Sharp lower bound for the lifespan of systems of semilinear wave equations with multiple speeds*

By
Soichiro Katayama and Akitaka Matsumura

Abstract

We consider the Cauchy problem for a system of semilinear wave equations with multiple propagation speeds in three space dimensions. We assume that quadratic terms in its nonlinearity consist of products of unknowns whose speeds are different from each other. It is known that some classical solution to the above type of system may blow up in finite time. In this article, we get the sharp lower bound for the lifespan of classical solutions to this kind of system.

1. Introduction

In this paper, we investigate lifespan estimates for the Cauchy problem to systems of semilinear wave equations in three space dimensions. We define

$$
\square_{c}=\partial_{t}^{2}-c^{2} \Delta_{x} \text { for } c>0
$$

We consider

$$
\begin{cases}\square_{c_{i}} u_{i}(t, x)=F_{i}(u(t, x)) \text { for }(t, x) \in(0, \infty) \times \mathbb{R}^{3} & (1 \leq i \leq m), \tag{1.1}\\ u_{i}(x)=\varepsilon f_{i}(0, x), \partial_{t} u_{i}(0, x)=\varepsilon g_{i}(x) \text { for } x \in \mathbb{R}^{3} & (1 \leq i \leq m),\end{cases}
$$

where $c_{i}(1 \leq i \leq m)$ are positive constants, $u=\left(u_{i}\right)_{1 \leq i \leq m}$, and ε is a small and positive parameter.

For a while, we assume that the initial data $f=\left(f_{i}\right)_{1 \leq i \leq m}$ and $g=$ $\left(g_{i}\right)_{1 \leq j \leq m}$ are compactly supported and sufficiently smooth functions.

We define T_{ε} by

$$
\begin{align*}
T_{\varepsilon} & =T_{\varepsilon}(F, f, g) \tag{1.2}\\
& =\sup \left\{T \in(0, \infty) ;(1.1) \text { possesses a } C^{2} \text {-solution } u \text { for } 0 \leq t<T\right\},
\end{align*}
$$

which is called lifespan of classical solutions.

[^0]First we consider the single case $m=1$:

$$
\begin{cases}\square u=F(u) & \text { in }(0, \infty) \times \mathbb{R}^{3}, \tag{1.3}\\ u=\varepsilon f, \partial_{t} u=\varepsilon g & \text { at } t=0\end{cases}
$$

where $\square=\square_{1}=\partial_{t}^{2}-\Delta_{x}, F(u)=|u|^{p-1} u$ or $|u|^{p}$ with $p>1$. It is well known that the critical power is $1+\sqrt{2}$ for this kind of semilinear wave equation. If $p>1+\sqrt{2}$, (1.1) possesses a global C^{2}-solution for any f and g, namely $T_{\varepsilon}=\infty$, provided that ε is sufficiently small. On the other hand, when $1<$ $p \leq 1+\sqrt{2}$, there exist some f and g such that the solution to (1.3) blows up in finite time, that is $T_{\varepsilon}<\infty$, no matter how small ε is (see Asakura [1], John [2], Kubota [7], Schaeffer [10], Sideris [11], Strauss [12], Tsutaya [14] for example). The lifespan estimate for the case $1<p \leq 1+\sqrt{2}$ is also studied well, and when p is the critical value $1+\sqrt{2}$, it is known that for any f and g we have $T_{\varepsilon} \geq \exp \left(C_{1} \varepsilon^{-p(p-1)}\right)$ with some positive constant C_{1}. This lower bound is sharp in the sense that $T_{\varepsilon} \leq \exp \left(C_{2} \varepsilon^{-p(p-1)}\right)$ holds for some f, g and C_{2} (see Lindblad [9], Takamura [13] and Zhou [15]).

Next we turn our attention to the system (1.1) with $m \geq 2$. It is known that difference of the propagation speeds makes the critical power lower than $1+\sqrt{2}$ in some cases, but such nonlinearity is unstable under the perturbation of nonlinearity of higher order. To explain the situation clearly, let us consider the following example:

$$
\left\{\begin{array}{l}
\square_{c_{1}} u_{1}=\alpha_{1} u_{1} u_{2}+\beta_{1} u_{2}^{3}, \tag{1.4}\\
\square_{c_{2}} u_{2}=\alpha_{2} u_{1} u_{2}+\beta_{2} u_{1}^{3},
\end{array}\right.
$$

where $\alpha_{j}, \beta_{j} \in \mathbb{R}(j=1,2)$. When $\alpha_{1}=\alpha_{2}=0$, there exists a global solution to (1.4) for small data, as is expected from $3>1+\sqrt{2}$. When $\beta_{1}=\beta_{2}=0$, blow-up of solutions may occur in general. But if we further assume $c_{1} \neq c_{2}$, (1.4) admits a global solution for small data, although the power of nonlinearity here is 2 which is less than $1+\sqrt{2}$ (see Kubo-Ohta [6]). Now we are led to a question: Does a global solution exist for the case $c_{1} \neq c_{2}$ no matter how we choose the coefficients α_{j} and $\beta_{j}(j=1,2)$? The answer is no by the following result of Kubo-Ohta [6] ${ }^{{ }^{*}}$: Let $\alpha_{1}=\beta_{2}=1$ and $\alpha_{2}=\beta_{1}=0$. When $c_{1}>c_{2}$, we have $T_{\varepsilon}=\infty$ for any f and g. On the other hand, when $c_{1}<c_{2}$, we have the upper bound of lifespan

$$
\begin{equation*}
T_{\varepsilon} \leq \exp \left(C_{1} \varepsilon^{-3}\right) \tag{1.5}
\end{equation*}
$$

for some f and g, where C_{1} is a constant depending on f and g. This upper bound seems somewhat different from the critical case for the single equation

[^1]but our example here also can be treated by their method without any change in their proof.
(1.3). Note that what we get by formally substituting 2 for p of $\exp \left(C \varepsilon^{-p(p-1)}\right)$, the sharp bound for (1.3) with the critical power, is $\exp \left(C \varepsilon^{-2}\right)$, which is shorter than $\exp \left(C \varepsilon^{-3}\right)$. Therefore it is interesting to see whether (1.5) is sharp or not.

For that purpose, we want to investigate the lower bound for the lifespan of solutions to systems of the type (1.4). For $\kappa \geq 0$, we define

$$
\begin{aligned}
& X^{\kappa}=\left\{(f, g) \in C^{3}\left(\mathbb{R}^{3} ; \mathbb{R}^{m}\right) \times C^{2}\left(\mathbb{R}^{3} ; \mathbb{R}^{m}\right)\right. \\
&\left.\sum_{|\alpha| \leq 3}\left\|\partial_{x}^{\alpha} f\right\|_{2+\kappa}+\sum_{|\alpha| \leq 2}\left\|\partial_{x}^{\alpha} g\right\|_{2+\kappa}<\infty\right\}
\end{aligned}
$$

where

$$
\|\phi\|_{\rho}=\sup _{x \in \mathbb{R}^{3}}(1+|x|)^{\rho}|\phi(x)| .
$$

Our main result is the following:
Theorem 1.1. Assume that $F_{i}(1 \leq i \leq m)$ can be written as

$$
\begin{equation*}
F_{i}(u)=\sum_{(j, k) \in R} \alpha_{i j k} u_{j} u_{k}+H_{i}(u) \tag{1.6}
\end{equation*}
$$

where

$$
\begin{equation*}
R=\left\{(j, k) \in\{1, \ldots, m\}^{2} ; c_{j} \neq c_{k}\right\} \tag{1.7}
\end{equation*}
$$

H_{i} is a C^{2} function satisfying

$$
\begin{equation*}
H_{i}(u)=O\left(|u|^{3}\right) \text { near } u=0 \tag{1.8}
\end{equation*}
$$

and $\alpha_{i j k} \in \mathbb{R}$ are constants. Suppose $(f, g) \in X^{\kappa}$ with $\kappa>1$. Then there exist positive constants ε_{0} and C, depending on f and g, such that for any $\varepsilon \in\left(0, \varepsilon_{0}\right.$] the Cauchy problem (1.1) admits a unique solution $u \in C^{2}\left(\left[0, T_{\varepsilon}\right) \times \mathbb{R}^{3} ; \mathbb{R}^{m}\right)$ with

$$
\begin{equation*}
T_{\varepsilon} \geq \exp \left(C \varepsilon^{-3}\right) \tag{1.9}
\end{equation*}
$$

Remark. (1) If we are just looking for C^{0}-solutions, we can also treat the nonlinearity like

$$
F_{i}(u)=\sum_{(j, k) \in R} \alpha_{i j k}\left|u_{j} u_{k}\right|+\sum_{j, k, l=1}^{m} \beta_{i j k l}\left|u_{j} u_{k} u_{l}\right|
$$

to get the same lower bound for the lifespan.
(2) The above theorem shows that (1.5) is sharp. Conversely, our lower bound (1.9) is also sharp because of (1.5).

The main idea in our proof of Theorem 1.1 is to regard (1.1) with (1.6) as a perturbation of a nonlinear system which possesses a global solution of nice behavior. The proof will be given in Section 3.

2. Basic decay estimates

In what follows, we always suppose that $c_{j}(1 \leq j \leq m)$ are the positive constants which appeared in (1.1).

In this section we state basic decay estimates for wave equations. For that purpose, we introduce some weights. We define

$$
\begin{equation*}
w_{+}(t, r)=1+t+r \tag{2.1}
\end{equation*}
$$

for $(t, r) \in[0, \infty) \times[0, \infty)$, and

$$
\begin{equation*}
w_{c}(t, r)=1+|c t-r| \tag{2.2}
\end{equation*}
$$

for $c \geq 0$ and $(t, r) \in[0, \infty) \times[0, \infty)$.
We also define

$$
\begin{equation*}
w_{-}(t, r)=\min _{1 \leq j \leq m} w_{c_{j}}(t, r) . \tag{2.3}
\end{equation*}
$$

Note that there exists a positive constant C such that

$$
\begin{equation*}
w_{c_{j}}(t, r) w_{c_{k}}(t, r) \geq C w_{+}(t, r) w_{-}(t, r) \tag{2.4}
\end{equation*}
$$

holds for any $(t, r) \in[0, \infty) \times[0, \infty)$, provided $c_{j} \neq c_{k}$.
For a positive constant c and a continuous function $\Phi=\Phi(t, x)$, we define

$$
\begin{equation*}
L_{c}[\Phi](t, x)=\int_{0}^{t} \frac{1}{4 \pi c^{2}(t-\tau)}\left(\int_{|x-y|=c(t-\tau)} \Phi(\tau, y) d S_{y}\right) d \tau \tag{2.5}
\end{equation*}
$$

where $d S_{y}$ is the surface element of a sphere whose center and radius are x and $c(t-\tau)$, respectively. For a positive constant c, a C^{1}-function $\phi=\phi(x)$ and a continuous function $\psi=\psi(x)$, we also define

$$
\begin{align*}
U_{c}[\phi, \psi](t, x)=\partial_{t}(& \left.\frac{1}{4 \pi c^{2} t} \int_{|x-y|=c t} \phi(y) d S_{y}\right) \tag{2.6}\\
& +\frac{1}{4 \pi c^{2} t} \int_{|x-y|=c t} \psi(y) d S_{y}
\end{align*}
$$

where $d S_{y}$ denotes the surface element of a sphere whose center and radius are x and $c t$, respectively.

It is well known that the classical solution v to

$$
\left\{\begin{array}{l}
\square_{c} v(t, x)=\Phi(t, x) \text { in }[0, \infty) \times \mathbb{R}^{3}, \tag{2.7}\\
v(0, x)=\phi(x),\left(\partial_{t} v\right)(0, x)=\psi(x) \text { for } x \in \mathbb{R}^{3}
\end{array}\right.
$$

can be written as

$$
\begin{equation*}
v(t, x)=U_{c}[\phi, \psi](t, x)+L_{c}[\Phi](t, x) . \tag{2.8}
\end{equation*}
$$

Conversely, if $\phi \in C^{3}, \psi \in C^{2}$, and $\partial_{x}^{\alpha} \Phi \in C(|\alpha| \leq 2)$, then v defined by (2.8) is the classical solution to (2.7).

We start with a decay estimate for homogeneous wave equations.
Lemma 2.1. Let $c>0$ and $\kappa \geq 1$. Then we have

$$
\begin{equation*}
w_{+}(t,|x|) w_{c}(t,|x|)^{\kappa}\left|U_{c}[\phi, \psi](t, x)\right| \leq C\left(\|\phi\|_{2+\kappa}+\left\|\partial_{x} \phi\right\|_{2+\kappa}+\|\psi\|_{2+\kappa}\right) \tag{2.9}
\end{equation*}
$$

for any $(t, x) \in[0, \infty) \times \mathbb{R}^{3}$. Here C is a positive constant.
For the proof, see Asakura [1] for instance.
Next we state a decay estimate for inhomogeneous wave equations.
Lemma 2.2. Let c be a positive constant. Suppose $\delta \geq 0$ and $\kappa>0$. Then we have

$$
\begin{align*}
& w_{+}(t,|x|) w_{c}(t,|x|)^{\kappa}\left|L_{c}[\Phi](t, x)\right| \\
& \quad \leq C \Psi_{\delta}(t) \sup _{(\tau, y) \in[0, t] \times \mathbb{R}^{3}}|y| w_{+}(\tau,|y|)^{1+\kappa} w_{-}(\tau,|y|)^{1+\delta}|\Phi(\tau, y)| \tag{2.10}
\end{align*}
$$

for $(t, x) \in[0, \infty) \times \mathbb{R}^{3}$, where

$$
\Psi_{\delta}(t)= \begin{cases}\log (2+t) & \text { when } \delta=0 \\ 1 & \text { when } \delta>0\end{cases}
$$

Proof. This kind of decay estimate is studied by many authors (see the references cited in Section 1; see also Katayama [4] and [5], and KubotaYokoyama [8]). But for the sake of completeness, we give a proof here. Without loss of generality, we may assume $c=1$. Then, we can express $L_{1}[\Phi]$ as

$$
\begin{equation*}
L_{1}[\Phi](t, x)=\frac{1}{4 \pi r} \int_{0}^{t} d \tau \int_{|r-(t-\tau)|}^{r+t-\tau} \lambda d \lambda \int_{0}^{2 \pi} \Phi(\tau, \lambda \Theta(\tau, \lambda, \varphi ; t, x)) d \varphi, \tag{2.11}
\end{equation*}
$$

where $r=|x|$ and Θ is some S^{2}-valued function (see John [3] for the detail).
Set

$$
\begin{equation*}
I_{\kappa, \delta}(t, r)=\frac{1}{r} \int_{0}^{t} d \tau \int_{|r-(t-\tau)|}^{r+t-\tau} w_{+}(\tau, \lambda)^{-(1+\kappa)} w_{-}(\tau, \lambda)^{-(1+\delta)} d \lambda . \tag{2.12}
\end{equation*}
$$

Our task is to prove

$$
\begin{equation*}
I_{\kappa, \delta}(t, r) \leq C \Psi_{\delta}(t) w_{+}(t, r)^{-1} w_{1}(t, r)^{-\kappa} \tag{2.13}
\end{equation*}
$$

because (2.11) and (2.13) yield (2.10) immediately.

Assume $r \geq 2\left(1+\max _{j=1, \ldots, m} c_{j}\right) t$. Then we have $w_{1}(t, r) \geq C w_{+}(t, r)$. Noting that we also have $w_{-}(\tau, \lambda) \geq C w_{+}(\tau, \lambda)$ for (τ, λ) satisfying $|r-(t-\tau)| \leq \lambda \leq$ $r+t-\tau$ and $0 \leq \tau \leq t$, we obtain

$$
\begin{aligned}
I_{\kappa, \delta}(t, r) & \leq I_{\kappa, 0}(t, r) \leq \frac{C}{r} \int_{0}^{t} d \tau \int_{r-t+\tau}^{r+t-\tau} w_{+}(\tau, \lambda)^{-(2+\kappa)} d \lambda \\
& \leq \frac{C}{r} \int_{0}^{t}(1+r-t+2 \tau)^{-(1+\kappa)} d \tau \\
& \leq \frac{C t}{r} w_{1}(t, r)^{-(1+\kappa)} \leq C w_{+}(t, r)^{-1} w_{1}(t, r)^{-\kappa},
\end{aligned}
$$

which implies (2.13).
Now we assume $r \leq 2\left(1+\max _{j=1, \ldots, m} c_{j}\right) t$. For $j=1, \ldots, m$, we introduce

$$
\begin{equation*}
I_{j, \kappa, \delta}(t, r)=\frac{1}{r} \int_{0}^{t} d \tau \int_{|r-(t-\tau)|}^{r+t-\tau} w_{+}(\tau, \lambda)^{-(1+\kappa)} w_{c_{j}}(\tau, \lambda)^{-(1+\delta)} d \lambda . \tag{2.14}
\end{equation*}
$$

We are going to prove that each $I_{j, \kappa, \delta}$ is bounded by the right-hand side of (2.13). Once we prove it, we immediately find (2.13) true, because we have

$$
\begin{equation*}
I_{\kappa, \delta}(t, r) \leq \sum_{j=1}^{m} I_{j, \kappa, \delta}(t, r) \tag{2.15}
\end{equation*}
$$

By setting

$$
\begin{equation*}
p=\tau+\lambda, q=\lambda-c_{j} \tau \tag{2.16}
\end{equation*}
$$

we get

$$
\begin{equation*}
I_{j, \kappa, \delta}(t, r)=\frac{1}{\left(c_{j}+1\right) r} \int_{|t-r|}^{t+r}(1+p)^{-(1+\kappa)} d p \int_{p_{j}}^{p}(1+|q|)^{-(1+\delta)} d q, \tag{2.17}
\end{equation*}
$$

where $2 p_{j}=\left(1-c_{j}\right) p+\left(1+c_{j}\right)(r-t)$. Noting that we have $p_{j} \geq-c_{j} p$ for $p \geq|t-r|$, we obtain

$$
\begin{align*}
I_{j, \kappa, \delta}(t, r) & \leq \frac{C}{r} \int_{|t-r|}^{t+r}(1+p)^{-(1+\kappa)} d p \int_{-c_{j} p}^{p}(1+|q|)^{-(1+\delta)} d q \\
& \leq \frac{C}{r} \Psi_{\delta}(t) \int_{|t-r|}^{t+r}(1+p)^{-(1+\kappa)} d p \tag{2.18}
\end{align*}
$$

Since we have

$$
\int_{|t-r|}^{t+r}(1+p)^{-(1+\kappa)} d p \leq(t+r-|t-r|) w_{1}(t, r)^{-(1+\kappa)} \leq 2 r w_{1}(t, r)^{-(1+\kappa)}
$$

(2.18) leads to

$$
\begin{equation*}
I_{j, \kappa, \delta}(t, r) \leq C \Psi_{\delta}(t) w_{1}(t, r)^{-(1+\kappa)} \tag{2.19}
\end{equation*}
$$

When $r \leq t / 2$, or when $r \leq 1 / 2$, (2.19) implies (2.13) because we have $w_{+}(t, r) \leq C w_{1}(t, r)$ for such t and r.

On the other hand, if $r \geq t / 2$ and $r \geq 1 / 2$, since we have $r \geq C w_{+}(t, r)$ and

$$
\int_{|t-r|}^{t+r}(1+p)^{-(1+\kappa)} d p \leq C w_{1}(t, r)^{-\kappa}
$$

for such t and r, (2.13) follows from (2.18). This completes the proof.

3. Proof of the main theorem

In this section, we will give a proof of Theorem 1.1.
Using the weights w_{+}and w_{c} defined in Section 2, we introduce

$$
\begin{equation*}
\|\psi(t, \cdot)\|_{s, \kappa}=\sum_{j=1}^{m} \sum_{|\alpha| \leq s} \sup _{x \in \mathbb{R}^{3}}\left|w_{+}(t,|x|) w_{c_{j}}(t,|x|)^{\kappa} \partial_{x}^{\alpha} \psi_{j}(t, x)\right| \tag{3.1}
\end{equation*}
$$

for a sufficiently smooth function $\psi=\left(\psi_{j}\right)_{1 \leq j \leq m}$, a non-negative integer s and a positive constant κ. We also define

$$
\begin{equation*}
\|\psi\|_{s, \kappa, T}=\sup _{t \in[0, T)}\|\psi(t, \cdot)\|_{s, \kappa} \tag{3.2}
\end{equation*}
$$

for $0<T \leq \infty$. Here ψ, s and κ are as in the above.
First we consider the following system:

$$
\left\{\begin{array}{l}
\square_{c_{i}} v_{i}=G_{i}(v)(1 \leq i \leq m) \tag{3.3}\\
v=\varepsilon f, \partial_{t} v=\varepsilon g \text { at } t=0
\end{array}\right.
$$

where

$$
G_{i}(v)=\sum_{(j, k) \in R} \alpha_{i j k} v_{j} v_{k}
$$

Here $\alpha_{i j k}$ and R are defined as in Theorem 1.1.
For $\kappa \geq 1, B>0$ and $0<T \leq \infty$, we define

$$
\begin{align*}
Y_{T}^{\kappa}(B)=\{v \in & C\left([0, T) \times \mathbb{R}^{3}\right) ; \\
& \left.\partial_{x}^{\alpha} v \in C\left([0, T) \times \mathbb{R}^{3}\right) \text { for }|\alpha| \leq 2, \text { and }\|v\|_{2, \kappa, T} \leq B\right\} . \tag{3.4}
\end{align*}
$$

For $v \in Y_{T}^{\kappa}(B)$ with some $B>0$ and $T>0$, we introduce

$$
V[v](t, x)=\left(L_{c_{i}}\left[G_{i}(v)\right](t, x)\right)_{1 \leq i \leq m} .
$$

Note that $\partial_{x}^{\alpha} V[v]$ with $|\alpha| \leq 2$ belongs to $C\left([0, \infty) \times \mathbb{R}^{3}\right)$.

Lemma 3.1. Let $M>0$ and $\kappa>1$. If a positive parameter ε is sufficiently small, then we have

$$
\begin{equation*}
V[v] \in Y_{\infty}^{\kappa}(M \varepsilon / 2) \tag{3.5}
\end{equation*}
$$

for any $v \in Y_{\infty}^{\kappa}(M \varepsilon)$, and

$$
\begin{equation*}
\| V[v]-V\left[\widetilde{v}\left\|_{2, \kappa, \infty} \leq \frac{1}{2}\right\| v-\widetilde{v} \|_{2, \kappa, \infty}\right. \tag{3.6}
\end{equation*}
$$

holds for any $v, \widetilde{v} \in Y_{\infty}^{\kappa}(M \varepsilon)$.
Proof. If $c_{j} \neq c_{k}$, remembering (2.4), we get

$$
\begin{align*}
\left|\partial_{x}^{\alpha}\left(v_{j} v_{k}\right)(t, x)\right| & \leq C w_{+}(t,|x|)^{-2} w_{c_{j}}(t,|x|)^{-\kappa} w_{c_{k}}(t,|x|)^{-\kappa}\|v\|_{2, \kappa, \infty}^{2} \\
& \leq C w_{+}(t,|x|)^{-2-\kappa} w_{-}(t,|x|)^{-\kappa} M^{2} \varepsilon^{2} \tag{3.7}
\end{align*}
$$

for any $(t, x) \in[0, \infty) \times \mathbb{R}^{3}$ and any multi-index α with $|\alpha| \leq 2$, provided $v \in Y_{\infty}^{\kappa}(M \varepsilon)$. Therefore Lemma 2.2 with $\delta=\kappa-1(>0)$ implies
(3.8) $w_{+}(t,|x|) w_{c_{i}}(t,|x|)^{\kappa}\left|\partial_{x}^{\alpha} L_{c_{i}}\left[G_{i}(v)\right](t, x)\right| \leq C M^{2} \varepsilon^{2}(1 \leq i \leq m,|\alpha| \leq 2)$
for any $(t, x) \in[0, \infty) \times \mathbb{R}^{3}$, and this yields

$$
\begin{equation*}
\|V[v]\|_{2, k, \infty} \leq C M^{2} \varepsilon^{2} \tag{3.9}
\end{equation*}
$$

for any $v \in Y_{\infty}^{\kappa}(M \varepsilon)$.
Just in the same manner, we obtain

$$
\begin{equation*}
\|V[v]-V[\widetilde{v}]\|_{2, \kappa, \infty} \leq C M \varepsilon\|v-\widetilde{v}\|_{2, \kappa, \infty} \tag{3.10}
\end{equation*}
$$

for any $v, \widetilde{v} \in Y_{\infty}^{\kappa}(M \varepsilon)$. Choose $\varepsilon_{1}=1 /(2 C M)$. Then (3.9) and (3.10) imply the desired results for $\varepsilon \in\left(0, \varepsilon_{1}\right]$.

Using Lemma 3.1, we obtain the following:
Proposition 3.1. Assume $(f, g) \in X^{\kappa}$ with some $\kappa>1$. Then there exists a positive constant ε_{1} such that (3.3) admits a unique global solution

$$
v=\left(v_{j}\right)_{1 \leq j \leq m} \in C^{2}\left([0, \infty) \times \mathbb{R}^{3} ; \mathbb{R}^{m}\right)
$$

provided $\varepsilon \in\left(0, \varepsilon_{1}\right]$. Moreover the above solution v satisfies

$$
\begin{equation*}
\|v\|_{2, \kappa, \infty} \leq M \varepsilon \tag{3.11}
\end{equation*}
$$

with some positive constant M.
Proof. Define a sequence of functions $\left\{v^{(N)}\right\}_{N=0}^{\infty}$ by

$$
\begin{align*}
& v^{(0)}=\left(U_{c_{i}}\left[\varepsilon f_{i}, \varepsilon g_{i}\right]\right)_{1 \leq i \leq m} \tag{3.12}\\
& v^{(N)}=v^{(0)}+V\left[v^{(N-1)}\right] \text { for } N \geq 1 \tag{3.13}
\end{align*}
$$

From Lemma 2.1, we see

$$
\left\|v^{(0)}\right\|_{2, \kappa, \infty} \leq C \varepsilon\left(\sum_{|\alpha| \leq 3}\left\|\partial_{x}^{\alpha} f\right\|_{2+\kappa}+\sum_{|\alpha| \leq 2}\left\|\partial_{x}^{\alpha} g\right\|_{2+\kappa}\right)
$$

Therefore, if we choose sufficiently large M, we see $v^{(0)} \in Y_{\infty}^{\kappa}(M \varepsilon / 2)$. From (3.5) in Lemma 3.1, we inductively find $v^{(N)} \in Y_{\infty}^{\kappa}(M \varepsilon)$ for all $N \geq 1$, provided that ε is sufficiently small. We also see that $\left\{v^{(N)}\right\}_{N=0}^{\infty}$ is a Cauchy sequence in $Y_{\infty}^{\kappa}(M \varepsilon)$ from (3.6) in Lemma 3.1 for small ε. Therefore $v^{(N)}$ converges to some $v \in Y_{\infty}^{\kappa}(M \varepsilon)$ as $N \rightarrow \infty$, and passing to the limit in (3.13), we find

$$
v=v^{(0)}+V[v] .
$$

Now it is easy to see that this v is the classical solution to (3.3).
Finally we are going to prove Theorem 1.1. Let u be a solution to (1.1) with $F_{i}(u)=G_{i}(u)+H_{i}(u)$, and v be the solution to (3.3) satisfying $\|v\|_{2, \kappa, \infty} \leq M \varepsilon$ with $\kappa>1$. Set $z=u-v$, and we see that z satisfies

$$
\left\{\begin{array}{l}
\square_{c_{i}} z_{i}=\widetilde{G}_{i}(v, z)+H_{i}(v+z) \quad(1 \leq i \leq m) \tag{3.14}\\
z(0, x)=\partial_{t} z(0, x)=0
\end{array}\right.
$$

where

$$
\widetilde{G}_{i}(v, z)=G_{i}(v+z)-G_{i}(v)=\sum_{(j, k) \in R} \alpha_{i j k}\left(v_{j} z_{k}+z_{j} v_{k}+z_{j} z_{k}\right) .
$$

Conversely, if z is a solution to (3.14), then $u=v+z$ is the solution to (1.1). Therefore, it suffices for the proof of Theorem 1.1 to show that there exists a solution $w \in C^{2}\left([0, T) \times \mathbb{R}^{3}\right)$ to (3.14) as far as T satisfies $T \leq \exp \left(C_{1} \varepsilon^{-3}\right)$ with some positive constant C_{1}.

We define a mapping Z by

$$
Z[z]=\left(L_{c_{i}}\left[\widetilde{G}_{i}(v, z)+H_{i}(v+z)\right]\right)_{1 \leq i \leq m}
$$

Lemma 3.2. There exist three positive constants ε_{0}, C_{1} and C_{2} such that

$$
\varepsilon \leq \varepsilon_{0}, B \geq C_{2} M^{3} \text { and } T \leq \exp \left(C_{1} \varepsilon^{-3}\right)
$$

imply

$$
\begin{equation*}
Z[z] \in Y_{T}^{1}\left(B \varepsilon^{3}\right) \tag{3.15}
\end{equation*}
$$

for any $z \in Y_{T}^{1}\left(B \varepsilon^{3}\right)$, and

$$
\begin{equation*}
\|Z[z]-Z[\widetilde{z}]\|_{2,1, T} \leq \frac{1}{2}\|z-\widetilde{z}\|_{2,1, T} \tag{3.16}
\end{equation*}
$$

for any $z, \tilde{z} \in Y_{T}^{1}\left(B \varepsilon^{3}\right)$.

Proof. Let $1 \leq i \leq m$ and α be a multi-index with $|\alpha| \leq 2$ in what follows. Suppose that ε is small so that we have $M \varepsilon+B \varepsilon^{3} \ll 1$. Then we have

$$
\left|\partial_{x}^{\alpha} H_{i}(v+z)\right| \leq C\left\{\left(\sum_{|\beta| \leq 2}\left|\partial_{x}^{\beta} v\right|\right)^{3}+\left(\sum_{|\beta| \leq 2}\left|\partial_{x}^{\beta} z\right|\right)^{3}\right\}
$$

which leads to

$$
\begin{align*}
\left|\partial_{x}^{\alpha} H_{i}(v+z)(t, x)\right| \leq & C w_{+}(t,|x|)^{-3} w_{-}(t,|x|)^{-3 \kappa} M^{3} \varepsilon^{3} \\
& +w_{+}(t,|x|)^{-3} w_{-}(t,|x|)^{-3} B^{3} \varepsilon^{9} \tag{3.17}\\
\leq & C w_{+}(t,|x|)^{-3} w_{-}(t,|x|)^{-3}\left(M^{3}+B^{3} \varepsilon^{6}\right) \varepsilon^{3}
\end{align*}
$$

for $(t, x) \in[0, T) \times \mathbb{R}^{3}$ and $z \in Y_{T}^{1}\left(B \varepsilon^{3}\right)$. Applying Lemma 2.2 with $\kappa=1$ and $\delta=2$, we obtain

$$
\begin{equation*}
w_{+} w_{c_{i}}\left|\partial_{x}^{\alpha} L_{c_{i}}\left[H_{i}(v+z)\right]\right| \leq C\left(M^{3}+B^{3} \varepsilon^{6}\right) \varepsilon^{3} \tag{3.18}
\end{equation*}
$$

in $[0, T) \times \mathbb{R}^{3}$ for any $z \in Y_{T}^{1}\left(B \varepsilon^{3}\right)$. Similarly we have
(3.19) $w_{+} w_{c_{i}}\left|\partial_{x}^{\alpha} L_{c_{i}}\left[H_{i}(v+z)-H_{i}(v+\widetilde{z})\right]\right| \leq C\left(M^{2} \varepsilon^{2}+B^{2} \varepsilon^{6}\right)\|z-\widetilde{z}\|_{2,1, T}$ in $[0, T) \times \mathbb{R}^{3}$ for any $z, \widetilde{z} \in Y_{T}^{1}\left(B \varepsilon^{3}\right)$.

Now we are going to treat terms in $\widetilde{G}_{i}(v, w)$. We assume $c_{j} \neq c_{k}$. Then we have

$$
\begin{equation*}
\left|\partial_{x}^{\alpha}\left(v_{j} z_{k}\right)\right| \leq w_{+}^{-2} w_{c_{j}}^{-\kappa} w_{c_{k}}^{-1}\|v\|_{2, \kappa, \infty}\|z\|_{2,1, T} \leq C w_{+}^{-3} w_{-}^{-\kappa} M B \varepsilon^{4} \tag{3.20}
\end{equation*}
$$

in $[0, T) \times \mathbb{R}^{3}$ for any $z \in Y_{T}^{1}\left(B \varepsilon^{3}\right)$. Since $\kappa>1$, Lemma 2.2 implies

$$
\begin{equation*}
w_{+} w_{c_{i}}\left|\partial_{x}^{\alpha} L_{c_{i}}\left[v_{j} z_{k}+z_{j} v_{k}\right]\right| \leq C M B \varepsilon^{4} \tag{3.21}
\end{equation*}
$$

in $[0, T) \times \mathbb{R}^{3}$ for $z \in Y_{T}^{1}\left(B \varepsilon^{3}\right)$, and we also get

$$
\begin{equation*}
w_{+} w_{c_{i}}\left|\partial_{x}^{\alpha} L_{c_{i}}\left[v_{j}\left(z_{k}-\widetilde{z}_{k}\right)+\left(z_{j}-\widetilde{z}_{j}\right) v_{k}\right]\right| \leq C M \varepsilon\|z-\widetilde{z}\|_{2,1, T} \tag{3.22}
\end{equation*}
$$

in $[0, T) \times \mathbb{R}^{3}$ for any $z, \widetilde{z} \in Y_{T}^{1}\left(B \varepsilon^{3}\right)$.
Similarly to (3.7), we get

$$
\begin{equation*}
\left|\partial_{x}^{\alpha}\left(z_{j} z_{k}\right)\right| \leq C w_{+}^{-3} w_{-}^{-1} B^{2} \varepsilon^{6} \tag{3.23}
\end{equation*}
$$

in $[0, T) \times \mathbb{R}^{3}$ for $z \in Y_{T}^{1}\left(B \varepsilon^{3}\right)$. Now, Lemma 2.2 with $\kappa=1$ and $\delta=0$ gives us

$$
\begin{equation*}
w_{+} w_{c_{i}}\left|\partial_{x}^{\alpha} L_{c_{i}}\left[z_{j} z_{k}\right]\right| \leq C \log (2+T) B^{2} \varepsilon^{6} \tag{3.24}
\end{equation*}
$$

in $[0, T) \times \mathbb{R}^{3}$ for any $z \in Y_{T}^{1}\left(B \varepsilon^{3}\right)$. In the same manner, we obtain

$$
\begin{equation*}
w_{+} w_{c_{i}}\left|\partial_{x}^{\alpha} L_{c_{i}}\left[z_{j} z_{k}-\widetilde{z}_{j} \widetilde{z}_{k}\right]\right| \leq C \log (2+T) B \varepsilon^{3}\|z-\widetilde{z}\|_{2,1, T} \tag{3.25}
\end{equation*}
$$

in $[0, T) \times \mathbb{R}^{3}$ for any $z, \widetilde{z} \in Y_{T}^{1}\left(B \varepsilon^{3}\right)$.
From (3.18), (3.21) and (3.24) we find

$$
\begin{equation*}
\|Z(z)\|_{2,1, T} \leq C\left(M^{3}+M B \varepsilon+B^{3} \varepsilon^{6}+B^{2} \varepsilon^{3} \log (2+T)\right) \varepsilon^{3} \tag{3.26}
\end{equation*}
$$

for $z \in Y_{T}^{1}\left(B \varepsilon^{3}\right)$. (3.19), (3.22) and (3.25) yield

$$
\begin{align*}
& \|Z(z)-Z(\widetilde{z})\|_{2,1, T} \tag{3.27}\\
& \quad \leq C\left(M^{2} \varepsilon^{2}+M \varepsilon+B^{2} \varepsilon^{6}+B \varepsilon^{3} \log (2+T)\right)\|z-\widetilde{z}\|_{2,1, T}
\end{align*}
$$

for $z, \tilde{z} \in Y_{T}^{1}\left(B \varepsilon^{3}\right)$.
Choose some B satisfying $B \geq 4 C M^{3}$. Assume that ε is so small to satisfy

$$
C\left(M \varepsilon+B^{2} \varepsilon^{6}\right) \leq \frac{1}{2}
$$

and that T satisfies

$$
\begin{equation*}
\log (2+T) \leq \frac{1}{4 C B \varepsilon^{3}} \tag{3.28}
\end{equation*}
$$

in (3.26). Then we get $\|Z(z)\|_{2,1, T} \leq B \varepsilon$ and consequently we obtain (3.15). Also, if T satisfies (3.28) and ε is so small that we have

$$
C\left(M^{2} \varepsilon^{2}+M \varepsilon+B^{2} \varepsilon^{6}\right) \leq \frac{1}{4}
$$

in (3.27), then we obtain (3.16). This completes the proof.
Now we are in a position to conclude the proof of Theorem 1.1. Let ε, B and T be chosen so that (3.15) and (3.16) hold. Then Lemma 3.2 says that Z is a contraction mapping on $Y_{T}^{1}\left(B \varepsilon^{3}\right)$, and we see that there exists a unique fixed point $z \in Y_{T}^{1}\left(B \varepsilon^{3}\right)$, namely we have $z=Z[z]$. It is easy to verify that this z is the classical solution to (3.14). This completes the proof of Theorem 1.1.

Department of Mathematics
Wakayama University
930 Sakaedani, Wakayama 640-8510, Japan
e-mail: soichi-k@math.edu.wakayama-u.ac.jp
Department of Pure and Applied Mathematics
Graduate School of Information and Technology Osaka University
1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
e-mail: akitaka@math.sci.osaka-u.ac.jp

References

[1] F. Asakura, Existence of a global solution to a semi-linear wave equation with slowly decreasing initial data in three space dimensions, Comm. Partial Differential Equations 11 (1986), 1459-1487.
[2] F. John, Blow-up of solutions of nonlinear wave equations in three space dimensions, Manuscripta Math. 28 (1979), 235-268.
[3] _, Lower bounds for the life span of solutions of nonlinear wave equations in three space dimensions, Comm. Pure Appl. Math. 36 (1983), $1-35$.
[4] S. Katayama, Global and almost-global existence for systems of nonlinear wave equations with different propagation speeds, Diff. Integral Eqs. 17 (2004), 1043-1078.
[5] ___, Global existence for systems of wave equations with nonresonant nonlinearities and null forms, J. Differential Equations 209 (2005), 140171.
[6] H. Kubo and M. Ohta, On systems of semilinear wave equations with unequal propagation speeds in three space dimensions, Funkcial Ekvac. 48 (2005), 65-98.
[7] K. Kubota, Existence of a global solution to a semi-linear wave equation with initial data of non-compact support in low space dimensions, Hokkaido Math. J. 22 (1993), 123-180.
[8] K. Kubota and K. Yokoyama, Global existence of classical solutions to systems of nonlinear wave equations with different speeds of propagation, Japan. J. Math. 27 (2001), 113-202.
[9] H. Lindblad, Blow-up for solutions of $\square u=|u|^{p}$ with small initial data, Comm. Partial Differential Equations 15 (1990), 757-821.
[10] J. Schaeffer, The equation $\square u=|u|^{p}$ for the critical value of p, Proc. Roy. Soc. Edinburgh Sect. A 101A (1985), 31-44.
[11] T. C. Sideris, Global behavior of solutions to nonlinear wave equations in three space dimensions, Comm. Partial Differential Equations 8 (1983), 1283-1323.
[12] W. A. Strauss, Decay and asymptotics for $\square u=F(u)$, J. Funct. Anal. 2 (1968), 409-457.
[13] H. Takamura, An elementary proof of the exponential blow-up for semilinear wave equations, Math. Meth. Appl. Sci. 17 (1994), 239-249.
[14] K. Tsutaya, Global existence and the life span of semilinear wave equations with data of noncompact support in three space dimensions, Funkcial Ekvac. 37 (1994), 1-18.
[15] Zhou Yi, Blow up of classical solutions to $\square u=|u|^{1+\alpha}$ in three space dimensions, J. Partial Differential Equations 5 (1992), 21-32.

[^0]: 2000 Mathematics Subject Classification(s). 35L70
 Received February 1, 2005
 *This research was partially supported by Grant-in-Aid for Scientific Research (B) (No. 15340043) of Japan Society for the Promotion of Science.

[^1]: ${ }^{*}$ More precisely, they have proved the result for C^{0}-solutions to the system

 $$
 \left\{\begin{array}{l}
 \square_{c_{1}} u_{1}=\left|u_{1} u_{2}\right|, \\
 \square_{c_{2}} u_{2}=\left|u_{1}\right|^{3},
 \end{array}\right.
 $$

