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Comparison theorems for eigenvalues of
one-dimensional Schrödinger operators

By

Min-Jei Huang

Abstract

The Schrödinger operator H = −d2/dx2 +V (x) on an interval [0, a]
with Dirichlet or Neumann boundary conditions has discrete spectrum
E1[V ] < E2[V ] < E3[V ] < · · · , for bounded V . In this paper, we apply
the perturbation theory of discrete eigenvalues to obtain upper bounds
for

Pk
j=1 Ej [V ], where k is any positive integer. Our results include the

following:
(i)

Pk
j=1 Ej [V ] ≤ Pk

j=1 Ej [Vs], where Vs(x) = [V (x)+V (a−x)]/2,
with equality if and only if V is symmetric about x = a/2.

(ii) If V is convex, then the Dirichlet eigenvalues satisfy

kX
j=1

Ej [V ] ≤
kX

j=1

Ej [0] +
k

a

Z a

0

V (x)dx

with equality if and only if V is constant.
(iii) If V is concave, then the Neumann eigenvalues satisfy

kX
j=1

Ej [V ] ≤
kX

j=1

Ej [0] +
k

a

Z a

0

V (x)dx

with equality if and only if V is constant.

1. The basic theorem

Let Ω be a region in the complex plane, and for each z ∈ Ω, let T (z) be
a closed operator with nonempty resolvent set. {T (z)} is called an analytic
family of type (A) if the operator domain of T (z) is some set D independent of
z, and for each ϕ ∈ D, T (z)ϕ is a vector-valued analytic function of z ([1], [3]).
Suppose that {T (z)} is an analytic family of type (A) in Ω. The Kato-Rellich
theorem ([3]) asserts that if z0 ∈ Ω and if E(z0) is an isolated nondegenerate
eigenvalue of T (z0), then, for z near z0, there is a unique point E(z) in the
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spectrum of T (z) near E(z0) which is an isolated nondegenerate eigenvalue.
Moreover, E(z) is analytic near z = z0, and there is an analytic eigenvector
u(z) near z = z0.

We now consider the eigenvalue problem for one-dimensional Schrödinger
operators. Let V (x) be a bounded real-valued function on the interval [0, a],
and let H be the selfadjoint operator on L2([0, a]) given by −d2/dx2 + V (x)
with Dirichlet or Neumann boundary conditions. As we know, H has discrete
spectrum

E1 < E2 < E3 < · · ·
with corresponding normalized eigenfunctions u1(x), u2(x), u3(x), . . . . Also,
the uj(x) can be chosen so as to be real-valued and to form a complete or-
thonormal basis for L2([0, a]).

In this paper, we shall apply the perturbation theory of discrete eigenval-
ues to obtain upper bounds for

∑k
j=1 Ej , the sum of the k lowest eigenvalues

of H, where k is any positive integer. To apply the idea of this theory to eigen-
values, let V (·, t), t ∈ R, be a one-parameter family of bounded potentials,
and consider the selfadjoint operator H(t) = −d2/dx2 + V (x, t) on L2([0, a])
with Dirichlet or Neumann boundary conditions. We assume that H(t) has an
analytic continuation to a region Ω so that {H(z)} is an analytic family of type
(A) in Ω. If Ej(t) is the jth eigenvalue of H(t), there is a simple formula for
the derivative of Ej(t):

(1)
d

dt
Ej(t) =

∫ a

0

∂V

∂t
(x, t)u2

j(x, t)dx,

where uj(x, t) is the normalized eigenfunction corresponding to the eigenvalue
Ej(t). Here we note the following basic formula for the second derivative of
Ej(t).

Theorem 1 (the second-order perturbation formula).

d2

dt2
Ej(t) =

∫ a

0

∂2V

∂t2
(x, t)u2

j(x, t)dx

+ 2
∞∑

n=1, n�=j

1
Ej(t) − En(t)

[∫ a

0

∂V

∂t
(x, t)uj(x, t)un(x, t)dx

]2
.

Proof. See, for example, [2, Chapter 17] or [3, Chapter XII].

The following result, which is an important consequence of Theorem 1,
plays a major role in the next section.

Theorem 2. If (∂2V/∂t2)(x, t) ≤ 0, then

d2

dt2
(E1 + E2 + · · · + Ek)(t) ≤ 0 for any k ≥ 1.
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Proof. Since (∂2V/∂t2)(x, t) ≤ 0, we have from Theorem 1 that

d2

dt2
Ej(t) ≤ 2

∑
n�=j

1
Ej(t) − En(t)

A2
j,n(t),

where Aj,n(t) =
∫ a

0
(∂V/∂t)(x, t)uj(x, t)un(x, t)dx. It follows that

d2

dt2
(E1 + E2 + · · · + Ek)(t) ≤ 2

k∑
j=1

∑
n�=j

1
Ej(t) − En(t)

A2
j,n(t)

= 2
k∑

j=1

∞∑
n=k+1

1
Ej(t) − En(t)

A2
j,n(t)

≤ 0,

(2)

where we have used the fact that Aj,n(t) = An,j(t) in the second step.

Theorem 2 indicates that the concavity of
∑k

j=1 Ej(t) is connected with
the concavity of V (x, t) with respect to t. In fact, there is a natural way of
approaching this connection based on the min-max principle and basic facts
about concave functions. For the linear case V (x, t) = tV (x), it was shown in
[4] (pp. 153–154) that

∑k
j=1 Ej(t) is a concave function of t for any k ≥ 1. Here

we prove a theorem that is a generalization of this result.

Theorem 3. If V (x, t) is concave with respect to t, then, for any k ≥ 1,∑k
j=1 Ej(t) is a concave function of t.

Proof. By the min-max principle ([4, p. 152]),

(3)
k∑

j=1

Ej(t) = inf
{ϕ1,...,ϕk}

k∑
j=1

〈ϕj , H(t)ϕj〉,

where the infimum is taken over all orthonormal systems {ϕ1, . . . , ϕk} in D ≡
D(H(t)), the domain of H(t). For simplicity of notation, write H(t) = H0 +
V (t). Then, by the concavity of V (t), we have

V

(
n∑

i=1

αiti

)
≥

n∑
i=1

αiV (ti)

for all αi ≥ 0 with
∑n

i=1 αi = 1. So,〈
ϕ, H

(
n∑

i=1

αiti

)
ϕ

〉
≥

n∑
i=1

αi〈ϕ, H(ti)ϕ〉

for all ϕ ∈ D. This implies that
∑k

j=1〈ϕj , H(t)ϕj〉 is a concave function of t.
Since the infimum of any collection of concave functions is concave, we conclude
that

∑k
j=1 Ej(t) is concave.
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2. Applications

For a bounded potential V on [0, a], we denote by Ej [V ] the jth eigen-
value of the selfadjoint operator −d2/dx2 + V (x) on L2([0, a]) with Dirichlet
[Neumann] boundary conditions.

We begin with a comparison theorem.

Theorem 4. If V (x) is a bounded potential on [0, a], then, for any k ≥
1,

(4)
k∑

j=1

Ej [V ] ≤
k∑

j=1

Ej [Vs],

where Vs(x) = [V (x) + V (a − x)]/2. The equality holds only if V = Vs; i.e.,
only if V is symmetric about x = a/2.

Proof. Consider the one-parameter family of potentials: V (x, t) = tV (x)
+ (1 − t)Vs(x). By (1), we have

k∑
j=1

E′
j(t) =

1
2

k∑
j=1

∫ a

0

[V (x) − V (a − x)]u2
j(x, t)dx.

Note that the potential Vs(x) is symmetric about x = a/2 with corresponding
normalized eigenfunctions uj(x, 0), j = 1, 2, . . . . So,

u2j−1(x, 0) = u2j−1(a − x, 0) and u2j(x, 0) = −u2j(a − x, 0).

Thus, for each j, u2
j(x, 0) is symmetric about x = a/2. On the other hand, the

potential V (x) − V (a − x) is antisymmetric about x = a/2. It follows that

k∑
j=1

E′
j(0) =

1
2

k∑
j=1

∫ a

0

[V (x) − V (a − x)]u2
j(x, 0)dx = 0.

Since (∂2V/∂t2)(x, t) = 0, we have by Theorem 2 that
∑k

j=1 E′′
j (t) ≤ 0. Thus,

for any t ≥ 0, we have

k∑
j=1

E′
j(t) ≤

k∑
j=1

E′
j(0) = 0.

This implies that

k∑
j=1

Ej [V ] =
k∑

j=1

Ej(1) ≤
k∑

j=1

Ej(0) =
k∑

j=1

Ej [Vs].

Finally, if the equality holds in (4), then
∑k

j=1 Ej(t) is constant for 0 ≤
t ≤ 1 so that

∑k
j=1 E′′

j (t) = 0 for 0 ≤ t ≤ 1. Now taking t = 0 and using (2),
we see that

Aj,n(0) =
1
2

∫ a

0

[V (x) − V (a − x)]uj(x, 0)un(x, 0)dx = 0



�

�

�

�

�

�

�

�

Comparison theorems for eigenvalues of one-dimensional Schrödinger operators 469

for 1 ≤ j ≤ k and n ≥ k + 1. Thus, writing f(x) = [V (x) − V (a − x)]/2, we
have, for 1 ≤ j ≤ k,

f(x)uj(x, 0) =
k∑

n=1

[∫ a

0

f(x)uj(x, 0)un(x, 0)dx

]
un(x, 0)

=
k∑

n=1

Aj,n(0)un(x, 0).

Since u1(x, 0) has no zeros in the open interval (0, a), we see that f(x) is
continuous on (0, a). Moreover, for each x ∈ (0, a), f(x) is an eigenvalue of
the k × k matrix [Aj,n(0)]. It follows that f(x) must be constant. Thus,
f(x) = f(a/2) = 0. This shows that V = Vs.

We remark that there is an alternative proof of the inequality (4) based on
the min-max principle rather than the second-order perturbation formula and
antisymmetry. In fact, by (3), the sum of the k lowest Dirichlet [Neumann]
eigenvalues for any potential V is given by

k∑
j=1

Ej [V ] = inf
{ϕ1,...,ϕk}

k∑
j=1

∫ a

0

[|ϕ′
j(x)|2 + V (x)|ϕj(x)|2]dx,

where the infimum is taken over all functions ϕ1, . . . , ϕk ∈ C1 which satisfy
〈ϕi, ϕj〉 = δi,j and the Dirichlet [Neumann] boundary conditions. Thus,

k∑
j=1

Ej [Vs] = inf
{ϕ1,...,ϕk}

k∑
j=1

∫ a

0

[
|ϕ′

j(x)|2 +
1
2
V (x)|ϕj(x)|2

+
1
2
V (a − x)|ϕj(x)|2

]
dx

≥ 1
2

inf
{ϕ1,...,ϕk}

k∑
j=1

∫ a

0

[|ϕ′
j(x)|2 + V (x)|ϕj(x)|2]dx

+
1
2

inf
{ϕ1,...,ϕk}

k∑
j=1

∫ a

0

[|ϕ′
j(x)|2 + V (a − x)|ϕj(x)|2]dx

=
1
2

k∑
j=1

Ej [V ] +
1
2

k∑
j=1

Ej [V ]

=
k∑

j=1

Ej [V ]

since the Dirichlet [Neumann] eigenvalues of −d2/dx2 + V (a− x) are the same
as those of −d2/dx2 + V (x).

As an immediate corollary of Theorem 4, we have
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Corollary 5. If V (x) is a concave potential on [0, a], then, for any
k ≥ 1,

(5)
k∑

j=1

Ej [V ] ≤
k∑

j=1

Ej [0] + kV (a/2)

with equality if and only if V is constant.

Proof. If V (x) is concave on [0, a], we have Vs(x) ≤ V (a/2) for all x ∈
[0, a] so that

k∑
j=1

Ej [V ] ≤
k∑

j=1

Ej [Vs] ≤
k∑

j=1

Ej [V (a/2)] =
k∑

j=1

Ej [0] + kV (a/2).

From this and Theorem 4, it follows that the equality occurs in (5) if and only
if V (x) = Vs(x) = V (a/2). This proves the corollary.

Remark 1. The eigenvalues Ej [0] for the zero potential are well-known.
In the Dirichlet case, Ej [0] = j2π2/a2. In the Neumann case, Ej [0] = (j −
1)2π2/a2.

Remark 2. An improvement of Corollary 5 in the Neumann case will
be given in Theorem 9.

Now, for bounded V , we consider the one-parameter family of potentials:
V (x, t) = tV (x). Then, by Theorem 2, we have

∑k
j=1 E′′

j (t) ≤ 0 so that

k∑
j=1

Ej(t) ≤
k∑

j=1

Ej(0) + t

k∑
j=1

E′
j(0)

for all t ≥ 0. In particular, taking t = 1, we get

(6)
k∑

j=1

Ej [V ] ≤
k∑

j=1

Ej [0] +
k∑

j=1

∫ a

0

V (x)u2
j(x, 0)dx.

Here the normalized eigenfunctions uj(x, 0) for the zero potential can, for ex-
ample, be taken as

(7) uj(x, 0) =
√

2/a sin(jπx/a)

in the Dirichlet case; and

(8) uj(x, 0) =

{√
1/a for j = 1,√
2/a cos[(j − 1)πx/a] for j ≥ 2

in the Neumann case.
In the remainder of this section, we shall give two applications of the

inequality (6). We first note a useful fact.
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Lemma 6. If V (x) is a convex potential on [0, a], then

(9) 2
∫ a

0

V (x) sin2

(
jπx

a

)
dx ≤

∫ a

0

V (x)dx

for j = 1, 2, 3, . . . .

Proof. We suppose first that V is differentiable. Then an integration by
parts gives

2
∫ a

0

V (x) sin2

(
jπx

a

)
dx −

∫ a

0

V (x)dx = −
∫ a

0

V (x) cos
(

2jπx

a

)
dx

=
a

2jπ

∫ a

0

V ′(x) sin
(

2jπx

a

)
dx.

Since V is convex, V ′ is monotone increasing on [0, a]. Thus,

∫ a

0

V ′(x) sin
(

2jπx

a

)
dx =

j−1∑
n=0

∫ (n+1)a/j

na/j

V ′(x) sin
(

2jπx

a

)
dx

≤
j−1∑
n=0

V ′
(

(2n + 1)a
2j

)∫ (n+1)a/j

na/j

sin
(

2jπx

a

)
dx

=
j−1∑
n=0

V ′
(

(2n + 1)a
2j

)
· 0

= 0

and (9) follows.
To prove (9) without the assumption that V is differentiable, we intro-

duce the approximate identity {ηε(x)}. Let η(x) be any positive, infinitely
differentiable function with support in (−1, 1) so that

∫∞
−∞ η(x)dx = 1. Define

ηε(x) = ε−1η(x/ε) for ε > 0. Now, let Ṽ (x) be any continuous extension of
V (x) to the whole of (−∞,∞), and set

Vε(x) =
∫ ∞

−∞
ηε(x − t)Ṽ (t)dt.

Then

|Vε(x) − V (x)| ≤
∫ ∞

−∞
ηε(x − t)|Ṽ (t) − Ṽ (x)|dt

≤
(

sup
{t/|x−t|≤ε}

|Ṽ (t) − Ṽ (x)|
)∫ ∞

−∞
ηε(x − t)dt

= sup
{t/|x−t|≤ε}

|Ṽ (t) − Ṽ (x)|

so Vε → V uniformly on [0, a]. Also, if x, y ∈ [δ, a − δ] ⊂ (0, a) and if ε < δ,
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then, by the convexity of V on [0, a], we have

Vε

(
x + y

2

)
=
∫ ∞

−∞
Ṽ

(
x + y

2
− t

)
ηε(t)dt

≤
∫ ε

−ε

1
2
[V (x − t) + V (y − t)]ηε(t)dt

=
1
2
[Vε(x) + Vε(y)],

which implies that Vε is convex on [δ, a − δ] whenever ε < δ. Since Vε is
differentiable, the first part of the proof gives

2
∫ a−δ

δ

Vε(x) sin2

(
jπ(x − δ)

a − 2δ

)
dx ≤

∫ a−δ

δ

Vε(x)dx.

Taking ε → 0, we see that

2
∫ a−δ

δ

V (x) sin2

(
jπ(x − δ)

a − 2δ

)
dx ≤

∫ a−δ

δ

V (x)dx.

Since this is true for all δ with 0 < δ < a/2, (9) is proved in the general case
by letting δ → 0.

With this lemma, we can now prove the following result for convex poten-
tials.

Theorem 7. If V (x) is a convex potential on [0, a], then, for any k ≥ 1,
the Dirichlet eigenvalues satisfy

(10)
k∑

j=1

Ej [V ] ≤
k∑

j=1

Ej [0] +
k

a

∫ a

0

V (x)dx.

Moreover, the equality holds if and only if V is constant.

Proof. The inequality (10) follows immediately from (6), (7) and Lemma
6. To examine the case of equality, we have from Theorem 4, (6), (7) and
Lemma 6 that

k∑
j=1

Ej [V ] ≤
k∑

j=1

Ej [Vs]

≤
k∑

j=1

Ej [0] +
k∑

j=1

2
a

∫ a

0

Vs(x) sin2

(
jπx

a

)
dx

≤
k∑

j=1

Ej [0] +
k

a

∫ a

0

Vs(x)dx

=
k∑

j=1

Ej [0] +
k

a

∫ a

0

V (x)dx,
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where Vs(x) = [V (x) + V (a − x)]/2 is also convex. Thus, by Theorem 4 and
Lemma 6, equality holds in (10) only when V = Vs and 2

∫ a

0
Vs(x) sin2(jπx/a)dx

=
∫ a

0
Vs(x)dx for all j = 1, 2, . . . , k. To see that these conditions imply that V

is constant, we take j = 1 and note that Vs is a symmetric single-well poten-
tial, i.e., Vs(x) = Vs(a − x) and Vs is monotone decreasing on [0, a/2]. Since
sin2(πx/a) is symmetric about x = a/2 and monotone increasing on [0, a/2], it
follows that

2
∫ a

0

Vs(x) sin2
(πx

a

)
dx ≤ 2

a

∫ a

0

Vs(x)dx

∫ a

0

sin2
(πx

a

)
dx =

∫ a

0

Vs(x)dx.

Moreover, the equality holds here only when Vs is constant. This together with
the condition V = Vs completes the proof of the theorem.

A fact corresponding to Lemma 6 for concave potentials is given by

Lemma 8. If V (x) is a concave potential on [0, a], then

2
∫ a

0

V (x) cos2
(

jπx

a

)
dx ≤

∫ a

0

V (x)dx

for j = 1, 2, 3, . . . .

Proof. Since V is concave, −V is convex. Hence, by Lemma 6,

−2
∫ a

0

V (x) sin2

(
jπx

a

)
dx ≤ −

∫ a

0

V (x)dx.

So,

2
∫ a

0

V (x) cos2
(

jπx

a

)
dx = 2

∫ a

0

V (x)dx − 2
∫ a

0

V (x) sin2

(
jπx

a

)
dx

≤
∫ a

0

V (x)dx.

As a final application of our comparison techniques, we prove the following
result for concave potentials. This improves the result of Corollary 5 in the
Neumann case.

Theorem 9. If V (x) is a concave potential on [0, a], then, for any k ≥
1, the Neumann eigenvalues satisfy

(11)
k∑

j=1

Ej [V ] ≤
k∑

j=1

Ej [0] +
k

a

∫ a

0

V (x)dx.

Moreover, the equality holds if and only if V is constant.
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Proof. The proof is similar to that of Theorem 7. Since V is concave, so
is Vs. Hence, by Theorem 4, (6), (8) and Lemma 8, we have

k∑
j=1

Ej [V ] ≤
k∑

j=1

Ej [Vs]

≤
k∑

j=1

Ej [0] +
1
a

∫ a

0

Vs(x)dx +
k∑

j=2

2
a

∫ a

0

Vs(x) cos2
(

(j − 1)πx

a

)
dx

≤
k∑

j=1

Ej [0] +
k

a

∫ a

0

Vs(x)dx

=
k∑

j=1

Ej [0] +
k

a

∫ a

0

V (x)dx

and equality can hold in (11) only when V = Vs and 2
∫ a

0
Vs(x) cos2(jπx/a)dx =∫ a

0
Vs(x)dx for all j = 1, 2, . . . , k − 1; i.e., only when V = Vs and 2

∫ a

0
Vs(x)×

sin2(jπx/a)dx =
∫ a

0
Vs(x)dx for all j = 1, 2, . . . , k − 1. As in the proof of

Theorem 7, these conditions imply that V is constant since −Vs is a symmetric
single-well potential.
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