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Space-time regularity for linear stochastic
evolution equations driven by spatially

homogeneous noise

By

Zdzis�law Brzeźniak and Jan van Neerven

Abstract

In this paper we study space-time regularity of solutions of the
following linear stochastic evolution equation in S ′(R

d), the space of
tempered distributions on R

d:

du(t) = Au(t) dt + dW (t), t > 0,

u(0) = 0.
(∗)

Here A is a pseudodifferential operator on S ′(R
d) whose symbol q :

R
d → C is symmetric and bounded above, and {W (t)}t>0 is a spatially

homogeneous Wiener process with spectral measure µ. We prove that
for any p ∈ [1,∞) and any nonnegative weight function � ∈ L1

loc(R
d),

the following assertions are equivalent:
(1) The problem (∗) admits a unique Lp(�)-valued solution;
(2) The weight � is integrable and

Z
Rd

1

C − Re q(ξ)
dµ(ξ) < ∞

for sufficiently large C.
Under stronger integrability assumptions we prove that the Lp(�)-

valued solution has a continuous, resp. Hölder continuous version.

1. Introduction

In this paper we study space-time regularity of weak solutions of linear
stochastic partial differential equations. Apart from their interest in their own
right, linear models (such as the Laplace equation or the Stokes equations)
serve as a first step towards understanding more complicated nonlinear models
(such as nonlinear elliptic equations or the Navier-Stokes equations).
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262 Zdzis�law Brzeźniak and Jan van Neerven

In the theory of stochastic PDE’s there are two basic linear model equa-
tions: the Langevin equation and the Zakai equation. In the present paper we
will be concerned with the former one, which can be written as

(1.1)
du(t) = Au(t) dt+ dW (t), t � 0,
u(0) = 0.

Here A is some linear operator acting in a vector space E and W = {W (t)}t�0

is some type of Wiener process. There is an extensive literature on equation
(1.1), see e.g. the monographs by Itô [13] and Da Prato and Zabczyk [5], [6].

In a recent paper [2] the authors have obtained necessary and sufficient
conditions for existence and uniqueness of weak solutions to equation (1.1) in
the situation where E is an arbitrary separable real Banach space, A is the
generator of a C0-semigroup of bounded linear operators on E, and W is a
cylindrical Wiener process with a given Cameron-Martin space H which is
assumed to be continuously embedded in E.

A different approach to equation (1.1) was introduced by Dawson and
Salehi [9] for modelling the growth of populations in a random environment;
see also [19]. In this approach W is interpreted as a homogeneous Wiener
process on Rd, and the equation admits a natural formulation in the space
S ′ of tempered distributions on R

d. In the context of S ′-valued solutions it
is natural to ask for conditions under which an S ′-valued solution actually
takes values in some space of functions. For the stochastic wave equation in
dimension d = 2, this problem was investigated by Dalang and Frangos [8], who
obtained conditions for the existence of a function-valued solution in terms of
the spectral measure associated with W. These results have been extended to
higher dimensions and to a wider class of equations by many authors [17], [6],
[22], [23], [3], [7], [15], [16], [21].

Consider, as a concrete example, the stochastic heat equation

(1.2)
du(t) = ∆u(t) dt+ dW (t), t � 0,
u(0) = 0.

As is well-known, this equations has a unique weak solution in S ′, which is
given by the stochastic convolution integral

(1.3) u(t) =
∫ t

0

e(t−s)∆ dW (s).

Let 0 � � ∈ L1
loc(R

d) be given and let L2(�) denote the associated weighted L2-
space. Let µ denote the spectral measure of the homogeneous Wiener process
W and denote by Hµ the Hilbert space of all tempered distributions of the form
F−1(φµ) for some symmetric φ ∈ L2

C
(µ) (see Section 3 for more details). It is

shown in [15] that the following assertions are equivalent:

(i) For all t � 0 we have
∫ t

0
‖S(s)‖2

L2(Hµ,L2(�)) ds <∞;
(ii) The weight � is integrable and

∫
Rd 1/(1 + |ξ|2)dµ(ξ) <∞.
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In (i), ‖ · ‖L2(Hµ,L2(�)) denotes the Hilbert-Schmidt norm.

An extension of this result to a class of pseudodifferential operators A
including, e.g., the fractional Laplacians −(−∆)α/2, α ∈ (0, 2), was obtained
subsequently in [16]. Prior to [15], the integrability condition (ii) was discovered
in [23] to imply the existence of L2(�)-valued solutions for certain nonlinear
stochastic problems under more restrictive assumptions on the weight �.

The finitiness of the integral in (i) implies that for each t � 0 the stochastic
integral on the right hand side of (1.3) converges in L2(�). For this reason it
makes sense to view the resulting L2(�)-valued process an L2(�)-valued solution
of (1.2). This notion of solution is a formal one, because L2(�) does not always
embed into S ′:

Example 1.1. Let �(x) = exp(−‖x‖). Then the function exp((1/4)‖x‖)
belongs to L2(�), but this function does not define a tempered distribution.

In order to get around this problem, we think of both S ′ and L2(�) as
being embedded in D ′, the space of distributions on R

d. This motivates the
following definition. If E is a real Banach space, continuously embedded in
D ′, then a predictable E-valued process {U(t)}t�0 will be called an E-valued
solution of the problem (7.3) if for all t � 0 we have U(t) = u(t) in D ′ a.s. For
the stochastic heat equation, our main result now reads as follows (cf. Theorem
9.1):

Theorem 1.2. Let 0 � � ∈ L1
loc and 1 � p <∞ be arbitrary and fixed.

The following assertions are equivalent :
(1) The problem (1.2) admits a unique Lp(�)-valued solution;
(2) The weight � is integrable and

∫
Rd 1/(1 + |ξ|2)dµ(ξ) <∞.

In fact, we prove a more general version of this result for a class of pseu-
dodifferential operators A generating a C0-semigroup in S ′. We also show
that the Lp(�)-valued solution has a continuous modification if condition (2) is
slightly strengthened.

The implication (1)⇒ (2) is an extension of the above implication (i)⇒
(ii). The main difficulty is to show that (1) actually implies the integrability
condition (i). In the setting of an arbitrary separable Banach space E, this
is achieved by proving that the existence of an E-valued solution implies a
certain E-valued integral operator to be γ-radonifying (Theorem 7.3), hence
Hilbert-Schmidt if E is a Hilbert space.

The implication (2)⇒ (1) extends the implication (ii)⇒ (i) above to arbi-
trary values of p ∈ [1,∞). This extension is nontrivial and has three main ingre-
dients: a characterization of γ-radonifying operators taking values in weighted
Lp-spaces (Theorem 2.3), a factorization theorem (Theorem 4.9) and the theory
of stochastic integration in separable Banach spaces as developed in [2].

A particular feature of our approach that we would like to stress is that
we do not require the semigroup generated by A to act in Lp(�), even when
discussing the existence of a continuous modification of the solution.



�

�

�

�

�

�

�

�
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After the completion of this paper, Professor Dalang kindly pointed out
to us that a result closely related to our Theorem 9.1 is proved in [7, Theorem
11]. In this theorem, linear stochastic PDE’s with constant coefficients are
considered under a mild assumption on the Fourier transform of the Green’s
function, and a necessary and sufficient condition is obtained for existence of
a locally square integrable random field solution. This condition is essentially
equivalent to the integrability condition on the spectral measure µ in Theorem
9.1.

Finally, we modify our framework in order to be able to study the stochastic
Schrödinger equation. In this case, we have (Theorem 11.1):

Theorem 1.3. Let 1 � p <∞ and 0 � � ∈ L1
loc be arbitrary and fixed.

The following assertions are equivalent :
(1) Problem (11.1) admits an Lp(�)-valued solution;
(2) µ is a finite measure and � is integrable;

2. γ-Radonifying operators

In this preliminary section we recall some facts about reproducing kernel
Hilbert spaces and γ-radonifying operators that will be needed later. For proofs
and unexplained terminology we refer to [2], [5], [18], [24], [25].

Reproducing kernel Hilbert spaces. Let E be a real Banach space.
We call a bounded linear operator Q ∈ L (E∗, E) positive if

〈Qx∗, x∗〉 � 0, x∗ ∈ E∗,

and symmetric if

〈Qx∗, y∗〉 = 〈Qy∗, x∗〉, x∗, y∗ ∈ E∗.

If Q is positive and symmetric, then

(Qx∗, Qy∗) �→ 〈Qx∗, y∗〉, x∗, y∗ ∈ E∗,

defines a real inner product on the range of Q. The completion HQ of rangeQ
with respect to this inner product is a real Hilbert space, the reproducing kernel
Hilbert space (RKHS) associated with Q. If E is separable, then so is HQ. The
inclusion mapping from rangeQ into E extends to a continuous injection iQ
from HQ into E, and we have the operator identity

Q = iQ ◦ i∗Q.

Conversely, if i : H ↪→ E is a continuous embedding of a Hilbert space H into
E, then Q := i◦i∗ is positive and symmetric. As subsets of E we have H = HQ

and the map i∗x∗ �→ i∗Qx
∗ defines an isometrical isomorphism of H onto HQ.

On various occasions we shall encounter the situation where we have an
inclusion operator i : H ↪→ E and an embedding k : E ↪→ F , where F is another
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real Banach space. Defining Q := i◦ i∗ and R := (k ◦ i)◦ (k ◦ i)∗, we obtain two
positive symmetric operators, in L (E∗, E) and in L (F ∗, F ) respectively. One
may now ask in which way their RKHS’s HQ and HR are related. The answer
is given in the following proposition:

Proposition 2.1. Under the above assumptions, the identity map

HQ 
 i∗(k∗x∗) �→ (k ◦ i)∗x∗ ∈ HR (x∗ ∈ F ∗),

extends uniquely to an unitary operator from HQ onto HR. In particular, as
subsets of F we have equality

(k ◦ i)(HQ) = k(HR).

Proof. This follows from

‖i∗(k∗x∗)‖2
HQ

= 〈Qk∗x∗, k∗x∗〉 = 〈Rx∗, x∗〉 = ‖(k∗ ◦ i∗)x∗‖2
HR

and the fact that range i∗ and range (k ◦ i)∗ are dense in HQ and HR, respec-
tively.

γ-Radonifying operators. The standard cylindrical Gaussian mea-
sure of a separable real Hilbert space H will be denoted by γH . This is the
unique finitely additive measure on the field of cylindrical subsets of H whose
image with respect to every orthogonal finite rank projection P is a stan-
dard Gaussian measure on the finite dimensional range of P . The following
well-known result links the concepts of Gaussian measure, reproducing kernel
Hilbert space, and standard cylindrical measure.

Proposition 2.2. Let E be a separable real Banach space and let Q ∈
L (E∗, E) be positive and symmetric. The following assertions are equivalent :

(1) Q is the covariance of a centred Gaussian measure νQ on E;
(2) The image cylindrical measure iQ(γHQ

) extends to a centred Gaussian
measure ν on E.

In this situation, νQ = ν.

Let E be a separable real Banach space. A bounded operator T ∈ L (H,E)
is called γ-radonifying if T (γH) extends to a Gaussian measure on E. With this
terminology we can rephrase Proposition 2.2 as follows: a positive symmetric
operator Q is a covariance operator if and only if the associated embedding
iQ : HQ ↪→ E is γ-radonifying. There is an extensive literature on γ-radonifying
operators; we refer to [24], [25] and [1] and the references given there.

We will need the following well-known facts:

• If T : H → E is γ-radonifying and S : E → F is bounded, then also
S ◦ T : H → F is γ-radonifying.

• If T : H1 → E is γ-radonifying and S : H0 → H1 is bounded, then
T ◦ S : H0 → E is γ-radonifying [1].
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• If T1 : H1 → E is bounded and U : H0 → H1 is unitary, then T is
γ-radonifying if and only if T1 ◦ U : H0 → F is γ-radonifying.

• If H = H0 ⊕H1 and T1 : H1 → E is bounded, then T1 is γ-radonifying
if and only if T1 ◦ P1 : H → E is γ-radonifying, where P1 is the orthogonal
projection of H onto H1.

• If E is a Hilbert space, then T : H → E is γ-radonifying if and only if
T is Hilbert-Schmidt.

In Section 9 it will be important to know when certain operators taking
values in weighted Lp-spaces are γ-radonifying. In this direction we have the
following general result.

Theorem 2.3. Suppose H is a separable real Hilbert space and let p ∈
[1,∞) be fixed. Let (O,F , ν) be a σ-finite measure space. For a bounded linear
operator K : H → Lp(O) the following assertions are equivalent :

(1) K is γ-radonifying ;
(2) There exists a ν-measurable function κ : O → H with∫

O

‖κ(x)‖p
H dν(x) <∞

such that for all ν-almost all x ∈ O we have

(K(h))(x) = [κ(x), h]H , h ∈ H.

Proof. Let (ej)j�1 be an orthonormal basis for H and let (βj)j�1 be a
sequence of independent identically distributed real-valued standard Gaussian
random variables.

It is well known (cf. [25, Section V.5.4], [5, Theorem 2.12]) that K is γ-
radonifying if and only if the series

∑∞
j=1 βjKej converges in Lp(O) almost

surely.
(1)⇒ (2): By the almost sure convergence of

∑∞
j=1 βjKej and Fernique’s

theorem,

E

∥∥∥∥∥∥
∞∑

j=1

βjKej

∥∥∥∥∥∥
p

Lp(O)

<∞.

The map

(ω, x) �→
∞∑

j=1

βj(ω)(Kej)(x)

is measurable from Ω × O to R, each term βj(ω)(Kej)(x) being measurable.
Hence by Fubini’s theorem,

E

∥∥∥∥∥∥
∞∑

j=1

βjKej

∥∥∥∥∥∥
p

Lp(O)

=
∫

O

E

∣∣∣∣∣∣
∞∑

j=1

βj(Kej)(x)

∣∣∣∣∣∣
p

dν(x)

= cp

∫
O


 ∞∑

j=1

|(Kej)(x)|2



p
2

dν(x)
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with cp > 0 a constant depending on p only; cf. [25, Lemma V.5.2]. In
particular,

∞∑
j=1

|(Kej)(x)|2 <∞

for ν-almost all x ∈ O. It follows that there exists a measurable Õ ⊂ O with
ν(O\Õ) = 0 such that for all x ∈ Õ the map κx : H → R,

κxh := (Kh)(x)

is Hilbert-Schmidt, hence bounded. By the Riesz representation theorem, we
obtain a function κ : Õ → H such that

κxh = [κ(x), h]H , h ∈ H, x ∈ Õ.

Noting that
[κ(·), ej ]H = Kej(·)|Õ

we see that x �→ [κ(x), ej ]H is measurable for each j, and therefore x �→ κ(x)
is measurable by Pettis’s measurability theorem and the separability of H. By
the Parseval formula,

∞∑
j=1

|(Kej)(x)|2 =
∞∑

j=1

|[κ(x), ej ]H |2 = ‖κ(x)‖2
H , x ∈ Õ.

We extend κ to a function on O by extending it identically zero on O\Õ.
Combining everything, we find

cp

∫
O

‖κ(x)‖p
H dν(x) = E

∥∥∥∥∥∥
∞∑

j=1

βjKej

∥∥∥∥∥∥
p

Lp(O)

<∞.

(2)⇒ (1): This is a special case of a result due to Kwapień ([25, Proposition
II.2.1 and Theorem VI.5.4]); the following short direct proof is a modification
of [3, Proposition 2.1].

Using the Kahane-Khinchine inequality, for some constant Cp and all 1 �
M � N we have

E

∥∥∥∥∥∥
N∑

j=M

βjKej

∥∥∥∥∥∥
2

Lp(O)




p
2

� Cp
pE

∥∥∥∥∥∥
N∑

j=M

βjKej

∥∥∥∥∥∥
p

Lp(O)

= Cp
pE

∫
O

∣∣∣∣∣∣
N∑

j=M

βj [κ(x), ej ]H

∣∣∣∣∣∣
p

dν(x)

= cp2C
p
p

∫
O


 N∑

j=M

[κ(x), ej ]2H




p

dν(x).
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Here cp is the constant from the first part of the proof. By assumption the right
hand side tends to 0 as M, N → ∞. Thus the series

∑∞
j=1 βjKej converges

in L2(Ω;Lp(O)) and, by the Itô-Nisio theorem, almost surely. This means that
K is γ-radonifying.

The following example will be relevant in later sections:

Example 2.4. Let µ be a nonnegative symmetric tempered measure
on Rd. Let 0 � � ∈ L1

loc(R
d) be a nonnegative locally integrable function.

For 1 � p < ∞ we denote by Lp(�) the associated weighted Lp-space. Let
H := L2((0, T );L2

(s)(µ)) (see the beginning of Section 3 for the definition of

L2
(s)(µ)). Let q : Rd → C be symmetric, i.e. q(−ξ) = q(ξ) for all ξ ∈ Rd, and

assume that supξ∈Rd Re q(ξ) <∞. Define κ : Rd → H by

(κ(x))(t) = e−i〈x, ·〉etq(− ·).

Then

(2.1)
‖κ(x)‖2

H =
∫ T

0

∫
Rd

∣∣∣e−i〈x,ξ〉etq(−ξ)
∣∣∣2 dµ(ξ) dt

=
∫ T

0

∫
Rd

e2t Re q(η) dµ(η) dt

is independent of x ∈ Rd. Therefore,

∫
Rd

‖κ(x)‖p
H�(x) dx =

∫ T

0

∫
Rd

e2t Re q(η) dµ(η) dt
∫

Rd

�(x) dx

is finite if and only if both
∫ T

0

∫
Rd e

2t Re q(η) dµ(η) dt and
∫

Rd �(x) dx are finite.
In particular, the operator K : H → Lp(�) with an integral kernel κ is γ-
radonifying if and only if both of these conditions hold. Below (Proposition
4.3) we will give a necessary and sufficient condition for the first integral to be
finite.

3. The Hilbert space Hµ associated with a symmetric measure µ

Throughout the rest of this paper, d � 1 is a fixed integer. We denote
by S = S (Rd) and SC = S (Rd; C) the Schwartz spaces of real-valued and
complex-valued, rapidly decreasing functions on Rd, respectively. Their topo-
logical duals S ′ and S ′

C
are the spaces of real and complex tempered distri-

butions on R
d. A tempered measure is a Radon measure µ on R

d that is also a
tempered distribution. A nonnegative Radon measure µ is tempered whenever
there exists N � 0 such that∫

Rd

1
1 + |ξ|N dµ(ξ) <∞.
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If µ is a nonnegative tempered measure and f ∈ L2
C

(µ) = L2(Rd, µ; C), then
the map

φ �→
∫

Rd

φf dµ, φ ∈ SC,

defines a tempered distribution fµ ∈ S ′
C

. Note that we do not take complex
conjugates in this identification; this convention should be kept in mind in the
definition of the Fourier transform of a tempered distribution below.

The Fourier transform of a function φ ∈ SC is defined by

(Fφ)(ξ) :=
∫

Rd

e−i〈x,ξ〉φ(x) dx, ξ ∈ R
d,

where dx represents the normalized Lebesgue measure on Rd. Thanks to this
normalization the inverse Fourier transform is given by

(F−1φ)(ξ) =
∫

Rd

ei〈x,ξ〉φ(x) dx, ξ ∈ R
d.

The Fourier transform on the space of tempered distributions is defined by
duality, i.e. for Φ ∈ S ′

C
we take

〈φ,FΦ〉 := 〈Fφ,Φ〉, φ ∈ SC.

The inverse Fourier transform on S ′
C is then given by

〈φ,F−1Φ〉 = 〈F−1φ,Φ〉, φ ∈ SC.

For a function f : Rd → C we define f̌ : Rd → C by

f̌(x) = f(−x), x ∈ R
d.

If f̌ = f we say that f is symmetric. We define

L2
(s)(µ) =

{
f ∈ L2

C(µ) : f̌ = f
}
.

This is a closed linear subspace of L2
C

(µ).
Now let µ be a nonnegative symmetric tempered measure on Rd. Then for

any two f, g ∈ L2
(s)(µ) we have

[f, g]L2
(s)(µ) =

∫
Rd

f(ξ)g(ξ) dµ(ξ) =
∫

Rd

f(−ξ)g(−ξ)dµ(ξ)

=
∫

Rd

f(η)g(η) dµ(η) = [f, g]L2
(s)(µ),

and therefore the inner product on L2
(s)(µ) is real-valued. Thus, L2

(s)(µ) is a
separable real Hilbert space in a natural way.

It is easily checked that Fφ ∈ L2
(s)(µ) for all φ ∈ S . This observation

motivates the following definition:
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Definition 3.1. Let µ be a nonnegative symmetric tempered measure
on Rd. We define Hµ to be the separable real Hilbert space obtained as the
completion of S with respect to the inner product

[φ, ψ]Hµ
:= [Fφ,Fψ]L2

(s)(µ), φ, ψ ∈ S .

The space Hµ will be used below to describe the covariance structure of a
spatially homogeneous Wiener process in S ′ with spectral measure µ.

For all f ∈ L2
(s)(µ), the tempered distribution F−1(fµ) is real. Indeed,

a simple computation shows that 〈φ,F−1(fµ)〉 is real-valued for all φ ∈ S .
This motivates the following definition:

Definition 3.2. Let µ be a nonnegative symmetric tempered measure
on R

d. We define Hµ to be the linear subspace of all tempered distributions of
the form F−1(fµ) with f ∈ L2

(s)(µ). With respect to the inner product

(3.1) [F−1(fµ),F−1(gµ)]Hµ
:= [f, g]L2

(s)(µ),

this is a separable real Hilbert space.

The space Hµ will turn out to be invariant under the action of semigroups
in S ′ generated by certain pseudodifferential operators in S ′ introduced in
the next section. This is the key fact in our analysis of E-valued solutions in
Section 7 below.

The relation between the spaces Hµ and Hµ is described in the following
proposition.

Proposition 3.3. The mapping

Uµφ := F−1((Fφ)µ), φ ∈ S ,

extends to a unitary operator from Hµ onto Hµ.

Proof. For all φ, ψ ∈ S we have

[U∗
µUµφ, ψ]Hµ

= [Uµφ,Uµψ]Hµ
= [F−1((Fφ)µ),F−1((Fψ)µ)]Hµ

= [Fφ,Fψ]L2
(s)(µ) = [φ, ψ]Hµ

.

Hence U∗
µUµ = I.

Next, for all f ∈ L2
(s)(µ) ∩ SC and φ ∈ S we have

[U∗
µ(F−1(fµ)), φ]Hµ

= [F−1(fµ),F−1((Fφ)µ)]Hµ

= [f,Fφ]L2
(s)(µ) = [F−1f, φ]Hµ

.

Hence
U∗

µ(F−1(fµ)) = F−1f, f ∈ L2
(s)(µ) ∩ SC.
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It follows that for all f, g ∈ L2
(s)(µ) ∩ SC we have

[UµU
∗
µ(F−1(fµ)), (F−1(gµ))]Hµ

= [F−1f,F−1g]Hµ

= [f, g]L2
(s)(µ) = [F−1(fµ),F−1(gµ)]Hµ

.

We claim that L2
(s)(µ) ∩ SC is dense in L2

(s)(µ). Once we know this, it follows
that

{F−1(fµ) : f ∈ L2
(s)(µ) ∩ SC}

is dense in Hµ and therefore UµU
∗
µ = I.

Given a function f ∈ L2
(s)(µ) we choose a sequence (gn) ∈ SC such that

gn → f in L2
C

(µ) (we could even take complex-valued compactly supported
smooth functions). Define fn ∈ L2

(s)(µ) by

fn :=
1
2

(gn + ǧn).

Then limn→∞ fn = (1/2)(f + f̌) = f as desired.

Let us denote by iS ,Hµ
: S ↪→ Hµ and iHµ,S ′ : Hµ ↪→ S ′ the natural

inclusion mappings. We then have the following sequence of mappings:

S
iS ,Hµ

↪→ Hµ
Uµ−→ Hµ

iHµ,S ′
↪→ S ′.

The following proposition relates these three mappings:

Proposition 3.4. We have iS ,Hµ
= (iHµ,S ′ ◦Uµ)∗ and iHµ,S ′ = (Uµ ◦

iS ,Hµ
)∗.

Proof. In the proof we will make no identifications and write out all in-
clusion mappings.

Let φ, ψ ∈ S be arbitrary and fixed. Then i∗Hµ,S ′ maps φ onto an element
i∗Hµ,S ′φ ∈ Hµ. By definition of Hµ there exists a function f ∈ L2

(s)(µ) such
that i∗Hµ,S ′φ = F−1(fµ). Then,

〈φ, iHµ,S ′UµiS ,Hµ
ψ〉 = [F−1(fµ), UµiS ,Hµ

ψ]Hµ

= [F−1(fµ),F−1((Fψ)µ)]Hµ

= [f,Fψ]L2
(s)(µ) = [Fψ, f ]L2

(s)(µ)

=
∫

Rd

∫
Rd

e−i〈x,ξ〉ψ(x) dx f(ξ)dµ(ξ)

=
∫

Rd

∫
Rd

ei〈x,η〉f(η) dµ(η)ψ(x) dx

= 〈ψ, iHµ,S ′F−1(fµ)〉
= 〈ψ, iHµ,S ′i∗Hµ,S ′φ〉
= 〈φ, iHµ,S ′ i∗Hµ,S ′ψ〉.
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This shows that

iHµ,S ′ ◦ Uµ ◦ iS ,Hµ
= iHµ,S ′ ◦ i∗Hµ,S ′ .

Since iHµ,S ′ is injective, it follows that

(3.2) Uµ ◦ iS ,Hµ
= i∗Hµ,S ′ .

Multiplying both sides in (3.2) from the left with U∗
µ gives the first identity;

dualizing (3.2) gives the second identity.

4. A C0-semigroup on Hµ associated with a symmetric symbol q

Throughout the rest of this paper, it will be a standing assumption that
q : Rd → C is a measurable function satisfying

q = q̌,(4.1)
q∗ := sup

ξ∈Rd

Re q(ξ) <∞.(4.2)

We fix a nonnegative symmetric tempered measure µ on Rd and let Hµ denote
the separable real Hilbert space from Definition 3.2. We define a semigroup of
bounded linear operators S = {S(t)}t�0 on Hµ by

S(t)(F−1(fµ)) = F−1(etq(·)f(·)µ).

Since q is symmetric and Re q is bounded from above, the function etq(·)f(·)
belongs to L2

(s)(µ), which shows that the operators S(t) are well-defined.

Example 4.1. We give some examples of functions q satisfying the con-
ditions (4.1) and (4.2).

(1) The function q(ξ) = iξ (ξ ∈ R). The semigroup S is the restriction to
Hµ of the left translation semigroup on S ′ in dimension d = 1.

(2) The symbol q of an elliptic operator with constant coefficients. For
q(ξ) = −|ξ|2, S is the restriction of Hµ of the heat semigroup.

(3) The function q(ξ) = |ξ|2 − |ξ|4. It arises in connection with the beam
equation.

(4) The function q(ξ) = −|ξ|2γ with γ > 0. This example was considered
in [11]. For γ = 1/2, S is the restriction of Hµ of the Poisson semigroup.

Notice that the function q(ξ) = (i/2)|ξ|2, which corresponds to the Schrö-
dinger semigroup, satisfies (4.2), but not (4.1). In the final section of this paper
we will return to this example.

Proposition 4.2. The semigroup {S(t)}t�0 is strongly continuous on
Hµ and satisfies

(4.3) ‖S(t)‖Hµ
� etq∗

, t � 0.
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Proof. The inequality |etq(ξ)| � etq∗
shows that S(t) satisfies the esti-

mate (4.3). It remains to prove strong continuity of {S(t)}t�0 in Hµ. By the
dominated convergence theorem, for Φ = F−1(fµ) and Ψ = F−1(gµ) we have

lim
t↓0

[S(t)Φ,Ψ]Hµ
= lim

t↓0

∫
Rd

etq(ξ)f(ξ)g(ξ)dµ(ξ)

=
∫

Rd

f(ξ)g(ξ)dµ(ξ) = [Φ,Ψ]Hµ
.

This proves that {S(t)}t�0 is weakly continuous as a semigroup in Hµ, and
therefore strongly continuous by a standard result from semigroup theory [20].

Under an appropriate integrability condition, the semigroup {S(t)}t�0

maps Hµ into BUC (here we identify both Hµ and BUC with linear subspaces
of S ′). This will be derived as a consequence of the following proposition.

Proposition 4.3. Fix T > 0 and C > q∗. Then

(4.4)
∫

Rd

1
C − Re q(ξ)

dµ(ξ) <∞

if and only if

(4.5)
∫ T

0

∫
Rd

e2t Re q(ξ) dµ(ξ) dt <∞.

Proof. Clearly,

I :=
∫ T

0

∫
Rd

e2t Re q(ξ) dµ(ξ) dt <∞

is finite if and only if I0 and I∞ are both finite, where

I0 :=
∫ T

0

∫
|Re q|�|C|

e2t Re q(ξ) dµ(ξ) dt

and

I∞ :=
∫ T

0

∫
Re q<−|C|

e2t Re q(ξ) dµ(ξ) dt.

Since the function (t, ξ) �→ e2t Re q(ξ) is bounded away from 0 on [0, T ] ×
{|Re q| � |C|}, it is clear that I0 <∞ if and only if

µ{|Re q| � |C|} <∞.

In view of
0 < C − q∗ � C − Re q(ξ) � 2|C|,
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the right most inequality being valid whenever |Re q(ξ)| � |C|, this happens if
and only if ∫

|Re q|�|C|

1
C − Re q(ξ)

dµ(ξ) <∞.

Concerning I∞ we note that

I∞ =
∫

Re q<−|C|

1
−2 Re q(ξ)

(1 − e2T Re q(ξ))dµ(ξ).

Hence we can estimate

(1 − e−2T |C|)
∫

Re q<−|C|

1
−2 Re q(ξ)

dµ(ξ)

� I∞ �
∫

Re q<−|C|

1
−2 Re q(ξ)

dµ(ξ).

Hence I∞ <∞ if and only if

(4.6)
∫

Re q<−|C|

1
−Re q(ξ)

dµ(ξ) <∞.

If C � 0, then for all ξ ∈ Rd we have

−Re q(ξ) � C − Re q(ξ) � −2 Re q(ξ).

If C < 0 we choose ε > 0 such that (1− ε)q∗ � C. Then for all ξ ∈ Rd we have
(1 − ε) Re q(ξ) � (1 − ε)q∗ � C and therefore

−εRe q(ξ) � C − Re q(ξ) � −Re q(ξ).

In both cases it follows that (4.6) holds if and only if∫
Re q<−|C|

1
C − Re q(ξ)

dµ(ξ) <∞.

Remark 4.4. If (4.4) holds, then in particular we have

(4.7)
∫

Rd

e2t Re q(ξ) dµ(ξ) <∞, t > 0.

This can be deduced from (4.5) or by simply observing that for every t > 0
there exists a constant Mt � 0 such that e2ts � Mt/(C − s) for all s � q∗.

The following Hypothesis, expressing that the equivalent statements of
Proposition 4.3 hold, will play an important rôle:
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Hypothesis (H). There exists a constant C > q∗ such that∫
Rd

1
C − Re q(ξ)

dµ(ξ) <∞.

Let C0 and BUC denote the Banach spaces of continuous real-valued func-
tions on Rd vanishing at infinity, respectively which are bounded and uniformly
continuous. Both spaces are endowed with the supremum norm. In our next
result we identify C0 and BUC with a linear subspace S ′ in the natural way.

Proposition 4.5. Assume (H). For all t > 0, the operator S(t) maps
Hµ into BUC and we have

(4.8) ‖S(t)‖L (Hµ,BUC) �
(∫

Rd

e2t Re q(ξ) dµ(ξ)
) 1

2

.

If µ is absolutely continuous with respect to the Lebesgue measure, then S(t)
maps Hµ into C0.

Proof. Let f ∈ L2
(s)(µ) be fixed. By (4.7) we have etq ∈ L2

(s)(µ), so etqf ∈
L1

(s)(µ) by the Cauchy-Schwarz inequality. From the identity S(t)(F−1(fµ)) =
F−1(etqfµ) it follows that S(t)(F−1(fµ)) can be represented by the bounded
function

(4.9) x �→ F−1(etqfµ)(x) =
∫

Rd

ei〈x,ξ〉etq(ξ)f(ξ) dµ(ξ).

This function is real-valued because etqf is symmetric. Moreover,

sup
x∈Rd

|S(t)F−1(fµ)(x)| � ‖etqf‖L1
(s)(µ) � ‖etq‖L2

(s)(µ)‖f‖L2
(s)(µ)

=
(∫

Rd

e2t Re q(ξ) dµ(ξ)
) 1

2

‖F−1(fµ)‖Hµ
.

The proof that the function representing S(t)(F−1(fµ)) is uniformly continu-
ous is standard, and is included just for the convenience of the reader. Given
ε > 0, for large enough R we have

∫
|ξ|>R

|etq(ξ)f(ξ)| dµ(ξ) < ε and therefore
∣∣∣∣
∫

Rd

(ei〈x,ξ〉 − ei〈x′,ξ〉)etq(ξ)f(ξ) dµ(ξ)
∣∣∣∣

� max
|ξ|�R

|ei〈x,ξ〉 − ei〈x′,ξ〉| ·
∫
|ξ|�R

|etq(ξ)f(ξ)| dµ(ξ) + 2ε

� max
|ξ|�R

|1 − ei〈x−x′,ξ〉| ·
∫

Rd

|etq(ξ)f(ξ)| dµ(ξ) + 2ε.

From this estimate we deduce that the function in (4.9) is uniformly continuous.
The previous estimate shows that S(t), as an operator from Hµ into BUC, is
bounded with norm given by (4.8).



�

�

�

�

�

�

�

�
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The final assertion is a consequence of the Riemann-Lebesgue lemma.

As an operator in L (Hµ, BUC), we denote S(t) by SBUC(t). We will
study the operators SBUC(t) in more detail next. In the results that follow,
the rôle of BUC may be replaced by C0 if µ is absolutely continuous with
respect to the Lebesgue measure.

Lemma 4.6. Assume (H). For all T > 0 and g ∈ L2((0, T );Hµ) the
BUC-valued function t �→ SBUC(t)g(t) is Bochner integrable on (0, T ) and we
have∥∥∥∥∥
∫ T

0

SBUC(t)g(t) dt

∥∥∥∥∥
BUC

�
(∫ T

0

∫
Rd

e2t Re q(ξ) dµ(ξ) dt

) 1
2

‖g‖L2((0,T );Hµ).

Proof. For each fixed h ∈ Hµ, the BUC-valued function t �→ SBUC(t)h
is right continuous on (0,∞). To see this, fix h ∈ Hµ and t0 > 0. Then, by the
strong continuity of {S(t)}t�0 in Hµ,

(4.10) lim
ε↓0

SBUC(t0 + ε)h = lim
ε↓0

SBUC(t0)(S(ε)h) = 0.

It follows that t �→ SBUC(t)g(t) is strongly measurable on (0,∞) for all step
functions g ∈ L2((0, T );Hµ). Since the step functions are dense in L2((0, T );
Hµ), it follows that t �→ SBUC(t)g(t) is strongly measurable on (0,∞) for all
g ∈ L2((0, T );Hµ).

By (4.8),

‖SBUC(t)g(t)‖BUC �
(∫

Rd

e2t Re q(ξ) dµ(ξ)
) 1

2

‖g(t)‖Hµ
.

Hence by Hölder’s inequality,

∫ T

0

‖SBUC(t)g(t)‖BUC dt �
(∫ T

0

∫
Rd

e2t Re q(ξ) dµ(ξ) dt

) 1
2

‖g‖L2((0,T );Hµ),

which is finite by Proposition 4.3. It follows that t �→ SBUC(t)g(t) is Bochner
integrable in BUC and that the desired estimate holds.

Proposition 4.7. Assume (H). For all ϕ ∈ BUC∗ the Hµ-valued func-
tion t �→ S∗

BUC(t)ϕ is strongly measurable on (0,∞) and for all T > 0 we have∫ T

0

‖S∗
BUC(t)ϕ‖2

Hµ
dt �

(∫ T

0

∫
Rd

e2t Re q(ξ) dµ(ξ) dt

)
‖ϕ‖2

BUC∗ .

Proof. The Hµ-valued function t �→ S∗
BUC(t)ϕ is weakly measurable and

separably valued, and therefore strongly measurable by the Pettis measura-
bility theorem [10]. For T > 0 let us define the bounded operator JT :
L2((0, T );Hµ) → BUC by

JT g :=
∫ T

0

SBUC(t)g(t) dt.



�

�

�

�

�

�

�

�

Space-time regularity for linear stochastic evolution equations 277

For all g ∈ L2((0, T );Hµ) and ϕ ∈ BUC∗ we have

〈g, J∗
Tϕ〉 =

〈∫ T

0

SBUC(t)g(t) dt, ϕ

〉
=
∫ T

0

[g(t), S∗
BUC(t)ϕ]Hµ

dt

= [g(·), S∗
BUC(·)ϕ]L2((0,T );Hµ).

It follows that J∗
Tϕ = S∗

BUC(·)ϕ and consequently,∫ T

0

‖S∗
BUC(t)ϕ‖2

Hµ
dt = ‖J∗

Tϕ‖2
L2((0,T );Hµ) � ‖JT ‖2‖ϕ‖2

BUC∗ .

Finally, by Lemma 4.6,

‖JT ‖ �
(∫ T

0

∫
Rd

e2t Re q(ξ) dµ(ξ) dt

) 1
2

.

Before proceeding with the main line of developement, we insert a related
proposition which will be needed in Section 8 when we study time regularity
of weak solutions.

Proposition 4.8. Assume (H). For all ϕ ∈ BUC∗ and all 0 � s � t
we have∫ s

0

‖S∗
BUC(t− s+ r)ϕ− S∗

BUC(r)ϕ‖2
Hµ

dr

�
(∫ s

0

∫
Rd

|e(t−s+r)q(ξ) − erq(ξ)|2 dµ(ξ) dr
)
‖ϕ‖2

BUC∗ .

Proof. For g ∈ L2((0, T ), Hµ) we define

Js,tg =
∫ s

0

SBUC(t− s+ r)g(r) − SBUC(r)g(r) dr.

We now write g(r) = F−1(f(r)µ) with f(r) ∈ L2
(s)(µ). Using (4.9) and esti-

mating as above with Hölder’s inequality, we obtain

‖Js,t‖ �
(∫ s

0

∫
Rd

∣∣∣e(t−s+r)q(ξ) − etq(ξ)
∣∣∣2 dµ(ξ) dr

) 1
2

.

As in Proposition 4.7, our inequality now follows by considering the adjoint of
Js,t.

By Proposition 4.7, for every T > 0 we may define a bounded linear
operator QT ∈ L (BUC∗, BUC) by

(4.11) QTϕ :=
∫ T

0

SBUC(t)S∗
BUC(t)ϕdt, ϕ ∈ BUC∗,
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where the integral converges in BUC as a Bochner integral. For this operator
we have the following factorization result, which we obtain as an application of
RKHS techniques.

Theorem 4.9. Assume (H). Define κ : R
d → L2((0, T );L2

(s)(µ)) by

(κ(x))(t)(ξ) = e−i〈x,ξ〉etq(− ξ).

Then:
(1) For all f ∈ L2((0, T );L2

(s)(µ)) the function

x �→ [f, κ(x)]L2((0,T );L2
(s)(µ))

is bounded and uniformly continuous.
(2) The linear operator KT : L2((0, T );L2

(s)(µ)) → BUC defined by

KT f = [f, κ(·)]L2((0,T );L2
(s)(µ))

is bounded and satisfies the operator identity

QT = KT ◦K∗
T .

Proof. Let f ∈ L2((0, T );L2
(s)(µ)) be arbitrary and fixed. For all x ∈ Rd

we have, recalling that q(−ξ) = q(ξ),

|[f, κ(x)]L2((0,T );L2
(s)(µ))|

=

∣∣∣∣∣
∫ T

0

∫
Rd

(f(t))(ξ)e−i〈x,ξ〉etq(−ξ) dµ(ξ) dt

∣∣∣∣∣
�
∫ T

0

∫
Rd

|(f(t))(ξ)etq(ξ)| dµ(ξ) dt

� ‖f‖L2((0,T );L2
(s)(µ))

(∫ T

0

∫
Rd

e2t Re q(ξ) dµ(ξ) dt

) 1
2

.

The double integral being finite, this shows that x �→ [f, κ(x)]L2((0,T );L2
(s)(µ))

is bounded. The uniform continuity of this map is proved as in Proposition
4.5. Hence KT is well-defined as a linear operator from L2((0, T );L2

(s)(µ)) into
BUC, and the above estimate shows that KT is bounded.

For the proof of the identity QT = KT ◦KT we will set up a commutative
diagram as follows:

L2((0, T );L2
(s)(µ)) −−−−→

VT

L2((0, T );Hµ) −−−−→
JT

BUC�PT

�PT

�iT

Zµ,T −−−−→
Vµ,T

Zµ,T −−−−→
Iµ,T

HT
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The meaning of the spaces and operators involved will be explained next. To
start with, HT denotes the RKHS associated with QT and iT : HT ↪→ BUC
denotes the inclusion mapping; cf. Section 2. Recall that QT = iT ◦ i∗T .

As before, JT denotes the bounded operator from L2((0, T );Hµ) into BUC
defined by

JT g =
∫ T

0

SBUC(t)g(t) dt, g ∈ L2((0, T );Hµ).

Its adjoint is given by

J∗
Tϕ = S∗

BUC(·)ϕ, ϕ ∈ BUC∗.

Let Zµ,T denote the closure in L2((0, T );Hµ) of the linear subspace of all func-
tions of the form g = S∗

BUC(·)ϕ with ϕ ∈ BUC∗. Then Zµ,T = range J∗
T and

therefore kerJT = (range J∗
T )⊥ = (Zµ,T )⊥. It follows that

(4.12) L2((0, T );Hµ) = Zµ,T ⊕ ker JT .

For all ϕ ∈ BUC∗ we have

(4.13) JT (S∗
BUC(·)ϕ) = QTϕ.

Identifying HT and its image iT (HT ) in BUC, we have QTϕ ∈ HT and

‖QTϕ‖2
HT

= 〈QTϕ,ϕ〉 =
∫ T

0

〈SBUC(t)S∗
BUC(t)ϕ,ϕ〉 dt

=
∫ T

0

‖S∗
BUC(t)ϕ‖2

Hµ
dt = ‖S∗

BUC(·)ϕ‖2
L2((0,T );Hµ).

It follows from these equalities and (4.13) that JT maps L2((0, T );Hµ) onto HT

and that its restriction to Zµ,T is unitary. As an operator from L2((0, T );Hµ)
onto HT we denote JT by IT . The restriction of IT to Zµ,T will be denoted by
Iµ,T ; this is a unitary operator from Zµ,T onto HT .

Summarizing our discussion so far, we see that a function f ∈ BUC belongs
to HT if and only if there exists a function g ∈ Zµ,T such that

f =
∫ T

0

SBUC(t)g(t) dt = JT g;

moreover by (4.12),

‖f‖HT
= inf {‖g‖L2((0,T );Hµ) : g ∈ L2((0, T );Hµ), JT g = f}.

Define Jµ,T := iT ◦ Iµ,T . Then QT = Jµ,T ◦ J∗
µ,T . Next we define

Zµ,T = {ϕ ∈ L2((0, T );L2
(s)(µ)) : F−1(ϕ(·)µ) ∈ Zµ,T }.
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The operators VT : L2((0, T );L2
(s)(µ)) → L2((0, T );Hµ) and Vµ,T : Zµ,T →

Zµ,T defined by
VTϕ := F−1(ϕ(·)µ)

and Vµ,T := VT |Zµ,T
are unitary. Therefore,

QT = (Jµ,T ◦ Vµ,T ) ◦ (Jµ,T ◦ Vµ,T )∗.

Finally let PT : L2((0, T );Hµ) → Zµ,T and PT : L2((0, T );L2
(s)(µ)) → Zµ,T

denote the orthogonal projections. Then PT ◦ P∗
T = IZµ,T

, the identity oper-
ator on Zµ,T . Therefore,

QT = (Jµ,T ◦ Vµ,T ◦ PT ) ◦ (Jµ,T ◦ Vµ,T ◦ PT )∗.

But for all g ∈ L2((0, T );L2
(s)(µ)) we have

(Jµ,T ◦ Vµ,T ◦ PT )g = (JT ◦ VT )g =
∫ T

0

SBUC(t)(F−1(g(t)µ) dt.

We will prove next that the right hand side equals KT g. Once we know this it
follows that QT = KT ◦K∗

T .
Identifying BUC with a linear subspace of S ′, for all φ ∈ S we have〈

φ,

∫ T

0

SBUC(t)(F−1(g(t)µ) dt

〉
=
∫ T

0

〈F−1φ, etqg(t)µ〉 dt

=
∫ T

0

∫
Rd

(∫
Rd

ei〈x,ξ〉φ(x) dx
)
etq(ξ)(g(t))(ξ) dµ(ξ) dt

=
∫

Rd

φ(x)

(∫ T

0

∫
Rd

(g(t))(ξ) e−i〈x,ξ〉etq(−ξ) dµ(ξ) dt

)
dx

=
∫

Rd

φ(x)

(∫ T

0

[g(t), (κ(x))(t)]L2
(s)(µ) dt

)
dx

=
∫

Rd

φ(x) [g, κ(x)]L2((0,T );L2
(s)(µ)) dx

= 〈φ,KT g〉.

Now let E be a real Banach space in which BUC is embedded by means
of a continuous embedding iBUC,E : BUC ↪→ E. Assuming (H), for t > 0
we denote by SE(t) : Hµ → E the composition of SBUC(t) with the inclusion
mapping iBUC,E :

SE(t) = iBUC,E ◦ SBUC(t).

For every T � 0 we then define a bounded operator QT ∈ L (E∗, E) by

(4.14) QE
T x

∗ :=
∫ T

0

SE(t)S∗
E(t)x∗ dt, x∗ ∈ E∗.
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Note that QE
T = iBUC,E ◦ QT ◦ i∗BUC,E , where QT : BUC∗ → BUC is the

operator defined by (4.11).
Similarly we define

KE
T (t) = iBUC,E ◦KT .

For the sake of simplicity, we will omit the embedding iBUC,E from our
notations whenever it is convenient.

Proposition 4.10. Assume (H). Under the above assumptions, for ev-
ery fixed T > 0 the following assertions are equivalent :

(1) The operator KE
T is γ-radonifying from L2((0, T );L2

(s)(µ)) into E;
(2) The operator QE

T is the covariance of a centred Gaussian measure on
E.

Proof. By Proposition 2.1 the RKHS’s of QT and QE
T are canonically

isometrically isomorphic, and identical as subsets of E. For this reason we will
not distinguish these spaces from each other, and denote both by HT .

From Section 2 we recall thatQE
T is a covariance if and only if the associated

embedding iT : HT ↪→ E is γ-radonifying. Clearly,

iT = JE
µ,T ◦ I−1

µ,T ,

where JE
µ,T := iBUC,E ◦Jµ,T ; here Iµ,T and Jµ,T are the operators introduced in

the proof of Theorem 4.9. From this we see that iT : HT ↪→ E is γ-radonifying
if and only if JE

µ,T : Zµ,T → E is γ-radonifying, and this is the case if and only
if JE

µ,T ◦ Vµ,T : Zµ,T → E is γ-radonifying. Finally, since PT is an orthogonal
projection, for the standard Gaussian cylindrical measures γL2((0,T );L2

(s)(µ)) and
γZµ,T

of L2((0, T );L2
(s)(µ)) and Zµ,T respectively we have

PT

(
γL2((0,T );L2

(s)(µ))

)
= γZµ,T

,

and therefore JE
µ,T ◦ Vµ,T : Zµ,T → E is γ-radonifying if and only if KE

T =
JE

µ,T ◦ Vµ,T ◦ PT : L2((0, T );L2
(s)(µ)) → E is γ-radonifying.

5. Cylindrical Wiener processes

Let E be a separable real Banach space in which BUC is continuously
embedded by means on an embedding iBUC,E :

iBUC,E : BUC ↪→ E.

In this section we will use the estimates from the previous section to give a
meaning to the stochastic integral∫ t

0

SE(t− s) dWHµ
(s), t � 0,
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where {WHµ
(t)}t�0 is a cylindrical Wiener process with Cameron-Martin space

Hµ and
SE(t) := iBUC,E ◦ SBUC(t), t > 0.

Let us first state the definition of a cylindrical Wiener process:

Definition 5.1. Let (Ω,F , {Ft}t�0,P) be a complete filtered proba-
bility space, and let H be a separable real Hilbert space. A cylindrical
Wiener process on (Ω,F , {Ft}t�0,P) with Cameron-Martin space H is a one-
parameter family WH = {WH(t)}t�0 of bounded linear operators from H into
L2(P) with the following properties:

(1) For each h ∈ H, {WH(t)h}t�0 is an adapted real-valued Brownian
motion;

(2) For all g, h ∈ H and t, s � 0 we have

E(WH(t)g ·WH(s)h) = (t ∧ s)[g, h]H .

In [2] a theory for stochastic convolution of certain operator-valued func-
tions with respect to a cylindrical Wiener process has been developed. We will
briefly recall its mean features. Let H be a separable real Hilbert space, E a
separable real Banach space, and let F : (0, T ) → L (H,E) be a function with
the following property: for each x∗ ∈ E∗, the function t �→ F ∗(t)x∗ is strongly
measurable and

(5.1)
∫ T

0

‖F ∗(t)x∗‖2
H dt <∞, x∗ ∈ E∗.

Under this assumption, for all x∗ ∈ E∗ the function t �→ F (t)F ∗(t)x∗ is
Pettis integrable [2, Proposition 2.2]. Thus we may define a bounded operator
QT ∈ L (E∗, E) by

QTx
∗ =

∫ T

0

F (t)F ∗(t)x∗ dt.

The following result is a reformulation of [2, Theorem 3.3], where it is stated
in terms of convolutions. For Hilbert spaces E, the result is well-known. A
detailed treatment of the stochastic Itô integral in Hilbert spaces may be found
in the book [5].

Proposition 5.2. Let E be a separable real Banach space and let WH be
a cylindrical Wiener process with Cameron-Martin space H. Then the following
assertions are equivalent :

(1) QT is the covariance of a centred Gaussian measure νT on E;
(2) There exists an FT -measurable E-valued random variable XT such that

〈XT , x
∗〉 =

∫ T

0

〈F (t) dWH(t), x∗〉, x∗ ∈ E∗.

In this situation, XT is centred Gaussian and νT is its distribution; in partic-
ular,

(5.2) E(〈XT , x
∗〉2) =

∫ T

0

‖F ∗(t)x∗‖2
H dt, x∗ ∈ E∗.
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The scalar stochastic integral in (2) is defined in the natural way: for a
simple function F : (0, T ) → L (H,E) of the form

F (t) = F (tk), t ∈ [tk, tk+1); k = 0, . . . ,m− 1,

with 0 < t0 < · · · < tm = T , we define∫ T

0

〈F (t) dWH(t), x∗〉 :=
m−1∑
k=0

(WH(tk+1) −WH(tk))F ∗(tk)x∗.

If the assumptions of the theorem are satisfied for t = T , then by tightness
they are satisfied for all t ∈ [0, T ]. Thus we obtain an adapted E-valued process
{Xt}t∈[0,T ]. In what follows, we will use the notation

∫ t

0
F (s) dWH(s) to denote

the random variables Xt.
Let us now assume that (H) holds and that we have a continuous embed-

ding iBUC,E : BUC ↪→ E. We define, for t > 0, the bounded linear operators
SE(t) : Hµ → E by SE(t) := iBUC,E ◦SBUC(t). Thanks to Proposition 4.8, for
all x∗ ∈ E∗ we have ∫ T

0

‖S∗
E(t)x∗‖2 dt <∞.

By Proposition 4.10, the operator QE
T : E∗ → E defined by

QE
T x

∗ :=
∫ T

0

SE(t)S∗
E(t)x∗ ds

is the covariance of a centred Gaussian measure on E if and only if the operator
KE

T introduced in Theorem 4.9 is γ-radonifying from L2((0, T );L2
(s)(µ)) into

E. If this is the case, we obtain an E-valued process {u(t)}t∈[0,T ] by stochastic
convolution with a cylindrical Wiener process WHµ

:

(5.3) u(t) :=
∫ t

0

SE(t− s) dWHµ
(s).

6. Spatially homogeneous Wiener processes

Our next aim is to show that it makes sense to regard the process
{u(t)}t∈[0,T ] defined by (5.3) as an E-valued ‘solution’ of the problem

du(t) = Au(t) dt+ dWµ(t), t � 0,
u(0) = 0,

where {Wµ(t)}t�0 is a spatially homogeneous Wiener process whose spectral
measure is µ, and A is defined formally by

AΦ = F−1(etqFΦ), Φ ∈ S ′.

This aim will be achieved in the next section. In order to be able to state
the precise results, in this section we will study spatially homogeneous Wiener
process and their relationship with cylindrical Wiener processes.
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Definition 6.1. Let (Ω,F , {Ft}t�0,P) be a complete filtered proba-
bility space. A spatially homogeneous Wiener process on (Ω,F , {Ft}t�0,P) is
a continuous, adapted S ′-valued process W = {W (t)}t�0 with the following
properties:

(1) For each φ ∈ S , {〈φ,W (t)〉}t�0 is an adapted real-valued Brownian
motion;

(2) For each t � 0 the distribution of W (t) is invariant with respect to all
translations τ ′h : S ′ → S ′, where τh : S → S is given by

τhφ(x) = φ(x+ h), x, h ∈ R
d, φ ∈ S .

We refer to [3], [15], [22], [23] for more infomation. By [12, Theorem 6,
p. 169, Theorem 1′, p. 264], for a process W satisfying condition (1), condition
(2) is equivalent to:

(2′) There exists a nonnegative symmetric tempered measure µ on R
d such

that for all φ, ψ ∈ S and t, s � 0 we have

E(〈φ,W (t)〉 · 〈ψ,W (s)〉) = (t ∧ s)[φ, ψ]Hµ
.

The measure µ occurring in condition (2′) is uniquely determined by W and
is called the spectral measure of the process W. We will sometimes use the
notation Wµ for a spatially homogeneous Wiener process with spectral measure
µ.

It is possible to integrate certain operator-valued processes with respect to
a spatially homogeneous Wiener process Wµ. Let L (S ′) denote the space of
all continuous linear operators from S ′ into itself. A mapping F : (0, T )×Ω →
L (S ′) is called simple if there exist 0 < t0 < t1 < · · · < tm = T and Ftk

-
measurable random variables F (tk) : Ω → L (S ′) taking finitely many values
only, such that

F (t, ω) = F (tk, ω), t ∈ [tk, tk+1); k = 0, . . . ,m− 1.

For a simple F : (0, T ) × Ω → L (S ′) of this form we define the stochastic
integral with respect to W by∫ T

0

F (t) dWµ(t) :=
m−1∑
k=0

F (tk)(Wµ(tk+1) −Wµ(tk)).

An easy computation shows that

(6.1) E

∣∣∣∣∣
〈
φ,

∫ T

0

F (t) dWµ(t)

〉∣∣∣∣∣
2

= E

∫ T

0

‖F ′(t)φ‖2
Hµ

dt, φ ∈ S .

Here F ′(t) : S → S is the adjoint of F (t) : S ′ → S ′ and Hµ is the Hilbert
space introduced in Definition 3.1. By a standard approximation argument, the
stochastic integral defined in this way extends to the space of all predictable
functions F : (0, T ) × Ω → L (S ′) for which

E

∫ T

0

‖F ′(t)φ‖2
Hµ

dt <∞, φ ∈ S .
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Here, measurability of L (S ′)-valued functions is understood in the sense of
[13], [14], where more details are given.

We will investigate next the relationship between the stochastic integral
introduced above and the one from the previous section. To this end we consider
the situation where a spatially homogeneous Wiener process Wµ with spectral
measure µ is given.

There ia a canonical way to associate a cylindrical Wiener process with a
given spatially homogeneous Wiener process, cf. [14, Proposition 2.5], [22]:

Proposition 6.2. Let Wµ be a spatially homogeneous Wiener process.
For each t � 0, the mapping

WHµ
(t) : Uµφ �→ 〈φ,Wµ(t)〉 φ ∈ S ,

extends uniquely to a bounded linear operator WHµ
(t) : Hµ → L2(P), and WHµ

is a cylindrical Wiener process with Cameron-Martin space Hµ.

Proof. Just note that

E(WHµ
(t)Uµφ · WHµ

(s)Uµψ) = E(〈φ,Wµ(t)〉 · 〈φ,Wµ(s)〉)
= (t ∧ s) [φ, ψ]Hµ

= (t ∧ s) [Uµφ,Uµψ]Hµ
.

We denote by WHµ
the associated cylindrical Wiener process with

Cameron-Martin space Hµ from Proposition 6.2.

Proposition 6.3. Let E be a separable real Banach space, continuously
embedded in D ′. Let F : (0, T ) → L (S ′) be a function for which the stochastic
integral ∫ T

0

F (t) dWµ(t)

is well-defined in the sense described above.
Let FE : (0, T ) → L (Hµ, E) be a function for which the stochastic integral

∫ T

0

FE(t) dWHµ
(t)

is well-defined in the sense described above.
If for all h ∈ Hµ and t ∈ (0, T ) we have

F (t)h = FE(t)h,

the equality being understood in the space D ′, then in D ′ we have

(6.2)
∫ T

0

F (t) dWµ(t) =
∫ T

0

FE(t) dWHµ
(t) almost surely.
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286 Zdzis�law Brzeźniak and Jan van Neerven

Proof. We shall denote the inclusion mappings E ↪→ D ′ and S ′ ↪→ D ′

by iE,D′ and iS ′,D′ , respectively. The compatibility assumption on F (t) and
FE(t) then reads

iS ′,D′F (t)iHµ,S ′h = iE,D′FE(t)h, h ∈ Hµ.

In order to prove the proposition it suffices to consider two step functions of
the form 1(a,b) ⊗F and 1(a,b) ⊗FE where F ∈ L (S ′) and FE ∈ L (Hµ, E) are
related by

iS ′,D′ ◦ F ◦ iHµ,S ′ = iE,D′ ◦ FE .

Noting that i∗S′,D′ = iD,S , this can be rewritten as

F ∗
E ◦ i∗E,D′ = i∗Hµ,S ′ ◦ F ′ ◦ iD,S .

To prove (6.2), note that for all ψ ∈ D we have〈
ψ, iE,D′

∫ T

0

1(a,b) ⊗ FE dWHµ
(t)

〉
=
∫ T

0

〈1(a,b) ⊗ FE dWHµ
(t), i∗E,D′ψ〉

= (WHµ
(b) −WHµ

(a))F ∗
Ei

∗
E,D′ψ

= (WHµ
(b) −WHµ

(a))UµU
∗
µF

∗
Ei

∗
E,D′ψ

= (WHµ
(b) −WHµ

(a))UµU
∗
µi

∗
Hµ,S ′F ′iD,Sψ

= (WHµ
(b) −WHµ

(a))UµF
′iD,Sψ

= 〈F ′iD,Sψ,Wµ(b) −Wµ(a)〉
= 〈iD,Sψ, F (Wµ(b) −Wµ(a))〉

=

〈
ψ, iS ′,D′

∫ T

0

〈1(a,b) ⊗ F dWµ(t)

〉
.

where we used Proposition 3.4 and suppressed the inclusion mapping iS ,Hµ

from our notations in the same way as we did in Proposition 6.2.

7. E-valued weak solutions

Up to this point, it has been a standing assumption that the function q
satisfies the conditions (4.1) and (4.2). In the remaining sections we will always
assume the additional condition:

(7.1) q is smooth and all of its derivatives have at most polynomial growth.

Then for all t � 0 the function etq(·) is a multiplier in S ′. More precisely,
by (4.2) and (7.1) for each t � 0 we may define a continuous linear operator
SC(t) ∈ L (S ′

C
) by

(7.2) SC(t)Φ := F−1(etq(·)FΦ), Φ ∈ S ′
C, t � 0.
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Condition (4.1) ensures that SC(t) maps S ′ into itself. Denoting the restriction
of the operator SC(t) to S ′ by S(t), the family {S(t)}t�0 is a C0-semigroup
on S ′ in the sense of [26]. Its infinitesimal generator is the pseudodifferential
operator A with symbol q:

AΦ = F−1(q(·)FΦ), Φ ∈ D(A),

where the domain D(A) consists of all Φ ∈ S ′ such that q(·)FΦ ∈ S ′. If µ is
a positive symmetric tempered measure, then the operator S(t) map Hµ into
itself and the restricted semigroup is precisely the semigroup studied in Section
4. It follows that we may apply Proposition 6.3 and conclude that∫ t

0

SE(t− s) dWHµ
(t) =

∫ t

0

S(t− s) dWµ(t)

whenever both integrals are defined.
In S ′ we now consider the following linear stochastic Cauchy problem:

(7.3)
du(t) = Au(t) dt+ dWµ(t), t � 0,
u(0) = 0.

Here {Wµ(t)}t�0 is a given spatially homogeneous Wiener process with spec-
tral measure µ. A weak solution of (7.3) is a predictable S ′-valued process
{u(t)}t�0 such that for all φ ∈ D(A) we have s �→ 〈Aφ, u(s)〉 ∈ L1

loc[0,∞) a.s.
and

〈φ, u(t)〉 =
∫ t

0

〈Aφ, u(s)〉 ds+ 〈φ,Wµ(t)〉 a.s., t � 0.

With the use of the stochastic integral in S ′ discussed in Section 6, it is possible
to show that

(7.4) u(t) :=
∫ t

0

S(t− s) dWµ(s)

is a weak solution of (7.3) and that up to modification this solution is unique.
Let us think for the moment of u(·) as taking values in D ′ rather than

in S ′. We will be interested in finding conditions ensuring that u(t) actually
takes values in some smaller Banach space E that is continuously embedded in
D ′. In order to make this idea precise, we introduce the following terminology.

Definition 7.1. Let E be a real Banach space, continuously embedded
in D ′. A predictable E-valued process {U(t)}t�0 will be called an E-valued
weak solution of the problem (7.3) if for all t � 0 we have U(t) = u(t) in D ′

almost surely.

Clearly, anE-valued weak solution, if it exists, is unique up to modification.

Proposition 7.2. Let E be a real Banach space that is continuously
embedded in D ′, and let {U(t)}t�0 be an E-valued weak solution of (7.3). Then
as an E-valued process, {U(t)}t�0 is Gaussian.
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The covariance operator RE
T of the distribution of the random variable

U(T ) satisfies

iE,D′ ◦RE
T ◦ i∗E,D′ = iHµ,D′ ◦Rµ

T ◦ i∗Hµ,D′ ,

where Rµ
T ∈ L (Hµ) is defined by

Rµ
Th :=

∫ T

0

S(t)S∗(t)h dt, h ∈ Hµ.

Proof. Each random variable U(t), being strongly measurable, takes its
values in a separable closed subspace Et of E almost surely. The joint distribu-
tion of (U(t1), . . . , U(tm)) is a Radon probability measure µt1,...,tm

supported
in Et1 ⊕· · ·⊕Etm

. We claim that this measure is Gaussian. Once we know this,
it follows that µt1,...,tm

is Gaussian as a measure on Em and the proposition is
proved.

Let it1,...,tm
: Et1⊕· · ·⊕Etm

↪→ D ′⊕· · ·⊕D ′ denote the inclusion mapping.
Then it1,...,tm

(µt1,...,tm
) = νt1,...,tm

, the distribution of the D ′-valued random
variable (u(t1), . . . , u(tm)) defined by (7.4). Hence for all φ1, . . . , φm ∈ D we
have

〈µt1,...,tm
, i∗t1,...,tm

(φ1, . . . , φm)〉 = 〈νt1,...,tm
, (φ1, . . . , φm)〉,

where we use brackets to denote image measures along linear functionals. The
process {u(t)}t�0 being Gaussian in D ′, it follows that the image measures

〈µt1,...,tm
, i∗t1,...,tm

(φ1, . . . , φm)〉

are Gaussian on Rm. Since i∗t1,...,tm
has weak∗-dense range in (Et⊕· · ·⊕Etm

)∗,
[2, Corollary 1.3] implies that the measure µt1,...,tm

is Gaussian on Et⊕· · ·⊕Etm
.

Let µE
T denote the distribution of U(T ). Using Proposition 3.4, for all

φ ∈ D we have:

〈RE
T i

∗
E,D′φ, i∗E,D′φ〉 = E〈(U(T ), i∗E,D′φ〉2 = E〈i∗S ′,D′φ, u(t)〉2

=
∫ T

0

‖iS ,Hµ
S′(t)i∗S ′,D′φ‖2

Hµ
dt

=
∫ T

0

‖U∗
µi

∗
Hµ,S ′S′(t)i∗S ′,D′φ‖2

Hµ
dt

=
∫ T

0

‖i∗Hµ,S ′S′(t)i∗S ′,D′φ‖2
Hµ

dt

=
∫ T

0

‖S∗(t)i∗Hµ,S ′ i∗S ′,D′φ‖2
Hµ

dt

=
∫ T

0

‖S∗(t)i∗Hµ,D′φ‖2
Hµ

dt
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=
∫ T

0

[S(t)S∗(t)i∗Hµ,D′φ, i∗Hµ,D′φ]Hµ
dt

= [Rµ
T i

∗
Hµ,D′φ, i∗Hµ,D′φ]Hµ

.

The following result gives a necessary condition for the existence of an
E-valued weak solution. It will play an important rôle in our discussion of
weighted Lp-solutions below.

Theorem 7.3. Let E be a separable real Banach space and let E ↪→
D ′ be a continuous embedding. If the problem (7.3) admits a weak E-valued
solution, then the operators KE

T : L2((0, T );L2
(s)(µ)) → E are well-defined and

γ-radonifying.

Proof. Let {U(t)}t�0 be an E-valued weak solution of the problem (7.3).
Let T > 0 be fixed. The RKHS’s of the operators RE

T and Rµ
T will be denoted

by (iET , H
E
T ) and (iµT , H

µ
T ), respectively. In view of the previous result, for all

φ ∈ D ′ we have

‖(iET )∗i∗E,D′φ‖2
HE

T
= 〈RE

T i
∗
E,D′φ, i∗E,D′φ〉

= 〈Rµ
T i

∗
Hµ,D′φ, i∗Hµ,D′φ〉 = ‖(iµT )∗i∗Hµ,D′φ‖2

Hµ
T
.

Since (iµT )∗ ◦ i∗Hµ,D′ has dense range in Hµ, this shows that the operator

U : (iµT )∗(i∗Hµ,D′φ) �→ (iET )∗(i∗E,D′φ), φ ∈ D ,

uniquely extends to an isometry from Hµ
T into HE

T . Since (iET )∗ ◦ i∗E,D′ has
dense range in E∗, this isometry is actually a unitary operator. Noting that by
definition we have

U ◦ (iµT )∗ ◦ i∗Hµ,D′ = (iET )∗ ◦ i∗E,D′ ,

by dualizing we obtain

iHµ,D′ ◦ iµT ◦ U∗ = iE,D′ ◦ iET .
Multiply both sides from the right with U . Since U is unitary, this gives

(7.5) iHµ,D′ ◦ iµT = iE,D′ ◦ iET ◦ U.
Define Jµ

T : L2((0, T );Hµ) → Hµ by

Jµ
T f :=

∫ T

0

S(t)f(t) dt.

By general results on RKHS’s, Jµ
T takes values in Hµ

T . The resulting operator
from L2((0, T );Hµ) into Hµ

T will be denoted by jµ
T . Thus, Jµ

T = iµT ◦ jµ
T and

from (7.5) we obtain

iHµ,D′ ◦ Jµ
T = iHµ,D′ ◦ iµT ◦ jµ

T = iE,D′ ◦ iET ◦ U ◦ jµ
T .
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Let VT : L2((0, T );L2
(s)(µ)) → L2((0, T );Hµ) be defined by VT g = F−1(gµ).

If g is a step function taking values in L2
(s)(µ) ∩ Cc(Rd; C), then

(iE,D′ ◦ (iET ◦ U ◦ jµ
T ◦ VT ))g = iHµ,D′((Jµ

T ◦ VT )g)

= iHµ,D′

∫ T

0

S(t)F−1(g(t)µ) dt

= iHµ,D′

∫ T

0

F−1(etqg(t)µ) dt

= iHµ,D′

∫ T

0

∫
Rd

ei〈·,ξ〉etq(·)(g(t))(·) dµ(ξ) dt

= (iE,D′ ◦ iBUC,E)KT g

= iE,D′KE
T g.

Hence for such g we obtain

(iET ◦ U ◦ jµ
T ◦ VT )g = KE

T g.

The subspace of all such g being dense, we have shown that KE
T extends to a

bounded linear operator from L2((0, T );L2
(s)(µ)) into E.

Since RE
T = iET ◦ (iET )∗ is a covariance operator, iET is γ-radonifying. It

follows that the operator KE
T = iET ◦(U ◦jµ

T ◦VT ) is γ-radonifying as an operator
from L2((0, T );L2

(s)(µ)) into E.

We do not know whether the existence of an E-valued solution implies
Hypothesis (H). Below, we will give an affirmative answer to this question
when E is a weighted Lp-space.

If we assume that Hypothesis (H) holds and that BUC embeds into E,
we can represent E-valued solutions as stochastic convolutions in E:

Theorem 7.4. Assume that (H) holds. Let E be a separable real Ba-
nach space for which we have continuous embeddings BUC ↪→ E ↪→ D ′. If
(7.3) admits an E-valued weak solution {U(t)}t�0, then for all t � 0 we have

(7.6) U(t) =
∫ t

0

SE(t− s) dWHµ
(s)

in D ′ almost surely, where {WHµ
(t)}t�0 is the cylindrical Wiener process as-

sociated with µ.

Proof. The assumptions imply that the operators SE(t) are well-defined.
Fix T > 0 and define as before the operator QE

T : E∗ → E by

QE
T x

∗ :=
∫ T

0

SE(t)S∗
E(t)x∗ dt, x∗ ∈ E∗.



�

�

�

�

�

�

�

�

Space-time regularity for linear stochastic evolution equations 291

For all x∗ ∈ E∗ and ψ ∈ D we have, using Proposition 3.4 and the definition
of an E-valued weak solution,

〈QE
T i

∗
E,D′φ, i∗E,D′ψ〉 =

∫ T

0

‖S∗
E(t)(i∗E,D′ψ)‖2

Hµ
dt

=
∫ T

0

‖U∗
µS

∗
E(t)(i∗E,D′ψ)‖2

Hµ
dt

=
∫ T

0

‖U∗
µi

∗
Hµ,S ′S′(t)i∗S ′,D′ψ‖2

Hµ
dt

=
∫ T

0

‖i∗S ,Hµ
S′(t)i∗S ′,D′ψ‖2

Hµ
dt

= E 〈u(T ), i∗S ′,D′ψ〉2
= E 〈U(T ), i∗E,D′ψ〉2
= 〈RE

T i
∗
E,D′φ, i∗E,D′ψ〉.

By a density argument, it follows that QE
T = RE

T . In particular, QE
T is a

covariance operator, and therefore the stochastic convolution in (7.6) is well-
defined. By Proposition 6.3, in D ′ we have

U(T ) = u(T ) =
∫ T

0

S(T − t) dWµ(t) =
∫ T

0

SE(T − t) dWHµ
(t)

almost surely.

We conclude with a result that gives sufficient conditions for the existence
of an E-valued solution:

Theorem 7.5. Let Hypothesis (H) hold. Let E be a separable real Ba-
nach space for which we have continuous embeddings BUC ↪→ E ↪→ D ′. If
for all T > 0 the operator KE

T is γ-radonifying from L2((0, T );L2
(s)(µ)) into E,

then the problem (7.3) admits a unique E-valued weak solution {U(t)}t�0, and
this solution is given by

U(t) =
∫ t

0

SE(t− s) dWHµ
(s).

Proof. By Propositions 4.7 and 4.10, we may apply Propositon 5.2 to
define, for every t � 0, an E-valued random variable U(t) by

U(t) :=
∫ t

0

SE(t− s) dWHµ
(s).

By Proposition 6.3, for all t � 0 we have

U(t) = u(t) :=
∫ t

0

S(t− s) dWµ(s)
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in D ′ almost surely. This shows that {U(t)}t�0 is an E-valued weak solution
of (7.3). Uniqueness has already been shown.

8. Existence of a continuous version

In this section we will show that an E-valued solution, if it exists, has
a continuous E-valued modification if the following integrability condition is
satisfied:

Hypothesis (Hα). There exists a constant C > q∗ such that∫
Rd

1 + |q(x)|α
C − Re q(x)

dµ(x) <∞.

Note that this hypothesis stronger than (H). Hence in particular, Hypoth-
esis (Hα) implies that the operators SE(t) are well-defined.

Lemma 8.1. Assume that (Hα) holds for some α > 0 and let T > 0 be
fixed. Then:

(1) There exists a constant c � 0 such that for all x∗ ∈ E∗ and t ∈ [0, T ]
we have ∫ t

0

‖S∗
E(s)x∗‖2

Hµ
ds � ctα‖x∗‖2;

(2) There exists a constant c � 0 such that for all x∗ ∈ E∗ and s, t ∈ [0, T ]
with s < t we have∫ s

0

‖S∗
E(t− s+ u)x∗ − S∗

E(u)x∗‖2
Hµ

du � c(t− s)α‖x∗‖2.

Proof. Without loss of generality we assume that α ∈ (0, 1]. For the
constant C in Hypothesis (Hα) we assume without loss of generality that C >
max{0, q∗}.

We start with the proof of (1). Fix 0 < t � T . By Proposition 4.7, for all
x∗ ∈ E∗ we have

(8.1)
∫ t

0

‖S∗
E(s)x∗‖2

Hµ
ds �

∫ t

0

∫
Rd

e2s Re q(ξ)dµ(ξ) ds · ‖x∗‖2.

We will estimate the double integral on the right hand side by splitting the
inner integral into two parts corresponding to the sets where |Re q| � C and
where Re q < −C. We have

(8.2)

∫ t

0

∫
|Re q|�C

e2s Re q(ξ) dµ(ξ) ds � te2TCµ{|Re q| � C}

� tαT 1−αe2TCµ{|Re q| � C}.
Note that µ{|Re q| � C} < ∞. Indeed, for all ξ ∈ R

d with |Re q(ξ)| � C we
have C − Re q(ξ) � 2C, and therefore

µ{|Re q| � C} � 2C
∫
|Re q|�C

1
C − Re q(ξ)

dµ(ξ) <∞.
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Next, by Fubini’s theorem,∫ t

0

∫
Re q<−C

e2s Re q(ξ) dµ(ξ) ds =
∫

Re q<−C

1 − e2t Re q(ξ)

−2 Re q(ξ)
dµ(ξ).

Using the inequality 0 � 1 − e−2tβ � min{1, 2tβ} (β � 0) and recalling that
0 < α � 1, we now estimate:

(8.3)

∫
Re q<−C

1 − e2t Re q(ξ)

−2 Re q(ξ)
dµ(ξ) �

∫
Re q<−C

(1 − e2t Re q(ξ))α

−2 Re q(ξ)
dµ(ξ)

� (2t)α

∫
Re q<−C

(−Re q(ξ))α

−2 Re q(ξ)
dµ(ξ)

� (2t)α

∫
Rd

|q(ξ)|α
C − Re q(ξ)

dµ(ξ).

The right hand side integral is finite by assumption. Combining the estimates
(8.2) and (8.3) with (8.1) we see that (1) is proved.

For the proof of (2) we fix 0 � s � t � T . By Proposition 4.8, for all
x∗ ∈ E∗ we have

(8.4)

∫ s

0

‖S∗
E(t− s+ u)x∗ − S∗

E(u)x∗‖2
Hµ

du

�
∫ s

0

∫
Rd

|e(t−s+u)q(ξ) − euq(ξ)|2 dµ(ξ) du · ‖x∗‖2.

We are going to estimate the double integral on the right hand side. First,

|e(t−s)q(ξ) − 1| =
∣∣∣∣q(ξ)

∫ t−s

0

euq(ξ) du

∣∣∣∣ � (t− s)|q(ξ)| eTC .

Recalling that 0 < α � 1, we choose M � 0 such that r2 � Mrα for all
r ∈ [0, 2eTC ]. Then,

(8.5)

∫ s

0

∫
Rd

|e(t−s+u)q(ξ) − euq(ξ)|2 dµ(ξ) du

� M

∫ s

0

∫
Rd

|e(t−s+u)q(ξ) − euq(ξ)|α dµ(ξ) du

� M

∫ s

0

∫
Rd

eαu Re q(ξ)|e(t−s)q(ξ) − 1|α dµ(ξ) du

� M(t− s)αeαTC

∫ s

0

∫
Rd

eαu(Re q(ξ)|q(ξ)|αdµ(ξ) du

� M(t− s)αe2αTC

∫ s

0

∫
Rd

e−αu(C−Re q(ξ))|q(ξ)|αdµ(ξ) du

= α−1M(t− s)αe2αTC

∫
Rd

1 − e−αs(C−Re q(ξ))

C − Re q(ξ)
|q(ξ)|αdµ(ξ)

� α−1M(t− s)αe2αTC

∫
Rd

1
C − Re q(ξ)

|q(ξ)|αdµ(ξ).
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The integral in the right hand side is finite by assumption and the proof is
completed.

Theorem 8.2. Suppose there exist C > q∗ and α > 0 such that∫
Rd

1 + |q(x)|α
C − Re q(x)

dµ(x) <∞.

Let E be a separable real Banach space for which we have continuous embeddings
BUC ↪→ E ↪→ D ′. If (7.3) admits an E-valued weak solution, then this solution
has a continuous E-valued modification.

Proof. Thanks to the estimates in Lemma 8.1 we can apply [2, Proposi-
tion 4.3] to the operator-valued function SE(·) on each interval (0, T ] and obtain
a continuous modification (depending on T ) of {u(t)}t∈[0,T ]. By applying this
to a sequence Tn → ∞ we obtain a continuous version of {u(t)}t�0.

It seems reasonable to expect that if (Hα) holds, the E-valued solution
has a Hölder continuous modification. Under the additional assumption that
{S(t)}t�0 restricts to a C0-semigroup on E, in the next section we prove that
this is indeed the case if E is a weighted Lp-space.

9. Weighted Lp-solutions

In this section we are going to apply our results to weighted Lp-spaces and
prove our main result, which was stated in the Introduction for A = ∆. We
will always assume (4.1), (4.2), and (7.1).

Let 0 � � ∈ L1
loc be a nonnegative locally integrable function. For 1 � p <

∞ we denote by Lp(�) the Banach space of all real functions on Rd for which

‖f‖p
Lp(�) :=

∫
Rd

|f(x)|p �(x) dx <∞.

As usual we identify functions that are equal �(x) dx-almost everywhere. Clear-
ly we have a continuous inclusion Lp(�) ↪→ D ′, and if � is integrable we also
have a continuous inclusion BUC ↪→ Lp(�).

Theorem 9.1. Let 1 � p <∞ and 0 � � ∈ L1
loc be arbitrary and fixed.

The following assertions are equivalent :
(1) Problem (7.3) admits an Lp(�)-valued solution;
(2) Hypothesis (H) holds and � is integrable.

Proof. If we have an Lp(�)-valued solution, then the operator KLp(�)
T is

well-defined from L2((0, T );L2
(s)(µ)) into Lp(�), and γ-radonifying by Theorem

7.3. We now apply Theorem 2.3 to the function κ(x) = e−i〈x,·〉etq(− ·). In
combination with (2.1) we find that(∫ T

0

∫
Rd

e2t Re q(ξ) dµ(ξ) dt

) p
2

·
∫

Rd

�(x) dx <∞.
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By Proposition 4.3, the finiteness of the first double integral is equivalent to
Hypothesis (H).

For the converse we first note that the conditions in (2) imply that BUC
embeds into Lp(�) and that the operators SLp(�)(t) are well-defined. Hence
the operator KLp(�)

T is well-defined. By Theorem 2.3, applied in the converse
direction, KLp(�)

T is γ-radonifying. Hence by Proposition 4.10, QLp(�)
T is the

covariance of a Gaussian measure on Lp(�). It follows that we may apply
Proposition 6.3 to obtain that

U(t) :=
∫ t

0

SLp(�)(t− s) dWHµ
(s) =

∫ t

0

S(t− s) dWµ(s)

a.s. in D ′ for all t � 0. This shows that {U(t)}t�0 is an Lp(�)-valued weak
solution of the problem (7.3).

From Theorem 8.2 we obtain:

Theorem 9.2. Let 1 � p < ∞ and 0 � � ∈ L1 be arbitrary and fixed.
If there exist C > q∗ and α > 0 such that∫

Rd

1 + |q(x)|α
C − Re q(x)

dµ(x) <∞,

then problem (7.3) admits a continuous Lp(�)-valued weak solution.

Remark 9.3. The implication (2)⇒ (1) in Theorem 9.1 does not really
depend upon the fact that SLp(�)(t) : Hµ → Lp(�) factors through BUC. In
order to derive Theorem 9.1 as quickly as possible, we could prove directly that
S(t) maps Hµ into Lp(�) and give all subsequent estimates in the Lp(�)-norm.

10. Hölder continuity of the Lp(�)-valued solution

It turns out that under an invariance condition, the Lp(�)-valued solution
has a Hölder continuous version. Throughout this section we assume that (4.1),
(4.2), and (7.1) hold.

We begin with a simple observation.

Lemma 10.1. Let α ∈ (0, 1) and C > q∗ be given. For all t > 0 there
exists a constant M � 0 such that∫ t

0

∫
Rd

s−αe2s Re q(ξ) dµ(ξ) ds � M

∫
Rd

1
(C − Re q(ξ))1−α

dµ(ξ).

Proof. By elementary calculations, for all t > 0 and −∞ < η < ζ < ∞
we have

(10.1)
∫ t

0

s−αe2sη ds � (ζ − η)α−1e2tζ

∫ ∞

0

s−αe−2s ds.
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By taking η = Re q(ξ), ζ = C and integrating, we obtain

(10.2)

∫
Rd

∫ t

0

s−αe2s Re q(ξ) ds dµ(ξ)

� e2tC

(∫ ∞

0

s−αe−2s ds

)(∫
Rd

1
(C − Re q(ξ))1−α

dµ(ξ)
)
.

This gives the desired estimate, with M = e2tC
∫∞
0
s−αe−2s ds.

Motivated by this observation we introduce the following hypothesis.

Hypothesis (Hα). There exists a constant C > q∗ such that∫
Rd

1
(C − Re q(ξ))1−α

dµ(ξ) <∞.

Note that (Hα) trivially implies (Hα).

We have the following analogue of Lemma 4.6.

Lemma 10.2. Assume (Hα) holds for some α ∈ (0, 1). For all t > 0
and g ∈ L2((0, T );Hµ), the BUC-valued function r �→ (t − r)−α/2SBUC(t −
r)g(r) is Bochner integrable on (0, t) and we have

∥∥∥∥
∫ t

0

(t− r)−
α
2 SBUC(t− r)g(r) dr

∥∥∥∥
BUC

�
(∫ t

0

∫
Rd

s−αe2s Re q(ξ) dµ(ξ) ds
) 1

2

· ‖g‖L2((0,T );Hµ).

Proof. For step functions g, the strong measurability of r �→
(t − r)−α/2SBUC(t − r)g(r) follows from Lemma 4.6; the general case follows
by approximation.

By (4.8) and the Cauchy-Schwarz inequality,

∫ t

0

(t− r)−
α
2 ‖SBUC(t− r)g(r)‖BUC dr

�
(∫ t

0

∫
Rd

(t− r)−αe2(t−r)Re q(ξ) dµ(ξ) dr
) 1

2

· ‖g‖L2((0,t);Hµ)

=
(∫ t

0

∫
Rd

s−αe2s Re q(ξ) dµ(ξ) ds
) 1

2

· ‖g‖L2((0,t);Hµ).

The repeated integral in the right hand side is finite by Lemma 10.1.

Arguing as at the end of the proof of Theorem 4.9 we deduce the following
representation for the above integral:
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Lemma 10.3. Assume (Hα) holds for some α ∈ (0, 1). For t > 0
define κ1−α/2

t : R
d → L2((0, T );Hµ) by

κ
1−α

2
t (x)(r) = (t− r)−

α
2 F (ei〈x,·〉e(t−r)q(−·)µ)1(0,t)(r).

Then for all g ∈ L2((0, T );Hµ) and t > 0 we have

(10.3)
∫ t

0

(t− r)−
α
2 S(t− r)g(r) dr = [κ1−α

2
t ( · ), g]L2((0,T );Hµ).

By a direct computation we obtain the following identity: for all x ∈ Rd,

(10.4) ‖κ1−α
2

t (x)‖L2((0,T );Hµ) =
(∫ t

0

∫
Rd

s−αe2s Re q(ξ) dµ(ξ) ds
) 1

2

.

In particular, the norm is independent of x ∈ Rd.
From this point on, we assume that (Hα) holds for some fixed α ∈ (0, 1).

We fix 1 � p < ∞ and a weight function 0 � � ∈ L1. Since BUC embeds into
Lp(�), for t > 0 we may define (Λ1−α/2

T f)(t) ∈ Lp(�) by

(Λ1−α
2

T f)(t) :=
1

Γ(1 − α
2 )

∫ t

0

(t− r)−
α
2 SLp(�)(t− r)f(r) dr.

Then,

(Λ1−α
2

T f)(t) =
1

Γ(1 − α
2 )

[κ1−α
2

t ( · ), f ]L2((0,T );Hµ).

From the above estimates we find

‖(Λ1−α
2

T f)(t)‖Lp(�)

� 1
Γ(1 − α

2 )
‖�‖

1
p

L1

(
sup
x∈Rd

‖κ1−α
2

t (x)‖L2((0,T );Hµ)

)
‖f‖L2((0,T );Hµ)

� 1
Γ(1 − α

2 )
‖�‖

1
p

L1

(∫ t

0

∫
Rd

s−αe2s Re q(x) dµ(x) ds
) 1

2

‖f‖L2((0,T );Hµ).

In particular, for each f ∈ L2((0, T );Hµ), the function t �→ (Λ1−α/2
T f)(t) de-

fines an element of L∞((0, T );Lp(�)), and hence of Lp((0, T );Lp(�)). In this
way we obtain bounded operators Λ1−α/2

T : L2((0, T );Hµ) → Lp((0, T );Lp(�)).
Arguing as in Example 2.4 we obtain:

Proposition 10.4. Assume (Hα) holds for some α ∈ (0, 1) and let 1 �
p <∞. Then Λ1−α/2

T is γ-radonifying from L2((0, T );Hµ) into Lp((0, T );Lp(�)).

In what follows, given a separable real Banach space X and a real number
β ∈ (0, 1), the little Hölder space cβ0 ([0, T ];X) is the (separable) Banach space
of all real-valued continuous functions f : [0, T ] → X such that f(0) = 0 and
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(10.5)

‖f‖ := sup
t∈[0,T ]

|f(t)| + sup
0�s<t�T

|f(t) − f(s)|
(t− s)β

<∞,

lim
δ↓0

sup
0<t−s�δ

|f(t) − f(s)|
(t− s)β

= 0.

Proposition 10.5. Assume (Hα) holds for some α ∈ (0, 1). Let 2/α <
r <∞ and β ∈ (0, α/2−1/r) be given and assume that the semigroup {S(t)}t�0

restricts to a C0-semigroup on Lr(�). Then the operator ΛT : L2((0, T );Hµ) →
Lr((0, T );Lr(�)) defined by

(ΛT f)(t) :=
∫ t

0

SLr(�)(t− τ )f(τ ) dτ

takes values in the space cβ0 ([0, T ];Lr(�)). As an operator from L2((0, T );Hµ)
into cβ0 ([0, T ];Lr(�)), ΛT is γ-radonifying.

Proof. By a result of Da Prato, Kwapień and Zabczyk [4], the invariance
of Lr(�) implies that

Λ
α
2
T f :=

1
Γ(α

2 )

∫ t

0

(t− r)−1+ α
2 S(t− r)f(r) dr

defines a bounded operator from Lr((0, T );Lr(�)) into cβ0 [0, T ];Lr(�)). By
standard arguments we have the factorization

ΛT = Λ
α
2
T Λ1−α

2
T .

The result now follows from Proposition 10.4 and the left ideal property of
γ-radonifying operators mentioned in Section 2.

After these preparations we can state and prove the main result of this
section:

Theorem 10.6. Assume that there exist 0 < α < 1 and a constant
C > q∗ such that

(10.6)
∫

Rd

1
(C − Re q(x))1−α

dµ(x) <∞.

Let 1 � p <∞ and 0 � � ∈ L1 be fixed. If the semigroup {S(t)}t�0 restricts to
a C0-semigroup on Lr(�) for all sufficiently large r, then for all β ∈ (0, α/2)
the Lp(�)-valued solution of Theorem 9.1 has a β-Hölder continuous version.

Proof. Choose δ > 0 such that β+ δ ∈ (0, α/2). Choose r > max{2/α, p}
sufficiently large, and subject to the additional conditions that 1/r < δ and
β + δ < α/2 − 1/r.
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Consider the probability space (Ω̃, F̃ , P̃), where Ω̃ = cβ+δ
0 ([0, T ];Lr(�)),

F is the Borel σ-algebra of Ω̃, and P̃ := ΛT (γ
Hµ,T

) is the image measure whose
σ-additivity is guaranteed by Proposition 10.5. We define an Lr(�)-valued
process {ξt}t∈[0,T ] on this probability space by

ξ(t, ω̃) := ω̃(t), t ∈ [0, T ], ω̃ ∈ Ω̃.

It is routine to check that the joint distributions of this process are given by

L (ξ(s), ξ(t)) = L (u(s), u(t)), 0 � s, t � T,

where, for the moment, we think of {u(t)}t∈[0,T ] as an Lr(�)-valued process
(which is justified by Theorem 9.1 applied to Lr(�)). Hence for any fixed
0 � s �= t � T ,

E

(‖u(t) − u(s)‖r
Lr(�)

|t− s|(β+δ)r

)
= Ẽ

(‖ξ(t) − ξ(s)‖r
Lr(�)

|t− s|(β+δ)r

)
� Ẽ‖ξ‖r

cβ+δ
0 ([0,T ];Lr(�))

.

By Fernique’s theorem,

Ẽ‖ξ‖r
cβ+δ
0 ([0,T ];Lr(�))

<∞.

It follows that there exists a finite constant K such that

Ẽ‖u(t) − u(s)‖r
Lr(�) � K|t− s|(β+δ)r, 0 � s �= t � T.

By the Kolmogorov continuity theorem, the process {u(t)}t∈[0,T ] has a η-Hölder
continuous version for each

η <
(β + δ)r − 1

r
= β + δ − 1

r
.

Since by assumption we have 1/r < δ, the existence of a β-Hölder continuous
version of {u(t)}t∈[0,T ], as an Lr(�)-valued process, is proved.

Since by assumption we have r > p, the integrability of � implies that
Lr(�) is continuously embedded in Lp(�). Hence as an Lp(�)-valued process,
{u(t)}t∈[0,T ] has a β-Hölder continuous version as well.

Example 10.7. Suppose q satisfies a uniformly ellipticity condition of
order 2m. Then the invariance condition is automatically satisfied for the
weight functions

�(x) = e−b|x| (b > 0)

and
�(x) = (1 + |x|2)−b (b > 0).

This is the content of [3, Lemma 3.1].

We return to the functions q from Example 4.1.
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(1) q(x) = −ix, x ∈ R (d = 1). Then (10.6) reduces to the condition that
µ is a finite measure.

(2) q(x) = −|x|2, x ∈ Rd. Then (10.6) reduces to∫
Rd

1
(1 + |x|2)1−α

dµ(x) <∞.

We see that in the case (1), if the condition (10.6) is satisfied for α = 0 then it
is also satisfied for any α ∈ (0, 1). The following example will show that this in
the case (2) the situation is quite different. In fact, we will provide an example
of a measure µ for which the condition (10.6) is true with α = 0 but not with
any α > 0.

Example 10.8. In dimension d = 1, consider the following tempered
measure

dµ(x) =
|x|

(1 + (ln |x|)2)
dx.

For this measure we have ∫
R

1
1 + |x|2 dµ(x) <∞,

but for all ε > 0, ∫
R

1
(1 + |x|2)1−ε

dµ(x) = ∞.

11. The stochastic Schrödinger equation

The stochastic Schrödinger equation requires some modifications to the
assumptions that have been made up to this point. Let us list the changes:

(1) The function q : R
d → C is of class C ∞ and satisfies (4.2) and (7.1),

but not necessarily (4.1).
(2) The measure µ is assumed to be nonnegative and tempered but not

necessarily symmetric.
(3) All spaces are replaced by their complex counterparts. In particular,

this applies to the spaces S , S ′, D , D ′, Lp(�) and L2(µ). For notational
convenience, we will not explicitly express this in our notations. For example,
in this section L2(µ) will always denote the space of complex-valued square
µ-integrable functions.

(4) The rôle of L2
(s)(µ) is replaced by L2(µ).

(5) All operators are complex. This applies in particular to the semigroup
{S(t)}t�0 whose symbol is q.

In Definition 6.1, condition (1) is replaced by

(1c) For each φ ∈ S , the process {〈φ,W (t)〉}t�0 is an adapted complex-
valued Brownian motion.
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As in Section 6, by [12, Theorem 6, p. 169, Theorem 1′, p. 264] for a
process W satisfying conditions (1c) and (2) is equivalent to:

(2c′) There exists a nonnegative tempered measure µ on Rd such that for
all φ, ψ ∈ S and t, s � 0 we have

E(〈φ,W (t)〉 〈ψ,W (s)〉) = (t ∧ s)[φ, ψ]Hµ
.

Similarly, in Definition 5.1 the conditions (1) and (2) are replaced by:

(1c) For each h ∈ H, {WH(t)h}t�0 is an adapted complex-valued Brownian
motion;

(2c) For all g, h ∈ H and t, s � 0 we have

E(WH(t)gWH(s)h) = (t ∧ s)[g, h]H .

In this new setting all our results remain true if care is taken with regard
to their proper interpretation. For example, Theorem 4.9 holds true, but with
κ taking values in L2((0, T );L2(µ)).

Let us now consider the Schrödinger equation

(11.1)
du(t) = − i

2
∆u(t) dt+ dWµ(t), t � 0,

u(0) = 0.

The symbol of A = −(i/2)∆ is given by

q(ξ) =
i

2
|ξ|2, ξ ∈ R

d.

For this symbol the assumption (H) holds if and only if µ is a finite measure.
This leads to the following result:

Theorem 11.1. Let 1 � p < ∞ and 0 � � ∈ L1
loc be arbitrary and

fixed. The following assertions are equivalent :
(1) Problem (11.1) admits an Lp(�)-valued solution;
(2) The measure µ is finite and the weight � is integrable.
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