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equations
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Abstract

In this paper, we study Riccati solutions of Painlevé equations from
a view point of geometry of Okamoto-Painlevé pairs (S, Y ). After estab-
lishing the correspondence between (rational) nodal curves on S − Y
and Riccati solutions, we give the complete classification of the configu-
rations of nodal curves on S −Y for each Okamoto-Painlevé pair (S, Y ).
As an application of the classification, we prove the non-existence of Ric-

cati solutions of Painlevé equations of types PI , P D̃8
III and P D̃7

III . We will
also give a partial answer to the conjecture in [STT] and [T1] that the
dimension of the local cohomology H1

Yred
(S, ΘS(− log Yred)) is one.

1. Introduction

A pair (S, Y ) of a projective smooth surface S and an effective anti-
canonical divisor Y on S is called an Okamoto-Painlevé pair if it satisfies a
suitable condition (see (2.1) in Section 2). In [STT], we established the the-
ory of Okamoto-Painlevé pairs (S, Y ) and characterize the Painlevé equations
by means of the special deformation of Okamoto-Painlevé pairs. There exist
8 types of rational Okamoto-Painlevé pairs which correspond to the Painlevé
equations. The types are classified by the types of the dual graphs of the con-
figurations of Y , which are the affine Dynkin diagram of types R = D̃k, 4 ≤ k ≤
8, Ẽl, 6 ≤ l ≤ 8. For each R, we obtain the global family of Okamoto-Painlevé
pairs

(1.1)
SR ←↩ D

π ↓ ↙ ϕ
MR × BR ,

where BR is an affine open subset of the t-affine line SpecC[t]. In [STT], the
deformation with respect to the t-direction can be characterized by the local
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530 Masa-Hiko Saito and Hitomi Terajima

cohomology group H1
D(S, ΘS(− log D)) where D = Yred. Furthermore we can

show that the vector field ∂
∂t has a unique lifting to a rational global vector

field

(1.2) ṽ ∈ H0(SR, ΘSR
(− logD)⊗OS(D))

which induces the Painlevé differential equations on SR −D.
In the theory of Painlevé equations, it is important to determine all classi-

cal solutions, like algebraic solutions and Riccati solutions. (For the definition
of classical solutions of Painlevé equations, see §1 in [U-W1]). In this direction,
there are a considerable number of works by many authors. Here, we list up
only a part of the references: (e.g., [DM], [Grm1], [Grm2], [Grm3], [Grm4],
[Grm5], [Grm6], [Gr-Lu], [Gr-Ts], [Luk1], [Luk2], [Maz], [Mu1], [Mu2], [Ni],
[Ohy], [O3], [U1], [U2], [U-W1], [U-W2], [V], [W1], [W2], [Y]). For example,
in order to prove the irreducibility of the Painlevé equations, one has to deter-
mine the cases when the given Painlevé equations admit the Riccati solutions
(cf. [U1], [U2], [NO], [U-W1], [U-W2]).

In this paper, a smooth rational curve C � P1 on a surface S with C2 = −2
is called a nodal curve or a (−2)-curve*1. One of the main purpose of this
paper is to characterize the Riccati solutions of Painlevé equations by means of
geometry of nodal curves on S − Yred for the corresponding rational Okamoto-
Painlevé pairs (S, Y ).

Since our characterization of Painlevé vector field ṽ (1.2) in [STT] is in-
trinsic, that is, coordinate free, so is the characterization of Riccati solutions.

Moreover we shall give the complete classification theorem (Theorem 3.1)
of configurations of nodal curves on S−Yred for all rational Okamoto-Painlevé
pairs (S, Y ) of non-fibered type and of additive type. As a corollary to Theo-
rem (3.1), we can show that Painlevé equations PI , P

D̃7
III , P

D̃8
III have no Riccati

solutions for any parameters in the equations.
The following is a rough outline of this paper.
In Section 2, we characterize the Riccati solutions of the Painlevé equa-

tions by means of (−2)-curve (or nodal curve) C on S − Yred. If for a given
(α0, t0) ∈ MR × BR, the fiber S of π in (1.1) over (α0, t0) contains a nodal
curve C ⊂ S − Yred, we can extend the nodal curve C in the t-direction and
obtain a family of nodal curves C −→ {α0} × U where U is an (analytic or
étale) open neighborhood of t0 in BR. Then the restriction ṽ|C is tangent to
C which induces the Riccati equation on C. It seems that this approach is es-
sentially equivalent to Umemura’s theory of invariant divisors for the Painlevé
equations (cf. e.g., [U-W1]). However we believe that our approach gives a
clearer geometric viewpoint of Riccati solutions of Painlevé equations.

In Section 3, we shall give the complete classification of configurations
of nodal curves on S − Y for all rational Okamoto-Painlevé pairs (S, Y ) of
non-fibered type and of additive type. The classification is based on the struc-
ture theorem of the lattice induced by the intersection form on H2(S,Z). We

*1We can always contract a nodal curve C ⊂ S to a singular point which is called the nodal
surface singularity or the A1-singularity.
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can show that the sub-lattice generated by the nodal curves C on S − Y is
a sub-lattice of E−

8 , the unique even unimodular negative-definite lattice of
rank 8. Then taking account into the sub-lattice generated by the irreducible
components of Y , we can obtain the list of the possible configurations. For
the existence of the possible configurations, we quote the Oguiso-Shioda’s clas-
sification theorem of singular fiber or Mordell-Weil group for rational elliptic
surfaces. Note that a rational elliptic surface with a fixed fiber is a rational
Okamoto-Painlevé pairs of fibered type in our terminology. Using the Oguiso-
Shioda’s existence theorem and the deformation theory of Okamoto-Painlevé
pairs, we shall show the existence of all possible configurations for some rational
Okamoto-Painlevé pairs.

In Section 4, as a corollary to the classification theorem, we shall prove
the non-existence of Riccati solutions of the Painlevé equations of type R =
PI , P

D̃7
III , P D̃8

III . Though there are other proofs for this result for PI and P D̃7
III

(e.g., [U1], [U2] and [Ohy]), our proof clarify the point that the obstruction to
the existence of Riccati solutions lies in the topological conditions.

In Section 5, we give explicit examples of nodal curves and Riccati solutions
of Painlevé equations associated to the nodal curves.

In Section 6, we shall give an example of the confluence of the Riccati
solutions for R = Ẽ6, (PIV ) and also the confluence of nodal curves. Moreover
we give a remark on rational solutions coming from the intersection of two
different Riccati solutions.

In Appendix A, as a corollary to Theorem 3.1, we shall give a partial
answer to the Conjecture A.1 presented in [STT] and [T1] about the dimension
of the local cohomology group.

2. (−2)-curves (Nodal curves) and Riccati solutions

In this section, we shall review the theory of Okamoto-Painlevé pairs and
their relations to the Painlevé equations which were introduced in [STT].

2.1. Okamoto-Painlevé pairs
Definition 2.1. Let (S, Y ) be a pair of a complex projective surface S

and an effective anti-canonical divisor Y ∈ |−KS | of S. Let Y =
∑r

i=1 miYi be
the irreducible decomposition of Y . We call a pair (S, Y ) an Okamoto-Painlevé
pair if for all i, 1 ≤ i ≤ r,

(2.1) Y · Yi = deg[Y ]|Yi
= 0.

An Okamoto-Painlevé pair (S, Y ) is called rational if S is a rational surface.

Remark 1. An Okamoto-Painlevé pair (S, Y ) in Definition 2.1 is called
a generalized Okamoto-Painlevé pair in [STT]. However, in this paper, we
shall use this terminology. Note that in the original definition of an Okamoto-
Painlevé pair (S, Y ) in [STT] we assume that S−Yred contains C2 as a Zariski
open set and Yred is a normal crossing divisor. (See also [Sa-Ta]).
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2.2. Okamoto-Painlevé pairs and Painlevé equations
Let (S, Y ) be a rational Okamoto-Painlevé pair with the irreducible de-

composition Y =
∑r

i=1 miYi and set D = Yred =
∑r

i=1 Yi. Denote by M(Y )
the sub-lattice of Pic(S) � H2(S,Z) generated by the irreducible components
{Yi}ri=1. With the bilinear form on M(Y ) which is (−1) times the intersection
pairing on S, M(Y ) becomes a root lattice of affine type (cf. [STT, Section 1],
[Sakai]). Let R(Y ) denote the type of the root lattice. One can classify rational
Okamoto-Painlevé pairs (S, Y ) in terms of the type R(Y ). (See [STT, Section
1], [Sakai]).

Not all types of rational Okamoto-Painlevé pairs correspond to the
Painlevé equations. The Table 1 is the list of the types of Okamoto-Painlevé
pairs which correspond to the Painlevé equations. We shall explain the meaning
of the correspondence in Theorem 2.1. Note that classically, Painlevé equations
were classified into 6 types, however now we should classify them into 8 types.
Actually, the third Painlevé equations PIII can be classified further into 3 types
P D̃6

III , P
D̃7
III and P D̃8

III corresponding to the types of R = R(Y ). The classical third
Painlevé equations correspond to P D̃6

III , which form a two parameter family of
equations. The equations P D̃7

III and P D̃8
III can be obtained by specializations of

these parameters.

Okamoto-Painlevé pairs and Painlevé equations

R = R(Y ) Ẽ8 Ẽ7 D̃8 D̃7 D̃6 Ẽ6 D̃5 D̃4

Painlevé equation PI PII P D̃8
III P D̃7

III P D̃6
III PIV PV PV I

Table 1.

Here we shall recall one more important definition (cf. [STT, Section 1]).

Definition 2.2. A rational Okamoto-Painlevé pair (S, Y ) will be called
of fibered type if there exists an elliptic fibration f : S −→ P1 such that f∗(∞) =
Y as divisors. We say that a rational Okamoto-Painlevé pair is of non-fibered
type if (S, Y ) is not of fibered type.

The following theorem (cf. [STT, Proposition 5.1 and Theorem 6.1]) ex-
plains how one can give correspondences between rational Okamoto-Painlevé
pairs and Painlevé equations in Table 1.

Theorem 2.1 ([STT, Proposition 5.1]). Let R = R(Y ) be one of types
of the root systems in Table 1 (i.e., R = D̃i, 4 ≤ i ≤ 8 or Ẽj , 6 ≤ j ≤ 8) and let
r be the number of irreducible components of D = Yred and set s = s(R) = 9−r.
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Then there exist affine open subschemesMR ⊂ Cs = SpecC[α1, . . . , αs], BR ⊂
C = SpecC[t], and the following commutative diagram satisfying the conditions
below :

(2.2)
S ←↩ D

π ↓ ↙ ϕ
MR × BR .

(1) S is a smooth quasi-projective manifold and D is a divisor with normal
crossing of S. Moreover π is a smooth and projective morphism and ϕ is a flat
morphism such that the above diagram is a deformation of non-singular pairs
of projective surfaces and normal crossing divisors in the sense of Kawamata
[Kaw].

(2) There is a rational relative 2-form

(2.3) ωS ∈ Γ(S, Ω2
S/MR×BR

(∗D))

which has poles only along D. If we denote by Y the pole divisor of ωS , then
for each point (α, t) ∈ MR × BR, (Sα,t,Yα,t) is a rational Okamoto-Painlevé
pair of type R = R(Y ) and Yred = D.

(3) There is a unique global rational vector field

(2.4) ṽ ∈ Γ(S, ΘS(− logD)⊗OS(D))

on S which is a lift of ∂
∂t , that is, π∗(ṽ) = ∂

∂t . Moreover the restriction of ṽ to
S − D gives a regular algebraic vector field which corresponds to the Painlevé
equation of type R. We call the systems of differential equations determined by
the vector field ṽ the Painlevé system of type R. (See (2.10) below).

We can state more about the family in (2.2) as follows.
(1) The family is semi-universal at each point (α, t) ∈ MR × BR, that is,

the Kodaira-Spencer map

(2.5) ρ : Tα,t(MR × BR) −→ H1(Sα,t, ΘSα,t
(− logDα,t))

is an isomorphism. For a point (α, t) ∈ MR × BR at which the corresponding
Okamoto-Painlevé pair is of non-fibered type, one can obtain the following
commutative diagram:

(2.6)
0
↑

0 → H1
Dα,t

(S¸,t, ΘSα,t(− logD¸,t)) ↪→ H1(S¸,t, ΘSα,t(− logD¸,t))

↑ ||
H0(D¸,t, ΘSα,t(− logD) ⊗ NDα,t) � C · ρ

„
∂

∂t

«
↪→ H1(S¸,t, ΘSα,t(− logD¸,t))

� ↑ � ↑ ρ

T¸,t(BR) � C · ∂

∂t
↪→ T¸,t(MR × BR)

↑ ↑
0 0.
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(2) Let MR and BR denote the affine coordinate rings of MR and BR

respectively so that MR = Spec MR and BR = SpecBR. (Note that MR and
BR are obtained by some localizations of C[α1, . . . , αs] and C[t] respectively.)
There exists an affine open covering {Ũi}l+k

i=1 of S such that for each i

Ũi � Spec
(

(MR ⊗BR)
[
xi, yi,

1
fi(xi, yi, α, t)

])
⊂ SpecC[α, t, xi, yi]

� Cs+3 � C12−r.

(2.7)

Here fi(xi, yi, α, t) is a polynomial in (MR ⊗ BR)[xi, yi]. Moreover, we may
assume that S − D can be covered by {Ũi}li=1, and for each i, the restriction
of the rational 2-form ωS can be written as

(2.8) ωS|Ũi
=

dxi ∧ dyi

fi(xi, yi, α, t)mi
.

(3) By using the local coordinates of S −D, the global rational vector field
ṽ on S obtained in (2.4) can be written on each open set Ũi for 1 ≤ i ≤ l
(corresponding to the open covering of S − D) as

(2.9) ṽ|Ũi
=

∂

∂t
− θi =

∂

∂t
− ηi

∂

∂xi
− ζi

∂

∂yi
,

where θi = ηi
∂

∂xi
+ ζi

∂
∂yi

is a regular algebraic vector field on Ũi.
This explicit expression of ṽ|Ũi

gives a system of differential equations

(2.10)




dxi

dt
= −ηi(xi, yi, α, t),

dyi

dt
= −ζi(xi, yi, α, t),

which is equivalent to the Painlevé equation of type R.

Remark 2. One can show that the deformation corresponding to ρ( ∂
∂t )

preserves the relative rational 2-form ωS in (2.3). This fact explains the reason
why the systems of differential equations in (2.10) can be written in Hamiltonian
systems. For more details, see [STT, Section 6].

2.3. Riccati equations
Let U ⊂ C be an open complex domain (in analytic topology) with a local

analytic coordinate t and a(t), b(t), c(t) holomorphic functions defined in U .
Consider a Riccati equation

(2.11) x′ = a(t)x2 + b(t)x + c(t).

By the change of unknown

(2.12) x = − 1
a(t)

d

dt
log(u) = − 1

a(t)
u′

u
,



�

�

�

�

�

�

�

�

Nodal curves and Riccati solutions 535

the equation (2.11) is transformed into the linear equation

(2.13) u′′ −
[
a′(t)
a(t)

+ b(t)
]

u′ + a(t)c(t)u = 0.

Therefore the movable singularities of the solution x(t) = − 1
a(t)

u′
u of (2.11)

are only poles. This condition is called the Painlevé property for an algebraic
ordinary differential equation (cf. [IKSY, Ch. 3, 3.1]).

Remark 3. Riccati equations above are defined in the space P1 × U
with the coordinates (x, t). The equation (2.11) is equivalent to a rational
global vector field on P1 × U as

(2.14) ṽ =
∂

∂t
+ [a(t)x2 + b(t)x + c(t)]

∂

∂x
.

By the coordinate change u = 1
x , ṽ can be transformed into the form

ṽ =
∂

∂t
− [a(t) + b(t)u + c(t)u2]

∂

∂u
.

This shows that the vector field ṽ is holomorphic even at x =∞, hence ṽ is a
global holomorphic vector field on P1×U . (Conversely, one can show that any
holomorphic vector field on P1 × U which is a lift of ∂

∂t can be written as in
(2.14).) Therefore the space P1 × U can be considered as the space of initial
conditions for the Riccati equation above.

2.4. Nodal curves on Okamoto-Painlevé pairs and Riccati equations
Let (S, Y ) be a rational Okamoto-Painlevé pair of type R = R(Y ) corre-

sponding to Painlevé equations of type R. Then, as we see in Theorem 2.1, one
can construct a global rational vector field ṽ on the semi-universal deformation
family of (S, Y ) which gives the Painlevé equation of type R.

In what follows, we will show that Painlevé equations can be reduced to the
Riccati equations if and only if the corresponding rational Okamoto-Painlevé
pair (S, Y ) contains P1 on S − Yred. Roughly speaking, we have the following
correspondences.

(2.15)
Painlevé equations ⇔ Special deformations of

Okamoto-Painlevé pairs (S, Y )

∪ ∪
Riccati equations ⇔ Nodal curves C � P1 ⊂ S − Yred

In order to explain this scheme more explicitly, let us consider the Hamil-
tonian systems of the Painlevé equation of type Ẽ6 (= PIV ) with two auxiliary
parameters κ0, κ∞;

(2.16)




dx0

dt
= 4x0y0 − x2

0 − 2tx0 − 2κ0,

dy0

dt
= −2y2

0 + 2(x0 + t)y0 − κ∞.
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When κ0 = 0, if we set x0 ≡ 0, the first equation of the system (2.16) is
automatically satisfied, and the second equation can be reduced to the equation

(2.17)
dy0

dt
= −2y2

0 + 2ty0 − κ∞,

which is nothing but a Riccati equation. One can easily check that {x0 = 0}
defines a smooth P1 on S − Yred (see Section 4).

Note that if C ⊂ S−Yred is a smooth irreducible rational curve in S−Yred,
we see that KS · C = −Y · C = 0, hence, by the adjunction formula, we have

C2 = KS · C + C2 = −2.

Therefore a smooth irreducible rational curve C ⊂ S − Yred is always a nodal
curve or a (−2)-curve.

The following proposition gives a characterization of Riccati equations
obtained from the Painlevé equations in terms of rational nodal curves on
Okamoto-Painlevé pair (S, Y ) (see Figure 1).

Proposition 2.1. Under the same notation as in Theorem 2.1, let us
consider the family π : S −→MR × BR of the Okamoto-Painlevé pairs of type
R in (2.2).

(1) Assume that for a point t′0 = (α0, t0) ∈MR×BR, there exists a smooth
rational curve C ⊂ S(α0,t0) −D(α0,t0). Then there exists an (analytic or étale)
open neighborhood U of t0 of BR satisfying the following conditions.

(a) There exist a flat family of rational curves ϕ : C −→ {α0}×U and
an inclusion ι : C ↪→ S −D|{α0}×U such that the following diagram
is commutative:

(2.18)
C ↪→ C ι

↪→ S −D|{α0}×U

↓ ϕ ↓ ↙ π
(α0, t0) ∈ {α0} × U .

(b) The restriction of the vector field ṽ ∈ Γ(S, ΘS(− logD) ⊗ OS(D))
in (2.4) to C is tangent to C, that is,

(2.19) ṽ|C ∈ H0(C, ΘC).

Moreover ṽ|C defines a Riccati equation.
(2) Conversely, assume that the restriction of Painlevé equation ṽ|S′ to the

family π′ : S ′ := S|{α0}×BR
−→ {α0}×BR can be reduced to a Riccati equation

on an open neighborhood {α0}×U of a point (α0, t0) ∈ {α0}×BR. Then there
exist a family of rational nodal curves C −→ {α0} × U on π′ : S ′ − D′ −→
{α0} × U .

Proof. Let us set Bα0 = {α0}×BR ↪→MR×BR, t′0 = (α0, t0). Restrict-
ing the family S −→ MR × BR to Bα0 , we obtain a smooth projective family
of surfaces:

π′ : S ′ := S|Bα0
−→ Bα0 .
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Moreover, we set St′0 = π′−1(t′0). Fix a relatively ample line bundle H for
π′ : S ′ −→ Bα0 . Consider the connected component T of the Hilbert scheme
Hilb(S ′/Bα0) which contains a point [C] and let C −→ T denote the corre-
sponding universal family. (Since π′ is projective and smooth, the universal
family τ : C −→ T exists (cf. [Kol, Ch. 1, Theorem 1.4])).

Moreover we have a natural morphism φ : T → Bα0 and a natural inclusion
ι : C ↪→ T ×Bα0

S ′, so that τ : C −→ T can be factorized into τ = p1 ◦ ι where
p1 denotes the first projection.

Let (Q, mQ) be the local ring of T at [C]. Then from [Kol, Ch. 1, Theorem
2.10], one can see the following:

(1) The OBα0 ,t′0 -algebra Q can be written as the quotient of a local OBα0 ,t′0
-algebra P , where

Spec P −→ Bα0

is smooth of relative dimension d = dimH0(C, NC/St′0
).

(2) The kernel K = ker[P → Q] is generated by dim Obs(C) elements
where Obs(C) denotes the space of obstructions.

Since C ⊂ St′0 is a (−2)-curve, we see that NC/St′0
� OC(−2), and hence

we have H0(C, NC/St′0
) = H0(P1,OP1(−2)) = {0}. Therefore Spec P −→ Bα0

is smooth of relative dimension 0. Now we claim that:

(2.20) Claim: Obs(C) = {0}.

Assuming the claim, we see that

P � Q � OBα0 ,t′0 ,

hence this implies that T is a smooth variety of dimension 1 at the point [C] and
the morphism φ : T −→ Bα0 is also an isomorphism near [C] (étale or analytic)
locally. Hence we obtain an open neighborhood U ′ of [C] in T on which the
morphism φ induces the isomorphism φ|U ′ : U ′ �−→ φ(U ′) ⊂ Bα0 . It is clear
that U ′ = α0 × U for some open neighborhood of t0 in BR and the restriction
of the family C −→ T to U ′ gives a family of rational curves C −→ {α0} × U
which is a deformation of the rational curve C in St′0 .

Now we show the claim (2.20).
From [Kol, Ch. 1, Proposition 2.14], one see that the space of the obstruc-

tions Obs(C) lies in H1(C, NC/St′0
). Consider the natural homomorphisms of

cohomology groups

H1(St′0 , ΘSt′0
) ν−→ H1(C, ΘSt′0

|C)
µ−→ H1(C, NC/St′0

).

Combining the Kodaira-Spencer homomorphism ρ : TBα0 ,t′0 −→ H1(St′0 , ΘSt′0
),

it is easy to see that

(2.21) Obs(C) = µ ◦ ν ◦ ρ(TBα0 ,t′0).

For simplicity, we set S = St′0 , Y = Yt′0 , D = Yred =
∑r

i=1 Yi.
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Since C ⊂ S −D, we see that

ΘS(− log(D + C))|D � ΘS(− log D)|D.

Therefore we have the following exact sequence

0 −→ ΘS(− log(D + C)) −→ ΘS(− log(D + C))(D)
−→ ΘS(− log D)⊗ND/S −→ 0.

For an Okamoto-Painlevé pair (S, Y ) of non-fibered type, we have (cf. [STT,
Proposition 2.1]) H0(S, ΘS(− log(D + C))(D)) = {0}. Hence, this gives an
injective homomorphism

(2.22) 0→ H0(D, ΘS(− log D)⊗ND/S) ↪→ H1(S, ΘS(− log(D + C)).

We also have the following commutative diagram of sheaves (cf. [STT, Lemma
2.1]):

0 0 0
↓ ↓ ↓

0 −→ ΘS(− log(D + C)) −→ ΘS(− log D) −→ NC/S −→ 0
↓ ↓ ↓

0 −→ ΘS(− log C) −→ ΘS −→ NC/S −→ 0
↓ ↓ ↓

0 −→ ⊕r
i=1NYi/S −→ ⊕r

i=1NYi/S −→ 0 −→ 0
↓ ↓ ↓
0 0 0 .

Since NYi/S = OYi
(−2) and NC/S = OC(−2), we have the inclusions

H1(S, ΘS(− log(D + C))) ↪→ H1(S, ΘS(− log C)) ↪→ H1(S, ΘS).

Combining this and (2.22), we see that

(2.23)
H0(D, ΘS(− log D)⊗ND/S) ↪→ H1(S, ΘS(− log(D + C)))

∩
ker[µ ◦ ν : H1(S, ΘS) −→ H1(C, NC/S)].

From (2.6), we have

ρ(TBα0 ,t′0) � H0(D, ΘS(− log D)⊗ND/S),

and hence

µ ◦ ν ◦ ρ(TBα0 ,t′0) = {0}.
Together with (2.21), this shows the claim (2.20).



�

�

�

�

�

�

�

�

Nodal curves and Riccati solutions 539

Next, let us consider the family

(2.24)
C ↪→ S ′|U
↘ ↓ π

U.

Since D ∩ C = ∅, we have ΘS′|C = ΘS′(− logD) ⊗ OS′(D)|C , and hence we
obtain the following exact sequence:

0 −→ ΘC −→ ΘS′(− logD)⊗OS′(D)|C −→ NC/S′ −→ 0.

Since NC/S′|S′
t
= NCt/S′

t
= OCt

(−2), we can show that π∗(NC/S′) = {0}. Then
we have Γ(C, NC/S′) = {0}. This implies that

H0(C, ΘC) � H0(S ′, ΘS′(− logD)⊗OS′(D)|C).

Hence ṽ|C ∈ H0(C, ΘC).
Moreover, we may assume that C −→ U is a trivial P1-bundle, that is,

C � P1×U analytically. Since ṽ|C defines a holomorphic vector field on P1×U ,
it is easy to see that ṽ|C is equivalent to a Riccati equation (cf. Remark 3).

The second assertion is now obvious, because the space of initial conditions
of a Riccati equation must be a family of P1 (cf. Remark 3).

S

BR

t

C

ṽ|C

Figure 1. Nodal curves and Riccati equations for Ẽ6 (PIV )

Remark 4 (Global deformation of a (−2)-curve C). Let us consider
the connected component T of the Hilbert scheme Hilb(S ′/Bα0) which con-
tains a point [C] and the corresponding universal family τ : C −→ T in the
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proof of Proposition 2.1. The argument in the proof shows that dimT = 1 and
the natural morphism

φ : T −→ Bα0

is projective, and hence surjective. We see that φ is a finite morphism of degree
d ≥ 1. Assume that φ is an isomorphism, i.e., d = 1. Then we have the global
family of rational curves C ⊂ S ′ over the affine curve Bα0 :

(2.25)
C ⊂ C ↪→ S ′
↓ ↓ ↓
t′0 ∈ T = Bα0

.

Then the vector field ṽ|C becomes an algebraic regular vector field on C and
defines a Riccati equation over the affine algebraic curve Bα0 . In this case, we
call the differential equation defined by ṽ|C the Riccati equation associated to
the rational curve C(⊂ S −D).

We do not know whether the case with d > 1 occurs or does not occur.
However, if φ : T −→ Bα0 is of degree d > 1, we see that φ−1(φ([C])) consists
of d rational curves of St′0 C1 := C, C2, . . . , Cd which are in the flat family of
rational curves in S ′ parametrized by a connected variety T .

In Section 2, we see that there exists an Okamoto-Painlevé pair (S, Y )
which contains more than one rational curves Ci ⊂ S −D, i ≥ 2.

Definition 2.3. Under the same notation and assumptions in Propo-
sition 2.1, we call the differential equations determined by the vector field ṽ|C
in (2.14) Riccati equation associated with the rational curve C ⊂ S − Yred.
Moreover we call a solution of the Riccati equation ṽ|C a Riccati solution of the
Painlevé system (associated with C ⊂ S − Yred). (Note that all solutions of ṽ|C
remain in the family of rational curves in (2.18).)

3. Classification of (−2)-rational curves (nodal rational curves) on
S −D

Let (S, Y ) be a rational Okamoto-Painlevé pair of non-fibered type which
corresponds to a Painlevé equation (cf. Table 1).

In this section, we will classify all configurations of (−2)-curves on S −D
for a rational Okamoto-Painlevé pair (S, Y ) of non-fibered type. The classi-
fication of the configurations are based on the similar classification for ratio-
nal Okamoto-Painlevé pairs (S, Y ) of fibered type with the elliptic fibration
f : S −→ P1 and some deformation arguments.

3.1. Notations and the Result
Let S be a projective smooth surface over C. We denote by Div(S) the free

abelian group generated by all irreducible curves on S. Let ∼a and ∼ denote
the algebraic equivalence and the linear equivalence of divisors respectively. We
define the Néron-Severi group and the Picard group of S by

NS(S) = Div(S)/ ∼a,(3.1)
Pic(S) = Div(S)/ ∼ .(3.2)
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In what follows, we assume that S is a rational surface. Then we have the
natural isomorphisms

(3.3) Pic(S) � NS(S) � H2(S,Z),

and these groups are free Z-modules of rank b2(S). For any divisor C, we
also denote by the same letter C the class of the divisor in NS(S) � H2(S,Z).
Moreover C = D means that the two divisors are linear equivalent to each other.
We can consider the lattice structure on these free Z-modules by the intersection
form < , > on NS(S) or equivalently by the cup product on H2(S,Z). Let E8

be the unique even unimodular positive-definite lattice of rank 8. For a lattice
L = (L, < , >), we denote by L− = (L, (−1)× < , >), the opposite lattice of
L. Note that the opposite lattice E−

8 of E8 is negative-definite.
Let (S, Y ) be a rational Okamoto-Painlevé pair and let

(3.4) Y =
r∑

i=1

miYi

be the irreducible decomposition of Y . Since S is a rational surface with b2(S) =
rank H2(S,Z) = 10, by the Hodge index theorem, the bilinear form < , > on
H2(S,Z) can be written as the diagonal matrix (1,−1, . . . ,−1︸ ︷︷ ︸

9

). The sub-lattice

M(Y ) generated by {Yi}ri=1 in H2(S,Z) is a root lattice of an affine type, say
R = R(Y ). Since S is not relatively minimal, S contains a (−1)-rational curve
O on S. Then by the adjunction formula, one has Y ·O = −KS ·O = 1. Hence,
there exists a i0, 1 ≤ i0 ≤ r such that mi0 = 1 and Yi0 ·O = 1. By renumbering
i, we may assume that i0 = 1. Define the sub-lattice by

(3.5) M ′(Y ) = 〈Y2, . . . , Yr〉Z ⊂M(Y ),

which is a root lattice of classical type R′. For example, if R = D̃4, then
R′ = D4. Let M(S − Yred) be the sub-lattice H2(S,Z) generated by all (−2)-
curves C on S − Y . Note that we have the orthogonal sum

(3.6) M ′(Y )⊕M(S − Yred) ⊂ H2(S,Z).

Lemma 3.1. Assume that (S, Y ) is of non-fibered type. Then M ′(Y )⊕
M(S − Yred) is a root sub-lattice of E−

8 .

Proof. The sub-lattice 〈Y, O〉Z generated by Y and O has the intersection

matrix
(

0 1
1 −1

)
.

Then the orthogonal complement 〈Y, O〉⊥ in H2(S,Z) is an even, negative-
definite unimodular lattice of rank 8, which is isomorphic to the root lattice
E−

8 . (Since KS = −Y , the adjunction formula implies that 〈Y, O〉⊥ is even.)
Since Y ·O = 1, we see that the orthogonal complement 〈Y 〉⊥ is given by

〈Y 〉⊥ � 〈Y, O〉⊥ ⊕ ZY � Ẽ−
8 .
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Since M(S − Yred) is generated by (−2)-curves on S − Yred, we see that
M(S − Yred) ⊂ 〈Y 〉⊥. Moreover by definition of Okamoto-Painlevé pair (cf.
(2.1)), M ′(Y ) ⊂ 〈Y 〉⊥. (In fact, we have M ′(Y ) ⊂ 〈Y, O〉⊥.) Set

(3.7) N(Y ) := M ′(Y )⊕M(S − Yred).

Then N(Y ) ⊂ 〈Y 〉⊥.
Let us consider the natural projection map

π : 〈Y 〉⊥ � 〈Y, O〉⊥ ⊕ ZY −→ 〈Y, O〉⊥.

We claim that:

(3.8) Claim : π|N(Y ) is injective.

If the claim is true, we see that N(Y ) � π(N(Y )) ⊂ 〈Y, O〉⊥ � E−
8 . This

implies that N(Y ) is a negative-definite lattice generated by (−2)-elements.
Hence one can see that N(Y ) is a root lattice which is a direct sum of root
lattices of type Ai, Dj , Ek. (This also implies that M ′(Y ) and M(S − Yred)
are direct sums of root lattices of type Ai, Dj , Ek.) To show the claim (3.8),
it suffices to show that Ker π|N(Y ) = Kerπ ∩N(Y ) = {0}. Since Kerπ = Z[Y ]
with Y 2 = 0 and M ′(Y ) is negative-definite, we have

Kerπ ∩N(Y ) = Z[Y ] ∩N(Y ) = Z[Y ] ∩ (M ′(Y )⊕M(S − Yred))
= Z[Y ] ∩M(S − Yred).

Hence we have to show that Z[Y ] ∩ M(S − Yred) = {0}. Take γ ∈
Ker π|M(S−Yred) and assume that γ �= 0. Since Ker π = Z · Y , we can write
γ as γ = b · Y with b �= 0. We may assume that b > 0. On the other hand,
since γ ∈M(S − Yred), we can write γ as

γ = C −D

with

C =
l∑

i=1

aiCi, D =
t∑

j=1

bjDj ,

where Ci (1 ≤ i ≤ l) and Dj (1 ≤ j ≤ t) are different (−2)-curves in S − Yred

and ai ≥ 0, bj ≥ 0. Assume that D = 0. Then we see that bY and C are linear
equivalent to each other. Since bY and C are different effective divisors, we
see that dim H0(S,OS(bY )) ≥ 2. This contradicts to the fact that (S, Y ) is of
non-fibered type (cf. [STT, Proposition 1.3]). Therefore we may assume that
both of C and D are non-zero effective divisors. Recall that the lattice 〈Y 〉⊥
is negative semi-definite. Hence one has

0 ≥ C2 = (D + bY )2 = D2 = D · C ≥ 0.

(Here we used the fact that D · Y = C · Y = 0.) This implies that

C2 = D2 = C ·D = 0.
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An element G ∈ 〈Y 〉⊥ with G2 = 0 must be proportional to Y , that is, G = cY .
Therefore we see that C = b′Y with b′ > 0, which again contradicts to the fact
that (S, Y ) is of non-fibered type. We have proved that Kerπ|M(S−Yred) = {0}
and hence Ker π|N(Y ) = {0} as in (3.8).

By Lemma 3.1, there are only finitely many (−2) curves {Ci}li=1 on S −
Yred. The dual graph of configurations of (−2)-curves on S can be classified by
the Dynkin diagram of ADE types. The following theorem is the main theorem
in this section.

Theorem 3.1. Let (S, Y ) be a rational Okamoto-Painlevé pair of non-
fibered type which corresponds to a Painlevé equation (cf. Table 1). The type of
the root lattice M(S−Yred), or equivalently, the dual graph of the configuration
of (−2)-curves on S − Y are classified in Table 2.

Painlevé R(Y ) the type of the dual graph of configuration of
equations (−2)-curves on S − Y

PV I D̃4 D4 , (A1, A1, A1, A1), A3

(A1, A1, A1), A2, (A1, A1), A1

PV D̃5 A3, A2, (A1, A1), A1

P D̃6
III D̃6 (A1, A1), A1

P D̃7
III D̃7 none

P D̃6
III D̃8 none

PIV Ẽ6 A2, A1

PII Ẽ7 A1

PI Ẽ8 none

Table 2. Configuration of (−2)-curves on S−Y for a rational Okamoto-Painlevé
pair (S, Y ) of non-fibered type

3.2. The case of fibered type
Oguiso and Shioda [O-S] give the complete structure theorem of the

Mordell-Weil group of rational elliptic surfaces f : S −→ P1 with a section. Let
(S, Y ) be a rational Okamoto-Painlevé pair of fibered type, i.e. there exists an
elliptic fibration f : S → P1 such that f∗(∞) = Y . Since KS = f∗(−∞) = −Y ,
by the adjunction formula, it is easy to check that an irreducible curve C is a
(−2)-curve if and only if it is one of the irreducible components of the reducible
singular fibers. Hence, to give the complete structure of (−2)-curves on S−Y ,
we quote the structure of the reducible singular fibers which is a part of the
structure theorem of the Mordell-Weil group of f : S −→ P1.

We will introduce some notations. Let (S, Y ) be a rational Okamoto-
Painlevé pairs of fibered type with an elliptic fibration f : S −→ P1 such that
f∗(∞) = Y . (Here, we do not assume that the type of Y is in Table 1.) We
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also assume that there exists a section O ⊂ S and we denote by F the class of
a general fiber of f so that Y and F are linearly equivalent to each other, or
equivalently, have the same class in H2(S,Z). For a lattice L, let us denote by
L− the opposite lattice of L, i.e.,

L− = the module L with the pairing (−1)× < , > .

Let Fv := f−1(v) denote the fiber over the closed point v ∈ P1, and set

Sing(f) := {v ∈ P1|Fv = f−1(v) is singular },
R = Red(f) := {v ∈ P1|Fv = f−1(v) is reducible }.

For each v ∈ R, let

Fv = f−1(v) = Θv,0 +
mv−1∑
i=1

µv,iΘv,i (µv,i ≥ 1, µv,0 = 1)

be the irreducible decomposition of Fv where Θv,0 is the unique component of
Fv meeting the zero section O and mv is the number of irreducible components.
We set

(3.9) Tv := 〈Θv,i|1 ≤ i ≤ mv − 1〉Z ⊂ NS(S),

and

(3.10) T :=
⊕
v∈R

Tv.

Note that the notation T is used for another lattice in [Shi].
By the classification of singular fibers (cf. [Kod]), (and using the intersec-

tion matrix (Θv,i ·Θv,j)1≤i,j≤mv−1), we have the following

Lemma 3.2 ([Shi, Lemma 7.2]). The opposite lattice T−
v is a root lat-

tice of rank mv − 1, determined by the type of the singular fiber Fv as follows :

Type of Fv Im I∗m II∗ III∗ IV ∗ IV III
T−

v Am−1 Dm+4 E8 E7 E6 A2 A1

Furthermore, we have (cf. [Shi, (7.2)])

〈O, F, Θv,i (0 ≤ i ≤ mv − 1, v ∈ R)〉Z = 〈O, F 〉Z ⊕ T ⊂ NS(S)
(orthogonal direct sum)

where F is the class of a fiber of f . As we see in the previous subsection, we
see that 〈O, F 〉⊥ � E−

8 .
Hence we have an embedding

(3.11) T− =
⊕
v∈R

T−
v ↪→ E8.

Now we recall Dynkin’s results on the classification of root lattices con-
tained in E8, which is equivalent to the classification of regular semisimple
subalgebras of the exceptional Lie algebra of type E8.
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Theorem 3.2 ([D, Ch. II, Table 11]). Let L be a root lattice of rank s
which is embedded as a sub-lattice of E8, other than {0} and E8. Then L is
isomorphic to one in Table 3.

s L

8 A8, D8, A7 ⊕A1, A5 ⊕A2 ⊕A1, A⊕2
4 , A⊕4

2 , E6 ⊕A2, E7 ⊕A1

D6 ⊕A⊕2
1 , D5 ⊕A3, D⊕2

4 , D4 ⊕A⊕4
1 , A⊕2

3 ⊕A⊕2
1 , A⊕8

1

7 A6 ⊕A1, A4 ⊕A2 ⊕A1, A5 ⊕ A2, A⊕3
2 ⊕A1, E6 ⊕A1, E7, D7,

D5 ⊕A⊕2
1 , D4 ⊕A⊕3

1 , A⊕2
3 ⊕A1, A⊕7

1 , D6 ⊕A1, D5 ⊕ A2,

A3 ⊕A2 ⊕A⊕2
1 , D4 ⊕A3, A3 ⊕A⊕4

1 , A4 ⊕A3, A5 ⊕A⊕2
1 , A7

6 A⊕3
2 , E6, D6, D4 ⊕A⊕2

1 , A⊕2
3 , D5 ⊕A1, A3 ⊕A⊕3

1 , D4 ⊕A2,

A⊕6
1 , A2 ⊕A⊕4

1 , A4 ⊕A⊕2
1 , A6, A3 ⊕A2 ⊕A1, A5 ⊕A1, A4 ⊕A2

A⊕2
2 ⊕A⊕2

1

5 D5, A3 ⊕A⊕2
1 , A3 ⊕A2, A5 , A⊕5

1 , A4 ⊕A1, D4 ⊕A1

A2 ⊕A⊕3
1 , A⊕2

2 ⊕A1

4 D4, , A⊕4
1 , A2 ⊕A⊕2

1 , A⊕2
2 , A3 ⊕A1, A4

3 A3, A2 ⊕A1, A⊕3
1

2 A2, A⊕2
1

1 A1

Table 3. Root sub-lattices of E8

From Theorem 3.2, one can classify the root sub-lattice of E8, hence T
must be one of the root lattices in the Table 3.

However, as for the existence, we quote the following

Theorem 3.3 (cf. [O-S, Remark 2.7]). For every type given in Table 3
except for the type

D4 ⊕A⊕4
1 , A⊕8

1 and A⊕7
1 ,

there exists a rational elliptic surface whose T− is of given type.

Remark 5 (cf. [O-S, Remark 3.4]). The sum of the local Euler number
of the reducible singular fibers cannot exceed 12, the Euler number of a rational
elliptic surface. Therefore, the types D4 ⊕A⊕4

1 , A⊕8
1 and A⊕7

1 do not appear.

In the case of a rational Okamoto-Painlevé pair (S, Y ) of fibered type in
Table 1, the type of root lattice T∞ is determined by the type of Y . Thus, we
obtain the classification theorem as follows.

Proposition 3.1. Let (S, Y ) be a rational Okamoto-Painlevé pair of
fibered type in Table 1. The type of root lattice

⊕
v∈R−∞ T−

v are classified by
Table 4.
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Type of Y
⊕

v∈R−∞ T−
v

D̃4 = I∗0 D4, A3, A⊕3
1 , A2, A⊕2

1 , A1

D̃5 = I∗1 A3, A2, A⊕2
1 , A1

D̃6 = I∗2 A⊕2
1 , A1

D̃7 = I∗3 none
D̃8 = I∗4 none
Ẽ6 = IV ∗ A2, A1

Ẽ7 = III∗ A1

Ẽ8 = II∗ none

Table 4. The list of root lattices
⊕

v∈R−∞ T−
v (fibered type)

Remark 6. By Lemma 3.2 and Proposition 3.1, the structure of config-
uration of (−2)-curves (i.e. type of Fv’s) is ‘almost’ determined. For Tv = A1,
the type of Fv cannot be distinguished between I2 and III. Similarly, for
Tv = A2, the type of Fv cannot be distinguished between I2 and IV . (For
other types, we can determine the type of Fv.) In the case of Y = D̃4 = I∗0 ,
one has the root lattice T−

v � D4. In this case the corresponding fiber Fv is
of type D̃4 = I∗0 . Note that there is a sub-lattice A⊕4

1 (or the configuration
of (−2)-curves (A1, A1, A1, A1)) in D̃4. This sub-lattice gives the configuration
of type (A1, A1, A1, A1) after the deformation from fibered type to non-fibered
type (see Figure 2).

3.3. Proof of Theorem 3.1
Now we prove Theorem 3.1. Let (S, Y ) be a rational Okamoto-Painlevé

pair of non-fibered type with a given type R = R(Y ) of Y in the Table 1. Let
M ′(Y ) and M(S−Yred) be the sub-lattices defined in (3.6). By Lemma 3.1, the
orthogonal sum M ′(Y )−⊕M(S−Yred)− is a root sub-lattice of E8. Then since
the type R′(Y ) of M ′(Y )− is Dk, 4 ≤ k ≤ 8 or E6, E7, E8, by the Classification
Theorem 3.2, we can obtain the list of possible types for M(S − Yred)− as in
Table 2. Therefore, it suffices to show for each type R′′ of root lattices listed
in Table 2, there exsits a rational Okamoto-Painlevé pair (S, Y ) of non-fibered
types with the root sub-lattice M(S − Yred) of type R′′.

First, let (S, Y ) be a rational Okamoto-Painlevé pair (S, Y ) of fibered
type with a given type of Y in the Table 1 and let f : S −→ P1 be the elliptic
fibration with f∗(∞) = Y . From Proposition 3.1, we can determine the possible
configuration of (−2)-curves on S − Yred = S − f−1(∞) by the classification of
the other reducible singular fibers. (Note that Proposition 3.1 says the existence
of such a fibration.) Let Y =

∑r
i=1 miYi be the irreducible decomposition of

Y . Set D = Yred =
∑r

i=1 Yi, and take all (−2) curves {C1, . . . , Cl} on S−Yred.
Note that each Ci is an irreducible component of reducible singular fibers of f .

Now we will use the following deformation argument.
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Lemma 3.3. Let (S, Y ) be a rational Okamoto-Painlevé pair of fibered
type with the irreducible decomposition Y =

∑r
i=1 miYi such that D = Yred is

a normal crossing divisor, and let C =
∑s

j=1 Cj be a normal crossing divisor
of S satisfying the following conditions :

(1) C ⊂ S −D,
(2) Cj � P1,
(3) The classes of curves {Yi, Cj | 1 ≤ i ≤ r, 1 ≤ j ≤ s} are linearly

independent in H2(S,C) � Pic(S)⊗Z C.
Then there exists a rational Okamoto-Painlevé pair (S′, Y ′) such that
(1) (S′, Y ′) is of non-fibered type,
(2) the type of Y ′ is same as the type of Y ,
(3) S′ − Y ′

red contains (−2) curves {C ′
j}sj=1 with the same configurations

as {Cj}sj=1, and
(4) S′ is a deformation of S.

Proof. Let F be an arbitrary fiber at P1 − {∞} − Sing(f), which is an
elliptic curve and F ⊂ S − (D + C). In Lemma 3.4, we will show

(3.12) H2(ΘS(− log(D + C + F ))) = {0}.
By (3.12), the exact sequence of sheaves

0→ ΘS(− log(D + C + F ))→ ΘS(− log(D + C))→ NF → 0,

yields the exact sequence

(3.13) H1(ΘS(− log(D+C +F )))→ H1(ΘS(− log(D+C)))
φ→ H1(NF )→ 0.

Since F and Y are linearly equivalent, we get NF = [F ]|F = [Y ]|F = OF , and
hence H1(NF ) = H1(OF ) = C. From (3.13) together with (3.12), we see that
there exists an element θ ∈ H1(ΘS(− log(D+C))) such that φ(θ) �= 0. Such an
element θ induces an infinitesimal deformation of the pair (S, D+C) which does
not preserve the elliptic curve F . Since we see that H2(S, ΘS(− log(D+C))) =
{0}, such an infinitesimal deformation θ induces a one parameter deformation

S ←↩ D + C
ϕ ↓ ↙

∆

of (S, D + C) where ∆ = {z ∈ C | |z| < ε} is a small neighborhood of the
origin. Note that we also have the relative divisor Yi for ϕ which gives the
deformation of Yi. Hence we have the relative divisor Y =

∑r
i=1 miYi. For

z ∈ ∆, denote by Sz,Yi,z,Dz, Cz,Yz the corresponding fibers of S,Yi,D, C and
Y over z respectively. It is obvious that for every z ∈ ∆ each Yi,z is a (−2)-
curve on Sz and Yz satisfies the numerical condition (2.1) that Yz · Yi,z = 0 for
all i.

Consider the divisor KS +Y on S and set L = OS(KS +Y). We know the
following two facts:
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(1) L|S0 ∼ OS0 .
(2) Since Sz is a projective smooth rational surface for every z ∈ ∆, we see

that Hi(Sz,OSz
) = 0 for i ≥ 1 and every z ∈ ∆. In particular, Riπ∗OS = 0

for i ≥ 1.
Then by the upper-semicontinuity theorem, we see that dim Hi(Sz,L|Sz

) = 0
for every i ≥ 1 and z ∈ ∆. Noting that π∗L � O∆, we see that there is a non-
trivial homomorphism s : π∗(π∗L) = OS → L. Applying the same argument
for the dual sheaf L∨, we also have a non-trivial homomorphism s′ : OS → L∨.
Then we conclude thatOS(KS+Y) = L � OS . Therefore we see that KS = −Y
and hence KSz

∼ −Yz for every z ∈ ∆. This implies that (Sz,Yz) is a rational
Okamoto-Painlevé pair for z ∈ ∆. Next we claim that there exists z ∈ ∆−{0}
such that dimH0(Sz,Yz) = 1. This also implies that (Sz,Yz) is of non-fibered
type. If dimH0(Sz,Yz) ≥ 2 for every z ∈ ∆, we can show that there exists an
elliptic fibration fz : Sz −→ P1 with f∗

z (∞) = Yz which is a deformation of the
original elliptic fibration f : S0 −→ P1. Since the general fiber F of f does not
extend over z ∈ ∆ − {0}, this deduces the contradiction. Note that the type
of (Sz,Yz) is same as the type of (S0,Y0) = (S, Y ) and Sz − (Yz)red contains
(−2)-curves Cz whose configuration is same as the configuration of C0 = C.

Now we shall prove the claim (3.12).

Lemma 3.4. Under the same assumption of Lemma 3.3, we have

H2(S, ΘS(− log(D + C + F ))) = {0},
where F is a smooth fiber of the elliptic fibration f : S −→ P1.

Proof. By the Serre duality, it suffices to show that

(3.14)
H0(S, Ω1

S(log(D + C + F ))⊗KS) � H0(S, Ω1
S(log(D + C + F ))(−F )) = {0}.

(Note that KS ∼ −F .) Set D̃ =
∏r

i=1 Yi, C̃ =
∏s

j=1 Cj . Then we have the
following commutative diagram of sheaves:
(3.15)

0
↓

0 0 → OF (−F )
δ→

↓ ↓ ↓
0 → Ω1

S(−F ) → Ω1
S → (Ω1

S)|F → 0
↓ ↓ ↓ µ

0 → Ω1
S(log(D + C + F ))(−F ) → Ω1

S(log(D + C + F )) → Ω1
S(log(F ))|F → 0

↓ P.R. ↓ P.R. ↓
δ→ ⊕OYi

⊕OCj
⊕OF (−F ) → ⊕OYi

⊕OCj
⊕OF → OF → 0

↓ ↓ ↓
0 0 0 .

Here the map P.R. : Ω1
S(log(D+C +F )) −→ ⊕r

i=1OYi
⊕s

j=1OCj
is the Poincaré

residue map and the image of µ : (Ω1
S)|F −→ Ω1

S(log F )|F coincides with Ω1
F
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so that the following sequences are exact.

(3.16) 0 −→ OF (−F ) −→ (Ω1
S)|F −→ Ω1

F −→ 0,

(3.17) 0 −→ Ω1
F −→ (Ω1

S(log F ))|F −→ OF −→ 0.

Noting that N∨
F � OF (−F ) � OF and H0(Ω1

S) = 0, from the first and second
rows of (3.15), we obtain the exact sequence of cohomology

(3.18)

0
↓

H0(OF (−F )) � C
↓ H1 ↘

0 −→ H0((Ω1
S)|F ) → H1(Ω1

S(−F )).

From the first column of (3.15), H0(Ω1
S(log(D + C + F ))(−F )) is isomorphic

to the kernel of Gysin map

(3.19) ⊕r
i=1H

0(OYi) ⊕s
j=1 H0(OCj ) ⊕ H0(OF (−F ))

G1−→ H1(Ω1
S(−F )).

We will show that the Gysin map G1 is injective, which implies the assertion
(3.14).

By (3.15) and (3.18), we can decompose the map G1 as follows:

(3.20)

0 0
↓ ↓

H0(OF (−F )) � C H1−→ H0((Ω1
S)|F )

↓ τ ↓
H0(OF (−F )) � C

⊕
⊕r

i=1H
0(OYi

)⊕s
j=1 H0(OCj

)


 G1−→ H1(Ω1

S(−F ))

↓ µ1 ↓ ν

⊕r
i=1H

0(OYi
)⊕s

j=1 H0(OCj
) G2−→ H1(Ω1

S).

Here µ1 is just the projection and G2 is the natural Gysin map. Since H1

is injective (cf. (3.18)), a diagram chasing shows that G1 is injective if G2 is
injective. The image of 1Yi

and 1Cj
by G2 are the class of the divisors of Yi

and Cj in H1(Ω1
S) � H2(S,C). Since {Yi, Cj , 1 ≤ i ≤ r, 1 ≤ j ≤ s} are

linearly independent in H2(S,C) � H1(Ω1
S) by assumption of Lemma 3.3, G2

is injective, hence we have proved the assertion.

Now together with Lemma 3.3 and Proposition 3.1 the following lemma
shows the existence part of Theorem 3.1 and hence completes the proof of
Theorem 3.1 (see Example 3.1).

Lemma 3.5. Let R be a type of affine root lattice in Table 1, that is R =
Ẽk, (k = 8, 7, 6) or R = D̃l, (l = 8, 7, 6, 5, 4). Let (S, Y ) be a rational Okamoto-
Painlevé pair of fibered-type and let f : S −→ P1 be the elliptic fibration with
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f∗(∞) = Y =
∑r

i=1 miYi. Let {Cj}sj=1 be a set of different irreducible (−2)
curves on S − Yred such that no linear combination of {Cj}sj=1 has the same
class of general fiber (= the class of Y ). Then { Yi, Cj | 1 ≤ i ≤ r, 1 ≤ j ≤ s}
are linearly independent in H2(S,Q).

Proof. From the condition of the set {Cj}sj=1, we see that the sub-lattice
〈Cj〉sj=1 ⊂ H2(S,Z) generated by {Cj}sj=1 is negative-definite. Then we have
an orthogonal decomposition

〈Cj〉sj=1 ⊕ 〈Yi〉ri=1 ⊂ H2(S,Z),

which shows the assertion.

Example 3.1. From Proposition 3.1, we have an Okamoto-Painlevé
pair (S, Y ) of fibered type with another singular fiber F1 where the pair (Y, F1)
has the type (D̃4, D̃4). Take a proper subset {Cj}sj=1 of all of irreducible com-
ponents of F1. Then the type of M1 coincides with the proper subgraph of
the Dynkin diagram D̃4 of F1, that is, one of the types; D4, (A1, A1, A1, A1)
A3, (A1, A1, A1), A2, (A1, A1) and A1. It is easy to see that the set of classes
{Yi, Cj , 1 ≤ i ≤ 5, 1 ≤ j ≤ s} are linearly independent in H2(S,Q). Therefore
from Lemma 3.3 and Lemma 3.5, we see that there exists a rational Okamoto-
Painlevé pair (S′, Y ′) of non-fibered type, such that:

(1) the type of Y ′ is D̃4,
(2) there exist (−2)-curves {C ′

j}sj=1 on S′ − Y ′
red with the same Dynkin

type of {Cj}sj=1.
Therefore, we can obtain the assertion of Theorem 3.1 for D̃4. We can treat
the other cases similarly.

4. Non-existence of Riccati solutions for PI , P D̃8
III , P D̃7

III

As a corollary to Theorem 3.1, we obtain the following

Corollary 4.1. Let (S, Y ) be a rational Okamoto-Painlevé pair of non-
fibered type, with the type R = R(Y ) = Ẽ8, D̃8 or D̃7. Then S − Yred does not
contain a rational nodal curve C. Therefore all the Painlevé equations of types
PI , P D̃8

III , P D̃7
III do not admit Riccati solutions.

Proof. The first assertion directly follows from Theorem 3.1 and the last
assertion follows from the first and Proposition 2.1.

Remark 7.
(1) Umemura proved that the Painlevé equation of type PI has no classical

solution and hence in particular no Riccati solution (cf. [Ni], [U1], [U2]).
(2) Ohyama [Ohy] showed that all the Painlevé equations of type P D̃7

III has
no Riccati solutions by proving that they have no invariant divisor with respect
to the vector field (2.4).
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(3) It is worth while remarking that the obstruction to the existence of
nodal curves in S − Yred is a topological one and hence so is the obstruction
to the existence of Riccati solutions. In fact, the sub-lattice M(S − Yred) is
classified only by the intersection theory of the surface S and the structure of
the sub-lattice does not depend on the complex structure of S.

For other types R, by the similar argument in the proof of Lemma (A.2), we
can show the following proposition. This proposition shows that for a general
parameter α ∈ MR, the corresponding Painlevé equations do not admit any
Riccati solution.

Proposition 4.1. Let (S, Y ) be a rational Okamoto-Painlevé pair of
non-fibered type and of type R which corresponds to a Painlevé equation and
assume that S−Yred contains a nodal curve C. Then there exists a one param-
eter deformation of Okamoto-Painlevé pairs of non-fibered type and of the given
type R, Y ↪→ S −→ ∆ = {z ∈ C||z| < ε} of (S, Y ) such that Sz − Yz does not
contains any nodal curve for z ∈ ∆− {0}. Hence for z ∈ ∆−{0} the Painlevé
equation corresponding to (Sz,Yz) does not admit any Riccati solutions.

5. Examples of (−2)-curves on S −D

In this section, we will give examples of (−2)-curves C on S −D for some
rational Okamoto-Painlevé pairs (S, Y ) and Riccati equations associated to C.

Here we will use the explicit description of families of Okamoto-Painlevé
pairs

(5.1)
S ←↩ D

π ↓ ↙ ϕ
MR × BR

in [T2]. As we explained in Section 2, we have isomorphisms MR = SpecMR

and BR = SpecBR such that SpecMR and Spec BR are affine open subschemes
of SpecC[α1, . . . , αs] � Cs and SpecC[t] respectively. Moreover S can be
covered by affine open sets {Ũi}l+k

i=1 such that for each i

(5.2)
Ũi � Spec

(
(MR ⊗BR)

[
xi, yi,

1
fi(xi,yi,α,t)

])
⊂ SpecC[α, t, xi, yi] � Cs+3

||
C12−r,

where fi(xi, yi, α, t) is an element of (MR ⊗ BR)[xi, yi]. (Note that in most
cases fi(xi, yi, α, t) ≡ 1 and we may assume that S −D is covered by {Ũi}li=1.)

For a given point α = (α1, . . . , αs) ∈MR, we denote the restriction of the
family π : S −→ MR × BR to {α} × BR by Sα −→ {α} × BR. Moreover we
set

(5.3)
Uiα := Ũi ∩ Sα ⊂ SpecBR[xi, yi], Ui(α,t) = Ũi ∩ Sα,t ⊂ SpecC[xi, yi],
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where Sα,t = π−1((α, t)).
Next let us consider the smooth variety obtained by patching affine planes

Wi = SpecC[xi, yi] � C2 ( i = 1, 2) by the coordinate transformation

(5.4) x1 =
1
x2

, y1 = x2
2y2.

It is easy to see that the equations {y1 = y2 = 0} define a (−2)-curve C in W .

Example 5.1 (Ẽ7–type (PII)). In the case of R = Ẽ7 (PII), the family
is constructed as follows (cf. [MMT], [T2], [SU]). Let us set

MR = SpecC[α] � C, BR = SpecC[t] � C.

Here we only give the affine covering of the family π : S − D −→ MR × BR.
Take three affine schemes i = 0, 1, 2

(5.5) Ũi = SpecC[α, t, xi, yi] � C4,

and patch these affine schemes by the coordinate transformations:

(5.6)
x0 =

1
x1

=
1
x2

,

y0 = x1

((
−α− 1

2

)
− x1y1

)
= 2x−2

2 + t +
(

α− 1
2

)
x2 − y2x

2
2.

On Ũ0, the Painlevé vector field ṽ in (2.4) is explicitly given by

(5.7) ṽ =
∂

∂t
+

[
y0 − x2

0 −
t

2

]
∂

∂x0
+

[
2x0y0 + α +

1
2

]
∂

∂y0
,

which is equivalent to the equation:

(5.8)




dx0

dt
= y0 − x2

0 −
t

2
,

dy0

dt
= 2x0y0 + α +

1
2
.

Then for α = −1
2 , on U0,− 1

2
∪ U1,− 1

2
, we obtain a family of (−2)-curves

C− 1
2
−→ {−1

2} × BẼ7
defined by

(5.9) C− 1
2

= {y0 = y1 = 0} ⊂ U0,− 1
2
∪ U1,− 1

2
⊂ S− 1

2
−D− 1

2
.

Moreover, on the family C− 1
2
−→ {−1

2}×BẼ7
, the equation (5.8) can be reduced

to

(5.10)
dx0

dt
= −x2

0 −
t

2
.

It is known that Bäcklund transformations give isomorphisms between Sα and
Sα±1. Hence for α ∈ −1

2 + Z , the family Sα − Dα also contains a family of
(-2)-curves (cf. [SU], [U-W1]). Moreover, Noumi and Okamoto [NO] proved
the following Theorem (cf. [NO, Theorem 2] and remark after it). (See also
[U-W1, Theorem 2.1].)
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Theorem 5.1 ([NO, Theorem 2]). Let us denote by PII(α) the equa-
tion in (5.8). Then

(1) For every integer α ∈ Z, there exists a unique rational solution of the
system PII(α).

(2) For every α ∈ 1
2 + Z, there exists a unique one parameter family of

classical solutions of PII(α), of which each solution is rationally written by a
solution of the Riccati equation (5.10).

(3) Let (x0, y0) be a solution of PII(α) different from those mentioned
above. Then neither x0 nor y0 is classical, hence a solution of a Riccati equa-
tion.

Note that for α = 0, PII(0) in (5.8) has a rational solution (x0, y0) = (0, t
2 ).

Theorem 5.1 says that this rational solution is the unique rational solution for
PII(0).

Example 5.2 (D̃4 (PV I)). Next let us show examples of (−2)-curves
for R = D̃4 (cf. [T2]). The parameter space of the semiuniversal family S −
D −→MD̃4

× BD̃4
are given by

MR = SpecC[κ0, κ1, κ∞, κt] � C4, BR = SpecC[t, 1/t, 1/(t−1)] � C−{0, 1}.
(Here we use the parameters κi, i = 0, 1,∞, t for MR as in [MMT] and [T2]).
Take affine schemes i = 0, 1, 2, 3, 4, 5

(5.11) Ũi = SpecC[xi, yi, κ0, κ1, κ∞, κt, t, 1/t, 1/(t− 1)] � C2 ×MR × BR

and patch them by the coordinate transformations:

(5.12)

x0 = y1(κ0 − x1y1), y0 =
1
y1

,

x1 = y0(κ0 − x0y0), y1 =
1
y0

,

x0 = 1 + y2(κ1 − x2y2), y0 =
1
y2

,

x2 = y0(κ1 + y0 − x0y0), y2 =
1
y0

,

x0 = t + y3(κt − x3y3), y0 =
1
y3

,

x3 = y0(κt + ty0 − x0y0), y3 =
1
y0

,

x0 =
1
x4

, y0 = x4

(
κ0 + κ1 + κt − 1 + κ∞

2
− x4y4

)
,

x4 =
1
x0

, y4 = x0

(
κ0 + κ1 + κt − 1 + κ∞

2
− x0y0

)
,

x4 = y5(κ∞ − x5y5), y4 =
1
y5

,

x5 = y4(κ∞ − x4y4), y5 =
1
y4

.
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On Ũ0, the Painlevé vector field ṽ in (2.4) is given by

(5.13) ṽ =
∂

∂t
+ A(x, y, t)

∂

∂x0
+ B(x, y, t)

∂

∂y0
,

where

A(x, y, t) :=
x0(x0 − 1)(x0 − t)

t(t− 1)

[
2y0 −

(
κ0

x0
+

κ1

(x0 − 1)
+

(κt − 1)
(x0 − t)

)]
,

B(x, y, t) := − 1
t(t− 1)

[
(3x2

0 − 2(t + 1)x0 + t)y2
0

− (2(κ0 + κ1 + κt − 1)x0 − (κ0 + κ1)t− κ0 − κt + 1)y0

+
(κ0 + κ1 + κt − 1)2 − κ2

∞
4

]
.

This is equivalent to the equation:

(5.14)




dx0

dt
= A(x, y, t),

dy0

dt
= B(x, y, t).

Let us set the hyperplanes of the parameter spaceMD̃4
× BD̃4

as follows:

H0 = {κ0 = 0}, H1 = {κ1 = 0}, Ht = {κt = 0},
Hε = {κ0 + κ1 + κt + κ∞ − 1 = 0}, H∞ = {κ∞ = 0}.(5.15)

Note that each hyperplane Hi is a direct product of H ′
i ⊂MD̃4

and BD̃4
, i.e.,

Hi = H ′
i×BD̃4

. Remark also that each hyperplane is one of the reflection hyper-
planes of the affine Weyl group W (D̃4) generated by Bäcklund transformations
(cf. [NTY]).

We consider the deformation

π∗(H0) ⊂ S −D
π ↓ π ↓
H0 ⊂MD̃4

× BD̃4

which is given by restricting the parameter space MD̃4
× BD̃4

to H0. For the
subfamily (S − D)(0,κ1,κt,κ∞) over H0, the coordinate transformation between
U0(0,κ1,κt,κ∞) and U1(0,κ1,κt,κ∞) is given by

x0 = −x1y1
2, y0 =

1
y1

.

Therefore

C0,(0,κ1,κt,κ∞) := {x0 = x1 = 0}
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determines a family of (−2)-curves

(5.16)
C0,(0,κ1,κt,κ∞) ↪→ (S − D)(0,κ1,κt,κ∞)

↓ ↙
H0 = H ′

0 × BR.

In the same way, we obtain a family of (−2)-curves over each hyperplane
Hi as follows:

(5.17)

H0 : C0,(0,κ1,κt,κ∞) := {x0 = x1 = 0} ⊂ (S − D)(0,κ1,κt,κ∞),

H1 : C1,(κ0,0,κt,κ∞) := {x0 = 1, x2 = 0} ⊂ (S − D)(κ0,0,κt,κ∞),

Ht : Ct,(κ0,κ1,0,κ∞) := {x0 = t, x3 = 0} ⊂ (S − D)(κ0,κ1,0,κ∞),

Hε : Cε,(κ0,κ1,κt,κ∞) := {y0 = y4 = 0} ⊂ (S − D)(κ0,κ1,κt,κ∞),

(κ0 + κ1 + κt + κ∞ = 1),
H∞ : C∞,(κ0,κ1,κt,0) := {x4 = x5 = 0} ⊂ (S − D)(κ0,κ1,κt,0).

By restricting the (extended) Hamiltonian system to each Cj , we obtain
the following Riccati equation.

• On C0,(0,κ1,κt,κ∞) ∩ U0(0,κ1,κt,κ∞):

x0 ≡ 0,
dy0

dt
= − 1

t(t− 1)

(
ty2

0 + (κ1t + κt − 1)y0 +
(κ1 + κt − 1)2 − κ2

∞
4

)
.

• On C1,(κ0,0,κt,κ∞) ∩ U0(κ0,0,κt,κ∞):




x0 ≡ 1,

dy0

dt
= − 1

t(t− 1)

(
(1− t)y2

0 − ((κ0 + κt − 1)− κ0t)y0

+
(κ0 + κt − 1)2 − κ2

∞
4

)
.

• On Ct,(κ0,κ1,0,κ∞,t) ∩ U0(κ0,κ1,0,κ∞,t):




x0 ≡ t,

dy0

dt
= − 1

t(t− 1)

(
t(t− 1)y2

0 − ((κ0 + κ1 − 2)t− κ0 + 1)y0

+
(κ0 + κ1 − 1)2 − κ2

∞
4

)
.

• On Cε,(κ0,κ1,κt,1−(κ0+κ1+κt),t) ∩ U0(κ0,κ1,κt,1−(κ0+κ1+κt),t):


dx0

dt
= − 1

t(t− 1)
(κ0(x0 − 1)(x0 − t) + κ1x0(x0 − t) + (κt − 1)x0(x0 − 1)),

y0 ≡ 0.
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fiber (−2)-curves configuration
(S − D)(0,0,0,1) {C0, C1, Ct, Cε} D4

(S − D)(0,0,1,0) {C0, C1, Cε, C∞} D4

(S − D)(0,1,0,0) {C0, Ct, Cε, C∞} D4

(S − D)(1,0,0,0) {C1, Ct, Cε, C∞} D4

(S − D)(0,0,0,0) {C0, C1, Ct, C∞} A1, A1, A1, A1

Table 5.

• On C∞,(κ0,κ1,κt,0,t) ∩ U4(κ0,κ1,κt,0,t):

x4 ≡ 0,
dy4

dt
= − 1

t(t− 1)

(
y2
4 + ((κt − 1)t + κ1)y4 +

(κ1 + κt − 1)2 − κ2
0

4
t

)
.

Next, choose four hyperplanes from the five hyperplanes and consider
the fibers over the intersection of them. For each fiber (S − D)(0,0,0,1,t) of
(0, 0, 0, 1, t) ∈ H0 ∩H1 ∩Ht ∩Hε, we can see that C0,(0,0,0,1,t), C1,(0,0,0,1,t), and
Ct,(0,0,0,1,t) do not intersect each other but they intersect with Cε,(0,0,0,1,t) re-
spectively. Hence the type of the configuration of these curves is D4. By
checking the other cases, we obtain the following.

Below, we only give the tables for D̃k, k = 5, 6. The case Ẽ6 will be treated
in Section 6. For parameters and the coordinate transformations, see [T2].

Example 5.3 (D̃5 (PV )).

MD̃5
= SpecC[κ0, κt, κ∞] � C3, BD̃5

= SpecC[t, t−1] � C×.

H0 = {κ0 = 0}, Hε = {κ0 + κt + κ∞ = 0}, H∞ = {κ∞ = 0}.
H0 : C0,(0,κt,κ∞) := {x0 = x1 = 0} ⊂ (S − D)(0,κt,κ∞),

Hε : Cε,(κ0,κt,−(κ0+κt)) := {y0 = y3 = 0} ⊂ (S − D)(κ0,κt,−(κ0+κt)),

H∞ : C∞,(κ0,κt,0) := {x3 = x4 = 0} ⊂ (S − D)(κ0,κt,0).

• On C0,(0,κt,κ∞) ∩ U0(0,κt,κ∞)




x0 ≡ 0,

dy0

dt
= −1

t

(
y2
0 + (κt − t)y0 +

κ2
t − κ2

∞
4

)
.

• On Cε,(κ0,κt,−(κ0+κt)) ∩ U0(κ0,κt,−(κ0+κt))

dx0

dt
= −1

t
(κ0(x0 − 1)2 + κtx0(x0 − 1) + tx0), y0 ≡ 0.
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Cε

C0 C1 Ct C∞

Cε

C0 C1 Ct C∞

Cε

C0 C1 Ct C∞

Cε

C0 C1 Ct C∞

Cε

C0 C1 Ct C∞
Figure 2. Maximal configurations for R = D̃4.

• On C∞,(κ0,κt,0) ∩ U3(κ0,κt,0)

x3 ≡ 0,
dy3

dt
= −1

t

(
y2
3 + (κt + t)y3 +

κ2
t − κ2

0

4

)
.

fiber (−2)-curves configuration
(S − D)(0,0,0) {C0, Cε, C∞} A3

Example 5.4 (D̃6 (PIII)).

MR = SpecC[κ0, κ∞] � C2, BR = SpecC[t, t−1] � C×.

H1 = {κ0 + κ∞ = 0}, H2 = {κ0 − κ∞ = 0},
H3 = {κ0 − κ∞ + 2 = 0}, H4 = {κ0 + κ∞ + 2 = 0}.

H1 : C1,(κ0,−κ0) := {y0 = y2 = 0} ⊂ (S − D)(κ0,−κ0),

H2 : C2,(κ0,κ0) := {y0 = t, y3 = 0} ⊂ (S − D)(κ0,κ0),

H3 : C3,(κ0,κ0+2) := {y1 = 0, y2 = t} ⊂ (S − D)(κ0,κ0+2),

H4 : C4,(κ0,−κ0−2) := {y1 = t, y3 = t} ⊂ (S − D)(κ0,−κ0−2).



�

�

�

�

�

�

�

�

558 Masa-Hiko Saito and Hitomi Terajima

• On C1,(κ0,−κ0) ∩ U0(κ0,−κ0)

dx0

dt
=

1
t
(−2tx2

0 − (2κ0 + 1)x0 + 2t), y0 ≡ 0.

• On C2,(κ0,κ0) ∩ U0(κ0,κ0)

dx0

dt
=

1
t
(2tx2

0 − (2κ0 + 1)x0 + 2t), y0 ≡ t.

• On C3,(κ0,κ0+2) ∩ U1(κ0,κ0+2)

dx1

dt
=

1
t
(−2tx2

1 + (2κ0 + 3)x1 − 2t), y1 ≡ 0.

• On C4,(κ0,−κ0−2) ∩ U1(κ0,−κ0−2)

dx1

dt
=

1
t
(2tx2

1 + (2κ0 + 3)x1 − 2t), y1 ≡ 1.

fiber (−2)-curves configuration
(S − D)(0,0) {C1, C2} A1, A1

(S − D)(−1,1) {C1, C3} A1, A1

(S − D)(−1,−1) {C2, C4} A1, A1

(S − D)(−2,0) {C3, C4} A1, A1

6. Confluences of Nodal Curves and Riccati Equations

In this section, we will discuss the confluence of nodal curves and Riccati
equations for Painlevé equations. We will deal with only the case R = Ẽ6

(PIV ), however one can easily extend the result to other cases like D̃5 and D̃4.

6.1. The confluence of nodal curves
Example 6.1 (Ẽ6 (PIV )).

MR = SpecC[κ0, κ∞] � C2, BR = SpecC[t] � C.

An open covering of S − D is given by

S − D =
3⋃

i=0

Ũi,

where for i = 0, 1, 2, 3

Ũi = SpecC[xi, yi, κ0, κ∞, t] � C5.
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Moreover the coordinate transformations are given by

x0 = y1(κ0 − x1y1), y0 =
1
y1

,

x1 = y0(κ0 − x0y0), y1 =
1
y0

,

x0 =
1
x2

, y0 = x2(κ∞ − x2y2),

x2 =
1
x0

, y2 = x0(κ∞ − x0y0),

x2 = x3, y2 = −1/2
x3

3

− t

x2
3

+
2κ∞ − κ0 + 1

x3
+ y3,

x3 = x2, y3 =
1/2
x3

2

+
t

x2
2

− 2κ∞ − κ0 + 1
x2

+ y2.

Finally, on the affine open set Ũ0, the Painlevé system of type Ẽ6 which is
equivalent to PIV is given as follows;

(6.1)




dx0

dt
= 4x0y0 − x2

0 − 2tx0 − 2κ0,

dy0

dt
= −2y2

0 + 2(x0 + t)y0 − κ∞.

We have two hyperplanes H0 and H∞ onMR × BR and families of (−2)-
curves C0 and C∞ over H0 and H∞ as follows;

(6.2)
H0 = {κ0 = 0} : C0,(0,κ∞) := {x0 = x1 = 0} ⊂ (S − D)(0,κ∞),

H∞ = {κ∞ = 0} : C∞,(κ0,0) := {y0 = y2 = 0} ⊂ (S − D)(κ0,0).

Then now it is easy to see that the Painlevé system (6.1) can be reduced
to the following Riccati equations on C0 and C∞ respectively.

• On C0,(0,κ∞) ∩ U0(0,κ∞)

(6.3) x0 ≡ 0,
dy0

dt
= −2y2

0 + 2ty0 − κ∞.

• On C∞,(κ0,0) ∩ U0(κ0,0)

(6.4)
dx0

dt
= −x2

0 − 2tx0 − 2κ0, y0 ≡ 0.

fiber (−2)-curves configuration
(S − D)(0,0) {C0, C∞} A2

Let us consider the neighborhood of (κ0, κ∞, t) = (0, 0, t) ∈MR×BR and
the hyperplanes as in (6.2). Then, over the subvariety H0 ∩H∞ = {(0, 0, t)},
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the family (S − D)0,0 contains both of families of nodal curves C0 ∪ C∞ (A2-
configuration), (see Figure 3 ). We call this phenomenon the confluence of
nodal curves of Okamoto-Painlevé pairs.

Besides hyperplanes H0, H∞, we also have the hyperplane

Hκ0=κ∞ = {κ0 = κ∞}.
Then one can easily see that over hyperplane Hκ0=κ∞ there exists a family of
(−2)-curves defined by

Cκ0=κ∞ ∩ Ũ0κ0=κ∞ = {x0y0 − κ0 = 0}.
Note that if κ0 goes to 0, then the defining equation of the family becomes
x0y0 = 0. Therefore on (S − D)0,0 we have a homological relation:

Cκ0=κ∞ = C0 ∪ C∞
(see Figure 3). On Cκ0=κ∞ , the Painlevé system (6.1) can be reduced to

dx0

dt
= −x2

0 − 2tx0 + 2κ0,(6.5)

dy0

dt
= −2y2

0 + 2ty0 + κ0, .(6.6)

Note that if κ0 �= 0 the equations (6.5) and (6.6) can be transformed to each
other by the coordinate change x0 = κ0/y0.

The hyperplanes are reflection hyperplanes in MR with respect to the
reflections of the affine Weyl group W (Ã2), which acts on both MR or S as
Bäcklund transformations (cf. [U-W1] and [NTY]). For example, by Bäcklund
transformations, the Riccati equations (6.3), (6.4) and (6.5) are birational
equivalent to each other. See Theorem 3.3 in [U-W1].

6.2. Rational solutions
We shall remark briefly on rational solutions of Painlevé equations. In the

above example, when (κ0, κ∞) = (0, 0), the functions

(6.7) (x0, y0) ≡ (0, 0)

give a solution of the system (6.1), hence gives a rational solution for the
Painlevé equation PIV . From the view point of the geometry of Okamoto-
Painlevé pairs, it is clear that the intersection of two different families of nodal
curves C0, C∞ gives a solution of the Painlevé equation. In fact, Painlevé vector
field ṽ in (2.4) is tangent to each family of rational curves by Proposition 2.1,
hence tangent to their intersection (see Figure 4). It is not surprising that not
all rational solutions of Painlevé equations can be obtained in this way. For
example, as we explained after Theorem 5.1, the equation SII(0) in (5.8) has
the rational solution (x0, y0) = (0, t

2 ), but no Riccati solution. It should be an
interesting problem to understand the rational or algebraic solutions from the
view point of the geometry of Okamoto-Painlevé pairs.
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C0

C∞

κ∞

κ0κ∞ = 0

κ0 = 0

A2

A1

A1

A1

κ0 − κ∞ = 0

Figure 3. A Confluence of Nodal Curves in the case Ẽ6 (PIV ).

Here we only remark that there are many works for the classification prob-
lems of rational and algebraic solutions (see e.g., [DM], [Maz], [Mu1], [NO],
[O3], [U-W1], [U-W2]).

Appendix A. Local cohomology group H1
D(ΘS(− log D))

Let (S, Y ) be a rational Okamoto-Painlevé pair of non-fibered type and of
additive type which corresponds to Painlevé equations (i.e. of type D̃i(4 ≤ i ≤
8) or Ẽi(6 ≤ i ≤ 8)), and set D = Yred.

Applying the classification of nodal curves on S − D, we will investigate
the local cohomology group H1

D(ΘS(− log D)). Note that the local cohomology
group can be regarded as the space of time variables for differential equations
associated to (S, D) (cf. [STT, Section 3]).

We state our conjecture for the local cohomology:

Conjecture A.1 ([STT, Conjecture 3.1], [T1]). Let (S, Y ) be a ratio-
nal Okamoto-Painlevé pair (S, Y ) as above. Then we have

(A.1) H1
D(ΘS(− log D)) � C.

For the positivity of the dimension of the cohomology group, we have the
following result:
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C0

C∞

t ∈ BR

Y Y S

Figure 4. Rational solution coming from C0 ∩ C∞ for Ẽ6 (PIV ).

Theorem A.1 ([T1, Theorem 2.1]).

(A.2) dim H0(D, ΘS(− log D)⊗ND) = 1.

Here we put ND = OS(D)/OS.
In particular, a natural inclusion

H0(D, ΘS(− log D)⊗ND) ↪→ H1
D(ΘS(− log D)),

implies

(A.3) dim H1
D(ΘS(− log D)) ≥ 1.

On the other hand, in this section, we shall prove

Theorem A.2. Let

S ←↩ D
π ↓ ↙ ϕ

MR × BR

be the semi-universal deformation of rational Okamoto-Painlevé pairs (S, D)
whose type is one of Ẽ8, Ẽ7, D̃8, D̃6, Ẽ6, D̃5 and D̃4 (i.e., except for R = D̃7).
Then there is a Zariski open set U ⊂MR × BR such that for any (α, t) ∈ U ,

dim H1
D(α,t)

(ΘS(α,t)(− logD(α,t))) = 1.
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Remark 8. For (S, Y ) of type D̃8 or Ẽ8, Theorem A.1 proves Conjec-
ture A.1. In fact, we always have the inclusion

H1
D(ΘS(− log D)) ↪→ H1(S, ΘS(− log D))

and dim H1(S, ΘS(− log D)) = 10− 9 = 1 for these cases.

From Remark 8, in order to show Theorem A.2, we will estimate the di-
mension of the local cohomology group for a special rational Okamoto-Painlevé
pairs of other type R.

We first calculate some cohomology groups.

Lemma A.1. Let (S, Y ) be a rational Okamoto-Painlevé pair, and C
a normal crossing divisor of S. Moreover, let C =

∑s
i=1 Ci be an irreducible

decomposition of C, and we assume that {Ci}si=1 is linearly independent in
H2(S,C) � Pic(S)⊗C. Then we have

H2(S, ΘS(− log C)) = {0}.
Proof. We have only to replace D of [STT, Lemma 2.2 and Corollary 2.1]

with C.

Lemma A.2. Let (S, Y ) be a generalized rational Okamoto-Painlevé
pair such that D = Yred =

∑r
i=1 Yi is a normal crossing divisor with at least two

irreducible components, say r ≥ 2, and let C =
∑s

i=1 Ci be a normal crossing
divisor of S. We assume that

(1) C ⊂ S −D,
(2) Ci � P1,
(3) {Yi, Cj |1 ≤ i ≤ r, 1 ≤ j ≤ s} is linearly independent.

Then we have

dimH1(S, ΘS(− log(D + C))) = 10− (r + s).

Proof. Note that assumption 1 implies D + C is normal crossing and
KS · Ci = −Y · Ci = 0. We have H2(S, ΘS(− log(D + C))) = 0 by applying
Lemma A.1 to D + C. Therefore by using the same argument as Proposition
2.2 in [STT], we have the assertion.

Remark 9. We have the following exact sequence of sheaves:

0→ ΘS(− log(D + C))→ ΘS(− log(D + C − Ci))→ NCi/S → 0,

where NCi/S = OS(Ci)/OS denotes the normal bundle of the divisor Ci ⊂ S.
Note that since NCi/S = OCi

(−2), we have H0(NCi/S) = {0}. Then the
morphism

H0(ΘS(− log(D + C)))→ H0(ΘS(− log(D + C − Ci)))

is injective. Moreover we have

dim H0(ΘS(− log(D + C − Ci)))− dim H0(ΘS(− log(D + C))) = 1

by Lemma A.2. This implies that there exist a deformation (S′, D′) of (S, D)
such that only the curve Ci vanish and other nodal curves remain.
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Now we obtain the following

Proposition A.1. Let (S, Y ) be a rational Okamoto-Painlevé pair “of
non-fibered type ” such that D = Yred is a normal crossing divisor with at least
two irreducible components, say r ≥ 2. We suppose the existence of a divisor
C =

∑9−r
i=1 Ci of S satisfying the conditions in Lemma A.2. Then we have

dimH1
D(ΘS(− log D)) ≤ 1.

Proof. Let us consider the following exact sequence of local cohomology
groups (cf. [Gr, Corollary 1.9])

H0(S−D, ΘS(− log(D+C))) → H1
D(ΘS(− log(D+C))) → H1(S, ΘS(− log(D+C))).

We have an inclusion

H0(S −D, ΘS(− log(D + C))) ↪→ H0(S −D, ΘS(− log D)) = H0(S −D, ΘS).

Since (S, Y ) is of non-fibered type, from (2) of Proposition 2.1 in [STT], we
have H0(S −D, ΘS) = {0}. Therefore we have

H0(S −D, ΘS(− log(D + C))) = {0}.

By applying Lemma A.2, we see

H1(S, ΘS(− log(D + C))) � C.

Moreover, since C ⊂ S − D, we have H1
D(ΘS(− log D)) � H1

D(ΘS(− log(D +
C))), which proves the assertion.

Lemma A.3. For the types D̃4, D̃5, D̃6, Ẽ7 and Ẽ8, there exists a ratio-
nal Okamoto-Painlevé pair (S, Y ) of non-fibered type satisfying the assumption
of Proposition A.1.

Proof. For each case, we only have to show the existence of nodal curves
Cj ⊂ S − D j = 1, . . . , 9 − r on a rational Okamoto-Painlevé pair (S, Y ) of
non-fibered type. The existence of (−2)-curves follows from Theorem 3.1.

Remark 10. For any rational Okamoto-Painlevé pair (S, Y ) of D̃7,
there is no (−2)-curve C on S − D satisfying the condition in Lemma A.2
(cf. Table 4, 2).

Lemma A.3 and Theorem A.1 lead us the following corollary, which also
implies Theorem A.2.

Corollary A.1. For the types D̃4, D̃5, D̃6, D̃8, Ẽ7 and Ẽ8, there exists
a rational Okamoto-Painlevé pair (S, Y ) of non-fibered type such that

dimH1
D(ΘS(− log D)) = 1.
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(1987), 506–513.

[Grm4] , Autotransformations of the Painlevé equations, (Russian)
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to Painlevé, Vieweg, 1991, p. 347.

[Kaw] Y. Kawamata, On deformations of compactifiable manifolds, Math.
Ann. 235 (1978), 247–265.

[Kod] K. Kodaira, On compact analytic surfaces, II, Annals of Math. 77
(1963), 563–626.

[KodT] , Complex manifolds and deformations of complex structures,
Springer-Verlag, 1985.

[Kol] J. Kollár, Rational Curves on Algebraic Varieties, Ergebnisse der
Math. Vol. 32, Springer, 1996.

[Luk1] N. A. Lukashevich, The theory of the fourth Painlevé equation, Diff.
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[Luk2] , The second Painlevé equation, Diff. Eq. 7 (1971), 853–854.

[MMT] T. Matano, A. Matumiya and K. Takano, On some Hamiltonian struc-
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tion of Painlevé, Nagoya Math. J. 117 (1990), 125–171.



�

�

�

�

�

�

�

�

568 Masa-Hiko Saito and Hitomi Terajima

[U-W1] H. Umemura and H. Watanabe, Solutions of the second and fourth
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