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Boundary identity principle for
pseudo-holomorphic curves
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Abstract

We prove a boundary version of the Unique Continuation Principle
for pseudo-holomorphic curves. It is a consequence of the boundary
regularity of pseudo-holomorphic curves. which can be achieved by a
bootstrap method.

1. Introduction

In recent years, much interests are focused upon the study of almost com-
plex structures and the properties of pseudo-holomorphic mappings between
almost complex manifolds. The goal of this paper is to prove a boundary ver-
sion of the Unique Continuation Principle for pseudo-holomorphic mappings,
which is stated as follows:

Theorem 1.1. Let S be a connected Riemann surface with smooth
boundary ∂S and let M be a smooth manifold with a smooth almost complex
structure J . Suppose that a pseudo-holomorphic map f : S →M is continuous
up to the boundary and that f is constant on an open arc γ of ∂S. Then f is
constant on S.

It is known that the interior Unique Continuation Principle is still valid
for pseudo-holomorphic mappings, that is, if f : S → M is constant on an
open subset of S, then f is constant on entire S. This is a consequence of
the vanishing theorem of a smooth mapping satisfying a partial differential
inequality, which is proved by N. Aronszajn ([2]) and Hartman-Wintner ([5]):

Lemma 1.1. Let Ω be a connected domain in R2 containing 0. Suppose
that a smooth map f : Ω → RN satisfies that

|∆f | ≤ C|Df |

for a positive constant C and that f(0) = 0. Then f ≡ 0 on Ω if f vanishes to
infinite order at 0.
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Here, ∆f and Df represent the Laplacian and the gradient of f . To prove
Theorem 1.1., we first show that f is in fact smooth up to γ by a standard
bootstrap. This yields a smooth reflection of f , which makes the problem an
interior one. Applying Lemma 1.1. to a smooth reflection of f , we can achieve
Theorem 1.1.

2. Preliminaries

Throughout this paper, an almost complex manifold means a C∞ smooth
manifold with a C∞ smooth almost complex structure J .

Let M and M ′ be almost complex manifolds with almost complex struc-
tures J and J ′, respectively. A smooth map f : M → M ′ is called a pseudo-
holomorphic map if its differential commutes with J and J ′, that is

df ◦ J = J ′ ◦ df.
Let Ω be a domain in Rn and let f : Ω → RN be differentiable to k-th

order on Ω for a nonnegative integer k. For a real number α ∈ (0, 1), we define
the (k, α)-Hölder norm ‖f‖k,α of f by

‖f‖k,α =
∑
|I|≤k

sup
Ω

|DIf(x)| +
∑
|I|=k

sup
x�=y

|DIf(x) −DIf(y)|
|x− y|α

where I = (i1, . . . , in) is a multi-index and DI = (∂/∂x1)i1 · · · (∂/∂xn)in . De-
fine the (k, α)-Hölder space Ck,α(Ω) on Ω by

Ck,α(Ω) = {f : ‖f‖k,α <∞}.
We denote by D and D+ the unit disc and the upper half disc in C,

respectively, that is,

D = {z ∈ C : |z| < 1}
and

D+ = {z ∈ D : Im z > 0}.

3. Proof of Theorem 1.1.

Fix z0 ∈ γ. Let p = f(z0). Choosing local coordinates, we may assume
that f maps D+ ∪ γ into a neighborhood U of 0 in R2n and that f ≡ 0 on γ
where γ = {z ∈ D : Im z = 0}. A C2 function u on U is said to be strictly
J-plurisubharmonic if its Levi form L(X) := −d(J∗du)(X, JX) is positive def-
inite, where J∗ represents the dual operator of J . We can also assume that
the complex structure J coincides with the standard complex structure Jst

at 0 and J is sufficiently close to Jst in C2 sense on U so that the function
u0 =

∑ |wj |2 is strictly J-plurisubharmonic on U , where (w1, . . . , wn) is the
standard coordinates of Cn = R2n. In this situation, the following lemma
holds.
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Lemma 3.1. There exists a constant C such that |Df(z)| ≤
C|Im z|−1/2 for every z ∈ D+, that is, f ∈ C0,1/2(D+ ∪ γ).

Lemma 3.1. is a consequence of Theorem 1.1. in [3]. In fact, the authors of
[3] have proved the theorem in case when the target manifolds have integrable
structures. A crucial part of the proof is an estimation of the Kobayashi metric
of target manifold, which is also available for every almost complex manifold.
(See [4].) This implies that Lemma 3.1. holds by the assumption that u0 is
strictly J-plurisubharmonic.

To prove the boundary regularity of f , we need some basic properties of
one variable ∂-equations. Let Ω be a domain in the complex plane C, and
take g and h in L1

loc, the space of locally integrable functions. We say that
∂g/∂z̄ = h in the weak sense in Ω if for every smooth function φ with compact
support in Ω, we have ∫

Ω

g(z)
∂φ

∂z̄
(z) = −

∫
Ω

h(z)φ(z).

Lemma 3.2. A L1
loc function g on a domain Ω is holomorphic if and

only if ∂g/∂z̄ = 0 in the weak sense.

Lemma 3.3. Take h ∈ L∞(C) with compact support. Define a function
g by

g(z) =
1

2πi

∫
C

h(ζ)
ζ − z

dζ ∧ dζ̄
for every z ∈ C. Then the followings hold:

(a) ∂g/∂z̄ = h in the weak sense.
(b) g ∈ C0,α(Ω) for every 0 < α < 1 and every bounded domain Ω in C.
(c) For every non-negative integer k and every 0 < α < 1, g ∈ Ck+1,α(C)

whenever h ∈ Ck,α(C).

The proofs of Lemma 3.2. and Lemma 3.3. may be found in [1], for
instance.

Decompose the complexified tangent bundle TU ⊗ C into the direct sum
of eigen-subspaces of Jst, i.e.

TU ⊗ C = T 1,0 ⊕ T 0,1

where T 1,0 and T 0,1 are the bundles of subspaces corresponding to the eigen-
values i and −i of Jst, respectively. Similarly,

TU ⊗ C = T 1,0
J ⊕ T 0,1

J

where T 1,0
J and T 0,1

J are the bundles of eigen-subspaces corresponding to the
eigenvalues i and −i of J . Since J is sufficiently close to Jst on U , there exists
a R-linear bundle map µ : T 1,0 → T 0,1 such that

T 1,0
J = {X + µ(X) : X ∈ T 1,0}.
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Taking conjugates, the bundle T 0,1
J is the graph of µ̄ : T 0,1 → T 1,0, that is,

T 0,1
J = {Y + µ̄(Y ) : Y ∈ T 0,1}.

Decompose a vector X ∈ TU ⊗ C by X = X1,0 + X0,1 with respect to the
decomposition TU⊗C = T 1,0⊕T 0,1. Then the T 0,1

J -component ofX is Y+µ̄(Y )
where

(3.1) Y = (I − µµ̄)−1(X0,1 − µ(X1,0)).

Note that I − µµ̄ is invertible since µ is sufficiently small on U , where I rep-
resents the identity operator. Since f is pseudo-holomorphic on D+, it follows
that f satisfies the equation

(3.2)
∂f

∂z̄
− µ̄

(
∂f

∂z

)
= 0

by (3.1). Define a map f̃ ∈ C0,1/2(D) by

f̃(z) =
{
f(z) if Imz ≥ 0
f(z̄) if Imz < 0.

Let φ be the map defined by

φ(z) =
{

∂f̃
∂z̄ (z) if z ∈ D \ γ

0 if z ∈ γ.

Let µw be the restriction of µ on the space T 1,0
w for every w ∈ U . Then µw is

smooth in w and µ0 = 0. Therefore, we have that

(3.3) |µf(z)| = O(|f(z)|) = O(|f(z) − f(Re z)|) = O(|Im z|1/2)

as z → γ, since f ∈ C0,1/2(D+ ∪ γ). It follows that φ ∈ L∞(D) by (3.2),
(3.3) and Lemma 3.1. For 0 < r < 1, we denote by Dr the radius r disc in C.
Choose a smooth function χ with compact support in D such that χ ≡ 1 on
Dr. Define a map ψ by

ψ(z) =
1

2πi

∫
C

χ(ζ)φ(ζ)
ζ − z

dζ ∧ dζ̄.

Then ψ ∈ C0,α(D) for every 0 < α < 1 and f̃ − ψ is holomorphic on Dr \ γ by
Lemma 3.2. and Lemma 3.3. Since f̃ −ψ is continuous on D, it is holomorphic
on Dr and hence f̃ ∈ C0,α(Dr) for every 0 < α < 1. Take α > 1/2 and let
β = α− 1/2 > 0. Since

|µf(z)| = O(|f(z) − f(Re z)|) = O(|Im z|α)

as z → γ, it follows that φ ∈ C0,β(Dr). Then f̃ and ψ are in C1,β(Dr) by
Lemma 3.3.
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Let q be a Ck,α map on D for k ≥ 1 and 0 < α < 1. Let ρ < 1 be a
positive real number. If we write qρ(z) = q(ρz) for |z| < ρ−1, then

‖qρ‖k,α ≤ ‖q‖L∞ + ρ‖q‖k,α.

Now, let q(z) = µf̃(z). Then q ∈ C1,β(Dr). We have already assume that J
is so close to Jst that ‖q‖L∞ is small enough. Therefore, taking dilation by a
small constant ρ if necessary, we may assume that ‖q‖1,β is sufficiently small.
Then f̃ ∈ C2,β by [6, Proposition 2.3.6]. Therefore, q ∈ C2,β , f̃ ∈ C3,β and so
on. Altogether, we have proved the following proposition.

Proposition 3.1. Under the assumption for f : S → M imposed in
Theorem 1, f is smooth up to γ.

Again, we assume that f maps D+ into U , a neighborhood of 0 in R2n,
γ = {z ∈ D : Im z = 0} and f ≡ 0 on γ. Since f is pseudo-holomorphic, it
satisfies that

(3.4)
∂f

∂y
= J(f)

∂f

∂x

on D+, where z = x+ iy is the standard coordinate of C. Differentiating (3.4)
in y,

(3.5)
∂2f

∂y2
=

∂

∂y
(J(f))

∂f

∂x
+ J(f)

∂2f

∂x∂y
.

In a similar way, we have

(3.6)
∂2f

∂x2
= − ∂

∂x
(J(f))

∂f

∂y
− J(f)

∂2f

∂x∂y
.

Adding (3.5) to (3.6), it follows that f satisfies the equation

(3.7) ∆f − ∂

∂y
(J(f))

∂f

∂x
+

∂

∂x
(J(f))

∂f

∂y
= 0

on D+. Since f is smooth up to γ and f ≡ 0 on γ, ∂f/∂x ≡ 0 on γ. Therefore,
∂f/∂y ≡ 0 on γ since f is pseudo-holomorphic. The second order derivatives
∂2f/∂x2 and ∂2f/∂x∂y also vanish on γ. Then ∂2f/∂y2 vanishes on γ by (3.7).
Inductively, it follows that all the derivatives of f vanish on γ. Therefore, if we
define a map f1 on D by

f1(z) =
{
f(z) if Im z ≥ 0
f(z̄) if Im z < 0,

then f1 is smooth on D and it vanishes to infinite order at 0. Moreover, Taking
C = 2 supD+ |D(J(f))|, f1 satisfies the differential inequality

|∆f1| ≤ C|Df1|.
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This implies that f1 vanishes identically on D by Lemma 1.1.
Now, let f be a pseudo-holomorphic map on a connected Riemann surface

S with smooth boundary ∂S. If f is constant on an open arc γ of ∂S, then the
previous arguments imply that f should be constant on a neighborhood of a
point z0 ∈ γ. Therefore, Theorem 1.1. follows the interior Unique Continuation
Principle for pseudo-holomorphic curves.
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