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Abstract

Let GL(n,R) be the general linear group of n × n real matrices.
Definitions of GL(n,R)-equivalence and the centro-affine type of curves
are introduced. All possible centro-affine types are founded. For every
centro affine type all invariant parametrizations of a curve are described.
The problem of GL(n, R)-equivalence of curves is reduced to that of
paths. A generating system of the differential field of invariant differ-
ential rational functions of a path is described. They can be viewed
as centro-affine curvatures of a path. Global conditions of GL(n,R)-
equivalence of curves are given in terms of the centro-affine type and
the generating differential invariants. Independence of elements of the
generating differential invariants is proved.

1. Introduction

The fundamental theorem of curves in n-dimensional centro-affine geome-
try is obtained by Gardner and Wilkens [5]. In the paper they used Cartan’s
method [4] of moving frames in order to find the formulation of the local rigidity
theorem for curves that is amenable to direct application to problems in control
theory. They provide a method for constructing the centro-affine curvatures
κ1(s), . . . , κn(s). They have obtained explicit formulae for computing a centro-
affine arclength in terms of an arbitrary parameter and the first curvature
κ1(s). In this paper there are no explicit formulae for centro-affine curvatures
κ2(s), . . . , κn(s), but their orders are defined. A discussion of centro-affine
plane curves, as well as a very brief discussion of centro-affine space curves,
can be found in ([15], [13], [17]). A very detailed discussion of the centro-affine
theory of plane curves can be found in Laugwitz [11]. The first comprehensive
treatment of affine geometry is given in the seminal work of Blaschke [3]. For
further developments of the subject, we refer the reader to [14], and the more
modern texts [20], [12], commentaries [16], [17], and survey papers [19], [2],
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[18]. Equi-affine invariants of 3-dimensional space curves are investigated by
Izumiya and Sano [7]. For curvatures of curves in n-dimensional equi-affine ge-
ometry see ([6, pp. 170–172], [13]). But in all these works, equivalence of curves
is investigated locally. The global SL(n)-equivalence of paths in Rn and Cn

is considered by Khadjiev [8] and Suhtaeva [21]. Complete systems of global
equi-affine invariants for plane and space paths are obtained by Angelis, Moons,
Van Gool and Verstraelen [1]. The complete system of global differential and
integral invariants for curves in n-dimensional equi-affine geometry is obtained
by Khadjiev and Pekşen [9].

Our paper is concerned with the problem of the global equivalence of
centro-affine curves. We introduce a centro-affine type of a curve. The centro-
affine type of a curve coincides with the centro-affine arclength if it is finite.
But curves with infinite centro-affine arclength have three different centro-affine
types. We describe all possible invariant parametrizations of a curve for every
centro-affine type. We obtained a generating system of the differential field of
all centro-affine invariant differential rational functions of a path. We can con-
sider elements of the generating system as curvatures of a path. Our curvatures
coincide with c1(s), . . . , cn(s) functions of Gardner and Wilkens ([5, p. 398]).
We give the explicit formulae of curvatures in terms of the centro-affine invari-
ant parameter, the conditions of the global centro-affine equivalence of curves
in terms of the centro-affine type and curvatures of a curve. We prove an
independence of curvatures.

2. The centro-affine type of a curve and the theorem on reduction

Let R be the field of real numbers and I = (a, b) be an open interval of R.

Definition 2.1. A C∞-map x : I → Rn will be called an I-path
(shortly, a path) in Rn.

Definition 2.2. An I1-path x(t) and an I2-path y(r) in Rn will be
called D-equivalent if there exists a C∞-diffeomorphism ϕ : I2 → I1 such that
ϕ′(r) > 0 and y(r) = x(ϕ(r)) for all r ∈ I2. A class of D-equivalent paths in
Rn will be called a curve in Rn, ([10, p. 9]). A path x ∈ α will be called a
parametrization of a curve α.

Remark 1. There exist different definitions of a curve ([6, p. 2], [8]).

Let G = GL(n,R) be the general linear group of n × n regular matrices.
G acts by (g, x) → gx on Rn, where gx is the multiplication of a matrix g and
a column vector x ∈ Rn.

If x(t) is an I-path in Rn then gx(t) is an I-path in Rn for any g ∈ G.

Definition 2.3. Two I-paths x and y in Rn will be called G-equivalent
and written x G∼ y if there exists g ∈ G such that y(t) = gx(t).

Let α be a curve in Rn, that is, α = {hτ , τ ∈ Q}, where hτ is a parametriza-
tion of α. Then gα = {ghτ , τ ∈ Q} is a curve in Rn for any g ∈ G.
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Definition 2.4. Two curves α and β in Rn will be called G-equivalent
(or G-congruent) and written α G∼ β if β = gα for some g ∈ G.

Remark 2. Our definition is essentially different from the definition
([6, p. 21]) of a congruence of curves for the group of euclidean motions. By
the definition ([6, p. 21]), two curves with different lengths may be congruent.

Let x be an I-path in Rn and x′(t) be the derivative of x(t). Put x(0) =
x, x(n) = (x(n−1))′. For ak ∈ Rn, k = 1, . . . , n, the determinant det(aij)
(where aki are coordinates of ak) will be denoted by [a1a2 . . . an]. So[
x(t)x′(t) . . . x(n−1)(t)

]
is the determinant of the vectors x(t), x′(t), . . . ,

x(n−1)(t).

Definition 2.5. An I-path x(t) in Rn will be called substantial if both
[
x(t)x′(t) . . . x(n−1)(t)

]
�= 0 and

[
x(n)(t)x′(t) . . . x(n−1)(t)

]
�= 0

for all t ∈ I. A curve will be called substantial if it contains a substantial path
[5].

For I = (a, b), q, p ∈ I and a substantional I-path x(t) put

lx(q, p) =
∫ p

q

∣∣∣∣∣
[
x(n)(t)x′(t) . . . x(n−1)(t)

]
[
x(t)x′(t) . . . x(n−1)(t)

]
∣∣∣∣∣

1
n

dt

and lx(a, p) = lim
q→a

lx(q, p), lx(q, b) = lim
p→b

lx(q, p). There are only four possible
cases:

(i) lx(a, p) < +∞, lx(q, b) < +∞; (ii) lx(a, p) < +∞, lx(q, b) = +∞;
(iii) lx(a, p) = +∞, lx(q, b) < +∞; (iv) lx(a, p) = +∞, lx(q, b) = +∞.
Suppose that the case (i) or (ii) holds for some q, p ∈ I. Then the number

l = lx(a, p) + lx(q, b) − lx(q, p), where 0 ≤ l ≤ +∞, does not depend on q, p.
In this case, we say that x belongs to the centro-affine type of (0, l). The cases
(iii) and (iv) do not depend on q, p. In these cases, we say that x belongs
to the centro-affine types of (−∞, 0) and (−∞,+∞), respectively. There exist
paths of all types (0, l) (where 0 ≤ l ≤ +∞), (−∞, 0) and (−∞,+∞). The
centro-affine type of a path x will be denoted by L(x).

Proposition 2.1.
(i) If x G∼ y then L(x) = L(y);

(ii) Let α be a curve and x, y ∈ α. Then L(x) = L(y).

Proof. It is obvious.

The centro-affine type of a path x ∈ α will be called the centro-affine type
of the curve α and denoted by L(α). According to Proposition 2.1, L(α) is a
G-invariant of a curve α.
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Now we define an invariant parametrization of a substantial curve in Rn.
Let I = (a, b) and x(t) be a substantial I-path in Rn. We define the centro-

affine arc length function sx(t) for each centro-affine type as follows. We put
sx(t) = lx(a, t) for the case L(x) = (0, l), where 0 < l ≤ +∞, and sx(t) = −
lx(t, b) for the case L(x) = (−∞, 0). Let L(x) = (−∞,+∞). We choose a fixed
point in every interval I = (a, b) of R and denote it by aI . Let aI = 0 for
I = (−∞,+∞). We set sx(t) = lx(aI , t).

Since s′x(t) > 0 for all t ∈ I, the inverse function of sx(t) exists. Let us
denote it by tx(s). The domain of tx(s) is L(x) and t′x(s) > 0 for all s ∈ L(x).

Proposition 2.2. Let I = (a, b) and x be a substantial I-path in Rn.
Then

(i) sgx(t) = sx(t) and tgx(s) = tx(s) for all g ∈ G;
(ii) the equalities sx(ϕ)(r) = sx(ϕ(r)) + s0 and ϕ(tx(ϕ)(s + s0)) = tx(s)

hold for any C∞-diffeomorphism ϕ : J = (c, d) → I such that ϕ′(r) > 0 for
all r ∈ J , where s0 = 0 for L(x) �= (−∞,+∞) and s0 = lx(ϕ(aJ), aI) for
L(x) = (−∞,+∞).

Proof. (i). Let L(x) = (0, l), where 0 < l ≤ +∞. Then we have

sgx(t) = lim
t0→a+

∫ t

t0

∣∣∣∣∣
[
(gx)(n)(t)(gx)′(t) . . . (gx)(n−1)(t)

]
[
(gx)(t)(gx)′(t) . . . (gx)(n−1)(t)

]
∣∣∣∣∣

1
n

dt

= lim
t0→a+

∫ t

t0

∣∣∣∣∣
[
x(n)(t)x′(t) . . . x(n−1)(t)

]
[
x(t)x′(t) . . . x(n−1)(t)

]
∣∣∣∣∣

1
n

dt

= sx(t).

For the second part, we obtain sgx(tgx(s)) = s, tgx(sgx(t)) = t, sgx(tgx(s)) =
sx(tgx(s)) = s, tgx(sgx(t)) = tgx(sx(t)) = t. Therefore tgx(s) = tx(s). Proofs
of (i) for centro-affine types (−∞, 0) and (−∞,+∞) are similar.

For (ii) let L(x) = (−∞,+∞). Then we have

sx(ϕ)(r) =
∫ r

aJ

∣∣∣∣∣∣

[
dn

drnx(ϕ(r)) ddr (x(ϕ(r))) . . . d
n−1

drn−1 (x(ϕ(r)))
]

[
x(ϕ(r)) ddr (x(ϕ(r))) . . . dn−1

drn−1 (x(ϕ(r)))
]

∣∣∣∣∣∣

1
n

dr

=
∫ r

aJ

dϕ

dr

∣∣∣∣∣∣

[
dn

dϕn x(ϕ(r)) d
dϕ (x(ϕ(r))) . . . d

n−1

dϕn−1 (x(ϕ(r)))
]

[
x(ϕ(r)) d

dϕ (x(ϕ(r))) . . . dn−1

dϕn−1 (x(ϕ(r)))
]

∣∣∣∣∣∣

1
n

dr

= lx (ϕ (aJ) , ϕ(r)) = lx (aI , ϕ(r)) + lx (ϕ (aJ) , aI) .

So sx(ϕ)(r) = sx(ϕ(r)) + s0, where s0 = lx (ϕ (aJ ) , aI). This implies
that ϕ(tx(ϕ)(s + s0)) = tx(s). For L(x) �= (−∞,+∞), it is easy to see that
s0 = 0.
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Let α be a substantial curve and x ∈ α. Then x(tx(s)) is a parametrization
of α.

Definition 2.6. The parametrization x(tx(s)) of a substantial curve α
will be called an invariant parametrization of α.

We denote the set of all invariant parametrizations of α by φα. Every
y ∈ φα is an I-path, where I = L(α).

Proposition 2.3. Let α be a substantial curve, x ∈ α and x be an
I-path, where I = L(α) . Then the following conditions are equivalent :

(i) x is an invariant parametrization of α;

(ii)
∣∣∣∣ [x

(n)(s)x′(t)...x(n−1)(s)]
[x(s)x′(s)...x(n−1)(s)]

∣∣∣∣ = 1 for all s ∈ L(α);

(iii) sx(s) = s for all s ∈ L(α).

Proof. (i) ⇒ (ii). Let x ∈ φα. Then there exists y ∈ α such that
x(s) = y (ty(s)). By Proposition 2.2, sx(s) = sy(ty)(s) = sy(ty(s)) + s0 =
s + s0, where s0 is as in Proposition 2.2. Since s0 does not depend on s,

dsx(s)
ds =

∣∣∣∣ [x
(n)(s)x′(t)...x(n−1)(s)]
[x(s)x′(s)...x(n−1)(s)]

∣∣∣∣
1
n

= 1. Hence
∣∣∣∣ [x

(n)(s)x′(t)...x(n−1)(s)]
[x(s)x′(s)...x(n−1)(s)]

∣∣∣∣ = 1 for all

s ∈ L(α).

(ii) ⇒ (iii). Let
∣∣∣∣ [x

(n)(s)x′(t)...x(n−1)(s)]
[x(s)x′(s)...x(n−1)(s)]

∣∣∣∣ = 1 for all s ∈ L(α). By the

definition of sx(t), we have dsx(s)
ds =

∣∣∣∣ [x
(n)(s)x′(t)...x(n−1)(s)]
[x(s)x′(s)...x(n−1)(s)]

∣∣∣∣
1
n

= 1. Therefore

sx(s) = s + c for some c ∈ R. In the case L(x) �= (−∞,+∞), sx(s) = s + c
and sx(s) ∈ L(α) for all s ∈ L(α) implies c = 0, that is, sx(s) = s. In the case
L(x) = (−∞,+∞), sx(s) = lx(aI , s) = lx(0, s) = s+ c implies 0 = lx(0, 0) = c,
that is, sx(s) = s.

(iii) ⇒ (i). The equality sx(s) = s implies tx(s) = s. Therefore x(s) =
x(tx(s)) ∈ φα.

Proposition 2.4. Let α be a substantial curve and L(α) �= (−∞,+∞).
Then there exists the unique invariant parametrization of α.

Proof. Let x, y ∈ α, x be an I1-path and y be an I2-path. Then there
exists a C∞-diffeomorphism ϕ : I2 → I1 such that ϕ′(r) > 0 and y(r) = x(ϕ(r))
for all r ∈ I2. By Proposition 2.2 and L(α) �= (−∞,+∞), we obtain y(ty(s)) =
x(ϕ(ty(s)) = x(ϕ(tx(ϕ)(s))) = x(tx(s)).

Let α be a substantial curve and L(α) = (−∞,+∞). Then it is easy to
see that the set φα is not countable.

Proposition 2.5. Let α be a substantial curve, L(α) = (−∞,+∞) and
x ∈ φα. Then φα = {y : y (s) = x (s+ s′) , s′ ∈ (−∞,+∞)}.
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608 Ömer Pekşen and Djavvat Khadjiev

Proof. Let x, y ∈ φα. Then there exist h, k ∈ α such that x(s) = h(th(s)),
y(s) = k(tk(s)), where h is an I1-path and k is an I2-path. Since h, k ∈ α
there exists ϕ : I2 → I1 such that ϕ′(r) > 0 and k(r) = h(ϕ(r)) for all
r ∈ I2. By Proposition 2.2, y(s) = k(tk(s)) = h(ϕ(tk(s)) = h(ϕ(th(ϕ)(s))) =
h(th(s− s0)) = x (s− s0).

Let x ∈ φα and s′ ∈ (−∞,+∞). We prove x(ψ) ∈ φα, where ψ(s) = s+s′.

By Proposition 2.3,
∣∣∣∣ [x

(n)(s)x′(t)...x(n−1)(s)]
[x(s)x′(s)...x(n−1)(s)]

∣∣∣∣ = 1 and sx(s) = s. Put z(s) =

x(ψ(s)). Since ψ is a C∞-diffeomorphism of (−∞,+∞) onto (−∞,+∞), then
z = x(ψ) ∈ α. Using Proposition 2.2 and sx(s) = s, we get sz(s) = sx(ψ)(s) =
sx(ψ(s)) + s1 = (s+ s′) + s1, where

s1 =
∫ 0

ψ(0)

∣∣∣∣∣
[
x(n)(s)x′(t) . . . x(n−1)(s)

]
[
x(s)x′(s) . . . x(n−1)(s)

]
∣∣∣∣∣

1
n

ds.

This, in view of
∣∣∣∣ [x

(n)(s)x′(t)...x(n−1)(s)]
[x(s)x′(s)...x(n−1)(s)]

∣∣∣∣ = 1, implies s1 = −ψ(0) = −s′. Then

sz(s) = (s+ s′) − s′ = s. By Proposition 2.3, z ∈ φα.

Theorem 2.1. Let α, β be substantial curves and x ∈ φα, y ∈ φβ.
Then,

(i) for L(α) = L(β) �= (−∞,+∞), α G∼ β if and only if x(s) G∼ y(s);
(ii) for L(α) = L(β) = (−∞,+∞), α G∼ β if and only if x(s) G∼ y (s+ s′)

for some s′ ∈ (−∞,+∞).

Proof. (i) Let α G∼ β and h ∈ α. Then there exists g ∈ G such that
β = gα. This implies gh ∈ β. Using Propositions 2.2 and 2.4, we get
x(s) = h(th(s)), y(s) = (gh)(tgh(s)) and gx(s) = g(h(th(s))) = (gh)(th(s)) =

(gh)(tgh(s)) = y(s). Thus x G∼ y. Conversely, let x G∼ y, that is, there exists

g ∈ G such that gx = y. Then α G∼ β.
(ii) Let α G∼ β. Then there exist I-paths h ∈ α, k ∈ β and g ∈ G such

that k(t) = gh(t). We have k(tk(s)) = k(tgh(s)) = k(th(s)) = (gh)(th(s)).
By Proposition 2.5, x(s) = k(tk(s + s1)), y(s) = h(th(s + s2)) for some s1,
s2 ∈ (−∞,+∞). Therefore x(s − s1) = gy (s− s2). This implies that x(s) G∼
y (s+ s′), where s′ = s1 − s2. Conversely, let x(s) G∼ y (s+ s′) for some s′ ∈
(−∞,+∞). Then there exists g ∈ G such that y (s+ s′) = gx(s). Since
y (s+ s′) ∈ β, then α G∼ β.

Definition 2.7. Two I-paths x and y in Rn, where I = R, will be
called (G,R)-equivalent if there exists g ∈ G and s′ ∈ R = (−∞,+∞) such
that y(s) = gx(s+ s′) for all s ∈ (−∞,+∞).

Theorem 2.1 reduces the problem of theG-equivalence of substantial curves
to that of paths for the case L(α) = L(β) �= (−∞,+∞). But for the case
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L(α) = L(β) = (−∞,+∞), Theorem 2.1 reduces the problem of G-equivalence
of substantional curves to the (G,R)-equivalence of paths.

3. The generating system of the differential field of invariant differ-
ential rational functions of a path and the problem of equivalence of
curves

Let x(t) be an I-path in Rn.

Definition 3.1. A polynomial p(x, x′, . . . , x(k)) of x and a finite num-
ber of derivatives x′, . . . , x(k) of x with coefficients from R will be called a
differential polynomial of x. It will be denoted by p{x} [9].

We denote the set of all differential polynomials of x by R{x}. It is a
differential R-algebra. It is also an integral domain. Therefore there exists a
quotient field R〈x〉 of R{x} and every element of R〈x〉 is of the form f〈x〉 =
p{x}
q{x} , where p{x} and q{x} �= 0 are differential polynomials of x. Any element
of R〈x〉 will be called a differential rational function of x. The derivative

operator of R{x} can be extended uniquely to R〈x〉 as f ′〈x〉 =
(
p{x}
q{x}

)′
=

p′{x}q{x}−p{x}q′{x}
(q{x})2 . Let G be a subgroup of GL(n,R).

Definition 3.2. A differential rational function f〈x〉 will be called G-
invariant if f〈gx〉 = f〈x〉 for all g ∈ G.

The set of all G-invariant differential rational functions of x will be denoted
by R 〈x〉G. It is a differential subfield of R〈x〉.

Definition 3.3. A subset S of R〈x〉G will be called a generating system
of R〈x〉G if the smallest differential subfield containing S is R〈x〉G.

Theorem 3.1. The system[
x(n)x′ . . . x(n−1)

]
[
xx′ . . . x(n−1)

] ,

[
xx′ . . . x(i−1)x(n)x(i+1) . . . x(n−1)

]
[
xx′ . . . x(n−1)

] , i = 1, . . . , n− 1,

is a generating system of R〈x〉G.

Proof. For the proof, see ([8, p. 79])

Theorem 3.2. Let α, β be substantial curves in Rn and x ∈ φα, y ∈
φβ. Then,

(i) for L(α) = L(β) �= (−∞,+∞), α G∼ β if and only if

sgn
[x(n)(s)x′(s) . . . x(n−1)(s)]
[x(s)x′(s) . . . x(n−1)(s)]

= sgn
[1y(n)(s)y′(s) . . . y(n−1)(s)]

[y(s)y′(s) . . . y(n−1)(s)]
,

[x(s)x′(s) . . . x(i−1)(s)x(n)(s)x(i+1)(s) . . . x(n−1)(s)]
[x(s)x′(s) . . . x(n−1)(s)]

=
[y(s)y′(s) . . . y(i−1)(s)y(n)(s)y(i+1)(s) . . . y(n−1)(s)]

[y(s)y′(s) . . . y(n−1)(s)]

(3.1)
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for all s ∈ L(α) = L(β) and i = 1, . . . , n− 1.
(ii) for L(α) = L(β) = (−∞,+∞), α G∼ β if and only if there exists

b ∈ (−∞,+∞) such that

sgn

[
x(n)(s)x′(s) . . . x(n−1)(s)

]
[
x(s)x′(s) . . . x(n−1)(s)

] = sgn

[
y(n)(s+ b)y′(s+ b) . . . y(n−1)(s+ b)

]
[
y(s+ b)y′(s+ b) . . . y(n−1)(s+ b)

] ,

[
x(s)x′(s) . . . x(i−1)(s)x(n)(s)x(i+1)(s) . . . x(n−1)(s)

]
[
x(s)x′(s) . . . x(n−1)(s)

]

=

[
y(s+ b)y′(s+ b) . . . y(i−1)(s+ b)y(n)(s+ b)y(i+1)(s+ b) . . . y(n−1)(s+ b)

]
[
y(s+ b)y′(s+ b) . . . y(n−1)(s+ b)

]

for all s ∈ (−∞,+∞) and i = 1, . . . , n− 1.

Proof. (i) Let α G∼ β. By claim (i) of Theorem 2.1, x G∼ y. By Proposition

2.3,
∣∣∣∣ [x

(n)x′...x(n−1)]
[xx′...x(n−1)]

∣∣∣∣ =
∣∣∣∣ [y

(n)y′...y(n−1)]
[yy′...y(n−1)]

∣∣∣∣ = 1. This, in view of x G∼ y, yields the

formulae (3.1). Now suppose that (3.1) holds. By Proposition 2.3 , we have∣∣∣∣ [x
(n)x′...x(n−1)]
[xx′...x(n−1)]

∣∣∣∣ =
∣∣∣∣ [y

(n)y′...y(n−1)]
[yy′...y(n−1)]

∣∣∣∣ = 1. Using (3.1), we obtain

[
x(n)(s)x′(s) . . . x(n−1)(s)

]
[
x(s)x′(s) . . . x(n−1)(s)

] =

[
y(n)(s)y′(s) . . . y(n−1)(s)

]
[
y(s)y′(s) . . . y(n−1)(s)

] ,

[
x (s)x′(s) . . . x(i−1)(s)x(n)(s)x(i+1)(s) . . . x(n−1)(s)

]
[
x(s)x′(s) . . . x(n−1)(s)

]

=

[
y(s)y′(s) . . . y(i−1)(s)y(n)(s)y(i+1)(s) . . . y(n−1)(s)

]
[
y(s)y′(s) . . . y(n−1)(s)

] .

Let us consider the matrix

Ax(t) =
∥∥∥x(t)x′(t) . . . x(n−1)(t)

∥∥∥ .
By the substantiality of x detAx(t) =

[
x(t)x′(t) . . . x(n−1)(t)

] �= 0 for all t in I.
Therefore there exists the matrix A−1

x (t). We consider the matrices

A′
x(t) =

∥∥∥x′(t)x(2)(t) . . . x(n)(t)
∥∥∥ and A−1

x (t)A′
x(t) = ‖cij(t)‖ .

It is easily obtained that
1. cj+1j(t) = 1 for all t in I, j : 1 ≤ j ≤ n− 1;
2. cij(t) = 0 for all t in I, j �= n, i �= j + 1, 1 ≤ i ≤ n;

3. ci+1n(t) = [x(t)x′(t)...x(i−1)(t)x(n)(t)x(i+1)(t)...x(n−1)(t)]
[x(t)x′(t)...x(n−1)(t)] for all t in I, 0 ≤

i ≤ n− 1.
Similarly, for A−1

y (t)A′
y(t) = ‖dij(t)‖ we have

1. dj+1j(t) = 1 for all t in I, j : 1 ≤ j ≤ n− 1;
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2. dij(t) = 0 for all t in I, j �= n, i �= j + 1, 1 ≤ i ≤ n;

3. di+1n(t) = [y(t)y′(t)...y(i−1)(t)y(n)(t)y(i+1)(t)...y(n−1)(t)]
[y(t)y′(t)...y(n−1)(t)] for all t in I, 0 ≤

i ≤ n− 1.
We obtain from (3.1) that cij(t) = dij(t) for all t in I, i, j = 1, . . . , n. Then

A−1
x (t)A′

x(t) = A−1
y (t)A′

y(t).

We have

(AyA−1
x )′ = A′

yA
−1
x +Ay(A−1

x )′ = A′
yA

−1
x +Ay(−A−1

x A′
xA

−1
x )

= Ay(A−1
y A′

y −A−1
x A′

x)A
−1
x = 0.

Therefore Ay(t)A−1
x (t) does not depend on t. Put g = Ay(t)A−1

x (t). As
detAx(t) �= 0 for all t in I, and Ay(t) �= 0 for all t in I, then det g �= 0. We

have Ay(t) = gAx(t). Therefore y(t) = gx(t) for all t in I. Thus x G∼ y. The
proof of (ii) follows similarly from claim (ii) of Theorem 2.1.

Let T be one of the sets (0, l) (where l ≤ +∞), (−∞, 0), (−∞,+∞).

Theorem 3.3. Let h1(s), . . . , hn(s) be C∞-functions on T , where
|h1(s)| = 1 for all s ∈ T . Then there exists an invariant parametrization x
of a substantial curve such that

[x(n)(s)x(s)x′(s) . . . x(n−1)(s)]
[x(s)x′(s) . . . x(n−1)(s)]

= h1(s),

[x(s)x′(s) . . . x(i−1)(s)x(n)(s)x(i+1)(s) . . . x(n−1)(s)]
[x(s)x′(s) . . . x(n−1)(s)]

= hi+1(s)
(3.2)

for all s ∈ T and i = 1, . . . , n− 1.

Proof. Let C(s) be the matrix ‖cij(s)‖, where cj+1j(s) = 1 for all s ∈ T ,
1 ≤ j ≤ n−1; cij(s) = 0 for all s ∈ T , j �= n, i �= j+1, 1 ≤ i ≤ n; cin(s) = hi(s),
i = 1, . . . , n. It is known from the theory of differential equations that there
exists a solution of the differential equation

(3.3) A′
x(s) = Ax(s)C(s)

such that detAx(s) �= 0 for all s ∈ T , where Ax(s) =
∥∥x(s)x′(s) . . . x(n−1)(s)

∥∥ is
the matrix of column vectors x(s), x′(s), . . . , x(n−1)(s) and A′

x(s) =∥∥x′(s)x′′(s) . . . x(n)(s)
∥∥ is the matrix of column vectors x′(s), x′′(s), . . . , x(n)(s).

Let Ax(s) be such solution of the differential equation (3.3). From (3.3) we have
A−1
x (s)A′

x(s) = C(s). From this equation we get the equalities (3.2)

Remark 3. The functions[
x(s)x′(s) . . . x(i−1)(s)x(n+1)(s)x(i+1)(s) . . . x(n)(s)

]
[
x(s)x′(s) . . . x(n)(s)

] ,

where i = 1, . . . , n, equal to the functions c1(s), . . . , cn(s) of Gardner and
Wilkens ([5, p. 398]).
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