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Spectra of deranged Cantor set by weak local
dimensions
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Abstract

We decompose the most generalized Cantor set into a spectral class
using weak lower (upper) local dimension. Each member of the spectral
class is related to a quasi-self-similar measure, so the information of its
Hausdorff (packing) dimension can be obtained. In the end, we give
an example of the Cantor set having countable members composing the
spectral class.

1. Introduction

Many authors ([9], [11]) studied the multi-fractals of an irregular set in
Euclidean space using some measure. In particular, they used a self-similar
measure to analyze a self-similar Cantor set. The self-similar Cantor set is
decomposed into a spectral class from the measure and its lower (upper) local
dimensions. Using the strong law of large numbers, we can relate a member
of the spectral class from the local dimensions of the self-similar measure with
a distribution set ([7], [10]), which means that the spectral class by the self-
similar measure and its local dimensions is in fact the union of the distribution
sets. So a self-similar Cantor set has a spectral class of distribution sets. When
we consider a deranged Cantor set which is the most generalized Cantor set,
its spectral class by a measure and its local dimensions is hard to analyze and
so is to get the information of dimensions of the members of the spectral class.
Recently we ([2]) attempted such trial to find a spectral class using a quasi-
local dimension, which we call a weak local dimension which is a dimension
of a perturbed Cantor set ([1]) in local sense. We note that we got a spectral
class of a deranged Cantor set using weak local dimensions while Olsen or
Falconer did a spectral class of a self-similar set using a self-similar measure
and its local dimensions. In our case, we just considered only a weak local
dimension, a united concept of measure and local dimension like the distribution
set. In [2], we positively conjectured that in a spectral class of the deranged
Cantor set weak local dimension is related to the local dimension of a natural
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measure with respect to the weak local dimension. In this paper, we show
that such conjecture is right. We note that the natural measure is a quasi-self-
similar measure in the sense that it is a self-similar measure on a self-similar
Cantor set. From the relationship of the quasi-self-similar measure and the
subset composing the spectral class by weak local dimension, we obtain some
information of the dimensions of the member of the spectral class. As a result,
we have an interesting fact that a perturbed Cantor set ([1]) which is regular
in the sense that its Hausdorff and packing dimensions coincide has a natural
measure which has an exact dimension, and a non-regular perturbed Cantor
set has two natural measures which have a lower exact dimension and an upper
exact dimension respectively without the assumption of Cutler ([8]) of positive
exact lower dimensional Hausdorff measure or positive exact upper dimensional
packing measure. We will prove it using weak local measures ([2]).

2. Preliminaries

We recall the definition of the deranged Cantor set ([2]). Let Iφ = [0, 1].
Then we obtain the left subinterval Iτ,1 and the right subinterval Iτ,2 of Iτ

by deleting the middle open subinterval of Iτ inductively for each τ ∈ {1, 2}n,
where n = 0, 1, 2, . . . . Consider En = ∪τ∈{1,2}nIτ . Then {En} is a decreasing
sequence of closed sets. For each n, we put | Iτ,1 | / | Iτ |= cτ,1 and | Iτ,2 |
/ | Iτ |= cτ,2 for all τ ∈ {1, 2}n,where | I | denotes the diameter of I. We call
F =

⋂∞
n=0 En a deranged Cantor set. If x ∈ Iτ where τ ∈ {1, 2}n, then cn(x)

denotes Iτ for each n = 0, 1, 2, . . . .
We note that if x ∈ F , then there is σ ∈ {1, 2}N such that

⋂∞
k=0 Iσ|k = {x}

(Here σ|k = i1, i2, . . . , ik where σ = i1, i2, . . . , ik, ik+1, . . .). Hereafter, we use
σ ∈ {1, 2}N and x ∈ F as the same identity freely.

We ([2]) recall the local Hausdorff dimension f(σ) of σ in F

f(σ) = inf{s > 0 : hs(σ) = 0} = sup{s > 0 : hs(σ) = ∞}
where the s-dimensional local Hausdorff measure or the s-dimensional weak
lower local measure of σ

hs(σ) = lim inf
k→∞

(cs
1 + cs

2)(c
s
σ|1,1 + cs

σ|1,2)(c
s
σ|2,1 + cs

σ|2,2) · · · (cs
σ|k,1 + cs

σ|k,2),

and dually the local packing dimension g(σ) of σ in F

g(σ) = inf{s > 0 : qs(σ) = 0} = sup{s > 0 : qs(σ) = ∞}
where the s-dimensional local packing measure or the s-dimensional weak upper
local measure of σ

qs(σ) = lim sup
k→∞

(cs
1 + cs

2)(c
s
σ|1,1 + cs

σ|1,2)(c
s
σ|2,1 + cs

σ|2,2) · · · (cs
σ|k,1 + cs

σ|k,2).

We call the local Hausdorff (packing) dimension of σ in F as the weak
lower (upper) local dimension of σ in F compared with a lower (upper) local
dimension of σ in F with respect to some mass distribution.
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We recall the s-dimensional Hausdorff measure of F :

Hs(F ) = lim
δ→0

Hs
δ (F ),

where Hs
δ (F ) = inf{∑∞

n=1 | Un |s: {Un}∞n=1 is a δ-cover of F}, and the Haus-
dorff dimension ([9]) of F :

dimH(F ) = sup{s > 0 : Hs(F ) = ∞}(= inf{s > 0 : Hs(F ) = 0}).

Also we recall the s-dimensional packing measure of F :

ps(F ) = inf

{ ∞∑
n=1

P s(Fn) :
∞⋃

n=1

Fn = F

}
,

where P s(E) = limδ→0 P s
δ (E) and P s

δ (E) = sup{∑∞
n=1 | Un |s: {Un}∞n=1 is a

δ-packing of E }, and the packing dimension ([9]) of F :

dimp(F ) = sup{s > 0 : ps(F ) = ∞}(= inf{s > 0 : ps(F ) = 0}).

We note that a deranged Cantor set satisfying cτ,1 = an+1 and cτ,2 = bn+1

for all τ ∈ {1, 2}n, for each n = 0, 1, 2, . . . is called a perturbed Cantor set ([1]).
We recall the lower and upper local dimension of a Borel probability mea-

sure µ at x are given by dimlocµ(x) = lim infr→0
log µ(Br(x))

log r and dimlocµ(x) =

lim supr→0
log µ(Br(x))

log r where Br(x) is the closed ball with center x and radius
r > 0 ([9]). We also recall that a measure µ has exact lower (upper) dimension
s if dimlocµ(x) = s (dimlocµ(x) = s) for µ-almost all x ([9]).

We are now ready to study the ratio geometry of the deranged Cantor set.

3. Main results

In this section, F means a deranged Cantor set determined by {cτ} with
τ ∈ {1, 2}n where n = 1, 2, . . . . Hereafter we only consider a deranged Cantor
set whose contraction ratios {cτ} and gap ratios {dτ (= 1 − (cτ,1 + cτ,2))} are
uniformly bounded away from 0.

Lemma 3.1. Given a Borel probability measure µ on F , for all x ∈ F ,

lim inf
r→0

log µ(Br(x))
log r

= lim inf
n→∞

log µ(cn(x))
log |cn(x)|

and

lim sup
r→0

log µ(Br(x))
log r

= lim sup
n→∞

log µ(cn(x))
log |cn(x)| .

Proof. It is obvious from the uniform boundedness of {cτ} and {dτ} away
from 0.
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Theorem 3.1. Let µs be the Borel probability measure on F satisfying

µs(Iτ ) =
|Iτ |s

(cs
1+ cs

2)(cs
i1,1 + cs

i1,2) . . . (cs
i1,i2,...,in−1,1 + cs

i1,i2,...,in−1,2)

for each τ = i1, i2, . . . , in−1, in, where ij ∈ {1, 2} for 1 ≤ j ≤ n and n ∈ N.
We have for s > 0

(1) if hs(σ) > 0, then dimlocµs(x) ≥ s,
(2) if qs(σ) > 0, then dimlocµs(x) ≥ s,
(3) if hs(σ) < ∞, then dimlocµs(x) ≤ s,
(4) if qs(σ) < ∞, then dimlocµs(x) ≤ s.

Proof. If hs(σ) > 0, then
∏n−1

k=0(cs
σ|k,1 + cs

σ|k,2) ≥ A for all n ∈ N and
some A > 0. Then we have

lim inf
n→∞

log µs(cn(x))
log |cn(x)| = s − lim sup

n→∞

log
∏n−1

k=0(cs
σ|k,1 + cs

σ|k,2)

log |cn(x)| ≥ s.

Therefore (1) follows from Lemma 3.1. The similar arguments give (2).
If hs(σ) < ∞, then

∏n−1
k=0(cs

σ|k,1 + cs
σ|k,2) ≤ B for infinitely many n ∈ N

and some B < ∞. Then we have

lim inf
n→∞

log µs(cn(x))
log |cn(x)| = s − lim sup

n→∞

log
∏n−1

k=0(cs
σ|k,1 + cs

σ|k,2)

log |cn(x)| ≤ s.

Therefore (3) follows from Lemma 3.1. The similar arguments give (4).

Remark 1. The Borel probability measure in the above Theorem is
called a quasi-self-similar measure ([5]) on F since it turns out to be a self-
similar measure on F if F is a self-similar Cantor set.

Lemma 3.2. Fix x ∈ F . Then dimlocµs(x) is a continuous function
for s > 0. Similarly dimlocµs(x) is a continuous function for s > 0.

Proof. Fix x = σ ∈ {1, 2}N. Let δn(s) =
log

Qn−1
k=0 (cs

σ|k,1+cs
σ|k,2)

log |cn(x)| . Clearly
for each s > 0, {δn(s)} are bounded for all n ∈ N. We note that contraction
ratios are uniformly bounded away from 0, which means that there exist B1

and B2 such that 0 < B1 ≤ cσ|k−1,1, cσ|k−1,2 ≤ B2 < 1 for all k ∈ N. From the

mean value theorem we easily see that | c
s
σ|k−1,1+cs

σ|k−1,2

ct
σ|k−1,1+ct

σ|k−1,2
− 1| ≤ | log B1|

B1
|s− t| for

all k ∈ N. Hence

|δn(s) − δn(t)| ≤ K|s − t|
| log B2|

for all n ∈ N where 0 < K < ∞ which is from B1 and independent of n.
Putting K

| log B2| = C, we have |δn(s) − δn(t)| ≤ C|s − t| all n ∈ N. Writing
δ(s) = lim supn→∞ δn(s) for every s > 0, we only need to show that δ(s)
is continuous for s > 0. Fix s > 0 and suppose that limt→s δ(t) �= δ(s).
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Then there is ε > 0 and a sequence {tm} of positive real numbers such that
tm → s satisfying δ(tm) > δ(s) + ε or δ(tm) < δ(s) − ε. Consider m satisfying
C|tm − s| < ε

3 . Then |δn(tm) − δn(s)| < ε
3 for all n ∈ N.

Suppose that δ(tm) > δ(s) + ε. There is a sequence {mk} of natural
numbers such that δmk

(tm) → δ(tm) and |δmk
(tm) − δmk

(s)| < ε
3 for all mk.

We have a contradiction since lim supk→∞ δmk
(s) ≥ δ(s) + 2ε

3 .
Now assume that δ(tm) < δ(s)−ε. There is a natural number Nm such that

δn(tm) < δ(s)− ε for all n ≥ Nm and |δn(tm)− δn(s)| < ε
3 for such n. We have

a contradiction since lim supn→∞ δn(s) ≤ δ(s)− 2ε
3 . Similarly lim infn→∞ δn(s)

is also a continuous function for s.

Theorem 3.2. dimlocµf(σ)(x) = f(σ) and dimlocµg(σ)(x) = g(σ) for
every σ ∈ {1, 2}N.

Proof. If s < f(σ), then hs(σ) > 0. By Theorem 3.1, dimlocµs(x) ≥ s. If
s > f(σ), then hs(σ) < ∞. By Theorem 3.1, dimlocµs(x) ≤ s. It follows from
the intermediate value theorem since dimlocµs(x) is a continuous function for
s for fixed x ∈ F by the above Lemma. Similar arguments hold for g.

Now we ([2]) can think of a multifractal structure Es, Gs on F using weak
local dimensions,

Es = {σ ∈ F : f(σ) = s},
Gs = {σ ∈ F : g(σ) = s}.

Then F is classified as F =
⋃

0<s<1 Es and F =
⋃

0<s<1 Gs. From the
above Theorem, we get the relation between Es(Gs) and the set having lower
(upper) local dimension s of µs.

Corollary 3.1. Es = {x ∈ F : dimlocµs(x) = s} and Gs = {x ∈ F :
dimlocµs(x) = s} for every s ∈ (0, 1).

Proof. It is immediate from the above Theorem.

Corollary 3.2. Let F be a perturbed Cantor set. Then there exist s1

and s2 such that f(σ) = s1 and g(σ) = s2 for all σ ∈ {1, 2}N. Further µs1 has
exact lower dimension s1 which is the Hausdorff dimension of F , and µs2 has
exact upper dimension s2 which is the packing dimension of F .

Proof. It is immediate from the definitions.

To get informations of the dimensions of E (⊂ R) we need the following
Proposition.

Proposition 3.1 ([9]). Let E ⊂ R be a Borel set and let µ be a finite
measure.

(a) If dimlocµ(x) ≥ s for all x ∈ E and µ(E) > 0 then dimH(E) ≥ s.
(b) If dimlocµ(x) ≤ s for all x ∈ E then dimH(E) ≤ s.
(c) If dimlocµ(x) ≥ s for all x ∈ E and µ(E) > 0 then dimp(E) ≥ s.
(d) If dimlocµ(x) ≤ s for all x ∈ E then dimp(E) ≤ s.
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Theorem 3.3.

inf
σ∈{1,2}N

f(σ) ≤ dimH(F ) ≤ sup
σ∈{1,2}N

f(σ)

and

inf
σ∈{1,2}N

g(σ) ≤ dimp(F ) ≤ sup
σ∈{1,2}N

g(σ).

Proof. If s < infσ∈{1,2}N f(σ), then s < f(σ) for all σ ∈ {1, 2}N. By
Theorem 3.1, dimlocµs(x) ≥ s for all x ∈ F . Since µs(F ) = 1 > 0, by the
above Proposition, dimH(F ) ≥ s. If s > supσ∈{1,2}N f(σ), then s > f(σ) for
all σ ∈ {1, 2}N. By Theorem 3.1, dimlocµs(x) ≤ s for all x ∈ F , which gives
dimH(F ) ≤ s by the above Proposition. Similar arguments hold for packing
case.

We have a better estimation of dimensions of a deranged Cantor set from
the followings.

Theorem 3.4. If µs({x : f(σ) ≥ s}) > 0 for some s > 0 then
dimH({x : f(σ) ≥ s}) ≥ s. Similarly if µs({x : g(σ) ≥ s}) > 0 for some
s > 0 then dimp({x : g(σ) ≥ s}) ≥ s.

Proof. By Theorem 3.2, dimlocµs(x) ≥ s for f(σ) = s since dimlocµs(x) =
s. By Theorem 3.1, if f(σ) > s then dimlocµs(x) ≥ s. Hence dimH({x : f(σ) ≥
s}) ≥ s by the above Proposition. Similarly it holds for packing case.

Corollary 3.3.

dimH(F ) ≥ sup{s > 0 : µs({x : f(σ) ≥ s}) > 0},
and

dimp(F ) ≥ sup{s > 0 : µs({x : g(σ) ≥ s}) > 0}.
Proof. It is immediate from the above Theorem.

Remark 2. Perturbed Cantor set has a measure which has exact lower
dimension of its Hausdorff dimension and exact upper dimension of its packing
dimension without Cutler’s assumption ([8]) of positive exact lower dimensional
Hausdorff measure or positive exact upper dimensional packing measure. A
regular perturbed Cantor set has a measure having an exact dimension of its
Hausdorff and packing dimension (cf. [4]).

Example 3.1. Consider a deranged Cantor set with c1,τ,1 = an+2 and
c1,τ,2 = bn+2 and c2,1,τ,1 = a′

n+3 and c2,1,τ,2 = b′n+3 and c2,2,1,τ,1 = a′′
n+4 and

c2,2,1,τ,2 = b′′n+4, . . . , for all τ ∈ {1, 2}n, for each n = 0, 1, 2, . . . . Then we have
at most countable disjoint non-empty Es whose Hausdorff dimension is s and
Gs whose packing dimension is s. Clearly dimH(F ) = sup{s : Es �= φ} and
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dimp(F ) = sup{s : Gs �= φ} from Theorem 3.3 and Corollary 3.3. We note that
if there is only one Es1 , which means Es1 = F , then the Hausdorff dimension
of F is s1. Similarly if there is only one Gs2 , which means Gs2 = F , then the
packing dimension of F is s2. But such an example of a deranged Cantor set
is quite different from the perturbed Cantor set.

Remark 3. f(σ) = lim infn→∞ yσ|n and g(σ) = lim supn→∞ yσ|n where

n∏
i=0

(cyσ|n
σ|i,1 + c

yσ|n
σ|i,2) = 1 ([6]).

Remark 4. If a deranged Cantor set is given, naturally all the uncount-
able elements have their own weak lower(upper) local dimensions. If µs(Es) > 0
(µs(Gs) > 0), then dimH(Es) = s (dimp(Gs) = s). However if µs(Es) = 0
(µs(Gs) = 0), then we get no information of its dimension except for the fact
that dimH(Es) ≤ s (dimp(Gs) ≤ s).

Remark 5. We conjecture that the theorems above hold for the de-
ranged Cantor set without the uniform boundedness conditions of contraction
ratios {cτ} away from 0 (cf. [3]).
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