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On invariants of curves in centro-affine
geometry

By

Omer PEKSEN and Djavvat KHADJIEV

Abstract

Let GL(n, R) be the general linear group of n X n real matrices.
Definitions of GL(n, R)-equivalence and the centro-affine type of curves
are introduced. All possible centro-affine types are founded. For every
centro affine type all invariant parametrizations of a curve are described.
The problem of GL(n, R)-equivalence of curves is reduced to that of
paths. A generating system of the differential field of invariant differ-
ential rational functions of a path is described. They can be viewed
as centro-affine curvatures of a path. Global conditions of GL(n, R)-
equivalence of curves are given in terms of the centro-affine type and
the generating differential invariants. Independence of elements of the
generating differential invariants is proved.

1. Introduction

The fundamental theorem of curves in n-dimensional centro-affine geome-
try is obtained by Gardner and Wilkens [5]. In the paper they used Cartan’s
method [4] of moving frames in order to find the formulation of the local rigidity
theorem for curves that is amenable to direct application to problems in control
theory. They provide a method for constructing the centro-affine curvatures
k1(8), ..., kn(s). They have obtained explicit formulae for computing a centro-
affine arclength in terms of an arbitrary parameter and the first curvature
k1(s). In this paper there are no explicit formulae for centro-affine curvatures
k2(8), ..., kn(s), but their orders are defined. A discussion of centro-affine
plane curves, as well as a very brief discussion of centro-affine space curves,
can be found in ([15], [13], [17]). A very detailed discussion of the centro-affine
theory of plane curves can be found in Laugwitz [11]. The first comprehensive
treatment of affine geometry is given in the seminal work of Blaschke [3]. For
further developments of the subject, we refer the reader to [14], and the more
modern texts [20], [12], commentaries [16], [17], and survey papers [19], [2],
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[18]. Equi-affine invariants of 3-dimensional space curves are investigated by
Izumiya and Sano [7]. For curvatures of curves in n-dimensional equi-affine ge-
ometry see ([6, pp. 170-172], [13]). But in all these works, equivalence of curves
is investigated locally. The global SL(n)-equivalence of paths in R™ and C™
is considered by Khadjiev [8] and Suhtaeva [21]. Complete systems of global
equi-affine invariants for plane and space paths are obtained by Angelis, Moons,
Van Gool and Verstraelen [1]. The complete system of global differential and
integral invariants for curves in n-dimensional equi-affine geometry is obtained
by Khadjiev and Peksen [9].

Our paper is concerned with the problem of the global equivalence of
centro-affine curves. We introduce a centro-affine type of a curve. The centro-
affine type of a curve coincides with the centro-affine arclength if it is finite.
But curves with infinite centro-affine arclength have three different centro-affine
types. We describe all possible invariant parametrizations of a curve for every
centro-affine type. We obtained a generating system of the differential field of
all centro-affine invariant differential rational functions of a path. We can con-
sider elements of the generating system as curvatures of a path. Our curvatures
coincide with ¢;(s),...,c,(s) functions of Gardner and Wilkens ([5, p. 398]).
We give the explicit formulae of curvatures in terms of the centro-affine invari-
ant parameter, the conditions of the global centro-affine equivalence of curves
in terms of the centro-affine type and curvatures of a curve. We prove an
independence of curvatures.

2. The centro-affine type of a curve and the theorem on reduction
Let R be the field of real numbers and I = (a, b) be an open interval of R.

Definition 2.1. A C*®-map x : I — R"™ will be called an I-path
(shortly, a path) in R™.

Definition 2.2.  An Ij-path x(t) and an Ir-path y(r) in R™ will be
called D-equivalent if there exists a C'°°-diffeomorphism ¢ : I — I; such that
¢'(r) > 0 and y(r) = x(¢(r)) for all r € Ir. A class of D-equivalent paths in
R™ will be called a curve in R™, ([10, p. 9]). A path z € « will be called a
parametrization of a curve a.

Remark 1.  There exist different definitions of a curve ([6, p. 2], [8]).

Let G = GL(n, R) be the general linear group of n x n regular matrices.
G acts by (g,x) — gz on R™, where gz is the multiplication of a matrix g and
a column vector z € R".

If (t) is an I-path in R™ then gz(t) is an I-path in R™ for any g € G.

Definition 2.3. Two [-paths z and y in R™ will be called G-equivalent
and written < y if there exists g € G such that y(t) = gz(t).

Let a be a curve in R™, that is, « = {h,, T € Q}, where h, is a parametriza-
tion of a. Then ga = {gh,, T € Q} is a curve in R™ for any g € G.
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Definition 2.4. Two curves a and 8 in R™ will be called G-equivalent
(or G-congruent) and written « & G if § = ga for some g € G.

Remark 2. Our definition is essentially different from the definition
([6, p. 21]) of a congruence of curves for the group of euclidean motions. By
the definition ([6, p. 21]), two curves with different lengths may be congruent.

Let « be an I-path in R™ and 2/(t) be the derivative of z(t). Put (9 =
z, 2™ = (2"=Y)". For ay € R", k = 1,...,n, the determinant det(a;;)
(where ay; are coordinates of aj) will be denoted by [ajas...a,]. So
[z(t)2/(t)...2" V()] is the determinant of the vectors z(t), '(t),...,
(=1 (1),

Definition 2.5.  An I-path x(¢) in R™ will be called substantial if both
[x(t)x/(t) y .x<"—1>(t)} £ 0 and [x<">(t)x'(t) . ..x("—1>(t)] £0

for all t € I. A curve will be called substantial if it contains a substantial path

[5]-

For I = (a,b), ¢,p € I and a substantional I-path z(t) put

lx(q,p) =/qp

and I (a,p) = (}13(11 l.(q,p), lz(g,b) = })ig})lm(q,p). There are only four possible

1
n

[z (t)2! () . ..2("=D(1)]

[m(t)x/(t) L p(n—1) (t)] dt

cases:

(4) ly(a,p) < +00, l:(q,b) < 4005 (i) Iy(a,p) < 400, lx(q,b) = +00;

(#4) lz(a,p) = 400, lx(q,b) < 400; (i) lz(a,p) = +00, I;(g,b) = +o0.

Suppose that the case (i) or (i7) holds for some ¢, p € I. Then the number
Il =1.(a,p) + (g, b) — l:(g,p), where 0 < I < 400, does not depend on g, p.
In this case, we say that = belongs to the centro-affine type of (0,1). The cases
(#i1) and (iv) do not depend on ¢, p. In these cases, we say that x belongs
to the centro-affine types of (—o00,0) and (—o0, +00), respectively. There exist
paths of all types (0,1) (where 0 < I < 400), (—00,0) and (—o0,+00). The
centro-affine type of a path x will be denoted by L(z).

Proposition 2.1.
(i) If w %y then L(z) = L(y);
(i4) Let « be a curve and x,y € a. Then L(x) = L(y).

Proof. Tt is obvious. O

The centro-affine type of a path € a will be called the centro-affine type
of the curve o and denoted by L(«a). According to Proposition 2.1, L(«) is a
G-invariant of a curve a.



606 Omer Peksen and Djavvat Khadjiev

Now we define an invariant parametrization of a substantial curve in R".

Let I = (a,b) and z(t) be a substantial I-path in R"™. We define the centro-
affine arc length function s,(¢) for each centro-affine type as follows. We put
sz(t) = lg(a,t) for the case L(zx) = (0,1), where 0 < I < +o00, and s,(t) = —
l.(t,b) for the case L(z) = (—00,0). Let L(z) = (—o00,+00). We choose a fixed
point in every interval I = (a,b) of R and denote it by a;. Let a;y = 0 for
I = (—o00,+00). We set s,(t) = l,(ar,t).

Since s,(t) > 0 for all ¢ € I, the inverse function of s,(t) exists. Let us
denote it by ¢, (s). The domain of ,(s) is L(z) and t,.(s) > 0 for all s € L(x).

Proposition 2.2.  Let I = (a,b) and = be a substantial I-path in R™.
Then

(1) 8g2(t) = s4(t) and tgs(s) =t(s) for all g € G;

(i1) the equalities s,(4)(1) = 52(0(7)) + 50 and @(typ) (s + s0)) = te(s)
hold for any C-diffeomorphism ¢ : J = (¢,d) — I such that ¢'(r) > 0 for
all v € J, where so = 0 for L(z) # (—o0,4+00) and so = l.(¢(ay),ar) for
L(z) = (=00, +00).

Proof. (). Let L(x) = (0,1), where 0 < [ < 400. Then we have

| [(g2)™ () (g2) (1) . . (g) "D (1)] |*

(00 @) - (ge) (] |

Sgu(t) = lim, .

, ™) B/ (1) ..V ()] |
o | e @) o) |
= $,(1).

For the second part, we obtain sg,(tge(s)) =8, tgz(Sga(t)) = t, Sga(tga(s)) =
53(tga(s)) = 8, tga(8gz(t)) = tgz(sz(t)) = t. Therefore ty,(s) = t,(s). Proofs
of (i) for centro-affine types (—oc,0) and (—oo, +00) are similar.

For (i) let L(xz) = (—o0, +00). Then we have

dr

()_/T {%x(@(r))g(m(cp(r)))...%(z(@(r)))} i
T | Trtet) £ (o) i o r))]

dr

- / dp | [ a (@) s (w(e() - o ()] |
wr | Jalp(r) 2 (@(e(r) - o (@ ()]
— 1, (¢ (@), (1)) = e (a1, 9(r) + Lo (¢ (as) ).
S0 () (1) = sz(p(r)) + so, where so = I, (¢ (as),ar). This implies
te(s

that ¢(t,(x)(s + s0)) = ). For L(z) # (—o00,+400), it is easy to see that
So = 0. |
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Let « be a substantial curve and « € . Then z(t,(s)) is a parametrization
of a.

Definition 2.6.  The parametrization x(¢,(s)) of a substantial curve «
will be called an invariant parametrization of c.

We denote the set of all invariant parametrizations of a by ¢,. Every
Y € ¢ is an I-path, where I = L(«).

Proposition 2.3. Let a be a substantial curve, x € o and x be an
I-path, where I = L(«) . Then the following conditions are equivalent:
(i) x is an invariant parametrization of «;
(i) | L0 O DON o s € L(a);
[£(s)2'(5)...a(n=1)(s)] ’
(71) sz(s) = s for all s € L(a).

Proof. (i) = (ii). Let © € ¢,. Then there exists y € a such that
z(s) = y(ty(s)). By Proposition 2.2, s;(s) = sy, )(5) = sy(ty(s)) +s0 =
s + sg, where s¢ is as in Proposition 2.2. Since sy does not depend on s,

dsg(s) _ |[# () (t)a" D &)] | [ ()2 (8)..a" "D (s)] | _
ds [w(s)xr(s)mm(n—l)(s)] = 1. Hence [I(S)ZE’(S)..‘ﬂi(n_l)(S)] =1 for all
s € L(a).
.. [0 (s)a’ (£)..a D (s)] |
(it) = (iii). Let @) ()] | = 1 for all s € L(a). By the
1
2™ ()2’ (). D ()] | ™
definition of s,(t), we have dsés(s) = [[m(s()m)/(s()t) x(,’hl)(s()])} = 1. Therefore

sz(8) = s+ ¢ for some ¢ € R. In the case L(x) # (—00,4+00), Sz(s) = s+ ¢
and s;(s) € L(a) for all s € L(a) implies ¢ = 0, that is, s,(s) = s. In the case
L(z) = (=00, +0), $5(s) =l(ar,s) =1(0,s) = s+ ¢ implies 0 = 1,,(0,0) = ¢,
that is, s.(s) = s.

(#i1) = (4). The equality s,(s) = s implies t,(s) = s. Therefore z(s) =
(tz(8)) € ¢ O

Proposition 2.4.  Let a be a substantial curve and L(«) # (—00, 400).
Then there exists the unique invariant parametrization of c.

Proof. Let x,y € a, x be an I;-path and y be an Ir-path. Then there
exists a C°°-diffeomorphism ¢ : Is — I; such that ¢’(r) > 0 and y(r) = z(p(r))
for all » € I. By Proposition 2.2 and L(«) # (—00, +00), we obtain y(t,(s)) =
z(p(ty(s)) = 2((tu(p)(5))) = 2(ta(s)). O

Let a be a substantial curve and L(a) = (—o0, +00). Then it is easy to
see that the set ¢, is not countable.

Proposition 2.5.  Let a be a substantial curve, L(a) = (—00,+00) and
T E Go. Then ¢po ={y:y(s)=z(s+s'),s € (—o0,+0)}.
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Proof. Let x,y € ¢o. Then there exist h, k € a such that z(s) = h(tn(s)),
y(s) = k(tx(s)), where h is an I1-path and k is an Iy-path. Since h,k € «
there exists ¢ : Iy — I such that ¢'(r) > 0 and k(r) = h(e(r)) for all
r € Iy. By Proposition 2.2, y(s) = k(tx(s)) = h(eo(tr(s)) = h(@(tap(s))) =
h(tn(s —s0)) = (s — so).

Let © € ¢, and s’ € (—o0, +00). We prove z(v)) € ¢, where ¥(s) = s+5'.
[0 ()2’ ()..a" " (s)]

[£(s)2' (5)...a(n=1)(s)]
x(1p(s)). Since ¥ is a C*°-diffeomorphism of (—oo, +00) onto (—oo, +00), then
z = x(1p) € a. Using Proposition 2.2 and s.(s) = s, we get s5.(s) = s5(4)(5) =
$z(¥(8)) + 51 = (s + 8') + s1, where

(2™ (s)2'(t) .2V (s)]

0
= /w(o) [z(s)a'(s) ... x("=D(s)]

[0 ()2’ (8)..a D) (5)]
[m(s)z’(s)...z("*l)(s)]
s.(s) = (s+ ') — s’ = s. By Proposition 2.3, z € ¢,. O

By Proposition 2.3, ’ ‘ = 1 and s,(s) = s. Put z2(s) =

=

n

ds.

This, in view of

’ = 1, implies 1 = —¢(0) = —s’. Then

Theorem 2.1.  Let o, B be substantial curves and v € ¢o, y € ¢g3.
Then,

(1) for L(a) = L(B) # (—o00,4+0), a < B if and only if x(s) £ y(s);
(it) for L(a) = L(B) = (—o0,+0), « £ 3 if and only if x(s) g y(s+5)
for some s’ € (—o0, +00).

o

Proof. (i) Let « S B and h € a. Then there exists g € G such that
B8 = ga. This implies gh € (. Using Propositions 2.2 and 2.4, we get
z(s) = h(tn(s)), y(s) = (gh)(tgn(s)) and gz(s) = g(h(tn(s))) = (gh)(tn(s)) =
(gh)(tgn(s)) = y(s). Thus z 5 y. Conversely, let x < y, that is, there exists
g € G such that g = y. Then « < 0.

(i1) Let « < B. Then there exist I-paths h € a, k € 8 and g € G such
that k(t) = gh(t). We have k(ti(s)) = k(tgn(s)) = k(tn(s)) = (gh)(tn(s)).
By Proposition 2.5, z(s) = k(tk(s + s1)), y(s) = h(tn(s + s2)) for some sy,
$9 € (—00,4+00). Therefore z(s — s1) = gy (s — s2). This implies that z(s) £
y(s+ '), where s’ = s — s9. Conversely, let z(s) £ y(s+ ') for some s €
(—00,4+00). Then there exists g € G such that y(s+s) = gz(s). Since
y(s—l—s')eﬂ,thenagﬁ. O

Definition 2.7. Two [-paths z and y in R"™, where I = R, will be
called (G, R)-equivalent if there exists ¢ € G and s’ € R = (—00,4+00) such
that y(s) = gz(s+ §') for all s € (—o0, +00).

Theorem 2.1 reduces the problem of the G-equivalence of substantial curves
to that of paths for the case L(a) = L(8) # (—o0,+00). But for the case
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L(a) = L(B) = (—o0, +00), Theorem 2.1 reduces the problem of G-equivalence
of substantional curves to the (G, R)-equivalence of paths.

3. The generating system of the differential field of invariant differ-
ential rational functions of a path and the problem of equivalence of
curves

Let x(t) be an I-path in R".

Definition 3.1. A polynomial p(z,2’,...,2®) of 2 and a finite num-
ber of derivatives ’,...,z®) of  with coefficients from R will be called a
differential polynomial of z. It will be denoted by p{z} [9].

We denote the set of all differential polynomials of by R{z}. It is a
differential R-algebra. It is also an integral domain. Therefore there exists a
quotient field R{x) of R{z} and every element of R(x) is of the form f(z) =

oz} Where p{z} and g{x} # 0 are differential polynomials of z. Any element

of R(x) will be called a differential rational function of z. The derivative

/
operator of R{z} can be extended uniquely to R(z) as f'(z) = (ﬁﬁ) =
p/{z}q{(ﬁ;f){f}q/{m}. Let G be a subgroup of GL(n, R).

Definition 3.2. A differential rational function f{x) will be called G-
invariant if f{gx) = f(z) for all g € G.

The set of all G-invariant differential rational functions of x will be denoted
by R (z)°. It is a differential subfield of R(z).

Definition 3.3. A subset S of R(x)¢ will be called a generating system
of R{z)% if the smallest differential subfield containing S is R{z)¢.

Theorem 3.1.  The system

[J:(")a:’ . .x("_l)] [xa’ ... =D g () g+ a:("_l)]

(22’ .. x(=D)] 7 [z2’ ... z(n=1)] pi=l.,n-l,
is a generating system of R{z)C.
Proof. For the proof, see ([8, p. 79]) O

Theorem 3.2.  Let o, 3 be substantial curves in R™ and © € ¢, y €
¢3. Then,

(1) for L(a) = L(B) # (—o00,4+), a <p if and only if

BP9 (5)- )
[z(s)a’(s) ... x(n=1)(s)] [y(s)y'(s)...y=D(s)]
[z(s)x(s) ... 207D (s)x(™ (s)x+ 1) (s) ... 2"~ (s)]
[z(s)z'(s) ... 2= (s)]
_ )y (s) -y D (s)y ™M (5)y I (s) .y (s)]
[y(s)y'(s) ... y=1(s)]

(3.1)
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forallse L(a) =L(B) andi=1,...,n—1.
(i1) for L(a) = L(B) = (—o00,+), « < g if and only if there exists
)

b € (—o0,400) such that
2 D) O D).l Vs )
[x(s )x’(s) (n=1)(s)] [y(s +0)y/'(s +b) ...y~ V(s +D)]

[2(s)a’(s) .. ( )2 (5)20 D (s) . a1 (s)]
[a:(s):c’(s) cox(n=b(s )]
[y(s + )y (s+0b)...y0 (s + by (s + byt (s +b)...y V(s + b)]
[y(s +b)y'(s+b) ...y D(s+b)]

forall s € (—o0,400) andi=1,...,n—1.

Proof. (i) Let « < 8. By claim (¢) of Theorem 2.1, z £ y. By Proposition
[m(n)x/.nx(nfl)} [y(n)y/.“y(nfl)]

[mz,mz(n—m] [yy/my(n—n]

formulae (3.1). Now suppose that (3.1) holds. By Proposition 2.3 , we have
[2(Ma’ o= D)] [1™y ..y D)

[wz’...m("*l)] Iiyy/_“y(n—l)]

000 oo D] _ ).
[z(s)2’(s) ...z (s)] [y(s)y'(s)...y=D(s)] ~
[z (s)2'(s) ... 207D (s)z(™ (s)z(+(s). (s)]

2.3, = 1. This, in view of x < vy, yields the

= 1. Using (3.1), we obtain

[2(s)a’(s) ... a("=1(s )]
[y(s)y'(s) ...y D (s)y!™ (s)y“TD(s) ...y " D(s)]
[y(s)y/'(s) ...y~ (s)] '

Let us consider the matrix

L(t) = Hx(t):s’(t) .. .x("_l)(t)H .

By the substantiality of z det A, (t) = [z(t)2'(t)...2™ V) (¢)] #0for all t in I.
Therefore there exists the matrix A 1(¢). We consider the matrices

A1) = |

It is easily obtained that
l.cjp(t)=1foralltinl, j:1<j<n-—1;
2.¢i(t)=0foralltinl,j#n,i#j+1,1<i<n;
‘ @’ (). a2 (20T (1).a D (1)]
3. Cirin(t) = [zt (t)..x =D (1)]
1 <n-—1.

Similarly, for A, ' (t) A (t) = ||di;(t)|| we have
1.dj1(t)=1foralltinl, j:1<j<n—1;

Z(OrP (1) 2 @) and AL O AL() = lles (0]

forall tin I, 0 <
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2.d;j(t)=0foralltinl, j#n,i#j+1,1<i<n;
' - [y(t)y/(t)“_y(i—l)(t)y(n)(t)y(i+1)(t).“y(n—l)(t)]
3. dz+1n(t) - [y(t)y/(t)my(nfl)(t)]
1 <n-—1.

We obtain from (3.1) that ¢;;(t) = d;;(t) for alltin I, 4, j = 1,...,n. Then
—1 -1
AL (DAL () = A () A ().

forall ¢ in I, 0 <

We have
(AyAh) = A AT+ Ay (A1) = AJALT + Ay (- AT ALALT
= A (AT A — ATTA) AT =0.
Therefore A, (t)A;*(t) does not depend on t. Put g = A,(t)A;1(t). As

x

det A,(t) # 0 for all ¢ in I, and Ay (t) # 0 for all ¢ in I, then detg # 0. We
have A,(t) = gAs(t). Therefore y(t) = gx(t) for all t in I. Thus z < y. The
proof of (i7) follows similarly from claim (iz) of Theorem 2.1. O

Let T be one of the sets (0,1) (where | < +00), (—00,0), (—00, +00).

Theorem 3.3.  Let hy(s),...,hn(s) be C*®-functions on T, where
|hi(s)] = 1 for all s € T. Then there exists an invariant parametrization x
of a substantial curve such that

[ (s)z(s)2(s) ...z~ D(s)]
[z(s)z'(s)...x(=D(s)] a(s),
[z(s)2'(s) ... 20D ()™ (s)zH(s) ... x(*=1(s)]
[z(s)x'(s)...x("=1(s)]
forallseT andi=1,...,n—1.

(3.2)

= hit1(s)

Proof. Let C(s) be the matrix ||¢;;(s)||, where ¢j;1;(s) =1forall s € T,
1<j<n—1;¢j(s)=0foralls €T, j#n,i# j+1,1 <i<n;cin(s) = hi(s),

i =1,...,n. It is known from the theory of differential equations that there
exists a solution of the differential equation

(3-3) A (s) = Az(s)C(s)

such that det A, (s) # 0 for all s € T', where A,(s) = ||3: x’(s) 2D (s) | s
the matrix of column vectors xz(s), z'(s),. D(s) and Al (s) =
|2/ (s)a" (s) . ..2(™(s)]|| is the matrix of column Vectors 2'(s), 2" (s), ...,z (s).
Let A, (s) be such solution of the differential equation (3.3). From (3. 3) we have
A;1(s)A!(s) = C(s). From this equation we get the equalities (3.2) O

Remark 3. The functions
[z(s)2'(s) ...z D (s)zF D (s)z(F(s) ... x(W(s)]
[z(s)2’(s) ... a2 (s)] ’

where ¢ = 1,...,n, equal to the functions c;(s),...,c,(s) of Gardner and
Wilkens ([5, p. 398)).
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