Boundary identity principle for pseudo-holomorphic curves

By

Seong-Gi Ahn

Abstract

We prove a boundary version of the Unique Continuation Principle for pseudo-holomorphic curves. It is a consequence of the boundary regularity of pseudo-holomorphic curves. which can be achieved by a bootstrap method.

1. Introduction

In recent years, much interests are focused upon the study of almost complex structures and the properties of pseudo-holomorphic mappings between almost complex manifolds. The goal of this paper is to prove a boundary version of the Unique Continuation Principle for pseudo-holomorphic mappings, which is stated as follows:

Theorem 1.1. Let S be a connected Riemann surface with smooth boundary ∂S and let M be a smooth manifold with a smooth almost complex structure J. Suppose that a pseudo-holomorphic map $f: S \to M$ is continuous up to the boundary and that f is constant on an open arc γ of ∂S . Then f is constant on S.

It is known that the interior Unique Continuation Principle is still valid for pseudo-holomorphic mappings, that is, if $f : S \to M$ is constant on an open subset of S, then f is constant on entire S. This is a consequence of the vanishing theorem of a smooth mapping satisfying a partial differential inequality, which is proved by N. Aronszajn ([2]) and Hartman-Wintner ([5]):

Lemma 1.1. Let Ω be a connected domain in \mathbb{R}^2 containing 0. Suppose that a smooth map $f: \Omega \to \mathbb{R}^N$ satisfies that

 $|\Delta f| \le C|Df|$

for a positive constant C and that f(0) = 0. Then $f \equiv 0$ on Ω if f vanishes to infinite order at 0.

Received April 18, 2005

Here, Δf and Df represent the Laplacian and the gradient of f. To prove Theorem 1.1., we first show that f is in fact smooth up to γ by a standard bootstrap. This yields a smooth reflection of f, which makes the problem an interior one. Applying Lemma 1.1. to a smooth reflection of f, we can achieve Theorem 1.1.

2. Preliminaries

Throughout this paper, an almost complex manifold means a C^{∞} smooth manifold with a C^{∞} smooth almost complex structure J.

Let M and M' be almost complex manifolds with almost complex structures J and J', respectively. A smooth map $f: M \to M'$ is called a *pseudoholomorphic map* if its differential commutes with J and J', that is

$$df \circ J = J' \circ df.$$

Let Ω be a domain in \mathbf{R}^n and let $f : \Omega \to \mathbf{R}^N$ be differentiable to k-th order on Ω for a nonnegative integer k. For a real number $\alpha \in (0, 1)$, we define the (k, α) -Hölder norm $||f||_{k,\alpha}$ of f by

$$||f||_{k,\alpha} = \sum_{|I| \le k} \sup_{\Omega} |D^{I}f(x)| + \sum_{|I|=k} \sup_{x \ne y} \frac{|D^{I}f(x) - D^{I}f(y)|}{|x - y|^{\alpha}}$$

where $I = (i_1, \ldots, i_n)$ is a multi-index and $D^I = (\partial/\partial x_1)^{i_1} \cdots (\partial/\partial x_n)^{i_n}$. Define the (k, α) -Hölder space $C^{k,\alpha}(\Omega)$ on Ω by

$$C^{k,\alpha}(\Omega) = \{f : \|f\|_{k,\alpha} < \infty\}.$$

We denote by \mathbf{D} and \mathbf{D}^+ the unit disc and the upper half disc in \mathbf{C} , respectively, that is,

and

$$\mathbf{D} = \{ z \in \mathbf{C} : |z| < 1 \}$$

$$\mathbf{D}^+ = \{ z \in \mathbf{D} : \operatorname{Im} z > 0 \}.$$

3. Proof of Theorem 1.1.

Fix $z_0 \in \gamma$. Let $p = f(z_0)$. Choosing local coordinates, we may assume that f maps $\mathbf{D}^+ \cup \gamma$ into a neighborhood U of 0 in \mathbf{R}^{2n} and that $f \equiv 0$ on γ where $\gamma = \{z \in \mathbf{D} : \text{Im } z = 0\}$. A C^2 function u on U is said to be *strictly* J-plurisubharmonic if its Levi form $L(X) := -d(J^*du)(X, JX)$ is positive definite, where J^* represents the dual operator of J. We can also assume that the complex structure J coincides with the standard complex structure J_{st} at 0 and J is sufficiently close to J_{st} in C^2 sense on U so that the function $u_0 = \sum |w^j|^2$ is strictly J-plurisubharmonic on U, where (w^1, \ldots, w^n) is the standard coordinates of $\mathbf{C}^n = \mathbf{R}^{2n}$. In this situation, the following lemma holds. **Lemma 3.1.** There exists a constant C such that $|Df(z)| \leq C |\text{Im } z|^{-1/2}$ for every $z \in \mathbf{D}^+$, that is, $f \in C^{0,1/2}(\mathbf{D}^+ \cup \gamma)$.

Lemma 3.1. is a consequence of Theorem 1.1. in [3]. In fact, the authors of [3] have proved the theorem in case when the target manifolds have integrable structures. A crucial part of the proof is an estimation of the Kobayashi metric of target manifold, which is also available for every almost complex manifold. (See [4].) This implies that Lemma 3.1. holds by the assumption that u_0 is strictly *J*-plurisubharmonic.

To prove the boundary regularity of f, we need some basic properties of one variable $\overline{\partial}$ -equations. Let Ω be a domain in the complex plane \mathbf{C} , and take g and h in L^1_{loc} , the space of locally integrable functions. We say that $\partial g/\partial \bar{z} = h$ in the weak sense in Ω if for every smooth function ϕ with compact support in Ω , we have

$$\int_{\Omega} g(z) \frac{\partial \phi}{\partial \bar{z}}(z) = -\int_{\Omega} h(z) \phi(z).$$

Lemma 3.2. A L^1_{loc} function g on a domain Ω is holomorphic if and only if $\partial g/\partial \bar{z} = 0$ in the weak sense.

Lemma 3.3. Take $h \in L^{\infty}(\mathbb{C})$ with compact support. Define a function g by

$$g(z) = \frac{1}{2\pi i} \int_{\mathbf{C}} \frac{h(\zeta)}{\zeta - z} \, d\zeta \wedge d\bar{\zeta}$$

for every $z \in \mathbf{C}$. Then the followings hold:

(a) $\partial g / \partial \bar{z} = h$ in the weak sense.

(b) $g \in C^{0,\alpha}(\Omega)$ for every $0 < \alpha < 1$ and every bounded domain Ω in **C**.

(c) For every non-negative integer k and every $0 < \alpha < 1$, $g \in C^{k+1,\alpha}(\mathbb{C})$ whenever $h \in C^{k,\alpha}(\mathbb{C})$.

The proofs of Lemma 3.2. and Lemma 3.3. may be found in [1], for instance.

Decompose the complexified tangent bundle $TU \otimes \mathbf{C}$ into the direct sum of eigen-subspaces of J_{st} , i.e.

$$TU \otimes \mathbf{C} = T^{1,0} \oplus T^{0,1}$$

where $T^{1,0}$ and $T^{0,1}$ are the bundles of subspaces corresponding to the eigenvalues i and -i of J_{st} , respectively. Similarly,

$$TU \otimes \mathbf{C} = T_J^{1,0} \oplus T_J^{0,1}$$

where $T_J^{1,0}$ and $T_J^{0,1}$ are the bundles of eigen-subspaces corresponding to the eigenvalues i and -i of J. Since J is sufficiently close to J_{st} on U, there exists a **R**-linear bundle map $\mu : T^{1,0} \to T^{0,1}$ such that

$$T_J^{1,0} = \{ X + \mu(X) : X \in T^{1,0} \}.$$

Seong-Gi Ahn

Taking conjugates, the bundle $T_J^{0,1}$ is the graph of $\bar{\mu}: T^{0,1} \to T^{1,0}$, that is,

$$T_J^{0,1} = \{Y + \bar{\mu}(Y) : Y \in T^{0,1}\}.$$

Decompose a vector $X \in TU \otimes \mathbf{C}$ by $X = X^{1,0} + X^{0,1}$ with respect to the decomposition $TU \otimes \mathbf{C} = T^{1,0} \oplus T^{0,1}$. Then the $T_J^{0,1}$ -component of X is $Y + \bar{\mu}(Y)$ where

(3.1)
$$Y = (I - \mu \bar{\mu})^{-1} (X^{0,1} - \mu (X^{1,0})).$$

Note that $I - \mu \bar{\mu}$ is invertible since μ is sufficiently small on U, where I represents the identity operator. Since f is pseudo-holomorphic on \mathbf{D}^+ , it follows that f satisfies the equation

(3.2)
$$\frac{\partial f}{\partial \bar{z}} - \bar{\mu} \left(\frac{\partial f}{\partial z} \right) = 0$$

by (3.1). Define a map $\tilde{f} \in C^{0,1/2}(\mathbf{D})$ by

$$\tilde{f}(z) = \begin{cases} \frac{f(z)}{f(\bar{z})} & \text{if } \operatorname{Im} z \ge 0\\ \frac{f(\bar{z})}{f(\bar{z})} & \text{if } \operatorname{Im} z < 0. \end{cases}$$

Let ϕ be the map defined by

$$\phi(z) = \begin{cases} \frac{\partial f}{\partial \overline{z}}(z) & \text{if } z \in \mathbf{D} \setminus \gamma \\ 0 & \text{if } z \in \gamma. \end{cases}$$

Let μ_w be the restriction of μ on the space $T_w^{1,0}$ for every $w \in U$. Then μ_w is smooth in w and $\mu_0 = 0$. Therefore, we have that

(3.3)
$$|\mu_{f(z)}| = O(|f(z)|) = O(|f(z) - f(\operatorname{Re} z)|) = O(|\operatorname{Im} z|^{1/2})$$

as $z \to \gamma$, since $f \in C^{0,1/2}(\mathbf{D}^+ \cup \gamma)$. It follows that $\phi \in L^{\infty}(\mathbf{D})$ by (3.2), (3.3) and Lemma 3.1. For 0 < r < 1, we denote by \mathbf{D}_r the radius r disc in \mathbf{C} . Choose a smooth function χ with compact support in \mathbf{D} such that $\chi \equiv 1$ on \mathbf{D}_r . Define a map ψ by

$$\psi(z) = \frac{1}{2\pi i} \int_{\mathbf{C}} \frac{\chi(\zeta)\phi(\zeta)}{\zeta - z} \, d\zeta \wedge d\bar{\zeta}.$$

Then $\psi \in C^{0,\alpha}(\mathbf{D})$ for every $0 < \alpha < 1$ and $\tilde{f} - \psi$ is holomorphic on $\mathbf{D}_r \setminus \gamma$ by Lemma 3.2. and Lemma 3.3. Since $\tilde{f} - \psi$ is continuous on \mathbf{D} , it is holomorphic on \mathbf{D}_r and hence $\tilde{f} \in C^{0,\alpha}(\mathbf{D}_r)$ for every $0 < \alpha < 1$. Take $\alpha > 1/2$ and let $\beta = \alpha - 1/2 > 0$. Since

$$|\mu_{f(z)}| = O(|f(z) - f(\operatorname{Re} z)|) = O(|\operatorname{Im} z|^{\alpha})$$

as $z \to \gamma$, it follows that $\phi \in C^{0,\beta}(\mathbf{D}_r)$. Then \tilde{f} and ψ are in $C^{1,\beta}(\mathbf{D}_r)$ by Lemma 3.3.

424

Let q be a $C^{k,\alpha}$ map on **D** for $k \ge 1$ and $0 < \alpha < 1$. Let $\rho < 1$ be a positive real number. If we write $q_{\rho}(z) = q(\rho z)$ for $|z| < \rho^{-1}$, then

$$||q_{\rho}||_{k,\alpha} \le ||q||_{L^{\infty}} + \rho ||q||_{k,\alpha}.$$

Now, let $q(z) = \mu_{\tilde{f}(z)}$. Then $q \in C^{1,\beta}(\mathbf{D}_r)$. We have already assume that J is so close to J_{st} that $||q||_{L^{\infty}}$ is small enough. Therefore, taking dilation by a small constant ρ if necessary, we may assume that $||q||_{1,\beta}$ is sufficiently small. Then $\tilde{f} \in C^{2,\beta}$ by [6, Proposition 2.3.6]. Therefore, $q \in C^{2,\beta}$, $\tilde{f} \in C^{3,\beta}$ and so on. Altogether, we have proved the following proposition.

Proposition 3.1. Under the assumption for $f : S \to M$ imposed in Theorem 1, f is smooth up to γ .

Again, we assume that f maps \mathbf{D}^+ into U, a neighborhood of 0 in \mathbf{R}^{2n} , $\gamma = \{z \in \mathbf{D} : \text{Im } z = 0\}$ and $f \equiv 0$ on γ . Since f is pseudo-holomorphic, it satisfies that

(3.4)
$$\frac{\partial f}{\partial y} = J(f)\frac{\partial f}{\partial x}$$

on \mathbf{D}^+ , where z = x + iy is the standard coordinate of \mathbf{C} . Differentiating (3.4) in y,

(3.5)
$$\frac{\partial^2 f}{\partial y^2} = \frac{\partial}{\partial y} (J(f)) \frac{\partial f}{\partial x} + J(f) \frac{\partial^2 f}{\partial x \partial y}$$

In a similar way, we have

(3.6)
$$\frac{\partial^2 f}{\partial x^2} = -\frac{\partial}{\partial x} (J(f)) \frac{\partial f}{\partial y} - J(f) \frac{\partial^2 f}{\partial x \partial y}.$$

Adding (3.5) to (3.6), it follows that f satisfies the equation

(3.7)
$$\Delta f - \frac{\partial}{\partial y} (J(f)) \frac{\partial f}{\partial x} + \frac{\partial}{\partial x} (J(f)) \frac{\partial f}{\partial y} = 0$$

on \mathbf{D}^+ . Since f is smooth up to γ and $f \equiv 0$ on γ , $\partial f/\partial x \equiv 0$ on γ . Therefore, $\partial f/\partial y \equiv 0$ on γ since f is pseudo-holomorphic. The second order derivatives $\partial^2 f/\partial x^2$ and $\partial^2 f/\partial x \partial y$ also vanish on γ . Then $\partial^2 f/\partial y^2$ vanishes on γ by (3.7). Inductively, it follows that all the derivatives of f vanish on γ . Therefore, if we define a map f_1 on \mathbf{D} by

$$f_1(z) = \begin{cases} f(z) & \text{if Im } z \ge 0\\ f(\bar{z}) & \text{if Im } z < 0 \end{cases}$$

then f_1 is smooth on **D** and it vanishes to infinite order at 0. Moreover, Taking $C = 2 \sup_{\mathbf{D}^+} |D(J(f))|, f_1$ satisfies the differential inequality

$$|\Delta f_1| \le C |Df_1|.$$

This implies that f_1 vanishes identically on **D** by Lemma 1.1.

Now, let f be a pseudo-holomorphic map on a connected Riemann surface S with smooth boundary ∂S . If f is constant on an open arc γ of ∂S , then the previous arguments imply that f should be constant on a neighborhood of a point $z_0 \in \gamma$. Therefore, Theorem 1.1. follows the interior Unique Continuation Principle for pseudo-holomorphic curves.

References

- M. Abate, Iteration theory of holomorphic maps on taut manifolds, Research and Lecture Notes in Math., Complex Analysis and Geometry, Mediterranean Press, Rende, 1989.
- [2] N. Aronszajn, A unique continuation theorem for elliptic differential equations or inequalities of the second order, J. Math. Pures Appl. 36 (1957), 235–239.
- [3] E. Chirka, B. Coupet and A. Sukhov, On boundary regularity of analytic discs, Mich. Math. J. 46 (1999), 271–279.
- [4] H. Gausier and A. Sukhov, Estimates of the Kobayashi-Royden metric in Almost Complex Manifolds, Math cv/0307355, 2003.
- [5] P. Hartman and A. Wintner, On the local behavior of solutions of nonparabolic partial differential equations, Amer. J. Math. 75 (1953), 449–476.
- [6] J.-C. Sikorav, Some properties of holomorphic curves in almost complex manifolds, Holomorphic curves in symplectic geometry (M. Audin, J. Lafontaine, ed.) Progr. Math. 117, Birkhäuser Verlag, Basel, 1994, 165–189.

426