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Homotopy genus of BU and the Bott map

By

Daisuke KISHIMOTO

1. Introduction

The homotopy genus of a nilpotent finite CW-complex X is defined as
follows ([5], [7]):

{lY]|Y ~, X for each prime p }.

The homotopy genus of certain spaces are computed, for example, the order of
the homotopy genus of a classifying space of a compact connected Lie group is
uncountable infinite. But the homotopy genus of BU = BU(oc0) is not known
yet. The purpose of this paper is to determine the homotopy genus of the
pair of BU and the Bott map of BU. The main theorem below says that it is
unique.

Theorem. Let X be a pointed of finite type simply connected CW-
complex equipped with a map X : S2 AN X — X and a homotopy equivalences
hy : Xy — BU,) for each prime p such that they satisfy the following homo-
topy commutative diagram

1Ry
(SQAX)(;D) —_— (52/\BU)(p)

)‘(P)l lﬁ(m

Xy  ——  BUp),

ya

where B : 82 A BU — BU is the Bott map. Then we have a homotopy equiva-
lence h : X = BU which satisfies the following homotopy commutative diagram.

S2A X g2 A B

)| E

X — BU
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2. The Bott map of BU

Let us recall the Bott map 8 : S? A BU — BU. Let 1 and &, be the Hopf
bundle of S? and the universal bundle of BU(n). The Bott map

B:58%ABU — BU

is defined as the classifying map of the virtual complex vector bundle (n—1) A
lim(¢,, —n) on S A BU, where 1 and n is of rank 1 and n trivial complex vector
bundle. It is well known that the Bott map gives the Bott periodicity of BU
which is

adf : BU = 0?BSU,
where adf is the lift of ad3 : BU — Q2BU ([2]). We have the following as a
consequence of the Bott periodicity.

Proposition 2.1.  Let g, : S — BU represent a generator of wo(BU)
>~ Z. Then a generator of mwa,(BU) = Z (n > 1) is represented by:

gn =BANB)YLALAS)- -
(AN ATABAA--ALTAG):S?PA---AS?=S* — BU.

Corollary 2.1. Let X, ) be as in Theorem, 1 : 5% — 5(20) be the ratio-

nalization and g} : S? — X0y represent a generator of ma(X (o)) = Q. Then we
have that a generator of ma,(X(0)) = Q (n > 1) is represented by:

g;L=>\(0)O(Z/\/\(O))O(l/\l/\)\(o))o---
o(LA-*ALAtANg) o (LA~ ALALAgG]) : S A~ AS? =S — X(g).

3. Proof of Theorem

To prove Theorem we need to construct a homotopy equivalence by patch-
ing together the homotopy equivalences between localized spaces. The following
is the well-known pull-back theorem ([4]).

Lemma 3.1. Let X and Y be finite nilpotent spaces with a homotopy
equivalence hy : X,y — Y(p) such that hp(o) ~ hq(o)’ for each prime p,q. Then
we have a homotopy equivalence h : X — 'Y such that h(,y = hy for each prime
p.

Proposition 3.1.  Let X be of finite type pointed CW-complex with a
homotopy equivalence h™ : X™ — BU™ for each n such that h"*|x» ~ h",
where X™ and BU" are n-skeleta of X and BU. Then we have a homotopy
equivalence h : X — BU such that h|x» ~ h™ for any n.

Proof. By Milnor’s short exact sequence ([6])

0— lim'K~1(X") —» K(X) — lim K(X") — 0,
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we have amap h : X — BU such that h|x» ~ h™. Since h, = limA} : 7,(X) —
7. (BU) is an isomorphism, h is a homotopy equivalence by J.H.C. Whitehead
theorem. O
It is easily seen that
H*(BU(p)v Q) = H*(BU7 Q) = Q[017027C37 e ']7
where ¢,, is the n-th Chern class.

Lemma 3.2.  Letg, : S — BU, g, : S*" — X be as in Proposition 2.1
and Corollary 2.1. Then we have g, : K(2n,Q) — BU ), g, K2n,Q) —
X0y such that gni >~ gn(gy and g',i ~ 9%(0); where i : 5(263 — K(2n,Q) is the
rationalization of a generator of mon,(K(2n,7Z)) = Z.

Proof. Tt is well know that

Q, k=2n,4n -1,

0, otherwise.

m(S()) = {

We construct a space K; which is the rationalization of the adjunction space
5(253 U e?”, where the attaching map is a generator of 7r4n_1(S(253). Then we
have the following by [3, Proposition 13.12].

Q, k=2n,6n-—1,
0, otherwise.

Wk(Kl) = {

Since 74, —1(BU(q)) = Tan—1(X(0)) = 0, we see that In (0)s Q;L(o) can be extended
to maps g} : Ky — BUq), g5’ : K1 — X (o) such that gli ~ In(0)> gtli ~ I (0)-
Inductively we construct a space K, such that

Q, k=2n,2(r+2)n—1,

0, otherwise

Wk(KT) &~ {

and the maps g, : K, — BU(q), g’ K, — X(0) such that gy i >~ gn (g,
grli o~ 9n (o) by the same way as the above. Let g, = lim gy, gn' =limg"’. Since
lin K, = K(Q,2n) and (g])" = gufoy : HM(BUy Q) — H*(K(Q,20); Q)
(grli)* = gﬁo) : H*"(X(0); Q) — H*(K(Q,2n); Q), the proof is completed. [

Proof of Theorem. Since hy : X,y — BU(, is a homotopy equivalence,
we have

gi(p)*hp*(cl) = kpg1(p) " (c1) for ky € Z(Xp).
It is well known that

Bioy" (k) = ke ® sp_1,
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where sy, is the k-th power sum in {c,} and e = g1)*(c1). Then we see that

gn(o)*(sn) = (kp)ngiz(o)*hp(o (sn) € HQn(S(o)a Q).

It is well known that there exists the inverse of the localized Adams operator
Vi K()p) — K(-)(p), when p { m. Denote k, = Fa/b such that a > 0,

b>0andpfa. Leth,: Xy — BUg,) be (w(p)) 11/)(p 1/)?5;”6 (hp), then we have
h;, is a homotopy equwalence and hP(o) (sn) = (kp)"hp(gy " (sn) ([1]). Then we

have
gn(O)*(sn) = g;z(o)*h;;(o)*(sn) H2n(5(0)aQ)

Since [[ sn : BU(g)y — [] K(Q;2n) is a homotopy equivalence, we have
9n(0) = ()9 0)-

By Lemma 3.2 we have ¢, ~ h/ Since

g
- P(0)7m
[1g, : K(2n,Q) ~ X (o), we obtain for each prime p and ¢,

() = (Hg”) (ngl) = hg(g)-

By Lemma 3.1 and Proposition 3.1 we obtain a homotopy equivalence h : X 5
BU. Since [S?AX, BU|, = [S?ABU, BU], = K~2(BU) is a free abelian group,
we see that hA ~ B(1 A h) by (hA) ) = (B(1 A h)) - O

1. Therefore we have g, ~ hp(o)gn
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