; we call (M ×N, C) the direct product of the manifolds M and N .

A convenient Lie group is a group G, together with a smooth manifold
structure on G (in the preceding sense), such that the group operations are
smooth (see [22], Definition 36.1, where convenient Lie groups are simply called
“Lie groups”). Unlike [22], we shall not presume that G be smoothly Hausdorff
(which means that the smooth functions f : G→ R separate points on G). Note
that the topology underlying the product manifold G×G can be properly finer
than the product topology; hence although the group multiplication µ : G×G→
G is smooth, G need not be a topological group.

Lemma 6.1. Let V be a real vector space, equipped with the finest locally
convex topology. Then V is a convenient topological vector space. The c∞-
topology on V coincides with the topology of finitely open sets.

Proof. Any real vector space is complete in its finest locally convex topol-
ogy ([18, Theorem 8]); therefore it is a convenient topological vector space. Let
F be a finite-dimensional subspace of V . Then F is a convenient vector space
in its Hausdorff vector topology. By [22, Theorem 2.14 (3)], F is c∞-closed in
V , whence the c∞-topology on V induces the c∞-topology on F , by loc. cit.
Lemma 4.28, which is the Hausdorff vector topology on F since F is Fréchet.
Thus F ∩U is open in F for every finite-dimensional subspace F if U is c∞-open
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in V : hence U is finitely open and we have proved that the c∞-topology on V
is coarser than the finite topology. On the other hand, if c : R → V is a smooth
curve, for every k ∈ Z the compact set c([k−1, k+1]) has finite-dimensional
span Fk in V , equipped with the finest locally convex topology ([18, Lemma
2]). Since the finite topology on V induces the Hausdorff vector topology on
each Fk, we conclude that c is continuous as a mapping into V , equipped with
the finite topology. By definition of the c∞-topology as a final topology, we
deduce that it is finer than the finite topology. This completes the proof.

The heart of the following definition is a variant of the “spectral growth
condition” defined in [27]:

Definition 6.2. Let S := ((Gi)i∈I , (φji)j≥i) be a strict directed sys-
tem of finite-dimensional Lie groups. We say that S is admissible if there
exists a strict directed system T := ((Vi)i∈I , (ηji)j≥i) of finite-dimensional
complex vector spaces and complex linear maps and a family (πi)i∈I of con-
tinuous complex linear actions πi : Gi × Vi → Vi which is compatible with the
directed systems ((Gi × Vi)i∈I , (φji × ηji)j≥i) and T , with the following prop-
erty: Let dπ := lim−→ dπi : g × V → V be the limit map of the family of Lie
algebra actions dπi : L(Gi) × Vi → V which is compatible with the directed
systems ((L(Gi) × Vi)i∈I , (L(φji) × ηji)j≥i) and T , where g := lim−→L(Gi) and
V := lim−→Vi.*3 It is required that the Lie algebra representation g → gl(V ),
X �→ dπ(X, ·) is faithful, and that there exists a finitely open 0-neighbourhood
Q in g such that

(1) sup{| Imλ| : X ∈ Q, λ ∈ spec dπ(X, ·)} <∞.

Remark 6.3. In the situation of Definition 6.2, there is a useful crite-
rion for the existence of Q, the “bounded growth condition” or “operator norm
growth condition” ([28], p. 62, [30] (3.4b)): If there exists a family (‖ · ‖i)i∈I of
norms on the spaces Vi such that, for every i ∈ I and X ∈ gi,

lim sup
j≥i

‖dπj(L(φji)(X), · )‖op
j <∞

(where ‖ · ‖op
j denotes the operator norm with respect to ‖ · ‖j), then there is

a neighbourhood Q in g with the required property.

We can now state an existence theorem for direct limit convenient Lie
groups:

Theorem 6.4. Let S = ((Gi)i∈I , (φji)j≥i) be an admissible strict di-
rected system of finite-dimensional Lie groups. Then the näıve direct limit
(G, (φi)i∈I) of S can be given a smooth manifold structure in the sense of con-
venient differential calculus which makes it the direct limit of S in the category
of convenient Lie groups. If I is countable or if the compatible family (πi)i∈I in
the definition of admissibility can be chosen such that lim−→πi is a faithful action
of G, then G is smoothly Hausdorff.

*3Here dπi(X, v) := d1(π)(1, v).X for X ∈ g, v ∈ V , where d1 denotes the partial derivative
with respect to the variables in g.
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Proof. Let (G, (φi)i∈I) denote the näıve direct limit of S; we may assume
without loss of generality that Gi ⊆ G for all i, all maps φji and φi being the
respective inclusion maps. Also, we consider all Lie algebras gi as subalgebras
of their direct limit g. Let Q be as in Definition 6.2; after shrinking Q by
multiplication with a suitable positive real, we may assume that the supremum
in Definition 6.2, Inequality (1) is smaller than π. Let exp := lim−→ expGi

: g → G.
By [27, Proposition 7.1], U := exp(Q) is an open subset of G, and α := exp |UQ
is a homeomorphism if Q is equipped with the topology induced by the finite
topology. Given x ∈ G, define βx : xU → Q via y �→ α−1(x−1y). By the
considerations in [27], for every i ∈ I such that x ∈ Gi, the map βx|Q∩gi

xU∩Gi
is a

chart of Gi.
We claim that the family (βx)x∈G can be used as a family of charts which

makes G a convenient Lie group modelled on g, equipped with the finest locally
convex topology. Note first that the sets xU cover G (for x ∈ G). Given
x, y ∈ G, consider the coordinate change τ : βy|xU∩yU ◦β−1

x |xU∩yU
W , where W :=

βx(xU ∩ yU). Then W is finitely open by the above, i.e., W is c∞-open by
Lemma 6.1. If c : R → W is a smooth curve, consider ck := c|]k−1,k+1[ for
k ∈ N. Then ck has relatively compact image, whence there exists i ∈ I such
that imck ⊆ gi. Increasing i if necessary, we may assume that x, y ∈ Gi. Now
τ ◦ ck = τ |Q∩gi

W∩gi
◦ ck, where τ |Q∩gi

W∩gi
is analytic by the above (being a coordinate

change on Gi). Thus τ ◦ ck is smooth for all k, whence also τ ◦ c is smooth. We
conclude that τ is smooth in the sense of convenient differential calculus.

To see that G, equipped with the smooth manifold structure defined by the
above coordinate cover, is a convenient Lie group, it remains to show that the
group multiplication and inversion are smooth. Let us show smoothness of the
multiplication µ (smoothness of inversion is even easier to prove). Regard G×G
as a smooth manifold modelled on g× g (equipped with the product topology,
which is again the finest locally convex topology), using the family of charts
(βx × βy)x,y∈G as a coordinate cover. Let c : R → G × G be a smooth curve.
Given t ∈ R, there exist (x, y) ∈ G×G and a neighbourhood V =]t−r, t+r[ of t
in R such c(V ) ⊆ xU×yU and such that (βx×βy) ◦ c|xU×yU

V : V → Q×Q ⊆ g×g
is smooth. Let 0 < s < r and set W :=]t − s, t + s[; then (βx × βy)(c(W )) is
relatively compact, hence contained in gi×gi for some i ∈ I. We may assume
that x, y ∈ Gi. Then c(W ) ⊆ Gi × Gi, and c′ := c|Gi×Gi

W is a smooth curve,
using that (βx × βy)|(Q×Q)∩(gi×gi)

(xU×yU)∩(Gi×Gi)
is a chart of Gi × Gi. We now write

µ ◦ c|W = λi ◦ µi ◦ c′, where µi : Gi ×Gi → Gi is the smooth multiplication on
Gi and λi : Gi ↪→ G denotes inclusion. It is easy to check that λi is smooth.
Hence µ ◦ c|W is smooth as well. Since t ∈ R was arbitrary, we conclude that
µ ◦ c is smooth. Hence µ is smooth.

Let us prove now that G, equipped with the above convenient Lie group
structure, is the direct limit of S in the category of convenient Lie groups. To
this end, let (H, (fi)i∈I) be a cone over S in the category of convenient Lie
groups. Since (G, (φi)i∈I) is the direct limit of S in the category of groups,
there is a unique homomorphism f : G→ H such that f |Gi

= fi for all i ∈ I. If
c : R → G is a smooth curve, for every t ∈ G there exists an open neighbourhood
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W of x in R such that c(W ) ⊆ Gi for some i ∈ I, as above. Hence f ◦ c|W =
fi ◦ c|Gi

W shows that f ◦ c|W is smooth, and hence that so is f ◦ c. Therefore f
is smooth.

Suppose now that (πi)i∈I is a compatible family of continuous linear ac-
tions πi : Gi × Vi → Vi on finite-dimensional complex vector spaces which is
compatible with S in the sense described in Definition 6.2; assume that the
representation g �→ π(g, ·), where π := lim−→πi, separates points on G. Let
V := lim−→Vi, equipped with the finite topology; we consider V as a smooth
manifold, modelled on the real vector space V , equipped with the finest locally
convex topology. Given distinct elements g, h ∈ G, by hypothesis there exists
v ∈ V such that π(g, v) = π(h, v). Let λ ∈ V ′ such that λ(π(g, v)) = λ(π(h, v)).
Then f := λ ◦ π(·, v) : G→ R is smooth since λ and π are so, and f(g) = f(h).

If I is countable, then G is a regular topological space in view of Corollary
3.4; furthermore, g (which is finite-dimensional or ∼= R∞) admits smooth bump
functions, i.e., for every X ∈ g and every neighbourhood U of X, there exists a
smooth function b : g → R, vanishing on the complement of U , such that b(X) =
1. These properties together will entail that G is smoothly Hausdorff. Here, the
existence of smooth bump functions is trivial if g is finite-dimensional. To settle
the infinite-dimensional case, it suffices to construct smooth bump functions
around X = 0 ∈ R∞. To this end, let U be any open zero-neighbourhood
in R∞. Inductively, we find a sequence of real numbers rn > 0 such that
R∞ ∩

∏
n∈N

[−rn, rn] ⊆ U . In fact, if C :=
∏N

n=1[−rn, rn] ⊆ U for some
N ∈ N, then U ∩ RN+1 is an open neighbourhood of the compact subset C
of RN+1. Since C is compact, the neighbourhood U ∩ RN+1 of C is in fact a
uniform neighbourhood of C in RN+1, whence we find some rN+1 > 0 with∏N+1

n=1 [−rn, rn] = C + [−rN+1, rN+1]eN+1 ⊆ U ∩ RN+1. Let h be a smooth
function on R supported in [−1, 1], such that h(0) = 1. We let b : R∞ →
R be the function given by b(t1, . . . , tn) := h(t1/r1) · h(t2/r2) · . . . · h(tn/rn)
for (t1, . . . , tn) ∈ Rn ⊆ R∞. Then b is smooth, being smooth on each Rn;
furthermore, b(0) = 1 and b|R∞\U = 0.

To deduce that G is smoothly Hausdorff, assume that g, h ∈ G are distinct
elements. Let W be a neighbourhood of g which is diffeomorphic to an open
subset of g; since G is Hausdorff, we may assume that h ∈ W . Now G being
regular, there exists a closed neighbourhood U of g in G, such that U ⊆ W .
Since g admits smooth bump functions, there is a smooth function H : W → R

such that H|W\U = 0. We extend H to a function F defined on all of G by
setting F (x) := 0 for x ∈ G\W . Then F is smooth on the open sets W and
G\U , whose union is G: therefore F is smooth. Furthermore, F (g) = 1 and
F (h) = 0. Thus the smooth functions separate points on G, as required.

Remark 6.5. We remark that the atlas constructed in the proof of
Theorem 6.4 is real-analytic in the sense of [22, (27.1)], whence G is an analytic
convenient Lie group; it is the direct limit of S in the category of analytic
convenient Lie groups. The proof of these assertions is completely analogous to
the preceding proof in view of the definition of analytic maps (loc. cit. (10.3))
in convenient differential calculus. Similarly, if we are given an admissible
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directed system of finite-dimensional complex Lie groups and complex analytic
homomorphisms, we obtain a complex analytic structure on the direct limit
convenient Lie group.

Remark 6.6. The direct limit Lie groups constructed in Theorem 5.1
are also the direct limits in the category of convenient Lie groups, by arguments
similar to those used in the proof of Theorem 6.4.

Remark 6.7. It is not known to the author whether all of the direct
limit convenient Lie groups constructed above are smoothly Hausdorff (without
extra hypotheses).

7. An instructive example

Let I be an infinite set and J be the set of finite subsets of I, directed by
inclusion. We consider the group G = GL(I,R) ⊆ RI×I of I×I-matrices A such
that A−1 ∈ R(I×I) and A is invertible. Then (G, (φF )F∈J ) is the direct limit
group of the directed system S := ((GF ), (φEF )), where GF := GL(RF ) for F ∈
J and φEF : A �→ A ⊕ idRE\F for F ≤ E (the homomorphisms φF : GF → G
being defined analogously). Equip G with the näıve direct limit topology. We
let gl(I,R) := R(I×I) denote the real (non-unital) algebra of I×I-matrices with
only finitely many non-zero entries; as a Lie algebra, gl(I,R) ∼= lim−→ gl(RF ) ∼=
lim−→L(GL(RF )). If I is countable, we make G a Lie group modelled on the
s.c.l.c. space gl(I,R) ∼= R∞; the group operation will be continuous, and the
Lie bracket on gl(I,R)2 is continuous, as any bilinear map on this space. Of
course, we can also consider GL(I,R) as the direct limit convenient Lie group.
Now assume that I is uncountable.

Theorem 7.1. The above directed system S is admissible, whence
GL(I,R) can be made the direct limit convenient Lie group of S. Then GL(I,R)
is smoothly Hausdorff, and the following holds:

(a) GL(I,R) is not a topological group, because the group multiplication
µ : GL(I,R)2 → GL(I,R) is discontinuous with respect to the product topology
on GL(I,R)2.

(b) Equip gl(I,R) := R(I×I) with the finest locally convex topology, or with
the topology of finitely open sets. Then the matrix multiplication

m : gl(I,R) × gl(I,R) → gl(I,R)

is discontinuous, and so is the Lie bracket

[·, ·] : gl(I,R) × gl(I,R) → gl(I,R).

Here, the product is equipped with the respective product topology.

Proof. The family of inclusions γF : GL(RF ) ↪→ GL(CF ) gives rise to
a compatible family (πF )F∈J of linear actions GL(RF ) × CF → CF . It is
easy to verify the bounded growth condition (Remark 6.3), using the 2-norms



�

�

�

�

�

�

�

�

Direct limit Lie groups and manifolds 19

‖ · ‖F : (ri)i∈F �→
√∑

i∈F |ri|2 on CF : hence S is admissible. All representa-
tions γF being faithful, so is the the direct limit representation lim−→ γF corre-
sponding to the action lim−→πF . We deduce from Theorem 6.4 that GL(I,R) is
smoothly Hausdorff.

(a) This part of the theorem is known, but we give the short proof. Con-
sider for F ∈ J the closed subgroupHF of GF consisting of all diagonal matrices
with positive diagonal entries; we let H denote the closed subgroup of G which
is the näıve direct limit of the groups HF (note that the considerations preced-
ing Lemma 3.1 have analogues for closed subspaces). The compatible family
of isomorphisms (ηF )F∈J , where ηF : RF → HF maps (tj)j∈F to the diago-
nal matrix with entries etj , induces an isomorphism of semitopological groups
R(I) → H, where R(I) is equipped with the finite topology. By Example 3.5,
H is not a topological group, and hence neither is G.

(b) The proof is achieved via a series of lemmas. First, we discuss the case
where gl(I,R) is equipped with the finest locally convex topology.

Definition 7.2. Let V be a real vector space, and (ei)i∈A be a basis
for V . Given r = (ri)i∈A ∈ (R+)A, we set U(r) := conv{±riei : i ∈ A} (here
R+ :=]0,∞[).

It is plain that the sets U(r) form a basis of the filter U0(V ) of
0-neighbourhoods of V , equipped with the finest locally convex topology.

Lemma 7.3. Let V be a real vector space, (ei)i∈A be a basis for V , and
β : V × V → X be a bilinear map into a real locally convex space X. Equip V
with the finest locally convex topology. Then the following holds :

(i) β is continuous if and only if β is continuous at (0, 0), i.e., if and only
if for every convex symmetric 0-neighbourhood W in X, there is r ∈ (R+)A

such that β(U(r) × U(r)) ⊆W .
(ii) If W is a convex symmetric 0-neighbourhood in X and r ∈ (R+)A, we

have β(U(r) × U(r)) ⊆W if and only if β(riei, rjej) ∈W for all i, j ∈ A.

Proof. (i) It is well-known that multilinear maps between topological vec-
tor spaces are continuous if and only if they are continuous at the origin ([3,
Chapter I, Section 1, No. 6, Proposition 5]).

(ii) The implication ‘⇒’ is trivial. Conversely, suppose that β(riei, rjej) ∈
W for all i, j ∈ A; then also β(riei,−rjej) ∈ W for all i, j, by symmetry of
W . Fix i ∈ A. Since β(riei, ·) is linear and W is convex, we deduce from
β(riei,±rrej) ∈ W for all j that β(riei, U(r)) ⊆ W . Fix u ∈ U(r). Since
β(±riei, u) ∈ W for all i ∈ A by the preceding, we conclude as above that
β(U(r), u) ⊆W . Since u was arbitrary, β(U(r) × U(r)) ⊆W follows.

Lemma 7.4. Consider gl(I,R), equipped with the finest locally convex
topology, where I ≥ ℵ0. Then the following statements are equivalent :

(i) The Lie bracket [·, ·] : gl(I,R) × gl(I,R) → gl(I,R) is continuous ;
(ii) Matrix multiplication m : gl(I,R) × gl(I,R) → gl(I,R) is continuous.
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Proof. Since matrix addition is continuous and so is taking negatives, the
implication ‘(ii)⇒(i)’ is obvious.

(i)⇒(ii): Suppose that the Lie bracket is continuous. We partition I into
three disjoint sets I1, I2, I3 of equal cardinality and define

V1 := span{Eij : i ∈ I1, j ∈ I2},
V2 := span{Eij : i ∈ I2, j ∈ I3},
V3 := span{Eij : i ∈ I1, j ∈ I3},

where the Eij ’s are the matrix units. Then [V1, V2] ⊆ V3, and [·, ·]|V3
V1×V2

is
continuous. For k ∈ {1, 2, 3}, there is a bijection fk : I → Ik and a linear
isomorphism φk : gl(I,R) → Vk determined by

Eij �→ Ef1(i)f2(j) if k = 1,
Eij �→ Ef2(i)f3(j) if k = 2,
Eij �→ Ef1(i)f3(j) if k = 3.

Then m = φ−1
3 ◦ [·, ·]|V3

V1×V2
◦ (φ1 × φ2); hence m is continuous.

We now recall the following fact from [2]:

Lemma 7.5. A set I is uncountable if and only if there is a function
g : I2 → R+ such that for every function f : I → R+, there is (i, j) ∈ I2 such
that g(i, j) < f(i)f(j).

Lemma 7.6. The matrix multiplication m : gl(I,R)2 → gl(I,R) is dis-
continuous if gl(I,R) is equipped with the finest locally convex topology, for
every uncountable set I.

Proof. The matrix units Eij (where (i, j) ∈ I2) form a basis of gl(I,R);
therefore the sets U(r) := conv{±rijEij : (i, j) ∈ I2} (where r = (rij) ∈
(R+)I×I) constitute a filter basis for the filter of 0-neighbourhoods in gl(I,R).
Let g : I2 → R+ be a function with the properties described in Lemma 7.5.
I claim that m(U(r) × U(r)) ⊆ U(g), for every r = (rij) ∈ (R+)I×I . Re-
placing each rij by min{rij , rji}, we may assume that r is symmetric. Fix
any i0 ∈ I and define f : I → R+ via f(i) := rii0 . By definition of g, there
is a pair (i, j) ∈ I2 such that rii0ri0j = rii0rji0 = f(i)f(j) > g(i, j). Now
(rii0Eii0 , ri0jEi0j) ∈ U(r)×U(r) and m(rii0Eii0 , ri0jEi0j) = rii0ri0jEij ∈ U(g).
We have proved thatm is not continuous at (0, 0); hencem is discontinuous.

Note that in the situation of the preceding lemma, the commutator bracket
is discontinuous as well, by Lemma 7.4. Thus all assertions of Theorem 7.1 (b)
concerning gl(I,R), equipped with the finest locally convex topology, are proved.
The remainder of (b) can be deduced easily from the following lemma:

Lemma 7.7. Let V be a real vector space, X be a locally convex vector
space, and β : V ×V → X be a bilinear map. Let Ofop be the topology of finitely
open sets on V , and Olcx the finest locally convex topology. If β : (V,Ofop)2 → X
is continuous at (0, 0), then so is β : (V,Olcx)2 → X.
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Proof. Let W be a convex symmetric 0-neighbourhood in X. If the map
β : (V,Ofop)2 → X is continuous at 0, there is a symmetric 0-neighbourhood
U in (V,Ofop) such that β(U × U) ⊆ W . Set U ′ := conv(U); then U ′ is
convex, symmetric, and absorbing, and hence is a 0-neighbourhood in (V,Olcx).
Furthermore, as in the proof of Lemma 7.3 (b), we find that β(U ′ × U ′) ⊆W .
Thus β : (V,Olcx)2 → X is continuous at (0, 0).

To complete the proof of Theorem 7.1 (b), let I be any uncountable set.
The matrix multiplication and Lie bracket (gl(I,R),Olcx)2 → (gl(I,R),Olcx)
are discontinuous; by Lemma 7.3, these mappings are discontinuous at (0, 0).
We deduce from Lemma 7.7 that matrix multiplication and Lie bracket are also
discontinuous at (0, 0) when considered as mappings

(gl(I,R),Ofop)2 → (gl(I,R),Olcx).

Since Olcx ⊆ Ofop, we deduce that matrix multiplication and Lie bracket are
discontinuous a fortiori as mappings (gl(I,R),Ofop)2 → (gl(I,R),Ofop). This
completes the proof.

8. Non-archimedian analogues

Most of the results obtained by now are not specific for real Lie groups
and hold equally well for Lie groups over totally disconnected local fields, as
we shortly sketch in the following.

LetK be a totally disconnected commutative local field [35], with valuation
ring R and valuation ideal P = πR. For information concerning topological
vector spaces over K, the reader is referred to [26]; the necessary background
concerning K-Lie groups can be found in [33] and [4, Chapter 3].

We set K∞ := K(N), equipped with the finite topology (which is defined
as in the real case); it coincides with the finest vector space topology on K(N).
Suppose that X1 and X2 are K-vector spaces of countable dimension (finite or
infinite), equipped with their finite topologies, and U an open subset of X1. Let
f : U → X2 be a continuous map, and F a finite-dimensional subspace of X1.
For every x ∈ F ∩U , there is an open neighbourhood C of x in F ∩U which is
relatively compact in F ∩U . Then f(C) is a relatively compact subset of a K-
vector space equipped with the finite topology; by Proposition 3.6 (b), f(C) has
finite-dimensional span S. We say that f : U → X2 is analytic if it is continuous
and if for every F , x, C, S as above, the map f |SC is analytic in the usual sense.
If V1, V2, and V3 are vector spaces of countable dimension, equipped with their
finite topologies, and if f : U1 → V2 and g : U2 → V3 are analytic maps such that
f(U1) ⊆ U2, where U1 and U2 are open subsets of V1 and V2, respectively, then
the composition g ◦ f |U2 is analytic. Hence analytic K-manifolds modelled on
topological vector spaces of the above type, and analytic maps between these,
can be defined in the usual way. All manifolds discussed below will be assumed
to be of this form. A group G equipped with an analytic K-manifold structure
modelled on K∞ (or some Kn) with respect to which the group operations are
analytic will be called a Lie group of countable dimension in the following.
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Lemma 8.1. Let M be a finite-dimensional analytic K-manifold and N
be an analytic submanifold of M . Let m := dimM and n := dimN . Suppose
that ψ : W → V is a chart of N , where W is an open compact subset of N and
V an open compact subset of Kn, and suppose that Ω is an open neighbourhood
of W in M . Then there exists an open compact subset U ⊆ Ω of M and
a chart φ : U → V×Rm−n such that U ∩ N = W and φ|W = λ ◦ ψ, where
λ : V → V×Rm−n : v �→ (v, 0).

Proof. Let W ′ be an open subset of M such that W ′ ∩N = W . Since N
is a submanifold of M , every point x ∈W has an open compact neighbourhood
C ⊆ Ω ∩W ′ in M on which a chart γ : C → Q is defined such that γ|Q∩Kn

C∩N is
a chart of N (where we identify Kn with the subspace Kn×{0} of Km, and
Q is an open compact subset of Km). By compactness, W is covered by the
domains C1, . . . , Ck ⊆ Ω of finitely many of these charts γi : Ci → Qi. Set
C ′

1 := C1 and C ′
i := Ci\(C1 ∪ · · · ∪ Ci−1) for i = 2, . . . , k. Then the maps

γi|imC′
i

C′
i

are also charts of the above type, whence we may assume w.l.o.g. that
the sets C1, C2, . . . , Ck are disjoint.

Fix i. For every z ∈ Qi, there exists a minimal number sz ∈ Z such that
the ball z + πszRm is contained in Qi, and clearly these balls partition Qi.
Note that there are finitely many maximal balls by compactness. Hence we
find finitely many disjoint balls B1, . . . , Bs ⊆ Qi which cover γi(W ∩Ci), such
that Bj ∩ γi(W ∩Ci) = ∅ for j = 1, . . . , s. Now γi can be replaced by the maps
γi|Bj

γ−1
i (Bj)

(where j = 1, . . . , s).
By the preceding, we may assume w.l.o.g. that every Qi is a ball and hence

w.l.o.g. that Qi = Rm (thus γi(W ∩ Ci) = Rn × {0}).
Set U := C1 ∪ · · · ∪ Ck. Then Γ(v, r) := γ−1

i (γi(ψ−1(v)) + (0, r)) for
v ∈ ψ(Ci ∩W ) defines a Cω-diffeomorphism Γ: V ×Rm−n → U , since the open
subsets C1, . . . , Ck partition U . Now φ := Γ−1 is the required chart.

Proposition 8.2. Suppose that S = ((Mi)i∈I , (φji)j≥i) is a countable
directed system of finite-dimensional analyticK-manifolds such that every φji is
an embedding of analytic manifolds. Then the direct limit (M, (φi)i∈I) in TOP

can be equipped with an analytic manifold structure which makes (M, (φi)i∈I)
the direct limit of S in the category of analytic K-manifolds of countable di-
mension. All maps φi are embeddings of analytic manifolds; M is regular and
totally disconnected.

Proof. We may assume that I = (N,≤) and M1 ⊆ M2 ⊆ · · · ⊆ M , the
morphisms φji and φi being the respective inclusion maps. Let di := dimMi.

Suppose that x ∈ Mn; let Ω be any open neighbourhood of x in M .
There is an open compact neighbourhood Un ⊆ Ω of x in Mn and an open
neighbourhood Vn of 0 in Kdn such that there is a chart φn : Un → Vn; w.l.o.g.
Vn = Rdn .

By the preceding lemma and induction, we find open compact subsets Uk ⊆
Ω of Mk and charts φk : Uk → Rdk for k > n such that Uk ∩Mk−1 = Uk−1 and
φk|Uk−1 = λk−1 ◦φk−1, where λk−1 denotes inclusion Rdk−1 ↪→ Rdk : r �→ (r, 0).
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Set U :=
⋃

k≥n Uk. Then U ⊆ Ω, and U is open and closed in the direct
limit topology. Since Ω was arbitrary, we conclude thatM is regular and totally
disconnected.

By Lemma 3.1, U is the direct limit of its subspaces Uk (with the inclusion
maps), and this directed system is equivalent via the family (φk)k≥n to the
directed system of the subspaces Rdk of the subspace R∞ of K∞ (or some
RN if the dimensions dk are bounded), with direct limit R∞ (or RN ). Set
gx : = lim−→φk : U → R∞ (or RN ). As in the real case, one verifies that the
maps gx form an analytic atlas for M (where x ∈ M), and that M has the
asserted properties.

Corollary 8.3. Let S = ((Gi)i∈I , (φji)j≥i) be a countable directed sys-
tem of finite-dimensional K-Lie groups and analytic embeddings φji, with direct
limit (G, (φi)i∈I) in TG. Then there exists a unique analytic manifold structure
on G which makes (G, (φi)i∈I) the direct limit of S in the category of K-Lie
groups of countable dimension; every φi is an analytic embedding.

Let G be a topological group. A local p-adic one-parameter subgroup of
G is a continuous homomorphism ξ : U → G, where U is an open subgroup
of Qp. Its germ at 0 is the set of all local p-adic one-parameter subgroups
ζ of G such that ξ and ζ coincide on some 0-neighbourhood. The set of all
germs at 0 of local p-adic one-parameter subgroups of G will be denoted by
Homloc(Qp, G). If G is a p-adic Lie group, it is well-known that its Lie algebra
L(G) can be identified with Homloc(Qp, G) in a natural way. The identification
can be described as follows: Let φ : M → G be an exponential function for G,
defined on some open Zp-submodule M of L(G) (see [4, Chapter 3, Sections 4.3
and 4.2, Lemma 3 (iii)]). Then X ∈ L(G) corresponds to the germ at 0 of the
local p-adic one-parameter subgroup ξ : pkZp → G, t �→ φ(tX), where k ∈ N0

is chosen so large that pkX ∈M .
Along the lines of Proposition 5.2 and paragraph 5.3 above, we deduce:

Corollary 8.4. The direct limit topological group (G, (φi)i∈I) of any
countable strict directed system S = ((Gi)i∈I , (φji)j≥i) of finite-dimensional
p-adic Lie groups can be given a p-adic Lie group structure which makes it the
direct limit of S in the category of p-adic Lie groups of countable dimension.
The set Homloc(Qp, G) of germs at 0 of local p-adic one-parameter subgroups
can be identified with the direct limit Lie algebra lim−→L(Gi), and every local
p-adic one-parameter subgroup of G is an analytic mapping.

The classes of manifolds and Lie groups “of countable dimension”, and the
corresponding notion of analytic map, are slightly special. After this research
was completed, a general differential calculus of smooth mappings between open
subsets of topological vector spaces over non-discrete topological fields has been
developed [1]. It can be shown that the smooth Lie groups underlying the direct
limit Lie groups constructed in the present section are also the direct limits of
the given directed systems in the category of smooth Lie groups modelled on
(arbitrary) topological K-vector spaces [10]; likewise for manifolds.
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