Comparison theorems for eigenvalues of one-dimensional Schrödinger operators

By
Min-Jei Huang

Abstract

The Schrödinger operator $H=-d^{2} / d x^{2}+V(x)$ on an interval $[0, a]$ with Dirichlet or Neumann boundary conditions has discrete spectrum $E_{1}[V]<E_{2}[V]<E_{3}[V]<\cdots$, for bounded V. In this paper, we apply the perturbation theory of discrete eigenvalues to obtain upper bounds for $\sum_{j=1}^{k} E_{j}[V]$, where k is any positive integer. Our results include the following:

(i) $\sum_{j=1}^{k} E_{j}[V] \leq \sum_{j=1}^{k} E_{j}\left[V_{s}\right]$, where $V_{s}(x)=[V(x)+V(a-x)] / 2$, with equality if and only if V is symmetric about $x=a / 2$.
(ii) If V is convex, then the Dirichlet eigenvalues satisfy

$$
\sum_{j=1}^{k} E_{j}[V] \leq \sum_{j=1}^{k} E_{j}[0]+\frac{k}{a} \int_{0}^{a} V(x) d x
$$

with equality if and only if V is constant.
(iii) If V is concave, then the Neumann eigenvalues satisfy

$$
\sum_{j=1}^{k} E_{j}[V] \leq \sum_{j=1}^{k} E_{j}[0]+\frac{k}{a} \int_{0}^{a} V(x) d x
$$

with equality if and only if V is constant.

1. The basic theorem

Let Ω be a region in the complex plane, and for each $z \in \Omega$, let $T(z)$ be a closed operator with nonempty resolvent set. $\{T(z)\}$ is called an analytic family of type (A) if the operator domain of $T(z)$ is some set \mathcal{D} independent of z, and for each $\varphi \in \mathcal{D}, T(z) \varphi$ is a vector-valued analytic function of $z([1],[3])$. Suppose that $\{T(z)\}$ is an analytic family of type (A) in Ω. The Kato-Rellich theorem ([3]) asserts that if $z_{0} \in \Omega$ and if $E\left(z_{0}\right)$ is an isolated nondegenerate eigenvalue of $T\left(z_{0}\right)$, then, for z near z_{0}, there is a unique point $E(z)$ in the

[^0]spectrum of $T(z)$ near $E\left(z_{0}\right)$ which is an isolated nondegenerate eigenvalue. Moreover, $E(z)$ is analytic near $z=z_{0}$, and there is an analytic eigenvector $u(z)$ near $z=z_{0}$.

We now consider the eigenvalue problem for one-dimensional Schrödinger operators. Let $V(x)$ be a bounded real-valued function on the interval $[0, a]$, and let H be the selfadjoint operator on $L^{2}([0, a])$ given by $-d^{2} / d x^{2}+V(x)$ with Dirichlet or Neumann boundary conditions. As we know, H has discrete spectrum

$$
E_{1}<E_{2}<E_{3}<\cdots
$$

with corresponding normalized eigenfunctions $u_{1}(x), u_{2}(x), u_{3}(x), \ldots$ Also, the $u_{j}(x)$ can be chosen so as to be real-valued and to form a complete orthonormal basis for $L^{2}([0, a])$.

In this paper, we shall apply the perturbation theory of discrete eigenvalues to obtain upper bounds for $\sum_{j=1}^{k} E_{j}$, the sum of the k lowest eigenvalues of H, where k is any positive integer. To apply the idea of this theory to eigenvalues, let $V(\cdot, t), t \in \mathbb{R}$, be a one-parameter family of bounded potentials, and consider the selfadjoint operator $H(t)=-d^{2} / d x^{2}+V(x, t)$ on $L^{2}([0, a])$ with Dirichlet or Neumann boundary conditions. We assume that $H(t)$ has an analytic continuation to a region Ω so that $\{H(z)\}$ is an analytic family of type (A) in Ω. If $E_{j}(t)$ is the j th eigenvalue of $H(t)$, there is a simple formula for the derivative of $E_{j}(t)$:

$$
\begin{equation*}
\frac{d}{d t} E_{j}(t)=\int_{0}^{a} \frac{\partial V}{\partial t}(x, t) u_{j}^{2}(x, t) d x \tag{1}
\end{equation*}
$$

where $u_{j}(x, t)$ is the normalized eigenfunction corresponding to the eigenvalue $E_{j}(t)$. Here we note the following basic formula for the second derivative of $E_{j}(t)$.

Theorem 1 (the second-order perturbation formula).

$$
\begin{aligned}
\frac{d^{2}}{d t^{2}} E_{j}(t)= & \int_{0}^{a} \frac{\partial^{2} V}{\partial t^{2}}(x, t) u_{j}^{2}(x, t) d x \\
& +2 \sum_{n=1, n \neq j}^{\infty} \frac{1}{E_{j}(t)-E_{n}(t)}\left[\int_{0}^{a} \frac{\partial V}{\partial t}(x, t) u_{j}(x, t) u_{n}(x, t) d x\right]^{2} .
\end{aligned}
$$

Proof. See, for example, [2, Chapter 17] or [3, Chapter XII].
The following result, which is an important consequence of Theorem 1, plays a major role in the next section.

Theorem 2. If $\left(\partial^{2} V / \partial t^{2}\right)(x, t) \leq 0$, then

$$
\frac{d^{2}}{d t^{2}}\left(E_{1}+E_{2}+\cdots+E_{k}\right)(t) \leq 0 \quad \text { for any } \quad k \geq 1
$$

Proof. Since $\left(\partial^{2} V / \partial t^{2}\right)(x, t) \leq 0$, we have from Theorem 1 that

$$
\frac{d^{2}}{d t^{2}} E_{j}(t) \leq 2 \sum_{n \neq j} \frac{1}{E_{j}(t)-E_{n}(t)} A_{j, n}^{2}(t),
$$

where $A_{j, n}(t)=\int_{0}^{a}(\partial V / \partial t)(x, t) u_{j}(x, t) u_{n}(x, t) d x$. It follows that

$$
\begin{align*}
\frac{d^{2}}{d t^{2}}\left(E_{1}+E_{2}+\cdots+E_{k}\right)(t) & \leq 2 \sum_{j=1}^{k} \sum_{n \neq j} \frac{1}{E_{j}(t)-E_{n}(t)} A_{j, n}^{2}(t) \\
& =2 \sum_{j=1}^{k} \sum_{n=k+1}^{\infty} \frac{1}{E_{j}(t)-E_{n}(t)} A_{j, n}^{2}(t) \tag{2}\\
& \leq 0,
\end{align*}
$$

where we have used the fact that $A_{j, n}(t)=A_{n, j}(t)$ in the second step.
Theorem 2 indicates that the concavity of $\sum_{j=1}^{k} E_{j}(t)$ is connected with the concavity of $V(x, t)$ with respect to t. In fact, there is a natural way of approaching this connection based on the min-max principle and basic facts about concave functions. For the linear case $V(x, t)=t V(x)$, it was shown in [4] (pp. 153-154) that $\sum_{j=1}^{k} E_{j}(t)$ is a concave function of t for any $k \geq 1$. Here we prove a theorem that is a generalization of this result.

Theorem 3. If $V(x, t)$ is concave with respect to t, then, for any $k \geq 1$, $\sum_{j=1}^{k} E_{j}(t)$ is a concave function of t.

Proof. By the min-max principle ([4, p. 152]),

$$
\begin{equation*}
\sum_{j=1}^{k} E_{j}(t)=\inf _{\left\{\varphi_{1}, \ldots, \varphi_{k}\right\}} \sum_{j=1}^{k}\left\langle\varphi_{j}, H(t) \varphi_{j}\right\rangle, \tag{3}
\end{equation*}
$$

where the infimum is taken over all orthonormal systems $\left\{\varphi_{1}, \ldots, \varphi_{k}\right\}$ in $\mathcal{D} \equiv$ $\mathcal{D}(H(t))$, the domain of $H(t)$. For simplicity of notation, write $H(t)=H_{0}+$ $V(t)$. Then, by the concavity of $V(t)$, we have

$$
V\left(\sum_{i=1}^{n} \alpha_{i} t_{i}\right) \geq \sum_{i=1}^{n} \alpha_{i} V\left(t_{i}\right)
$$

for all $\alpha_{i} \geq 0$ with $\sum_{i=1}^{n} \alpha_{i}=1$. So,

$$
\left\langle\varphi, H\left(\sum_{i=1}^{n} \alpha_{i} t_{i}\right) \varphi\right\rangle \geq \sum_{i=1}^{n} \alpha_{i}\left\langle\varphi, H\left(t_{i}\right) \varphi\right\rangle
$$

for all $\varphi \in \mathcal{D}$. This implies that $\sum_{j=1}^{k}\left\langle\varphi_{j}, H(t) \varphi_{j}\right\rangle$ is a concave function of t. Since the infimum of any collection of concave functions is concave, we conclude that $\sum_{j=1}^{k} E_{j}(t)$ is concave.

2. Applications

For a bounded potential V on $[0, a]$, we denote by $E_{j}[V]$ the j th eigenvalue of the selfadjoint operator $-d^{2} / d x^{2}+V(x)$ on $L^{2}([0, a])$ with Dirichlet [Neumann] boundary conditions.

We begin with a comparison theorem.
Theorem 4. If $V(x)$ is a bounded potential on $[0, a]$, then, for any $k \geq$ 1,

$$
\begin{equation*}
\sum_{j=1}^{k} E_{j}[V] \leq \sum_{j=1}^{k} E_{j}\left[V_{s}\right] \tag{4}
\end{equation*}
$$

where $V_{s}(x)=[V(x)+V(a-x)] / 2$. The equality holds only if $V=V_{s}$; i.e., only if V is symmetric about $x=a / 2$.

Proof. Consider the one-parameter family of potentials: $V(x, t)=t V(x)$ $+(1-t) V_{s}(x)$. By (1), we have

$$
\sum_{j=1}^{k} E_{j}^{\prime}(t)=\frac{1}{2} \sum_{j=1}^{k} \int_{0}^{a}[V(x)-V(a-x)] u_{j}^{2}(x, t) d x
$$

Note that the potential $V_{s}(x)$ is symmetric about $x=a / 2$ with corresponding normalized eigenfunctions $u_{j}(x, 0), j=1,2, \ldots$ So,

$$
u_{2 j-1}(x, 0)=u_{2 j-1}(a-x, 0) \quad \text { and } \quad u_{2 j}(x, 0)=-u_{2 j}(a-x, 0) .
$$

Thus, for each $j, u_{j}^{2}(x, 0)$ is symmetric about $x=a / 2$. On the other hand, the potential $V(x)-V(a-x)$ is antisymmetric about $x=a / 2$. It follows that

$$
\sum_{j=1}^{k} E_{j}^{\prime}(0)=\frac{1}{2} \sum_{j=1}^{k} \int_{0}^{a}[V(x)-V(a-x)] u_{j}^{2}(x, 0) d x=0
$$

Since $\left(\partial^{2} V / \partial t^{2}\right)(x, t)=0$, we have by Theorem 2 that $\sum_{j=1}^{k} E_{j}^{\prime \prime}(t) \leq 0$. Thus, for any $t \geq 0$, we have

$$
\sum_{j=1}^{k} E_{j}^{\prime}(t) \leq \sum_{j=1}^{k} E_{j}^{\prime}(0)=0
$$

This implies that

$$
\sum_{j=1}^{k} E_{j}[V]=\sum_{j=1}^{k} E_{j}(1) \leq \sum_{j=1}^{k} E_{j}(0)=\sum_{j=1}^{k} E_{j}\left[V_{s}\right]
$$

Finally, if the equality holds in (4), then $\sum_{j=1}^{k} E_{j}(t)$ is constant for $0 \leq$ $t \leq 1$ so that $\sum_{j=1}^{k} E_{j}^{\prime \prime}(t)=0$ for $0 \leq t \leq 1$. Now taking $t=0$ and using (2), we see that

$$
A_{j, n}(0)=\frac{1}{2} \int_{0}^{a}[V(x)-V(a-x)] u_{j}(x, 0) u_{n}(x, 0) d x=0
$$

for $1 \leq j \leq k$ and $n \geq k+1$. Thus, writing $f(x)=[V(x)-V(a-x)] / 2$, we have, for $1 \leq j \leq k$,

$$
\begin{aligned}
f(x) u_{j}(x, 0) & =\sum_{n=1}^{k}\left[\int_{0}^{a} f(x) u_{j}(x, 0) u_{n}(x, 0) d x\right] u_{n}(x, 0) \\
& =\sum_{n=1}^{k} A_{j, n}(0) u_{n}(x, 0) .
\end{aligned}
$$

Since $u_{1}(x, 0)$ has no zeros in the open interval $(0, a)$, we see that $f(x)$ is continuous on $(0, a)$. Moreover, for each $x \in(0, a), f(x)$ is an eigenvalue of the $k \times k$ matrix $\left[A_{j, n}(0)\right]$. It follows that $f(x)$ must be constant. Thus, $f(x)=f(a / 2)=0$. This shows that $V=V_{s}$.

We remark that there is an alternative proof of the inequality (4) based on the min-max principle rather than the second-order perturbation formula and antisymmetry. In fact, by (3), the sum of the k lowest Dirichlet [Neumann] eigenvalues for any potential V is given by

$$
\sum_{j=1}^{k} E_{j}[V]=\inf _{\left\{\varphi_{1}, \ldots, \varphi_{k}\right\}} \sum_{j=1}^{k} \int_{0}^{a}\left[\left|\varphi_{j}^{\prime}(x)\right|^{2}+V(x)\left|\varphi_{j}(x)\right|^{2}\right] d x
$$

where the infimum is taken over all functions $\varphi_{1}, \ldots, \varphi_{k} \in C^{1}$ which satisfy $\left\langle\varphi_{i}, \varphi_{j}\right\rangle=\delta_{i, j}$ and the Dirichlet [Neumann] boundary conditions. Thus,

$$
\begin{aligned}
\sum_{j=1}^{k} E_{j}\left[V_{s}\right]= & \inf _{\left\{\varphi_{1}, \ldots, \varphi_{k}\right\}} \sum_{j=1}^{k} \int_{0}^{a}\left[\left|\varphi_{j}^{\prime}(x)\right|^{2}+\frac{1}{2} V(x)\left|\varphi_{j}(x)\right|^{2}\right. \\
& \left.+\frac{1}{2} V(a-x)\left|\varphi_{j}(x)\right|^{2}\right] d x \\
\geq & \frac{1}{2} \inf _{\left\{\varphi_{1}, \ldots, \varphi_{k}\right\}} \sum_{j=1}^{k} \int_{0}^{a}\left[\left|\varphi_{j}^{\prime}(x)\right|^{2}+V(x)\left|\varphi_{j}(x)\right|^{2}\right] d x \\
& +\frac{1}{2} \inf _{\left\{\varphi_{1}, \ldots, \varphi_{k}\right\}} \sum_{j=1}^{k} \int_{0}^{a}\left[\left|\varphi_{j}^{\prime}(x)\right|^{2}+V(a-x)\left|\varphi_{j}(x)\right|^{2}\right] d x \\
= & \frac{1}{2} \sum_{j=1}^{k} E_{j}[V]+\frac{1}{2} \sum_{j=1}^{k} E_{j}[V] \\
= & \sum_{j=1}^{k} E_{j}[V]
\end{aligned}
$$

since the Dirichlet [Neumann] eigenvalues of $-d^{2} / d x^{2}+V(a-x)$ are the same as those of $-d^{2} / d x^{2}+V(x)$.

As an immediate corollary of Theorem 4, we have

Corollary 5. If $V(x)$ is a concave potential on $[0, a]$, then, for any $k \geq 1$,

$$
\begin{equation*}
\sum_{j=1}^{k} E_{j}[V] \leq \sum_{j=1}^{k} E_{j}[0]+k V(a / 2) \tag{5}
\end{equation*}
$$

with equality if and only if V is constant.
Proof. If $V(x)$ is concave on $[0, a]$, we have $V_{s}(x) \leq V(a / 2)$ for all $x \in$ $[0, a]$ so that

$$
\sum_{j=1}^{k} E_{j}[V] \leq \sum_{j=1}^{k} E_{j}\left[V_{s}\right] \leq \sum_{j=1}^{k} E_{j}[V(a / 2)]=\sum_{j=1}^{k} E_{j}[0]+k V(a / 2) .
$$

From this and Theorem 4, it follows that the equality occurs in (5) if and only if $V(x)=V_{s}(x)=V(a / 2)$. This proves the corollary.

Remark 1. The eigenvalues $E_{j}[0]$ for the zero potential are well-known. In the Dirichlet case, $E_{j}[0]=j^{2} \pi^{2} / a^{2}$. In the Neumann case, $E_{j}[0]=(j-$ $1)^{2} \pi^{2} / a^{2}$.

Remark 2. An improvement of Corollary 5 in the Neumann case will be given in Theorem 9 .

Now, for bounded V, we consider the one-parameter family of potentials: $V(x, t)=t V(x)$. Then, by Theorem 2, we have $\sum_{j=1}^{k} E_{j}^{\prime \prime}(t) \leq 0$ so that

$$
\sum_{j=1}^{k} E_{j}(t) \leq \sum_{j=1}^{k} E_{j}(0)+t \sum_{j=1}^{k} E_{j}^{\prime}(0)
$$

for all $t \geq 0$. In particular, taking $t=1$, we get

$$
\begin{equation*}
\sum_{j=1}^{k} E_{j}[V] \leq \sum_{j=1}^{k} E_{j}[0]+\sum_{j=1}^{k} \int_{0}^{a} V(x) u_{j}^{2}(x, 0) d x \tag{6}
\end{equation*}
$$

Here the normalized eigenfunctions $u_{j}(x, 0)$ for the zero potential can, for example, be taken as

$$
\begin{equation*}
u_{j}(x, 0)=\sqrt{2 / a} \sin (j \pi x / a) \tag{7}
\end{equation*}
$$

in the Dirichlet case; and

$$
u_{j}(x, 0)= \begin{cases}\sqrt{1 / a} & \text { for } \quad j=1 \tag{8}\\ \sqrt{2 / a} \cos [(j-1) \pi x / a] & \text { for } \quad j \geq 2\end{cases}
$$

in the Neumann case.
In the remainder of this section, we shall give two applications of the inequality (6). We first note a useful fact.

Lemma 6. If $V(x)$ is a convex potential on $[0, a]$, then

$$
\begin{equation*}
2 \int_{0}^{a} V(x) \sin ^{2}\left(\frac{j \pi x}{a}\right) d x \leq \int_{0}^{a} V(x) d x \tag{9}
\end{equation*}
$$

for $j=1,2,3, \ldots$.
Proof. We suppose first that V is differentiable. Then an integration by parts gives

$$
\begin{aligned}
2 \int_{0}^{a} V(x) \sin ^{2}\left(\frac{j \pi x}{a}\right) d x-\int_{0}^{a} V(x) d x & =-\int_{0}^{a} V(x) \cos \left(\frac{2 j \pi x}{a}\right) d x \\
& =\frac{a}{2 j \pi} \int_{0}^{a} V^{\prime}(x) \sin \left(\frac{2 j \pi x}{a}\right) d x
\end{aligned}
$$

Since V is convex, V^{\prime} is monotone increasing on $[0, a]$. Thus,

$$
\begin{aligned}
\int_{0}^{a} V^{\prime}(x) \sin \left(\frac{2 j \pi x}{a}\right) d x & =\sum_{n=0}^{j-1} \int_{n a / j}^{(n+1) a / j} V^{\prime}(x) \sin \left(\frac{2 j \pi x}{a}\right) d x \\
& \leq \sum_{n=0}^{j-1} V^{\prime}\left(\frac{(2 n+1) a}{2 j}\right) \int_{n a / j}^{(n+1) a / j} \sin \left(\frac{2 j \pi x}{a}\right) d x \\
& =\sum_{n=0}^{j-1} V^{\prime}\left(\frac{(2 n+1) a}{2 j}\right) \cdot 0 \\
& =0
\end{aligned}
$$

and (9) follows.
To prove (9) without the assumption that V is differentiable, we introduce the approximate identity $\left\{\eta_{\varepsilon}(x)\right\}$. Let $\eta(x)$ be any positive, infinitely differentiable function with support in $(-1,1)$ so that $\int_{-\infty}^{\infty} \eta(x) d x=1$. Define $\eta_{\varepsilon}(x)=\varepsilon^{-1} \eta(x / \varepsilon)$ for $\varepsilon>0$. Now, let $\tilde{V}(x)$ be any continuous extension of $V(x)$ to the whole of $(-\infty, \infty)$, and set

$$
V_{\varepsilon}(x)=\int_{-\infty}^{\infty} \eta_{\varepsilon}(x-t) \tilde{V}(t) d t
$$

Then

$$
\begin{aligned}
\left|V_{\varepsilon}(x)-V(x)\right| & \leq \int_{-\infty}^{\infty} \eta_{\varepsilon}(x-t)|\tilde{V}(t)-\tilde{V}(x)| d t \\
& \leq\left(\sup _{\{t /|x-t| \leq \varepsilon\}}|\tilde{V}(t)-\tilde{V}(x)|\right) \int_{-\infty}^{\infty} \eta_{\varepsilon}(x-t) d t \\
& =\sup _{\{t /|x-t| \leq \varepsilon\}}|\tilde{V}(t)-\tilde{V}(x)|
\end{aligned}
$$

so $V_{\varepsilon} \rightarrow V$ uniformly on $[0, a]$. Also, if $x, y \in[\delta, a-\delta] \subset(0, a)$ and if $\varepsilon<\delta$,
then, by the convexity of V on $[0, a]$, we have

$$
\begin{aligned}
V_{\varepsilon}\left(\frac{x+y}{2}\right) & =\int_{-\infty}^{\infty} \tilde{V}\left(\frac{x+y}{2}-t\right) \eta_{\varepsilon}(t) d t \\
& \leq \int_{-\varepsilon}^{\varepsilon} \frac{1}{2}[V(x-t)+V(y-t)] \eta_{\varepsilon}(t) d t \\
& =\frac{1}{2}\left[V_{\varepsilon}(x)+V_{\varepsilon}(y)\right]
\end{aligned}
$$

which implies that V_{ε} is convex on $[\delta, a-\delta]$ whenever $\varepsilon<\delta$. Since V_{ε} is differentiable, the first part of the proof gives

$$
2 \int_{\delta}^{a-\delta} V_{\varepsilon}(x) \sin ^{2}\left(\frac{j \pi(x-\delta)}{a-2 \delta}\right) d x \leq \int_{\delta}^{a-\delta} V_{\varepsilon}(x) d x
$$

Taking $\varepsilon \rightarrow 0$, we see that

$$
2 \int_{\delta}^{a-\delta} V(x) \sin ^{2}\left(\frac{j \pi(x-\delta)}{a-2 \delta}\right) d x \leq \int_{\delta}^{a-\delta} V(x) d x
$$

Since this is true for all δ with $0<\delta<a / 2$, (9) is proved in the general case by letting $\delta \rightarrow 0$.

With this lemma, we can now prove the following result for convex potentials.

Theorem 7. If $V(x)$ is a convex potential on $[0, a]$, then, for any $k \geq 1$, the Dirichlet eigenvalues satisfy

$$
\begin{equation*}
\sum_{j=1}^{k} E_{j}[V] \leq \sum_{j=1}^{k} E_{j}[0]+\frac{k}{a} \int_{0}^{a} V(x) d x \tag{10}
\end{equation*}
$$

Moreover, the equality holds if and only if V is constant.
Proof. The inequality (10) follows immediately from (6), (7) and Lemma 6. To examine the case of equality, we have from Theorem 4, (6), (7) and Lemma 6 that

$$
\begin{aligned}
\sum_{j=1}^{k} E_{j}[V] & \leq \sum_{j=1}^{k} E_{j}\left[V_{s}\right] \\
& \leq \sum_{j=1}^{k} E_{j}[0]+\sum_{j=1}^{k} \frac{2}{a} \int_{0}^{a} V_{s}(x) \sin ^{2}\left(\frac{j \pi x}{a}\right) d x \\
& \leq \sum_{j=1}^{k} E_{j}[0]+\frac{k}{a} \int_{0}^{a} V_{s}(x) d x \\
& =\sum_{j=1}^{k} E_{j}[0]+\frac{k}{a} \int_{0}^{a} V(x) d x
\end{aligned}
$$

where $V_{s}(x)=[V(x)+V(a-x)] / 2$ is also convex. Thus, by Theorem 4 and Lemma 6 , equality holds in (10) only when $V=V_{s}$ and $2 \int_{0}^{a} V_{s}(x) \sin ^{2}(j \pi x / a) d x$ $=\int_{0}^{a} V_{s}(x) d x$ for all $j=1,2, \ldots, k$. To see that these conditions imply that V is constant, we take $j=1$ and note that V_{s} is a symmetric single-well potential, i.e., $V_{s}(x)=V_{s}(a-x)$ and V_{s} is monotone decreasing on $[0, a / 2]$. Since $\sin ^{2}(\pi x / a)$ is symmetric about $x=a / 2$ and monotone increasing on $[0, a / 2]$, it follows that

$$
2 \int_{0}^{a} V_{s}(x) \sin ^{2}\left(\frac{\pi x}{a}\right) d x \leq \frac{2}{a} \int_{0}^{a} V_{s}(x) d x \int_{0}^{a} \sin ^{2}\left(\frac{\pi x}{a}\right) d x=\int_{0}^{a} V_{s}(x) d x .
$$

Moreover, the equality holds here only when V_{s} is constant. This together with the condition $V=V_{s}$ completes the proof of the theorem.

A fact corresponding to Lemma 6 for concave potentials is given by
Lemma 8. If $V(x)$ is a concave potential on $[0, a]$, then

$$
2 \int_{0}^{a} V(x) \cos ^{2}\left(\frac{j \pi x}{a}\right) d x \leq \int_{0}^{a} V(x) d x
$$

for $j=1,2,3, \ldots$.
Proof. Since V is concave, $-V$ is convex. Hence, by Lemma 6,

$$
-2 \int_{0}^{a} V(x) \sin ^{2}\left(\frac{j \pi x}{a}\right) d x \leq-\int_{0}^{a} V(x) d x
$$

So,

$$
\begin{aligned}
2 \int_{0}^{a} V(x) \cos ^{2}\left(\frac{j \pi x}{a}\right) d x & =2 \int_{0}^{a} V(x) d x-2 \int_{0}^{a} V(x) \sin ^{2}\left(\frac{j \pi x}{a}\right) d x \\
& \leq \int_{0}^{a} V(x) d x
\end{aligned}
$$

As a final application of our comparison techniques, we prove the following result for concave potentials. This improves the result of Corollary 5 in the Neumann case.

Theorem 9. If $V(x)$ is a concave potential on $[0, a]$, then, for any $k \geq$ 1, the Neumann eigenvalues satisfy

$$
\begin{equation*}
\sum_{j=1}^{k} E_{j}[V] \leq \sum_{j=1}^{k} E_{j}[0]+\frac{k}{a} \int_{0}^{a} V(x) d x \tag{11}
\end{equation*}
$$

Moreover, the equality holds if and only if V is constant.

Proof. The proof is similar to that of Theorem 7. Since V is concave, so is V_{s}. Hence, by Theorem 4, (6), (8) and Lemma 8, we have

$$
\begin{aligned}
\sum_{j=1}^{k} E_{j}[V] & \leq \sum_{j=1}^{k} E_{j}\left[V_{s}\right] \\
& \leq \sum_{j=1}^{k} E_{j}[0]+\frac{1}{a} \int_{0}^{a} V_{s}(x) d x+\sum_{j=2}^{k} \frac{2}{a} \int_{0}^{a} V_{s}(x) \cos ^{2}\left(\frac{(j-1) \pi x}{a}\right) d x \\
& \leq \sum_{j=1}^{k} E_{j}[0]+\frac{k}{a} \int_{0}^{a} V_{s}(x) d x \\
& =\sum_{j=1}^{k} E_{j}[0]+\frac{k}{a} \int_{0}^{a} V(x) d x
\end{aligned}
$$

and equality can hold in (11) only when $V=V_{s}$ and $2 \int_{0}^{a} V_{s}(x) \cos ^{2}(j \pi x / a) d x=$ $\int_{0}^{a} V_{s}(x) d x$ for all $j=1,2, \ldots, k-1$; i.e., only when $V=V_{s}$ and $2 \int_{0}^{a} V_{s}(x) \times$ $\sin ^{2}(j \pi x / a) d x=\int_{0}^{a} V_{s}(x) d x$ for all $j=1,2, \ldots, k-1$. As in the proof of Theorem 7, these conditions imply that V is constant since $-V_{s}$ is a symmetric single-well potential.

Department of Mathematics National Tsing Hua University Hsinchu 30043, Taiwan
e-mail: mjhuang@math.nthu.edu.tw

References

[1] T. Kato, Perturbation Theory for Linear Operators, Springer-Verlag, New York, 1980.
[2] E. Merzbacher, Quantum Mechanics, 2nd ed., Wiley, New York, 1970.
[3] M. Reed and B. Simon, Methods of Modern Mathematical Physics IV: Analysis of Operators, Academic Press, New York, 1978.
[4] W. Thirring, A Course in Mathematical Physics 3: Quantum Mechanics of Atoms and Molecules, E. M. Harrell, trans., Springer-Verlag, New York, 1981.

[^0]: 2000 Mathematics Subject Classification(s). Primary 34L15
 Key words and phrases: Schrödinger operator, eigenvalue, eigenfunction, convex potential, concave potential
 Received February 28, 2001

