Samelson products in the exceptional Lie group of rank 2^{*}

By
Hideaki Ōshima

1. Introduction

Samelson products [7] have been studied extensively for classical Lie groups [2], [11], [12], but few results are known for exceptional Lie groups. The purpose of this note is to study the Samelson products

$$
\begin{equation*}
\langle,\rangle: \pi_{n}\left(\mathrm{G}_{2}\right) \times \pi_{11}\left(\mathrm{G}_{2}\right) \rightarrow \pi_{n+11}\left(\mathrm{G}_{2}\right) \quad(n \in\{3,11\}), \tag{1.1}
\end{equation*}
$$

where G_{2} is the exceptional Lie group of rank 2 . Note that $\pi_{m}\left(\mathrm{G}_{2}\right)$ is infinite if and only if $m \in\{3,11\}$, and that $\left\langle\pi_{3}\left(\mathrm{G}_{2}\right), \pi_{3}\left(\mathrm{G}_{2}\right)\right\rangle=\pi_{6}\left(\mathrm{G}_{2}\right)=\mathbb{Z}_{3}$ by [15]. We determine (1.1) when $n=3$, and the odd component of (1.1) when $n=11$. We have two applications: (1) we determine the nilpotency class of $\mathcal{H}\left(\mathrm{G}_{2}\right)_{(p)}$, where $\mathcal{H}\left(\mathrm{G}_{2}\right)$ is the group of homotopy classes of self maps of G_{2} and ()$_{(p)}$ is the localization at a prime number p; (2) we decide odd primes p for which the typical map $\varphi: \mathrm{S}^{3} \times \mathrm{S}^{11} \rightarrow \mathrm{G}_{2}$ (see (2.17) below) is a $\bmod p H$-map with respect to a product multiplication for $\mathrm{S}_{(p)}^{3} \times \mathrm{S}_{(p)}^{11}$ and the canonical multiplication for $\mathrm{G}_{2(p)}$.

In Section 2, we list up known results on homotopy groups of spheres and Lie groups we need, and we state our results. In Section 3, we prove that the image of (1.1) contains the odd component. In Section 4, we complete the proof of our main theorem (Theorem 2.1). In Section 5, we determine the nilpotency class of $\mathcal{H}\left(\mathrm{G}_{2}\right)_{(p)}$ for every prime p (Corollary 2.1). In Section 6, we decide whether or not $\varphi_{(p)}$ is an H-map (Corollary 2.2). In Section 7, we give a remark on $\left\langle\pi_{3}(G), \pi_{11}(G)\right\rangle$ for $G=\operatorname{Spin}(7), \operatorname{Spin}(8), \operatorname{Spin}(9), \mathrm{F}_{4}$.

2. Notations and results

We do not distinguish in notation between a map and its homotopy class. Let ι_{n} denote the identity map of S^{n}. We use the following fibrations (cf. [23,
*Supported by Grant-in-Aid for Scientific Research (C) 15540058

Appendix A])

$$
\begin{gather*}
\mathrm{S}^{3} \xrightarrow{i_{3}^{\prime}} \mathrm{SU}(3) \xrightarrow{p^{\prime}} \mathrm{S}^{5}, \\
\mathrm{SU}(3) \xrightarrow{j} \mathrm{G}_{2} \xrightarrow{p} \mathrm{~S}^{6}, \tag{2.1}\\
\mathrm{G}_{2} \xrightarrow{i} \mathrm{Spin}(7) \longrightarrow \mathrm{S}^{7}, \tag{2.2}
\end{gather*}
$$

and the following elements of [22]:

$$
\nu_{n} \in \pi_{n+3}\left(\mathrm{~S}^{n}\right)(n \geq 4), \quad \varepsilon_{n} \in \pi_{n+8}\left(\mathrm{~S}^{n}\right)(n \geq 3), \quad \bar{\nu}_{n} \in \pi_{n+8}\left(\mathrm{~S}^{n}\right)(n \geq 6)
$$

The following results are contained in [14], [15], [22]:

$$
\begin{align*}
& \pi_{n+3}\left(\mathrm{~S}^{n}\right)=\mathbb{Z}_{8}\left\{\nu_{n}\right\} \oplus \mathbb{Z}_{3} \text { for } n \geq 5, \quad \pi_{k}\left(\mathrm{~S}^{7}\right)=0 \text { for } k=11,12, \tag{2.3}\\
& \pi_{11}\left(\mathrm{~S}^{6}\right)=\mathbb{Z}\left\{\left[\iota_{6}, \iota_{6}\right]\right\},\left[\iota_{6}, \iota_{6}\right] \text { is the Whitehead product, } \tag{2.4}\\
& \pi_{14}\left(\mathrm{~S}^{6}\right)=\mathbb{Z}_{8}\left\{\bar{\nu}_{6}\right\} \oplus \mathbb{Z}_{2}\left\{\varepsilon_{6}\right\} \oplus \mathbb{Z}_{3}, \quad \pi_{14}\left(\mathrm{~S}^{7}\right)=\mathbb{Z}_{120}, \tag{2.5}\\
& \pi_{3}(\mathrm{SU}(3))=\mathbb{Z}\left\{i_{3}^{\prime}\right\}, \quad \pi_{13}(\mathrm{SU}(3))=\mathbb{Z}_{6}, \tag{2.6}\\
& \pi_{10}(\mathrm{SU}(3))=\mathbb{Z}_{30}, \quad \pi_{11}(\mathrm{SU}(3))=\mathbb{Z}_{4}\left\{\left[\nu_{5}^{2}\right]\right\}, \quad p_{*}^{\prime}\left[\nu_{5}^{2}\right]=\nu_{5} \circ \nu_{8}, \tag{2.7}\\
& \pi_{14}(\operatorname{Spin}(7))=\left(\mathbb{Z}_{8}\right)^{2} \oplus \mathbb{Z}_{2} \oplus \mathbb{Z}_{9 \cdot 5 \cdot 7}, \tag{2.8}\\
& \pi_{k}\left(\mathrm{G}_{2}\right)=0 \text { for } k=10,13, \tag{2.9}\\
& \pi_{3}\left(\mathrm{G}_{2}\right)=\mathbb{Z}\left\{i_{3}\right\}, i_{3}=j \circ i_{3}^{\prime}, \quad \pi_{11}\left(\mathrm{G}_{2}\right)=\mathbb{Z}\{\gamma\} \oplus \mathbb{Z}_{2}\left\{j_{*}\left[\nu_{5}^{2}\right]\right\}, \tag{2.10}\\
& \pi_{14}\left(\mathrm{G}_{2}\right)=\mathbb{Z}_{8}\left\{\left[\bar{\nu}_{6}+\varepsilon_{6}\right]\right\} \oplus \mathbb{Z}_{2}\left\{j_{*}\left[\nu_{5}^{2}\right] \circ \nu_{11}\right\} \oplus \mathbb{Z}_{3 \cdot 7}, p_{*}\left[\bar{\nu}_{6}+\varepsilon_{6}\right]=\bar{\nu}_{6}+\varepsilon_{6}, \tag{2.11}\\
& \pi_{22}\left(\mathrm{G}_{2}\right)=\mathbb{Z}_{8} \oplus \mathbb{Z}_{2} \oplus \mathbb{Z}_{9.7 \cdot 11}, \tag{2.12}\\
& \pi_{22}(\operatorname{Spin}(7))=\left(\mathbb{Z}_{8}\right)^{2} \oplus\left(\mathbb{Z}_{2}\right)^{4} \oplus \mathbb{Z}_{27 \cdot 5 \cdot 7 \cdot 11}, \tag{2.13}\\
& \pi_{22}\left(\mathrm{~S}^{7}\right)=\mathbb{Z}_{8} \oplus\left(\mathbb{Z}_{2}\right)^{3} \oplus \mathbb{Z}_{3 \cdot 5}, \quad \pi_{22}\left(\mathrm{~S}^{11}\right)=\mathbb{Z}_{8} \oplus \mathbb{Z}_{9.7} . \tag{2.14}
\end{align*}
$$

By (2.5), (2.6), (2.9) and (2.11), we have

$$
\begin{equation*}
\operatorname{Ker}\left\{p_{*}: \pi_{14}\left(\mathrm{G}_{2}\right) \rightarrow \pi_{14}\left(\mathrm{~S}^{6}\right)\right\}=\mathbb{Z}_{2}\left\{j_{*}\left[\nu_{5}^{2}\right] \circ \nu_{11}\right\} \oplus \mathbb{Z}_{21} \tag{2.15}
\end{equation*}
$$

Choose $\gamma \in \pi_{11}\left(\mathrm{G}_{2}\right)$ so as to satisfy [18, Lemma 5.8] (cf. [20, Proposition 2.1(4)]). Then γ is unique up to sign. Our main result is

Theorem 2.1. The order of $\left\langle i_{3}, \gamma\right\rangle$ is $3 \cdot 7$.
This theorem contains a known result that the order of $\left\langle i_{3}, \gamma\right\rangle$ is a multiple of 7 (see [9, Corollary 2.6]). But our proof is new even for 7 -component. Furukawa [5] proved the identity:

$$
\begin{equation*}
\left\langle i_{3}, j_{*}\left[\nu_{5}^{2}\right]\right\rangle=j_{*}\left[\nu_{5}^{2}\right] \circ \nu_{11} . \tag{2.16}
\end{equation*}
$$

By this identity and Theorem 2.1, we know the image of (1.1) for $n=3$ as follows:

$$
\left\langle\pi_{3}\left(\mathrm{G}_{2}\right), \pi_{11}\left(\mathrm{G}_{2}\right)\right\rangle=\mathbb{Z}_{2}\left\{j_{*}\left[\nu_{5}^{2}\right] \circ \nu_{11}\right\} \oplus \mathbb{Z}_{21} .
$$

Let $\mathcal{H}\left(\mathrm{G}_{2}\right)=\left[\mathrm{G}_{2}, \mathrm{G}_{2}\right]$ be the set of all homotopy classes of based self maps of G_{2}. It inherits a group structure from G_{2}. Let nil Γ denote the nilpotency class of the group Γ. We proved in [20] (and will recall in Section 5) that $\operatorname{nil} \mathcal{H}\left(\mathrm{G}_{2}\right)=3$.

Corollary 2.1. $\quad \operatorname{nil}\left(\mathcal{H}\left(\mathrm{G}_{2}\right)\right)_{(p)}$ is 3,2 or 1 according as $p=2, p \in\{3,7\}$ or $p \notin\{2,3,7\}$.

Let us define

$$
\begin{equation*}
\varphi: \mathrm{S}^{3} \times \mathrm{S}^{11} \rightarrow \mathrm{G}_{2}, \quad \varphi(x, y)=i_{3}(x) \gamma(y) \tag{2.17}
\end{equation*}
$$

Recall from [10], [21] that, for a prime $p, \varphi_{(p)}:\left(\mathrm{S}^{3} \times \mathrm{S}^{11}\right)_{(p)}=\mathrm{S}_{(p)}^{3} \times \mathrm{S}_{(p)}^{11} \rightarrow \mathrm{G}_{2(p)}$ is a homotopy equivalence if and only if $p \geq 7$. As is well-known [1], for a prime $p, \mathrm{~S}_{(p)}^{2 n+1}(n \neq 0,1,3)$ has an H-multiplication if and only if p is odd. For an odd prime p, let μ^{\prime} and $\mu^{\prime \prime}$ be H-multiplications for $\mathrm{S}_{(p)}^{3}$ and $\mathrm{S}_{(p)}^{11}$, respectively, and let μ be the usual multiplication for G_{2}. Let $\mu^{\prime} \times \mu^{\prime \prime}$ be the product multiplication for $\mathrm{S}_{(p)}^{3} \times \mathrm{S}_{(p)}^{11}$, that is, $\left(\mu^{\prime} \times \mu^{\prime \prime}\right)\left(\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)\right)=$ $\left(\mu^{\prime}\left(x_{1}, x_{2}\right), \mu^{\prime \prime}\left(y_{1}, y_{2}\right)\right)$.

Corollary 2.2. Let p be an odd prime. Then the following statements are equivalent:
(1) $\varphi_{(p)}:\left(\mathrm{S}_{(p)}^{3} \times \mathrm{S}_{(p)}^{11}, \mu^{\prime} \times \mu^{\prime \prime}\right) \rightarrow\left(\mathrm{G}_{2(p)}, \mu_{(p)}\right)$ is an H-map for some μ^{\prime} and $\mu^{\prime \prime}$;
(2) $\varphi_{(p)}:\left(\mathrm{S}_{(p)}^{3} \times \mathrm{S}_{(p)}^{11}, \mu^{\prime \prime \prime}\right) \rightarrow\left(\mathrm{G}_{2(p)}, \mu_{(p)}\right)$ is an H-map for all H-multiplications $\mu^{\prime \prime \prime}$ on $\mathrm{S}_{(p)}^{3} \times \mathrm{S}_{(p)}^{11}$;
(3) $p=5$ or $p \geq 13$;
(4) $\mathrm{S}_{(p)}^{3} \times \mathrm{S}_{(p)}^{11}$ has only one H-multiplication;
(5) $\mathrm{G}_{2(p)}$ has only one H-multiplication.

Remark. By [13], the above statement (3) is equivalent to
(6) $\mu_{(p)}$ is homotopy commutative.
3. Odd components of $\left\langle i_{3}, \gamma\right\rangle$ and $\langle\gamma, \gamma\rangle$

The purpose of this section is to prove
Proposition 3.1. The orders of $\left\langle i_{3}, \gamma\right\rangle$ and $\langle\gamma, \gamma\rangle$ are multiples of $3 \cdot 7$ and $9 \cdot 7 \cdot 11$, respectively.

We need
Lemma 3.1. The homomorphism $i_{*}: \pi_{k}\left(\mathrm{G}_{2}\right) \rightarrow \pi_{k}(\operatorname{Spin}(7))$ is an isomorphism for $k=3,11$ and a monomorphism for $k=14,22$.

Proof. Consider the homotopy exact sequence of (2.2). Then the assertions follow from (2.3), (2.5), (2.8), (2.11)~(2.14).

Proof of Proposition 3.1. Let $\pi: \operatorname{Spin}(7) \rightarrow \mathrm{SO}(7)$ be the covering map. Let n be 3 or 11 . We have the following commutative diagram:

$$
\begin{array}{ccc}
\pi_{n}\left(\mathrm{G}_{2}\right) \times \pi_{11}\left(\mathrm{G}_{2}\right) & \stackrel{\langle,\rangle}{ } & \pi_{n+11}\left(\mathrm{G}_{2}\right) \\
i_{*} \times i_{*} \mid \cong & \downarrow i_{*} \tag{3.1}\\
\pi_{n}(\mathrm{Spin}(7)) \times \pi_{11}(\mathrm{Spin}(7)) & \xrightarrow{\langle,\rangle} & \pi_{n+11}(\mathrm{Spin}(7)) \\
\pi_{*} \times \pi_{*} \mid \cong & \cong \downarrow \pi_{*} \\
\pi_{n}(\mathrm{SO}(7)) \times \pi_{11}(\mathrm{SO}(7)) & \xrightarrow{\langle,\rangle} & \pi_{n+11}(\mathrm{SO}(7)) .
\end{array}
$$

By [4, Theorem 2.1], for every natural number m, there exists a homotopy equivalence between localized classifying spaces

$$
\Phi:(B \mathrm{SO}(2 m+1))_{\frac{1}{2}} \rightarrow(B \mathrm{Sp}(m))_{\frac{1}{2}}
$$

where ()$_{\frac{1}{2}}$ denotes localization away from the prime 2. Hence

$$
\Omega \Phi: \Omega(B \mathrm{SO}(2 m+1))_{\frac{1}{2}} \rightarrow \Omega(B \mathrm{Sp}(m))_{\frac{1}{2}}
$$

is an H-equivalence (i.e. a homotopy equivalence which is an H-map), where ΩX is the space of loops in the space X. Therefore we have an H-equivalence

$$
\phi: \mathrm{SO}(2 m+1)_{\frac{1}{2}} \rightarrow \mathrm{Sp}(m)_{\frac{1}{2}}
$$

and so the commutative square

$$
\begin{array}{cc}
\pi_{n}\left(\mathrm{SO}(7)_{\frac{1}{2}}\right) \times \pi_{11}\left(\mathrm{SO}(7)_{\frac{1}{2}}\right) \xrightarrow{\langle,\rangle} \pi_{n+11}\left(\mathrm{SO}(7)_{\frac{1}{2}}\right) \\
\phi_{*} \times \phi_{*} \downarrow \cong & \cong \downarrow_{*} \\
\pi_{n}\left(\mathrm{Sp}(3)_{\frac{1}{2}}\right) \times \pi_{11}\left(\mathrm{Sp}(3)_{\frac{1}{2}}\right) \xrightarrow{\langle,\rangle} \pi_{n+11}\left(\mathrm{Sp}(3)_{\frac{1}{2}}\right)
\end{array}
$$

By combining the last square with (3.1), we have the following commutative square

$$
\begin{array}{ccc}
\pi_{n}\left(\mathrm{G}_{2}\right)_{\frac{1}{2}} \times \pi_{11}\left(\mathrm{G}_{2}\right)_{\frac{1}{2}} & \stackrel{\langle,\rangle}{\longrightarrow} & \pi_{n+11}\left(\mathrm{G}_{2}\right)_{\frac{1}{2}} \\
\cong \downarrow & \downarrow \psi \tag{3.2}\\
\pi_{n}(\mathrm{Sp}(3))_{\frac{1}{2}} \times \pi_{11}(\mathrm{Sp}(3))_{\frac{1}{2}} & \xrightarrow{\langle,\rangle} & \pi_{n+11}(\mathrm{Sp}(3))_{\frac{1}{2}},
\end{array}
$$

where $\psi=\phi_{*} \circ\left(\pi_{*} \circ i_{*}\right)_{\frac{1}{2}}$ is a monomorphism by Lemma 3.1. Since the inclusion induces a monomorphism $\pi_{22}(\operatorname{Sp}(3))_{\frac{1}{2}} \rightarrow \pi_{22}(\operatorname{Sp}(5))_{\frac{1}{2}}$ (see [16]), it follows from [2, Theorem 2] that the image of

$$
\langle,\rangle: \pi_{11}(\operatorname{Sp}(3))_{\frac{1}{2}} \times \pi_{11}(\operatorname{Sp}(3))_{\frac{1}{2}} \rightarrow \pi_{22}(\operatorname{Sp}(3))_{\frac{1}{2}}
$$

is a subgroup of order $9 \cdot 7 \cdot 11$ so that $\langle\gamma, \gamma\rangle$ is of order $9 \cdot 7 \cdot 11$ in $\pi_{22}\left(\mathrm{G}_{2}\right)_{\frac{1}{2}}$ by (3.2). For similar reasons, $\left\langle i_{3}, \gamma\right\rangle$ is of order $3 \cdot 7$ in $\pi_{14}\left(\mathrm{G}_{2}\right)_{\frac{1}{2}}$. Hence Proposition 3.1 follows.

4. The 2-component of $\left\langle i_{3}, \gamma\right\rangle$

The purpose of this section is to prove
Proposition 4.1. The order of $\left\langle i_{3}, \gamma\right\rangle$ is a divisor of $3 \cdot 7$.
If this is true, then the order of $\left\langle i_{3}, \gamma\right\rangle$ is $3 \cdot 7$ by Proposition 3.1 and so Theorem 2.1 follows.

The relative Samelson products \langle,\rangle_{r} associated with (2.1) are pairings

$$
\begin{aligned}
& \langle,\rangle_{r}: \pi_{s}(\mathrm{SU}(3)) \times \pi_{t}\left(\mathrm{~S}^{6}\right) \rightarrow \pi_{s+t}\left(\mathrm{~S}^{6}\right), \\
& \langle,\rangle_{r}: \pi_{t}\left(\mathrm{~S}^{6}\right) \times \pi_{s}(\mathrm{SU}(3)) \rightarrow \pi_{s+t}\left(\mathrm{~S}^{6}\right)
\end{aligned}
$$

and they satisfy $\langle\alpha, \beta\rangle_{r}=(-1)^{s t-1}\langle\beta, \alpha\rangle_{r}$ for $\alpha \in \pi_{s}(\mathrm{SU}(3)), \beta \in \pi_{t}\left(\mathrm{~S}^{6}\right)$ (cf. [7]).

Let $\Delta: \pi_{s+1}\left(\mathrm{~S}^{6}\right) \rightarrow \pi_{s}(\mathrm{SU}(3))$ be the connecting homomorphism of (2.1). The homotopy exact sequence of (2.1) implies the identity $p_{*}(\gamma)= \pm 30\left[\iota_{6}, \iota_{6}\right]$ by (2.4), (2.7), (2.9) and (2.10). On the other hand, we have $p_{*}\left\langle i_{3}, \gamma\right\rangle=\left\langle i_{3}^{\prime}, p_{*} \gamma\right\rangle_{r}$ by $[7,(15.14)]$. Hence

$$
\begin{equation*}
p_{*}\left\langle i_{3}, \gamma\right\rangle= \pm 30\left\langle i_{3}^{\prime},\left[\iota_{6}, \iota_{6}\right]\right\rangle_{r} . \tag{4.1}
\end{equation*}
$$

Lemma 4.1. $\quad 6\left\langle i_{3}^{\prime},\left[\iota_{6}, \iota_{6}\right]\right\rangle_{r}=0$.
If Lemma 4.1 holds, then $\left\langle i_{3}, \gamma\right\rangle \in \mathbb{Z}_{2}\left\{j_{*}\left[\nu_{5}^{2}\right] \circ \nu_{11}\right\} \oplus \mathbb{Z}_{21}$ by (4.1) and (2.15) and hence $21\left\langle i_{3}, \gamma\right\rangle=0$ by (2.11), since $\left\langle i_{3}, \gamma\right\rangle$ is divisible by 4 , as was proved in [20] and will be recalled in the next section, and so Proposition 4.1 follows.

We devote the rest of this section to the proof of Lemma 4.1. We have

$$
\begin{equation*}
\left[\iota_{6}, \iota_{6}\right]= \pm\left\langle\Delta \iota_{6}, \iota_{6}\right\rangle_{r} \tag{4.2}
\end{equation*}
$$

by $[7,(16.3)]$, and so

$$
\begin{equation*}
\left\langle i_{3}^{\prime},\left[\iota_{6}, \iota_{6}\right]\right\rangle_{r}= \pm\left\langle i_{3}^{\prime},\left\langle\Delta \iota_{6}, \iota_{6}\right\rangle_{r}\right\rangle_{r} \tag{4.3}
\end{equation*}
$$

The following Jacobi identity holds (cf. [7, (15.12)]):

$$
\left\langle\iota_{6},\left\langle i_{3}^{\prime}, \Delta \iota_{6}\right\rangle\right\rangle_{r}-\left\langle\Delta \iota_{6},\left\langle\iota_{6}, i_{3}^{\prime}\right\rangle_{r}\right\rangle_{r}+\left\langle i_{3}^{\prime},\left\langle\Delta \iota_{6}, \iota_{6}\right\rangle_{r}\right\rangle_{r}=0 .
$$

Since $\left\langle i_{3}^{\prime}, \Delta \iota_{6}\right\rangle=\left\langle\Delta \iota_{6}, i_{3}^{\prime}\right\rangle$ (cf. [7, (15.10)]), we then have

$$
\begin{equation*}
\left\langle i_{3}^{\prime},\left\langle\Delta \iota_{6}, \iota_{6}\right\rangle_{r}\right\rangle_{r}=\left\langle\Delta \iota_{6},\left\langle\iota_{6}, i_{3}^{\prime}\right\rangle_{r}\right\rangle_{r}-\left\langle\iota_{6},\left\langle\Delta \iota_{6}, i_{3}^{\prime}\right\rangle\right\rangle_{r} \tag{4.4}
\end{equation*}
$$

Lemma 4.2. There exists an integer m such that, in $\pi_{14}\left(\mathrm{~S}^{6}\right)_{(2)}$, we have

$$
\begin{align*}
& \left\langle\Delta \iota_{6},\left\langle\iota_{6}, i_{3}^{\prime}\right\rangle_{r}\right\rangle_{r}=2 m \bar{\nu}_{6}, \tag{4.5}\\
& \left\langle\iota_{6},\left\langle\Delta \iota_{6}, i_{3}^{\prime}\right\rangle\right\rangle_{r}= \pm 2 m \bar{\nu}_{6} . \tag{4.6}
\end{align*}
$$

If Lemma 4.2 holds, then $\left\langle i_{3}^{\prime},\left[\iota_{6}, \iota_{6}\right]\right\rangle_{r}=2 m(1 \pm 1) \bar{\nu}_{6}$ in $\pi_{14}\left(\mathrm{~S}^{6}\right)_{(2)}$ by (4.3) and (4.4), and so $6\left\langle i_{3}^{\prime},\left[\iota_{6}, \iota_{6}\right]\right\rangle_{r}=0$ by (2.5), and hence Lemma 4.1 follows.

Proof of Lemma 4.2. In this proof, all groups are localized at 2. By (2.3), we can write

$$
\begin{equation*}
\left\langle\iota_{6}, i_{3}^{\prime}\right\rangle_{r}=k \nu_{6}, \quad k \in \mathbb{Z} \tag{4.7}
\end{equation*}
$$

By [2, Corollary], [7, (15.13)], [14] and [15], we can easily show that k is odd. We omit its proof, since we do not use this fact below. Now

$$
\begin{equation*}
\left\langle\Delta \iota_{6},\left\langle\iota_{6}, i_{3}^{\prime}\right\rangle_{r}\right\rangle_{r}=k\left\langle\Delta \iota_{6}, \nu_{6}\right\rangle_{r} . \tag{4.8}
\end{equation*}
$$

We have

$$
\begin{aligned}
\left\langle\Delta \iota_{6}, \nu_{6}\right\rangle_{r} & =\left\langle\Delta \iota_{6} \circ \iota_{5}, \iota_{6} \circ \nu_{6}\right\rangle_{r} \\
& =\left\langle\Delta \iota_{6}, \iota_{6}\right\rangle_{r} \circ \nu_{11} \quad(\text { by }[7,(15.11)]) \\
& = \pm\left[\iota_{6}, \iota_{6}\right] \circ \nu_{11} \quad(\text { by }(4.2)) \\
& = \pm 2 \bar{\nu}_{6} \quad(\text { by }[22, \text { Lemma } 6.2]),
\end{aligned}
$$

that is, we have

$$
\begin{equation*}
\left\langle\Delta \iota_{6}, \nu_{6}\right\rangle_{r}= \pm 2 \bar{\nu}_{6} . \tag{4.9}
\end{equation*}
$$

Hence $\left\langle\Delta \iota_{6},\left\langle\iota_{6}, i_{3}^{\prime}\right\rangle_{r}\right\rangle_{r}= \pm 2 k \bar{\nu}_{6}$ by (4.8). Therefore, by taking $m= \pm k$, we obtain (4.5).

We have $\left\langle\Delta \iota_{6}, i_{3}^{\prime}\right\rangle= \pm \Delta\left\langle\iota_{6}, i_{3}^{\prime}\right\rangle_{r}$ by [7, (15.10), (15.13)], and

$$
\begin{aligned}
\left\langle\iota_{6},\left\langle\Delta \iota_{6}, i_{3}^{\prime}\right\rangle\right\rangle_{r} & = \pm\left\langle\iota_{6}, \Delta\left\langle\iota_{6}, i_{3}^{\prime}\right\rangle_{r}\right\rangle_{r} \\
& = \pm k\left\langle\iota_{6}, \Delta \nu_{6}\right\rangle_{r} \quad(\text { by }(4.7)) .
\end{aligned}
$$

Since $\left\langle\iota_{6}, \Delta \nu_{6}\right\rangle_{r}= \pm\left\langle\Delta \iota_{6}, \nu_{6}\right\rangle_{r}$ by [7, (16.3)] and [23, (7.5) on p. 474], it follows from (4.9) that we have $\left\langle\iota_{6}, \Delta \nu_{6}\right\rangle_{r}= \pm 2 \bar{\nu}_{6}$ so that $\left\langle\iota_{6},\left\langle i_{3}^{\prime}, \Delta \iota_{6}\right\rangle\right\rangle_{r}= \pm 2 k \bar{\nu}_{6}$. Therefore we obtain (4.6). This completes the proof of Lemma 4.2.

5. Proof of Corollary 2.1

We use the usual cell structure of G_{2} (cf. [18], [20]). Let $\mathrm{G}_{2}^{(11)}$ be the 11-skeleton of G_{2}. Let $q_{14}: \mathrm{G}_{2} \rightarrow \mathrm{G}_{2} / \mathrm{G}_{2}^{(11)}=\mathrm{S}^{14}$ be the quotient map and let $i_{11}: \mathrm{G}_{2}^{(11)} \rightarrow \mathrm{G}_{2}$ be the inclusion map.

Theorem 5.1 (Theorem 2.2 of [20]).
(1) The sequence

$$
0 \longrightarrow \pi_{14}\left(\mathrm{G}_{2}\right) \xrightarrow{q_{14}^{*}} \mathcal{H}\left(\mathrm{G}_{2}\right) \xrightarrow{i_{11}^{*}}\left[\mathrm{G}_{2}^{(11)}, \mathrm{G}_{2}\right] \longrightarrow 1
$$

is a central extension of groups.
(2) There exists $\alpha \in \mathcal{H}\left(\mathrm{G}_{2}\right)$ such that
(a) $\mathcal{H}\left(\mathrm{G}_{2}\right)$ is generated by $1, \alpha$ and $\operatorname{Im}\left(q_{14}^{*}\right)$, where 1 denotes the identity map,
(b) $[1,[1, \alpha]]=q_{14}^{*}\left(j_{*}\left[\nu_{5}^{2}\right] \circ \nu_{11}\right)$, where $[$,$] denotes the commutator,$
(c) there exists $x_{0} \in \pi_{14}\left(\mathrm{G}_{2}\right)$ such that $2[1, \alpha]=2 q_{14}^{*}\left(x_{0}\right)$ and $\left\langle i_{3}, \gamma\right\rangle=$ $\pm 4 x_{0}$.
(3) $\operatorname{nil}\left[\mathrm{G}_{2}^{(11)}, \mathrm{G}_{2}\right]=\operatorname{nil}\left[\mathrm{G}_{2}^{(11)}, \mathrm{G}_{2}\right]_{(2)}=2$ and $\operatorname{nil}\left[\mathrm{G}_{2}^{(11)}, \mathrm{G}_{2}\right]_{(p)}=1$ for every odd prime p.

Hence $\operatorname{nil} \mathcal{H}\left(\mathrm{G}_{2}\right)=3=\operatorname{nil} \mathcal{H}\left(\mathrm{G}_{2}\right)_{(2)}$ and nil $\mathcal{H}\left(\mathrm{G}_{2}\right)_{(p)} \leq 2$ for every odd prime p. If $p=5$ or $p>7$, then $\mathcal{H}\left(\mathrm{G}_{2}\right)_{(p)} \cong\left[\mathrm{G}_{2}^{(11)}, \mathrm{G}_{2}\right]_{(p)}$ by the above exact sequence and (2.11), and so nil $\mathcal{H}\left(\mathrm{G}_{2}\right)_{(p)}=1$. It follows from Theorem 2.1 and (2)(c) that the order of $[1, \alpha]$ is a multiple of 21 so that nil $\mathcal{H}\left(\mathrm{G}_{2}\right)_{(p)} \geq 2$, and hence nil $\mathcal{H}\left(\mathrm{G}_{2}\right)_{(p)}=2$, for $p=3,7$. This completes the proof of Corollary 2.1.

6. Proof of Corollary 2.2

Let $e: Y \rightarrow Y_{(p)}$ be the p-localization map for any nilpotent space Y. " $(2) \Rightarrow(1)$ " is obvious.
To prove " $(1) \Rightarrow(3)$ " by a contradiction, suppose that p is 3,7 or 11 and that $\varphi_{(p)}:\left(\mathrm{S}_{(p)}^{3} \times \mathrm{S}_{(p)}^{11}, \mu^{\prime} \times \mu^{\prime \prime}\right) \rightarrow\left(\mathrm{G}_{2(p)}, \mu_{(p)}\right)$ is an H-map for some μ^{\prime} and $\mu^{\prime \prime}$. Firstly we consider the cases $p=3,7$. We denote by $j_{3}: \mathrm{S}^{3} \rightarrow \mathrm{~S}_{(p)}^{3} \times \mathrm{S}_{(p)}^{11}$ and $j_{11}: \mathrm{S}^{11} \rightarrow \mathrm{~S}_{(p)}^{3} \times \mathrm{S}_{(p)}^{11}$ the compositions of e and the inclusion maps. Then $\left\langle j_{3}, j_{11}\right\rangle=0$ by the definition of the Samelson product (cf. [19]). Hence we have

$$
0=\varphi_{(p)_{*}}\left\langle j_{3}, j_{11}\right\rangle=e_{*}\left\langle i_{3}, \gamma\right\rangle \in \pi_{14}\left(\mathrm{G}_{2}\right)_{(p)} .
$$

This contradicts Proposition 3.1. Secondly we consider the case $p=11$. As is easily seen, $\gamma_{(11)}:\left(\mathrm{S}_{(11)}^{11}, \mu^{\prime \prime}\right) \rightarrow\left(\mathrm{G}_{2(11)}, \mu_{(11)}\right)$ is an H-map under the assumption. We have $\left\langle e \circ \iota_{11}, e \circ \iota_{11}\right\rangle=0$, since $\pi_{22}\left(\mathrm{~S}^{11}\right)_{(11)}=0$ by (2.14). Therefore

$$
0=\gamma_{(11)_{*}}\left\langle e \circ \iota_{11}, e \circ \iota_{11}\right\rangle=e_{*}\langle\gamma, \gamma\rangle \in \pi_{22}\left(\mathrm{G}_{2}\right)_{(11)} .
$$

This contradicts Proposition 3.1.
To prove " $(3) \Rightarrow(2)$ ", let $p=5$ or $p \geq 13$, and let $\mu^{\prime \prime \prime}$ be any H multiplication for $S_{(p)}^{3} \times \mathrm{S}_{(p)}^{11}$. Let

$$
D=D\left(\varphi_{(p)}, \mu^{\prime \prime \prime}, \mu_{(p)}\right) \in\left[X_{(p)}, \mathrm{G}_{2(p)}\right]=\left[X, \mathrm{G}_{2}\right]_{(p)}
$$

be the H-deviation of $\varphi_{(p)}($ see $[24,1.4 .1])$, where $X=\left(\mathrm{S}^{3} \times \mathrm{S}^{11}\right) \wedge\left(\mathrm{S}^{3} \times \mathrm{S}^{11}\right)$. Then $\varphi_{(p)}$ is an H-map with respect to $\mu^{\prime \prime \prime}$ and $\mu_{(p)}$ if and only if $D=0$. We prove the assertion by showing $\left[X, \mathrm{G}_{2}\right]_{(p)}=0$. Since X has a cell structure

$$
\begin{equation*}
X=\mathrm{S}^{6} \cup e^{14} \cup e^{14} \cup e^{22} \cup e^{28} \tag{6.1}
\end{equation*}
$$

it suffices to prove that $\pi_{m}\left(\mathrm{G}_{2}\right)_{(p)}=0$ for $m=6,14,22,28$. By [15], we have $\pi_{m}\left(\mathrm{G}_{2}\right)_{(p)}=0$ for $m=6,14,22$. By [22, Chapter XIII] and [6], we have

$$
\pi_{28}\left(\mathrm{G}_{2}\right)_{(p)} \cong \pi_{28}(\operatorname{Spin}(7))_{(p)} \cong \pi_{28}(\operatorname{Sp}(3))_{(p)} \cong \pi_{28}(\mathrm{Sp}(2))_{(p)}=0
$$

Hence (2) follows.
Recall from [3, Theorem 5.5A] that if Y is a CW- H-space, then the set of H-multiplications for Y is in 1-1 correspondence with $[Y \wedge Y, Y]$. We have

$$
\left[\left(\mathrm{S}_{(p)}^{3} \times \mathrm{S}_{(p)}^{11}\right) \wedge\left(\mathrm{S}_{(p)}^{3} \times \mathrm{S}_{(p)}^{11}\right), \mathrm{S}_{(p)}^{3} \times \mathrm{S}_{(p)}^{11}\right]=\left[X, \mathrm{~S}_{(p)}^{3}\right] \times\left[X, \mathrm{~S}_{(p)}^{11}\right]
$$

By using (6.1) and [22], we can show that $\left[X, \mathrm{~S}_{(p)}^{3}\right]$ and $\left[X, \mathrm{~S}_{(p)}^{11}\right]$ are trivial if and only if $p=5$ or $p \geq 13$. Hence (3) and (4) are equivalent.

In the rest of the proof, we show that (3) and (5) are equivalent. Let $p \geq 7$. Then $\mathrm{S}_{(p)}^{3} \times \mathrm{S}_{(p)}^{11} \simeq \mathrm{G}_{2(p)}$ as recalled in Section 2, and so $\mathrm{G}_{2(p)}$ has only one H-multiplication if and only if $p \geq 13$ by the above discussion. By [17], $\mathrm{G}_{2(5)} \simeq$ $B_{1}(5)_{(5)}$, where $B_{1}(5)$ is a S^{3}-bundle over S^{11}. Hence $\left[\mathrm{G}_{2(5)} \wedge \mathrm{G}_{2(5)}, \mathrm{G}_{2(5)}\right] \cong$ $\left[B_{1}(5) \wedge B_{1}(5), B_{1}(5)_{(5)}\right]$. By using [22, Chapter XIII] and a cell structure $B_{1}(5)=\mathrm{S}^{3} \cup e^{11} \cup e^{14}$ (cf. [8]), we can show that $\left[B_{1}(5) \wedge B_{1}(5), B_{1}(5)_{(5)}\right]$ is trivial. Hence $\mathrm{G}_{2(5)}$ has only one H-multiplication. Let $C: \mathrm{G}_{2} \wedge \mathrm{G}_{2} \rightarrow \mathrm{G}_{2}$ be the commutator map, that is, $C(x \wedge y)=x y x^{-1} y^{-1}$. Since $C \circ\left(i_{3} \wedge i_{3}\right)=\left\langle i_{3}, i_{3}\right\rangle$ and $\pi_{6}\left(\mathrm{G}_{2}\right)=\mathbb{Z}_{3}\left\{\left\langle i_{3}, i_{3}\right\rangle\right\}$ by [15], it follows that the order of C is a multiple of 3. Hence $\left[\mathrm{G}_{2(3)} \wedge \mathrm{G}_{2(3)}, \mathrm{G}_{2(3)}\right]$ is not trivial and so $\mathrm{G}_{2(3)}$ has at least three H-multiplications. Therefore (3) and (5) are equivalent.

7. A remark

By [15] and (2.16), we can show that inclusions (cf. [23, Appendix A])

$$
\begin{equation*}
\mathrm{G}_{2} \subset \mathrm{Spin}(7) \subset \operatorname{Spin}(8) \subset \operatorname{Spin}(9) \subset \mathrm{F}_{4} \tag{7.1}
\end{equation*}
$$

induce isomorphisms
$\left\langle\pi_{3}\left(\mathrm{G}_{2}\right), \pi_{11}\left(\mathrm{G}_{2}\right)\right\rangle \cong\left\langle\pi_{3}(\operatorname{Spin}(7)), \pi_{11}(\operatorname{Spin}(7))\right\rangle \cong\left\langle\pi_{3}(\operatorname{Spin}(8)), \pi_{11}(\operatorname{Spin}(8))\right\rangle$,

$$
\begin{equation*}
\left\langle\pi_{3}(\operatorname{Spin}(9)), \pi_{11}(\operatorname{Spin}(9))\right\rangle \cong\left\langle\pi_{3}\left(\mathrm{~F}_{4}\right), \pi_{11}\left(\mathrm{~F}_{4}\right)\right\rangle=\pi_{14}\left(\mathrm{~F}_{4}\right) \tag{7.2}
\end{equation*}
$$

and an epimorphism

$$
\left\langle\pi_{3}(\operatorname{Spin}(8)), \pi_{11}(\operatorname{Spin}(8))\right\rangle \rightarrow\left\langle\pi_{3}(\operatorname{Spin}(9)), \pi_{11}(\operatorname{Spin}(9))\right\rangle
$$

Groups in (7.2) and (7.3) are, respectively, isomorphic to $\mathbb{Z}_{2} \oplus \mathbb{Z}_{21}$ and \mathbb{Z}_{2}. Here, for every G in (7.1), \mathbb{Z}_{2} is a direct summand of $\pi_{14}(G)$ and generated by the image of $\left\langle i_{3}^{\prime},\left[\nu_{5}^{2}\right]\right\rangle \in \pi_{14}(\mathrm{SU}(3))$ under the inclusion of $\mathrm{SU}(3)$ into G.

Ibaraki University

Mito, Ibaraki 310-8512
Japan
e-mail: ooshima@mx.ibaraki.ac.jp

References

[1] J. F. Adams, The sphere, considered as an H-space $\bmod p$, Quart. J. Math. Oxford 12 (1961), 52-60.
[2] R. Bott, A note on the Samelson products in the classical groups, Comment. Math. Helv. 34 (1960), 249-256.
[3] A. H. Copeland Jr., Binary operations on sets of mapping classes, Mich. Math. J. 6 (1959), 7-23.
[4] E. M. Friedlander, Exceptional isogenies and the classifying spaces of simple Lie groups, Ann. of Math. 101 (1975), 510-520.
[5] Y. Furukawa, Homotopy normality of Lie groups II, Quart. J. Math. Oxford 38 (1987), 185-188.
[6] B. Harris, On the homotopy groups of the classical groups, Ann. of Math. 74 (1961), 407-413.
[7] I. M. James, The topology of Stiefel manifolds, London Math. Soc. Lecture Note Se. 24, Cambridge, 1976.
[8] I. M. James and J. H. C. Whitehead, The homotopy theory of sphere bundles over spheres (I), Proc. London Math. Soc. 4 (1954), 196-218.
[9] A. Kono and H. Ōshima, Commutativity of the group of self homotopy classes of Lie groups, Bull. London Math. Soc. 36 (2004), 37-52.
[10] P. G. Kumpel, Jr., Lie groups and products of spheres, Proc. Amer. Math. Soc. 16 (1965), 1350-1356.
[11] A. T. Lundell, The embeddings $\mathrm{O}(n) \subset \mathrm{U}(n)$ and $\mathrm{U}(n) \subset \mathrm{Sp}(n)$, and a Samelson product, Mich. Math. J. 13 (1966), 133-145.
[12] M. Mahowald, A Samelson product in SO(2n), Bol. Soc. Mat. Mexicana 10 (1965), 80-83.
[13] C. A. McGibbon, Homotopy commutativity in localized groups, Amer. J. Math. 106 (1985), 665-687.
[14] M. Mimura, Homotopy groups of $\operatorname{SU}(3), \mathrm{SU}(4)$ and $\mathrm{Sp}(2)$, J. Math. Kyoto Univ. 3 (1964), 217-250.
[15] , The homotopy groups of Lie groups of low rank, J. Math. Kyoto Univ. 6 (1967), 131-176.
[16] M. Mimura and H. Toda, Homotopy groups of symplectic groups, J. Math. Kyoto Univ. 3 (1964), 251-273.
[17] , Cohomology operations and the homotopy of compact Lie groups-I, Topology 9 (1970), 317-336.
[18] S. Oka, Homotopy of the exceptional Lie group G_{2}, Proc. Edinburgh Math. 29 (1986), 145-169.
[19] H. Ōshima, Self homotopy set of a Hopf space, Quart. J. Math. 50 (1999), 483-495.
[20] , Self homotopy group of the exceptional Lie group G_{2}, J. Math. Kyoto Univ. 40 (2000), 177-184.
[21] J-P. Serre, Groupes d'homotopie et classes de groupes abéliens, Ann. of Math. 58 (1953), 258-294.
[22] H. Toda, Composition methods in homotopy groups of spheres, Ann. of Math. Stud. 49, Princeton, 1962.
[23] G. W. Whitehead, Elements of homotopy theory, Grad. Texts in Math. 61, Springer, New York, 1978.
[24] A. Zabrodsky, Hopf spaces, North-Holland Math. Stud. 22, North-Holland, Amsterdam, 1976.

