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A characterization of symmetric domains

By

Miroslav Englǐs ∗

Abstract

We prove that the Laplace-Beltrami operator commutes with the
Berezin transform on a Kähler manifold if and only if it is a Hermitian
symmetric space.

1. Introduction

Let Ω be a bounded domain in Cn (or biholomorphic to a bounded) and
G = Aut(Ω) the group of its holomorphic automorphisms (i.e. biholomorphic
self-maps). The domain is called homogeneous if G acts transitively on it, i.e. for
any x, y ∈ Ω there is ω ∈ G such that ωx = y; and symmetric if for each x ∈ Ω
there exists sx ∈ G, s2

x = id, which has x as an isolated fixed-point. Every
symmetric domain is homogeneous, but not conversely; the first example of a
non-symmetric homogeneous domain is due to Pyatetskii-Shapiro [28]. For this
reason, it has been of interest to characterize the symmetric domains among the
homogeneous ones. There are characterizations in terms of the defining data of
the Siegel realization of the domain (Satake [31, Theorem V.3.5]; Dorfmeister [9,
Theorem 3.3]) or in terms of the almost complex structure map on the tangent
space belonging to the infinitesimal representation of the isotropy group [7];
further, a homogeneous bounded domain Ω is symmetric if and only if there
are no nontrivial G-invariant vector fields on Ω; if and only if the algebra of
all G-invariant differential operators is commutative; if and only if the isotropy
group acts transitively on the Shilov boundary of Ω; if and only if all sectional
curvatures of the Bergman metric on Ω are nonpositive; if and only if, finally,
for every irreducible factor of Ω, the curvature operator of the Bergman metric
has at most two distinct eigenvalues [7], [1].

The inspiration for this paper was yet another characterization, due re-
cently to Nomura [24], [25]. Namely, let KΩ(x, y) be the Bergman kernel of Ω,
∆ the Laplace-Beltrami operator with respect to the Bergman metric, and BΩ

the integral operator
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(1.1) BΩf(x) :=
∫

Ω

f(y)
|KΩ(x, y)|2
KΩ(x, x)

dy

where dy denotes the Lebesgue measure; BΩ is called the Berezin transform
on Ω. Nomura’s result then says that

Ω is symmetric ⇐⇒ BΩ∆ = ∆BΩ.

Actually, Nomura even proved this for certain weighted analogues of BΩ, as well
as for Laplace-Beltrami operators with respect to a bit more general metrics
than the Bergman metric; see Section 2 below. His proofs rely on the theory
of j-algebras, and make also contact with the work of Penney on Cayley’s
transforms for homogeneous domains [27].

Our main result is that the commutativity of the Berezin transform with ∆
in fact characterizes the symmetric domains not only among the homogeneous
ones, but actually among all domains in Cn (or even manifolds) with a Kähler
metric. Let us make this more precise.

Consider, quite generally, a domain Ω in Cn, equipped with a Kähler
metric gij . Let

dµ(z) = det[gij(z)] dz

be the corresponding volume element and

(1.2) ∆ = gji ∂2

∂zi∂zj

the corresponding Laplace-Beltrami operator; here gji is the inverse matrix to
gij , and we are using the usual summation convention. The condition that the
metric be Kähler means that locally

(1.3) gij =
∂2Φ

∂zi∂zj

for some real-valued C∞ function Φ on Ω, called the Kähler potential. Assume,
for the moment, that Ω exists even globally (this will certainly be the case,
for instance, whenever Ω is contractible), and consider the weighted Bergman
space L2

hol(Ω, e−Φ dµ) of all holomorphic functions on Ω square-integrable with
respect to the measure e−Φdµ. Let K(x, y) be its reproducing (i.e. weighted
Bergman) kernel, and

(1.4) Bf(x) :=
∫

Ω

f(y)
|K(x, y)|2
K(x, x)

e−Φ(y) dµ(y)

the corresponding Berezin transform. Here we are assuming that

(1.5) K(z, z) > 0 ∀z ∈ Ω,

so that the definition of B makes sense. Note that (1.5) is equivalent to the
existence, for each z ∈ Ω, of a function f ∈ L2

hol(Ω, e−Φ dµ) for which f(z) �= 0.
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Observe that even though the potential Φ of the Kähler metric gij is not
determined uniquely, the Berezin transform is independent of the choice of Φ,
and thus depends only on the metric gij . Indeed, if Φ is a real-valued solution
to (1.3), then all other solutions are given by

(1.6) Φ′ = Φ + 2 ReF

with F a holomorphic function on Ω. However, then f �→ feF is a Hilbert
space isomorphism of L2

hol(Ω, e−Φ dµ) onto L2
hol(Ω, e−Φ′

dµ), and from the re-
producing property

f(x) =
∫

Ω

f(y)K(x, y)e−Φ(y) dµ(y) ∀f ∈ L2
hol(Ω, e−Φ dµ)

it follows that the reproducing kernel K ′(x, y) corresponding to Φ′ is given by

K ′(x, y) = eF (x)K(x, y) eF (y).

Consequently, the right-hand side of (1.4) remains unchanged when Φ and K
are replaced by Φ′ and K ′, respectively.

The same argument shows also that the function

(1.7) m(x) := e−Φ(x)K(x, x)

does not change under the “gauge transformation” (1.6), and thus again de-
pends only on the metric gij . This function will turn out to be of crucial
significance in the sequel.

It is clear from (1.4) that B is a continuous operator on L∞(Ω), and its
range is contained in C∞(Ω). In particular, both B∆ and ∆B make sense
on C∞

0 (Ω), the subspace in C∞(Ω) of all functions with compact support.
Finally, let us agree to call the Kähler manifold (Ω, gij) nondegenerate *1

if not only (1.5), but the following stronger condition is satisfied:

(1.8)
for every point z ∈ Ω and vector X ∈ TzΩ, there exist
functions f, g ∈ L2

hol(Ω, e−Φ dµ) such that
Xf · g(z) − Xg · f(z) �= 0.

This will always be the case, for instance, when the constants and the coordinate
functions z1, . . . , zn belong to L2

hol(Ω, e−Φ dµ): one can then take g = 1 and
f = zj for a suitable j. We will see below that (1.8) is actually equivalent to the
matrix [∂2 log K(z, z)/∂zi∂zj ]ni,j=1 being not only positive semidefinite (that is
always the case), but actually positive definite. Again, the same argument as
for (1.7) above shows that (1.8) is independent of the choice of the potential Φ,
and so is indeed a property of Ω and gij themselves.

With these preparations, our main result is as follows. (The definitions of
locally symmetric space and complete metric can be found in the next section.)

*1This is not a standard terminology!
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Theorem (Main Theorem). Let Ω be a domain in Cn, gij = ∂∂Φ
a Kähler metric on Ω admitting a global potential Φ, dµ the associated vol-
ume element, K(x, y) the Bergman kernel of L2

hol(Ω, e−Φ dµ), and suppose
that (Ω, gij) is nondegenerate, so that, in particular, the corresponding Berezin
transform B is defined.

(i) Assume that

B∆ = ∆B

on C∞
0 (Ω). Then the function m from (1.7) is constant, B is a bounded

selfadjoint operator on L2(Ω, dµ), and (Ω, gij) is a locally symmetric
space.

(ii) If, in addition, gij is complete, then (Ω, gij) is a Hermitian globally
symmetric space.

Note that if Ω is homogeneous and gij is the Bergman metric, then it is
easily seen, by comparing the transformation properties of both sides, that

det[gij ] = ceΦ

for some positive constant c (see e.g. Helgason [17, Proposition VIII.3.6]).
Consequently, e−Φdµ is a constant multiple of the Lebesgue measure, and thus
K will be (up to a constant factor) the ordinary Bergman kernel KΩ and the
Berezin transform B from (1.4) will coincide with the BΩ from (1.1). Thus our
theorem contains Nomura’s result as a particular case.

We remark that the assumption that Ω be a domain and the potential Φ
exist globally can be relaxed by passing from L2-spaces of holomorphic functions
to L2-spaces of holomorphic sections of suitable line bundles; it is then enough
that (Ω, gij) be any Kähler manifold such that the cohomology class determined
by gij in H2(Ω,R) is integral. See Section 5 below.

We also remark that the converse to part (ii) of the theorem is well known:
on any Hermitian symmetric space, the Berezin transform commutes with the
invariant Laplace operator. In fact, B is a function, in the sense of the func-
tional calculus for commuting self-adjoint operators, of ∆ and the “higher
Laplacians” (generators of the (commutative) algebra of all invariant differ-
ential operators). See [32] and [34] for more information on these matters.

Our proof of the Main Theorem uses a completely different method than
in [24], and exploits a relationship between the curvature tensor and the deriva-
tives of the reproducing kernel. For the case of domains in C, essentially the
same idea was used in the author’s earlier paper [10].

The paper is organized as follows. In Section 2, we review some prelimi-
naries on symmetric spaces. The proof of part (i) of Main Theorem appears in
Section 3, the proof of part (ii) in Section 4. The final Section 5 contains some
concluding remarks and comments, and two open problems.

An earlier version of the Main Theorem — featuring a much weaker result,
using however a rather elegant application of the Fuglede-Putnam theorem
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from operator theory — was presented at the Hayama Conference on Several
Complex Variables in December 2003 [12]; the author takes this opportunity
to thank the organizers for the nice time and stimulating research atmosphere
he experienced there.

Notation. Throughout the paper, we will frequently abbreviate ∂/∂xj ,
∂/∂zk, etc., to just ∂xj

, ∂zk
, etc.; and if there is no danger of confusion con-

cerning the variable, even to ∂j and ∂k.

2. Symmetric spaces

In this section we collect some useful facts on Riemannian symmetric
spaces, see e.g. Helgason [17]; its main purpose is to recall some terminol-
ogy and make the paper more self-contained.

Let Ω be a real manifold with a Riemannian metric ds2 = gij dxi dxj .
We denote by TxΩ the tangent space at a point x ∈ Ω, and by expx : TxΩ → Ω
the exponential mapping, so that t �→ expx(tX), for t in some open interval
containing the origin in R, is the geodesic through x in the direction of X.
Since the restriction of expx to a sufficiently small neighbourhood of 0 ∈ TxΩ is
a diffeomorphism, we can define a mapping sx, the geodesic symmetry at x, by

sx : expx(X) �→ expx(−X), X ∈ TxΩ.

It follows from the definition that sx preserves the distance from x; if sx is
actually an isometry in some neighbourhood of x, then the space (Ω, gij) is
called locally symmetric. If sx is actually defined on all of Ω and isometric
there, (Ω, gij) is called a (globally) symmetric space.

As has already been mentioned in the Introduction, one can show (by em-
ploying the geodesic symmetries) that a symmetric space is homogeneous,
i.e. for any x, y ∈ Ω there exists an isometry sending x into y; the converse,
however, is false [29].

We will need the following characterizations of symmetry in terms of the
curvature tensor Rijkl of the metric *2 gij ; the proofs can be found in [17,
Theorem IV.1.1 and IV.5.6].

Proposition 1. (a) A Riemannian space is locally symmetric if and
only if ∇R = 0, i.e. the covariant derivatives of the curvature tensor vanish
identically.

(b) A locally symmetric space is globally symmetric if it is complete (i.e. Ω
is complete as a metric space with respect to the distance induced by gij) and
simply connected.

All the above implies, in particular, also in the case of complex (instead
of only real) manifolds with Hermitian (instead of only Riemannian) metric
ds2 = gij dzi dzj , and (not only C∞ but) holomorphic geodesic symmetries sx.

*2More precisely: of the Riemannian connection determined by this metric.
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One then speaks of Hermitian (locally or globally) symmetric spaces. In that
case, the curvature tensor is uniquely determined by its components Rijkl.
(One has Rjikl = Rijlk = −Rjilk = −Rijkl, and all other components are
zero.)

Thus, in particular, if Ω is a bounded domain in Cn (or biholomorphic to
a bounded), then the Bergman metric

bij(z) :=
∂2 log KΩ(z, z)

∂zi∂zj
,

where KΩ(x, y) is the ordinary (i.e. unweighted) Bergman kernel of Ω, is a
Hermitian (even Kähler) metric with respect to which any biholomorphic self-
map of Ω is an isometry. Hence, the homogeneous (or symmetric) domains as
discussed in the Introduction are also homogeneous (or symmetric) spaces in
the sense of this section, when equipped with the Bergman metric.

Finally, for the homogeneous domains as discussed in the Introduction one
sometimes also uses other metrics than the Bergman metric: namely, instead of
the whole automorphism group G = Aut(Ω), one considers only a suitable split
solvable Lie subgroup G0 ⊂ G acting simply transitively on Ω. The Lie algebra
g0 of G0 has then a structure of normal j-algebra, and for any so-called admis-
sible linear form γ ∈ g∗

0, (X, Y )γ := γ([JX, Y ]), where J is the almost complex
structure, defines a real inner product on g0. The corresponding Hermitian
inner product

(2.1) 〈X, Y 〉γ := (X, Y )γ − i(JX, Y )γ = γ[JX, Y ] + iγ[X, Y ]

thus defines, upon identifying Ω with G0, a Hermitian metric on Ω, which turns
out to be even Kähler. (See [15], pp. 35–38.) This time, not every holomorphic
automorphism is an isometry, but only those in the subgroup G0 ⊂ G are;
however, since G0 still acts transitively, Ω is again a homogeneous Hermitian
space also in the sense discussed above, when equipped with the metric (2.1)
associated with an admissible form γ on g0. These are precisely the metrics
considered by Nomura [24] [25] mentioned in the Introduction; the Bergman
metric bij is obtained as a special case, by taking for γ the so-called Koszul
form of Ω [21].

Remark. A quite general way of constructing invariant metrics on a
bounded homogeneous domain Ω ⊂ Cn is as follows. Let G1 be an arbitrary
subgroup of G = Aut(Ω) acting transitively on Ω, x0 some point of Ω, and
K and K1 = K ∩ G1 the stabilizers (isotropy groups) of x0 in G and G1,
respectively. It is well known that K1 is always compact (in the compact-open
topology, see e.g. [17], Theorem IV.2.5(b)). Denoting by dk the normalized
Haar measure on K1, we can therefore define a K1-invariant inner product on
the tangent space at x0 by

(2.2) 〈X, Y 〉x0 :=
∫

K1

〈k∗X, k∗Y 〉Cn dk.
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Using homogeneity, this can be transferred to all other points of Ω, by letting,
for any x ∈ Ω and X, Y ∈ TxΩ,

〈X, Y 〉x := 〈ω∗X, ω∗Y 〉x0

for any ω ∈ G1 such that ω(x) = x0. The K1-invariance of (2.2) guarantees
that the right-hand side is independent of the choice of ω, so the definition is
consistent. Thus we obtain a Hermitian metric for which any element of G1

is an isometry, as desired. In particular, for G1 = G we obtain metrics on Ω
invariant under any holomorphic automorphism.

Unfortunately, at the moment it is not clear whether these metrics are
Kähler, so our theorem need not apply in general. It even seems to be unknown,
for a given bounded homogeneous domain in Cn, how big the isotropy group
K ⊂ G can be — for instance, whether it can reduce to the sole identity
element. By Cartan’s uniqueness theorem, the mapping k �→ k∗ is an injective
homomorphism of K into U(n), so the question is equivalent to characterizing
the subgroups of U(n) that can arise as images of this homomorphism. Clearly,
Ω is symmetric if and only if this image contains −I.

We finish this section by the following proposition, which clarifies some-
what the notion of nondegeneracy. For H the ordinary Bergman space, this
is a very standard assertion about the Bergman metric (see e.g. Helgason [17,
Proposition VIII.3.4]); though the proof for the general case is the same, we in-
clude it here for completeness.

Proposition 2. Let H be a reproducing kernel Hilbert space of holomor-
phic functions on Ω, with reproducing kernel K(x, y). Then for each z ∈ Ω, the
matrix

[∂2 log K(z, z)
∂zi∂zj

]n

i,j=1

is always positive semidefinite; and is positive definite if and only if (1.8) holds
(with H in the place of L2

hol(Ω, e−Φ dµ)).

Proof. As H is a space of holomorphic functions, K(x, y) is holomorphic
in x and y; thus K(z, z) is continuous (in fact, real analytic) on Ω, hence,
in particular, locally bounded. Since K(z, z)1/2 is precisely the norm of the
evaluation functional f �→ f(z) on H, it follows that the standard series defining
the reproducing kernel in terms of an arbitrary orthonormal basis {φk} of H,

K(z, z) =
∑

k

φk(z)φk(z)

converges uniformly on compact subsets of Ω × Ω, and can be differentiated
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termwise any number of times. Consequently,

∂2 log K

∂zi∂zj

=
K · ∂i∂jK − ∂iK · ∂jK

K2

=
1

K2

[( ∑
k

φk · φk

)( ∑
l

∂iφl · ∂jφl

)
−

( ∑
k

∂iφk · φk

)(∑
l

φl · ∂jφl

)]

=
1

K2

∑
k>l

(φk · ∂iφl − φl · ∂iφk) (φk · ∂jφl − φl · ∂jφk).

(We are omitting the arguments z and (z, z) for clarity.) Consequently, for any
ξ1, . . . , ξn ∈ C,

∑
i,j

ξiξj ∂i∂j log K =
1

K2

∑
k>l

∣∣∣ ∑
i

ξi(φk · ∂iφl − φl · ∂iφk)
∣∣∣2 ≥ 0,

which proves the positive semidefiniteness. Equality can occur if and only if

φk · Xφl − φl · Xφk = 0 ∀k, l,

where X :=
∑

i ξi∂i. Since {φk} is a basis for H, this is actually equivalent to

f · Xg − g · Xf = 0 ∀f, g ∈ H,

and the claim about positive definiteness follows.

For later use, we put down explicitly the following important corollary.

Corollary 3. If (Ω, gij) is nondegenerate and K(x, y) is the reproducing
kernel of L2

hol(Ω, e−Φ dµ), then the matrix

[∂i∂j log K(z, z)]ni,j=1

is invertible, for any z ∈ Ω.

3. Proof of Main Theorem, part (i)

Recall that B is the integral operator

Bf(x) =
∫

Ω

f(y) β(x, y) dµ(y)

where we have introduced the notation

β(x, y) :=
|K(x, y)|2
K(x, x)

e−Φ(y).
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Clearly, ∆B is the integral operator with kernel ∆xβ(x, y). On the other hand,
it is well known (and readily checked from (1.2)) that ∆ is formally self-adjoint
with respect to dµ; thus we have for any f in C∞

0 (Ω)

B∆f(x) =
∫

Ω

∆f(y) · β(x, y) dµ(y)

=
∫

Ω

f(y) ∆yβ(x, y) dµ(y).

Thus ∆Bf = B∆f ∀f ∈ C∞
0 (Ω) if and only if

∆yβ(x, y) = ∆xβ(x, y),

or

F (x, y) :=
∆yβ(x, y) − ∆xβ(x, y)

β(x, y)
= 0 ∀x, y ∈ Ω.

Since K(x, x) > 0 ∀x by hypothesis, we can write

K(x, y) = expL(x, y)

for x, y near the diagonal, with some function L(x, y) holomorphic in x and y
and real-valued for x = y. Hence

(3.1) β(x, y) = exp[L(x, y) + L(y, x) − L(x, x) − Φ(y)].

At this point, it will be expedient to introduce some notation. First of all,
let

(3.2) u(x) := L(x, x) − Φ(x)

be the logarithm of the function m(x) from (1.7). Second, for the sake of
brevity, let us denote derivatives of functions simply by subscripts, i.e. write
uk, uij , etc., for ∂ku, ∂i∂ju, etc., and similarly for Φ. Note that, by (1.3),
we then have Φij = gij , Φijk = ∂kgij , etc. For the function L, we will similarly
also write, for instance, Lijab(x, y) instead of ∂xi

∂yj
∂xa

∂yb
L(x, y); i.e. all barred

indices apply to y-derivatives, and all unbarred ones to x-derivatives; since L is
holomorphic in x and y, this should cause no confusion, as all other derivatives
are identically zero.

Now, using the formula

∆ef

ef
= gji

( ∂2f

∂zi∂zj
+

∂f

∂zi

∂f

∂zj

)
≡ gji(fij + fifj) (in our shorthand notation),

we have

F (x, y) ≡ ∆yβ(x, y) − ∆xβ(x, y)
β(x, y)

= −gji(y)Φij(y) + gji(y) · [Li(y, x) − Φi(y)] · [Lj(x, y) − Φj(y)]

+ gji(x)Lij(x, x) − gji(x) · [Li(x, y) − Li(x, x)] · [Lj(y, x) − Lj(x, x)].
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Using the fact that gji(y)Φij(y) = gjigij = n = gji(x)Φij(x), and also the
notation (3.2), this can be rewritten as

F (x, y) = gji(y) [Li(y, x) − Li(y, y) + ui(y)] [Lj(x, y) − Lj(y, y) + uj(y)]

+ gji(x)uij(x) − gji(x) [Li(x, y) − Li(x, x)] [Lj(y, x) − Lj(x, x)]

= gji(x)uij(x) + gji(y)ui(y)uj(y)

+ gji(y)ui(y)[Lj(x, y) − Lj(y, y)] + gji(y)uj(y) [Li(y, x) − Li(y, y)]

+ gji(y) [Li(y, x) − Li(y, y)] [Lj(x, y) − Lj(y, y)]

− gji(x) [Li(x, y) − Li(x, x)] [Lj(y, x) − Lj(x, x)].

(3.3)

So this should vanish identically.
Our strategy now will be to extract information from the behaviour near

the diagonal. Specifically, we have, first of all

F (x, x) = gji(x)uij(x) + gji(x)ui(x)uj(x);

thus gjiuij + gjiuiuj = 0, or

(3.4) ∆u = −gjiuiuj .

Next, let us evaluate ∂xa
F (x, y) at a point on the diagonal. Clearly, the second

and the fourth summands in (3.3) are killed by the differentiation. The fifth
summand becomes gji(y)[Li(y, x) − Li(y, y)]Lja(x, y), which also disappears
since the middle term vanishes for x = y. Similarly, upon differentiating the
sixth summand, using the Leibniz rule, we get three terms, each of them con-
taining either Li(x, y)−Li(x, x) or Lia(x, y)−Lia(x, x), which both disappear
for x = y. Thus the only contribution comes from the first and the third sum-
mands in (3.3); the former contributes (gjiuij)a = (∆u)a, the latter gjiuiLja.
Thus

∂xa
F

∣∣
y=x

= (∆u)a + gjiuiLja

(for simplicity of notation, we are again omitting the arguments x at g, u and
(x, x) at L, respectively). Thus if F vanishes identically then necessarily

(3.5) (∆u)a = −gjiuiLja.

We continue by giving a similar treatment to the second derivative
∂ya

∂xb
F |y=x. The first, the second and the fourth summands in (3.3) then

disappear, being killed by the differentiation. The third summand yields

∂ya

[
gji(y)ui(y)Ljb(x, y)

]∣∣
y=x

= (gjiui)aLjb.

For the fifth summand, we get

∂ya

[
gji(y)

(
Li(y, x) − Li(y, y)

)
Ljb(x, y)

]∣∣
y=x

= 0,
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since, again, using the Leibniz rule we get terms containing always either
Li(y, x)−Li(y, y) or Lia(y, x)−Lia(y, y), which both vanish for x = y. Similarly,
there is no contribution from the sixth summand in (3.3). Thus ∂ya

∂xb
F |y=x =

(gjiui)aLjb; so if F vanishes identically, then necessarily

(gjiui)aLjb = 0.

However, since the matrix Ljb is invertible, owing to the nondegeneracy hy-
pothesis (Corollary 3), this means that

(3.6) (gjiui)a = 0.

Now, we have

0 = (∆u + gjiuiuj)a by (3.4)

= (∆u)a + (gjiui)auj + gjiuiuja by Leibniz

= −gjiuiLja + gjiuiuja by (3.5) and (3.6)

= −gjiuiΦja by (3.2)

= −gjiuigja = −ua.

Since u is real-valued, this also implies that ua = ua = ua = 0 for all a =
1, . . . , n. Consequently, u must be constant, and so must be m = eu. This
proves the first claim in part (i) of the Main Theorem.

To prove the second claim in part (i), note that, by (1.4) and the repro-
ducing property of K(x, y),

B1 = 1

where 1 denotes the function constant one. In other words,∫
Ω

β(x, y) dµ(y) = 1, ∀x ∈ Ω.

However, from the constancy of the function m just proved it follows that
β(x, y) is symmetric in x and y; thus also∫

Ω

β(x, y) dµ(x) = 1, ∀y ∈ Ω.

By the classical Schur test (see e.g. [16, Theorem 5.2]), this implies that B
is bounded on L2(Ω, dµ), with ‖B‖ ≤ 1 (i.e. even a contraction). The self-
adjointness of B then follows from the symmetry of β(x, y). This settles the
second claim in (i).

To establish the last — and main — claim in (i), we return again to the
derivatives of F at the diagonal, and compute this time the fifth order derivative

∂xa
∂xb

∂yc
∂yd

∂xe
F

∣∣
y=x

.
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Note that since we now know u to be constant, the formula (3.3) assumes the
simpler form

F (x, y) = gji(y) [Li(y, x) − Li(y, y)] [Lj(x, y) − Lj(y, y)]

− gji(x) [Li(x, y) − Li(x, x)] [Lj(y, x) − Lj(x, x)].
(3.7)

Consequently,

∂xa
∂xb

∂yc
∂yd

∂xe
F (x, y) = ∂yc

∂yd
[gji(y) Lib(y, x) Ljae(x, y)]

− ∂xa
∂xb

∂xe
[gji(x) Lid(x, y) Ljc(y, x)].

In view of the constancy of u, we also have by (3.2) Lij(x, x) = Φij(x) (=
gij(x)), etc. Using the Leibniz rule, we thus get

(3.8)

∂xa
∂xb

∂yc
∂yd

∂xe
F

∣∣
y=x

= (gji)cdΦibΦjae + (gji)cΦibΦjaed

+ (gji)dΦibcΦjae + gjiΦibcΦjaed

− (gji)abeΦidΦjc − (gji)abΦideΦjc

− (gji)aeΦidΦjcb − (gji)beΦidaΦjc

− (gji)bΦidaeΦjc − (gji)aΦideΦjcb

− (gji)eΦidaΦjcb − gjiΦidaeΦjcb.

To evaluate this expression, it is convenient to pass to a different local
coordinate system. Namely, fix for the moment some point z0 ∈ Ω and let φ
be a biholomorphic map defined in some neighbourhood U of z0 and fixing z0.
The potential Φ ◦ φ =: Φ̃ then defines some metric g̃ij on Ũ := φ(U); and since
the definition of the Laplace-Beltrami operator is coordinate independent, the
operators ∆ and ∆̃ corresponding to gij and g̃ij , respectively, satisfy

(3.9) ∆(f ◦ φ) = (∆̃f) ◦ φ ∀f ∈ C∞(Ũ).

If now L is a (quite arbitrary) function on U × U , β(x, y) = exp[L(x, y) +
L(y, x) − L(x, x) − L(y, y)], F (x, y) = ∆yβ(x,y)−∆xβ(x,y)

β(x,y) , and β̃ and F̃ are

similarly associated to L̃(x, y) := L(φ−1(x), φ−1(y)), then (3.9) implies that

F̃ (x, y) = F (φ−1(x), φ−1(y)).

Thus F vanishes identically on U ×U if and only if F̃ does; and, consequently,
the right-hand side of (3.8) will then vanish also if we put tildes over everything.
(The fact that L is actually the logarithm of the reproducing kernel is not
needed in this argument.)

Recall now that at any point z0 on an arbitrary Kähler manifold, there
exists a geodesic (other names: normal, Bochner) local coordinate system
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around it, in which the following equalities hold at z0:

Φ̃ij ≡ g̃ij = δij ;

Φ̃ijk ≡ (g̃ij)k = 0; Φ̃ijk ≡ (g̃ij)k = 0;

Φ̃ijkl = R̃ijkl, the curvature tensor; and

Φ̃ijklm = R̃ijkl/m, its covariant derivative.

(See e.g. [14, Lemma 3.7.1]; or [4, Chapter VIII].) These equalities further imply
that at z0,

(g̃ji)k = (g̃ji)k = 0 and (g̃ji)klm = −R̃ji

· · kl/m
.

Switching to these coordinates, all terms on the right-hand side of (3.8) there-
fore disappear except for the fifth one, which becomes

R̃ji

· · ab/e
(z0)δidδjc = R̃abcd/e(z0).

Thus if F vanishes identically, then

R̃abcd/e = 0.

Similarly R̃abcd/e = 0. Thus ∇R̃ = 0, i.e. ∇R = 0. By Proposition 1, part (a),
(Ω, gij) is locally symmetric. This completes the proof.

4. Proof of Main Theorem, part (ii)

We are actually going to prove a little more: we show that if the function m
is constant and (Ω, gij) is locally symmetric and complete, then it has already
to be globally symmetric. Since the constancy of m and the local symmetry
are guaranteed by part (i), the desired assertion will follow.

So assume that Ω is locally symmetric and complete and that m is constant.
Let X be the universal cover of Ω, and π : X → Ω the covering map. Then X
is locally symmetric, complete and simply connected; hence, by Proposition 1,
part (b), it is a globally symmetric space.

Let us now recall several facts about Hermitian globally symmetric spaces.
First of all, any such space is (biholomorphic to) a Cartesian product of ir-
reducible ones. Further, irreducible Hermitian symmetric spaces are of three
types: noncompact, compact and Euclidean.

An irreducible Hermitian symmetric space of noncompact type is biholo-
morphic to a bounded symmetric domain D ⊂ Cd, which can be chosen to be
circular (i.e. z ∈ D, θ ∈ R imply eiθz ∈ D) and convex, with the metric given
by the potential Ψ(z) = c log KD(z, z), where KD is the ordinary Bergman ker-
nel of D (i.e. with respect to the Lebesgue measure) and c is a positive constant.
Note that the circularity of D implies that KD(z, 0) = KD(0, z) = 1/ vol(D),
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for all z ∈ D. The volume element dµ(z) then coincides with (a constant multi-
ple of) KD(z, z) dz; and, further, it is known that the measure e−αΨ dµ is finite
as soon as αc > 1− 1

p , where the positive integer p is the so-called genus of D,
and the reproducing kernel of the weighted Bergman space L2

hol(D, e−αΨ dµ) is
then equal to cαKαc

D for some positive constant cα. Note that in view of the
boundedness of D, the finiteness of the measure e−αΨ dµ implies that the last
space L2

hol contains all polynomials.
An irreducible Hermitian symmetric space of Euclidean type is biholomor-

phic to Cd equipped with the usual (Euclidean) metric, i.e. given by the po-
tential c‖z‖2 for some c > 0; that is, by the potential Ψ(z) = c log KFock(z, z),
where KFock is the reproducing kernel of the Fock (or Segal-Bargmann) space
L2

hol(C
d, e−‖z‖2

π−1 dz). The volume element dµ(z) is simply (a constant multi-
ple of) the Lebesgue measure, and, again, it is well known (and easily verified)
that for any α > 0, the reproducing kernel of the space L2

hol(C
d, e−αΨ dµ)

equals to eαc〈x,y〉 = KFock(x, y)αc, up to a constant factor. Also, the last space
again contains all polynomials.

Finally, an irreducible Hermitian symmetric space of compact type is a
compact manifold D, which however admits a dense open subset D′ biholo-
morphic to Cd (i.e. a local chart), such that D \ D′ has zero measure, and on
D′ the metric gij is given by the potential Ψ(z) = −c log K eD(z,−z), where c
is a positive constant and K eD is the ordinary (i.e. unweighted) Bergman ker-
nel of a certain bounded symmetric domain D̃ ⊂ Cd (called the dual of D).
The restriction of dµ to D′ coincides with a constant multiple of K eD(z,−z) dz,
and for any α ≥ 0 such that αp̃c is an integer (where p̃ is the genus of D̃),
the reproducing kernel of the space L2

hol(C
d, e−αΨ dµ) coincides, up to a con-

stant factor, with K eD(x,−y)−αc. Also, the last space L2
hol is finite-dimensional

and consists of all polynomials of degree less than N(α), where N(α) → ∞
as α → ∞; in particular, it contains both the constants and the coordinate
functions z1, . . . , zd on Cd as soon as α is sufficiently large.

Combining the information above, we thus see that for any Hermitian
globally symmetric space X , there exists an open dense subset X ′ ⊂ X (biholo-
morphic to Cd × D ⊂ Cn for some integer d ≥ 0 and circular convex bounded
symmetric domain D ⊂ Cn−d), such that X \ X ′ has zero measure, and

• on X ′ the metric is defined by the potential

Ψ(z) = c log H(z, z)

where H is, up to a constant factor, the reproducing kernel of the space
L2

hol(X ′, e−Ψ/c dµ) for some c > 0;

• the function H( · , 0) is constant;

• for any integer α ≥ 1, the reproducing kernel of the weighted Bergman
space L2

hol(X ′, e−αΨ/c dµ) coincides, up to a constant factor, with Hα;

• and, finally, if α is also sufficiently large, then the last space L2
hol contains

the constants as well as the coordinate functions z1, . . . , zn on Cn.
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Example. The unit disc D ⊂ C equipped with the Poincaré metric
g11(z) = 2c(1−|z|2)−2 is a symmetric space of noncompact type, with potential
Ψ(z) = −c log[π(1 − |z|2)2] = c log KD(z, z); its genus is p = 2, and for αc >
1 − 1

p = 1
2 the reproducing kernel of L2

hol(D, e−αΨ dµ) = L2
hol(D, 2cπcα(1 −

|z|2)2cα−2 dz) is equal to 2cα−1
2cπcα+1 (1 − xy)−2αc = 2cα−1

2πc KD(x, y)αc.
The complex plane C with the Euclidean metric g11(z) = c is a symmetric

space of Euclidean type, with potential Ψ(z) = c|z|2 = c log KFock(z, z); for
any α > 0, the reproducing kernel of L2

hol(C, e−αΨ dµ) = L2
hol(C, ce−αc|z|2 dz)

is α
π eαc〈x,y〉 = α

π KFock(x, y)αc.
The Gauss sphere G = C ∪ {∞}, equipped with the invariant metric,

whose restriction to D′ = C coincides with g11(z) = 2c(1 + |z|2)−2, is a
symmetric space of compact type, with potential on D′ given by Ψ(z) =
c log[π(1 + |z|2)2] = −c log KD(z,−z); the genus of its dual D is p̃ = 2, and
for any α ≥ 0 such that αp̃c = 2αc is an integer, the reproducing kernel
of the space L2

hol(C, e−αΨ dµ) = L2
hol(C, 2c

παc (1 + |z|2)−2αc−2 dz) is equal to
2αc+1

2cπ1−αc (1+xy)2αc = 2αc+1
2πc KD(x,−y)−αc. Further, the last space L2

hol consists
of all polynomials of degree not exceeding 2αc; in particular, it contains the
constants for any α ≥ 0, and the coordinate function z as soon as 2αc ≥ 1.

Finally, the product space X = D × C × G, with the metric given on
X ′ = D × C × C ⊂ X by g11(z) = 2c1(1 − |z1|2)−2, g22(z) = c2, g33(z) =
2c3(1+ |z3|2)−2, and gij = 0 for i �= j, is a reducible symmetric space admitting
the potential Ψ(z) = c log H(z, z), where

H(z, z) =
[

1
πc1(1 − |z1|2)2c1

· ec2|z2|2 · 1
πc3(1 + |z3|2)2c3

]1/c

is, up to the constant factor 2
c1
c −1

2πc1
· 1

πc · 2
c3
c +1

2πc3
, the reproducing kernel of the

space L2
hol(X ′, e−Ψ/c dµ), whenever c1

c > 1 − 1
2 = 1

2 and 2c3
c is an integer,

i.e. for c = 2c3
m with any integer m > c3

c1
. Further, for any integer α ≥ 1,

the reproducing kernel of L2
hol(X ′, e−αΨ/c dµ) coincides, up to a similar constant

factor as above, with H(x, y)α; and the last space L2
hol contains all polynomials

on C3 of degree not exceeding 2αc3/c = αm.

In particular, the last conclusion applies to our covering space X of Ω.
Since the covering map π is a local isometry, the potentials Ψ and Φ of the
spaces X and Ω must be related by π∗(∂∂Φ) = ∂∂Ψ; so

c log H(x, x) = Φ(πx) + F (x) + F (x) ∀x ∈ X ′

for some holomorphic function F on X ′.
On the other hand, if m is constant, then

Φ(z) = log K(z, z) + const.

Absorbing the last constant into F , we thus see that

H(x, x)c = K(πx, πx) eF (x)+F (x).
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Since a function of two variables x, y which is holomorphic in x and y is
uniquely determined by its restriction to the diagonal x = y (see e.g. [3, Propo-
sition II.4.7]), the last equality implies that even

(4.1) H(x, y)c = K(πx, πy)eF (x)+F (y) ∀x, y ∈ X ′.

(Note that since X ′ is simply connected, there is no problem with the definition
of the c-th power.)

Let now x, x′ be any two points of X ′ such that πx = πx′. Then (4.1)
implies that

H(x, y)ce−F (x) = H(x′, y)ce−F (x′) ∀y ∈ X ′.

But we know that H(·, 0) is constant (and nonzero); thus taking y = 0 yields
e−F (x) = e−F (x′). Consequently,

H(x, y)c = H(x′, y)c ∀y ∈ X ′.

Since Hα is (up to a constant factor) the reproducing kernel of
L2

hol(X ′, e−αΨ/cdµX ), for any integer α ≥ 1, it follows that

f(x) = εf(x′) ∀f ∈ L2
hol(X ′, e−αΨ/c dµX )

for some unimodular number ε (not depending on f). However, we know that
if α is taken large enough, then the last space contains the constants as well as
all the coordinate functions. Thus necessarily ε = 1 and x = x′.

In other words, we have proved that π is injective on the open dense
subset X ′ of X . Since π is a covering map, it follows that π is a biholomorphism
and Ω ∼= X . Thus Ω is globally symmetric, q.e.d.

5. Concluding remarks

5.1. Manifolds
Although we have so far assumed that Ω is a domain and gij a Kähler met-

ric for which the potential Φ exists globally, everything can easily be adapted
to arbitrary Kähler manifolds (Ω, gij), as long as they satisfy an appropriate
integrality condition. Namely, let {Uα} be a covering of Ω by contractible lo-
cal charts; then on each Uα there exists a local potential Φα for gij (by the
Kählerness condition). On any nonempty intersection Uα ∩ Uβ of two charts,
it follows from ∂∂Φα = [gij ] = ∂∂Φβ that Φα = Φβ +Re fαβ for some holomor-
phic function fαβ . Hence e−Φα = e−Φβ ·|efαβ |−2. Consequently, if the functions
efαβ satisfy the cocycle condition

efαβ efβγ = efαγ ,

that is,

fαβ + fβγ + fγα = 2πinαβγ for some nαβγ ∈ Z,
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whenever Uα∩Uβ∩Uγ is nonempty, then the local metric coefficients e−Φα on Uα

can be glued together into a holomorphic Hermitian line bundle L over Ω. It is
known that this happens if and only if the cohomology class 1

2πi [gij ] determined
by gij in H2(Ω,R) is integral, i.e. belongs in fact to H2(Ω,Z):

(5.1)
1

2πi
[gij ] ∈ H2(Ω,Z).

In that case, one can consider, in place of L2
hol(Ω, e−Φ dµ), the space L2

hol(L, dµ)
of all holomorphic sections of L square-integrable with respect to dµ; and
in place of the weighted Bergman kernel K(x, y) the reproducing kernel of
L2

hol(L, dµ), which is a holomorphic section of the product bundle L × L over
Ω × Ω, with L being the complex conjugate of L (i.e. the line bundle with
transition functions efαβ ). The Berezin transform, defined by an obvious ana-
logue of the formula (1.4), turns out to be defined — due to cancellation
of the corresponding transition functions in the analogue of the expression
|K(x, y)|2K(x, x)−1e−Φ(y) — not on sections of any bundle, but again on hon-
est functions on Ω. Further details can be found e.g. in Peetre [26].

Thus it again makes sense to speak of the commutativity of B and ∆ on
C∞

0 (Ω), and the whole Main Theorem extends to this setting.

Theorem (Main Theorem for manifolds). Let (Ω, gij) be a Kähler
manifold satisfying the integrality condition (5.1) and B the associated Berezin
transform. Then:

(i) if B∆ = ∆B on C∞
0 (Ω), then the function m (defined by (1.7) in any lo-

cal chart) is constant, B is a bounded self-adjoint operator on L2(Ω, dµ),
and (Ω, gij) is locally symmetric;

(ii) if in addition the metric gij is complete, then (Ω, gij) is a Hermitian
globally symmetric space.

Proof. For part (i), the same proof still works, without any need for
modifications, since all our arguments there were in fact of purely local nature.
Thus we only need to show that the argument from Section 4 can be extended
to the situation when the potential exists only locally. This is easily done by
observing that the function K(x, y)eF (x)+F (y) is globally defined (possibly after
adding to the F ’s some purely imaginary constants in each local chart), even if
K(x, y) and the potential are not; the argument then applies without changes.

In more detail, let {Uα}α be a covering of Ω by contractible local coordinate
charts; and for each α, let {Vαj}j be the connected components of π−1Uα ∩X ′.
Upon breaking some Vαj into smaller (slightly overlapping) pieces if necessary,
we may also assume that each Vαj is contractible. Finally let, as above, Φα

and fαβ be the local potentials and the transition functions for L, respectively.
Then there again exist functions Fαj holomorphic on Vαj such that

(5.2) c log H(x, x) = Φα(πx) + Fαj(x) + Fαj(x) ∀x ∈ Vαj .
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If x ∈ Vαj ∩ Vβk, it follows that

|eFβk(x)−Fαj(x)−fαβ(πx)|2 = 1.

Thus

(5.3) Fβk(x) − Fαj(x) − fαβ(πx) = cαj,βk

for some purely imaginary constants cαj,βk. If in addition x ∈ Vγl, then it fol-
lows from the integrality condition efαβ efβγ efγα = 1 that ecαj,βkecβk,γlecγl,αj =
1. Since X ′ is contractible, there exist numbers dαj such that

ecαj,βk =
dαj

dβk
.

The fact that cαj,βk are purely imaginary implies that |dαj | = |dβk|, so replacing
dαj by dαj/|dαj | if necessary we can assume that

|dαj | = 1 ∀α, j.

Introducing the (nonvanishing, holomorphic) functions

Gαj(x) := dαje
Fαj(x),

we can therefore rewrite (5.2) as

(5.4) H(x, x)c = eΦα(x)|Gαj(x)|2 ∀x ∈ Vαj .

Recall now that the reproducing kernel Kαz in a local chart Uα at a point
z ∈ Uα is defined by the requirement that

φα(z) = 〈φ, Kαz〉
for all square-integrable holomorphic sections φ. Since the values of a section φ
on the intersection of two local charts are related by φα = φβefαβ , necessarily

Kαz = Kβze
fαβ(z) ∀z ∈ Uα ∩ Uβ .

Thus if x ∈ Vαj ∩ Vβk and y ∈ Vγl ∩ Vδm, then

〈Kγ,πy, Kα,πx〉 eFαj(x)+Fγl(y)

= 〈Kδ,πy, Kβ,πx〉 eFαj(x)+fαβ(πx)+Fγl(y)+fγδ(πy)

= 〈Kδ,πy, Kβ,πx〉 eFβk(x)−cαj,βk+Fδm(y)−cγl,δm by (5.3).

This means that

〈Kγ,πy, Kα,πx〉Gαj(x)Gγl(y) = 〈Kδ,πy, Kβ,πx〉Gβk(x)Gδm(y) =: L(x, y)

is a globally defined function on X ′ ×X ′, holomorphic in x and y.
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Since, finally, e−Φα(πx)〈Kα,πx, Kα,πx〉 = m(πx) = ε, a constant, by hy-
pothesis, we see from (5.4) that

H(x, x)c =
1
ε
L(x, x) ∀x ∈ X ′.

Thus by the uniqueness principle

H(x, y)c =
1
ε
L(x, y) ∀x, y ∈ X ′.

Let now x ∈ Vαj , x′ ∈ Vαn be two points in X ′ such that πx = πx′.
If y ∈ Vγl, then from

〈Kγ,πy, Kα,πx〉 = 〈Kγ,πy, Kα,πx′〉

it follows that

L(x, y)Gαj(x)−1Gγl(y)
−1

= L(x′, y)Gαn(x′)−1Gγl(y)
−1

,

so

H(x, y)cGαj(x)−1 = H(x′, y)cGαn(x′)−1 ∀y ∈ X ′.

Taking y = 0 gives Gαj(x)−1 = Gαn(x′)−1; so even H(x, y)c = H(x′, y)c for
all y, and the rest of the argument is the same as at the end of Section 4.

We remark that the integrality condition (5.1) is well known also in geo-
metric quantization, under the name of prequantization condition; see e.g. [20].
It is automatically fulfilled for any bounded homogeneous domain in Cn, since
such domains are biholomorphic to a Siegel domain (see e.g. [29]), hence con-
tractible, and thus H2(Ω,R) = 0. On the other hand, for a compact symmetric
space, for instance, (5.1) need not be satisfied in general, but can always be
achieved upon replacing the metric gij by its multiple Nνgij , where N may be
any positive integer and ν is a certain positive real number.

We also note that the curvature of the line bundle L, as can readily be
seen from the construction, coincides — up to a constant factor, involving π
and i, depending on the conventions used — with the Kähler form gji dzi∧dzj .
We may thus equivalently state our main theorem also solely in terms of line
bundles:

Theorem (Main Theorem in terms of line bundles). Let L be a holo-
morphic Hermitian line bundle over a complex manifold Ω whose curvature
form ωL is positive (i.e. a positive line bundle). Let gij be the Kähler metric on
Ω determined by ωL, dµ = (ωL)n the associated volume element, L2

hol(L, dµ)
the space of all square-integrable holomorphic sections of L, K its reproducing
kernel, and B the corresponding Berezin transform. Then the assertions (i)
and (ii) above hold.
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5.2. Nondegeneracy
The simplest example of a Kähler manifold which is not nondegenerate is

the unit disc D with the invariant metric

g11(z) =
ν

(1 − |z|2)2

for 0 < ν ≤ 1. Indeed, in that case Φ(z) = log(1 − |z|2)−ν , and thus

L2
hol(Ω, e−Φ dµ) = L2

hol(D, (1 − |z|2)ν−2),

which contains only the zero function if ν ≤ 1.
This suggests the following conjecture, reminiscent perhaps of the rela-

tionship between positive and very ample line bundles in Kodaira’s embedding
theorem (see e.g. [36, Section 8.3]).

Conjecture. For any Kähler manifold (Ω, gij) satisfying the integrality
condition (5.1), there exists ν0 ∈ R such that for any integer ν ≥ ν0, the
rescaled metric νgij is nondegenerate.

We do not know if the Main Theorem can be extended also to degenerate
manifolds. Our proof of the constancy of the function m in part (i) then
certainly breaks down: an example of a Kähler potential Φ(x) and a function
L(x, y) such that the function F (x, y) = (∆yβ(x, y)−∆xβ(x, y))/β(x, y), with
β(x, y) given by (3.1), vanishes identically but u(z) = log m(z) = L(z, z)−Φ(z)
is nonconstant, is

Φ = − log(Reh),
L = 0,

on an arbitrary domain Ω ⊂ C and for any holomorphic function h on Ω with
positive real part.

5.3. Boundedness of the Berezin transform
If the function m is not constant, then the Schur test used in Section 3

and the property B1 = 1 imply that B will be bounded on L2(Ω, dµ) whenever
B∗1 ≤ c1, i.e. whenever

B
1
m

≤ c

m

for some finite constant c. This, in turn (in view of B1 = 1), will certainly be
the case whenever both 1

m and m are bounded; that is, whenever

K(z, z) � eΦ(z) as z → ∂Ω.

Using Fefferman’s theorem on the boundary behaviour of the Bergman ker-
nel [13], the last property can be shown to hold, for instance, whenever Ω is a
smoothly bounded strictly pseudoconvex domain in Cn and e−Φ � dist(·, ∂Ω)c
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for some integer c > n. (See e.g. [11, Corollary 6].) The boundedness of B on
L2(Ω, dµ) in general seems to be an interesting open problem.

5.4. Balanced metrics
There are various canonical metrics associated to bounded domains in Cn:

the Bergman metric [2], the Cheng-Yau metric (the solution of the Monge-
Ampere equation — only on pseudoconvex domains) [6], [23], the Wu met-
rics [33], etc. We conclude by mentioning an open problem, concerning another
canonical metric, inspired by the constancy of our function m.

Problem. On a given contractible domain Ω, does there exist a Kähler
metric gij for which m ≡const.?

In other words: for any given Kähler metric gij on Ω, let Φ be its potential,
dµ = det[gij(x)] dx the volume element, and consider the measure e−Φ dµ, the
weighted Bergman space L2

hol(Ω, e−Φ dµ), and its reproducing kernel K(x, y);
and let g∗

ij
(z) := ∂2 log K(z, z)/∂zi∂zj . It is again readily seen that g∗

ij
is

independent of the choice of the potential Φ, and thus is uniquely determined
by the original metric gij . Can gij be chosen so that g∗

ij
= gij?

The problem makes, of course, sense also on complex manifolds Ω, subject
to the integrality condition (5.1). Note that the analogue of the function m(x) =
e−Φ(x)K(x, x) can then be simply written as

(5.5) m(x) =
∑

j

‖φj(x)‖2
x,

where {φj} is an arbitrary orthonormal basis of L2
hol(L, dµ), and ‖·‖x stands for

the norm in the fiber Lx. This function has appeared in the literature under dif-
ferent names, the earliest ones being probably the η-function of Rawnsley [30]
(later renamed to ε-function [5]) for arbitrary Kähler manifolds, or the distor-
tion function of Kempf [19] and Ji [18] for the special case of Abelian varieties,
and of Zhang [35] for complex projective varieties; and the metrics for which
m is constant are called critical [35] or balanced [8]. Thus a more general
formulation of our problem is as follows:

Problem. Given a complex manifold Ω, does there exist a Kähler metric
gij on Ω which satisfies the integrality condition (5.1) and is balanced?

We remark that balanced metrics are of significance in the problem of
existence of constant curvature metrics, and in some questions concerning
(semi)stability of projective algebraic varieties; see e.g. [22].

Our Main Theorem implies that if B commutes with ∆, then the metric
has to be balanced. Currently, the only noncompact manifolds on which com-
plete balanced metrics are known to exist are the symmetric spaces, where the
Bergman metric is balanced; in that case, this metric is not unique, since cgij

is then also balanced, for any constant c ≥ 1. In the nonsymmetric setting, the
problem of existence of balanced metrics seems to be open even for domains
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of dimension 1 (i.e. in C). For compact manifolds, the existence of balanced
metrics has been studied in a recent paper by Donaldson [8].
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