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Sharp lower bound for the lifespan of systems of
semilinear wave equations with multiple speeds∗

By

Soichiro Katayama and Akitaka Matsumura

Abstract

We consider the Cauchy problem for a system of semilinear wave
equations with multiple propagation speeds in three space dimensions.
We assume that quadratic terms in its nonlinearity consist of products
of unknowns whose speeds are different from each other. It is known
that some classical solution to the above type of system may blow up in
finite time. In this article, we get the sharp lower bound for the lifespan
of classical solutions to this kind of system.

1. Introduction

In this paper, we investigate lifespan estimates for the Cauchy problem to
systems of semilinear wave equations in three space dimensions. We define

�c = ∂2
t − c2∆x for c > 0.

We consider

(1.1)

{
�ci

ui(t, x) = Fi

(
u(t, x)

)
for (t, x) ∈ (0,∞) × R

3 (1 ≤ i ≤ m),
ui(x) = εfi(0, x), ∂tui(0, x) = εgi(x) for x ∈ R

3 (1 ≤ i ≤ m),

where ci (1 ≤ i ≤ m) are positive constants, u = (ui)1≤i≤m, and ε is a small
and positive parameter.

For a while, we assume that the initial data f = (fi)1≤i≤m and g =
(gi)1≤j≤m are compactly supported and sufficiently smooth functions.

We define Tε by

Tε = Tε(F, f, g)

= sup{T ∈ (0,∞); (1.1) possesses a C2-solution u for 0 ≤ t < T},(1.2)

which is called lifespan of classical solutions.
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First we consider the single case m = 1:

(1.3)

{
�u = F (u) in (0,∞) × R

3,

u = εf, ∂tu = εg at t = 0

where � = �1 = ∂2
t − ∆x, F (u) = |u|p−1u or |u|p with p > 1. It is well known

that the critical power is 1 +
√

2 for this kind of semilinear wave equation.
If p > 1 +

√
2, (1.1) possesses a global C2–solution for any f and g, namely

Tε = ∞, provided that ε is sufficiently small. On the other hand, when 1 <
p ≤ 1 +

√
2, there exist some f and g such that the solution to (1.3) blows

up in finite time, that is Tε < ∞, no matter how small ε is (see Asakura [1],
John [2], Kubota [7], Schaeffer [10], Sideris [11], Strauss [12], Tsutaya [14] for
example). The lifespan estimate for the case 1 < p ≤ 1 +

√
2 is also studied

well, and when p is the critical value 1 +
√

2, it is known that for any f and
g we have Tε ≥ exp(C1ε

−p(p−1)) with some positive constant C1. This lower
bound is sharp in the sense that Tε ≤ exp(C2ε

−p(p−1)) holds for some f , g and
C2 (see Lindblad [9], Takamura [13] and Zhou [15]).

Next we turn our attention to the system (1.1) with m ≥ 2. It is known
that difference of the propagation speeds makes the critical power lower than
1 +

√
2 in some cases, but such nonlinearity is unstable under the perturbation

of nonlinearity of higher order. To explain the situation clearly, let us consider
the following example:

(1.4)

{
�c1u1 = α1u1u2 + β1u

3
2,

�c2u2 = α2u1u2 + β2u
3
1,

where αj , βj ∈ R (j = 1, 2). When α1 = α2 = 0, there exists a global solution
to (1.4) for small data, as is expected from 3 > 1 +

√
2. When β1 = β2 = 0,

blow-up of solutions may occur in general. But if we further assume c1 �= c2,
(1.4) admits a global solution for small data, although the power of nonlinearity
here is 2 which is less than 1 +

√
2 (see Kubo–Ohta [6]). Now we are led to a

question: Does a global solution exist for the case c1 �= c2 no matter how we
choose the coefficients αj and βj (j = 1, 2)? The answer is no by the following
result of Kubo–Ohta [6] *1: Let α1 = β2 = 1 and α2 = β1 = 0. When c1 > c2,
we have Tε = ∞ for any f and g. On the other hand, when c1 < c2, we have
the upper bound of lifespan

(1.5) Tε ≤ exp(C1ε
−3)

for some f and g, where C1 is a constant depending on f and g. This upper
bound seems somewhat different from the critical case for the single equation

*1More precisely, they have proved the result for C0–solutions to the system(
˜c1u1 = |u1u2|,
˜c2u2 = |u1|3,

but our example here also can be treated by their method without any change in their proof.
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(1.3). Note that what we get by formally substituting 2 for p of exp(Cε−p(p−1)),
the sharp bound for (1.3) with the critical power, is exp(Cε−2), which is shorter
than exp(Cε−3). Therefore it is interesting to see whether (1.5) is sharp or not.

For that purpose, we want to investigate the lower bound for the lifespan
of solutions to systems of the type (1.4). For κ ≥ 0, we define

Xκ =

(f, g) ∈ C3(R3; Rm) × C2(R3; Rm);

∑
|α|≤3

‖∂α
x f‖2+κ +

∑
|α|≤2

‖∂α
x g‖2+κ <∞

 ,

where

‖φ‖ρ = sup
x∈R3

(1 + |x|)ρ|φ(x)|.

Our main result is the following:

Theorem 1.1. Assume that Fi (1 ≤ i ≤ m) can be written as

(1.6) Fi(u) =
∑

(j,k)∈R

αijkujuk +Hi(u),

where

(1.7) R =
{
(j, k) ∈ {1, . . . ,m}2; cj �= ck

}
,

Hi is a C2 function satisfying

(1.8) Hi(u) = O(|u|3) near u = 0,

and αijk ∈ R are constants. Suppose (f, g) ∈ Xκ with κ > 1. Then there exist
positive constants ε0 and C, depending on f and g, such that for any ε ∈ (0, ε0]
the Cauchy problem (1.1) admits a unique solution u ∈ C2([0, Tε) × R

3; Rm)
with

(1.9) Tε ≥ exp(Cε−3).

Remark. (1) If we are just looking for C0–solutions, we can also treat
the nonlinearity like

Fi(u) =
∑

(j,k)∈R

αijk|ujuk| +
m∑

j,k,l=1

βijkl|ujukul|

to get the same lower bound for the lifespan.
(2) The above theorem shows that (1.5) is sharp. Conversely, our lower bound
(1.9) is also sharp because of (1.5).
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The main idea in our proof of Theorem 1.1 is to regard (1.1) with (1.6) as
a perturbation of a nonlinear system which possesses a global solution of nice
behavior. The proof will be given in Section 3.

2. Basic decay estimates

In what follows, we always suppose that cj (1 ≤ j ≤ m) are the positive
constants which appeared in (1.1).

In this section we state basic decay estimates for wave equations. For that
purpose, we introduce some weights. We define

w+(t, r) =1 + t+ r(2.1)

for (t, r) ∈ [0,∞) × [0,∞), and

wc(t, r) =1 + | ct− r |(2.2)

for c ≥ 0 and (t, r) ∈ [0,∞) × [0,∞).
We also define

(2.3) w−(t, r) = min
1≤j≤m

wcj
(t, r).

Note that there exists a positive constant C such that

(2.4) wcj
(t, r)wck

(t, r) ≥ Cw+(t, r)w−(t, r)

holds for any (t, r) ∈ [0,∞) × [0,∞), provided cj �= ck.
For a positive constant c and a continuous function Φ = Φ(t, x), we define

(2.5) Lc[Φ](t, x) =
∫ t

0

1
4πc2(t− τ )

(∫
|x−y|=c(t−τ)

Φ(τ, y) dSy

)
dτ,

where dSy is the surface element of a sphere whose center and radius are x and
c(t− τ ), respectively. For a positive constant c, a C1-function φ = φ(x) and a
continuous function ψ = ψ(x), we also define

Uc[φ, ψ](t, x) =∂t

(
1

4πc2t

∫
|x−y|=ct

φ(y) dSy

)

+
1

4πc2t

∫
|x−y|=ct

ψ(y) dSy,

(2.6)

where dSy denotes the surface element of a sphere whose center and radius are
x and ct, respectively.

It is well known that the classical solution v to

(2.7)

{
�cv(t, x) = Φ(t, x) in [0,∞) × R

3,

v(0, x) = φ(x), (∂tv)(0, x) = ψ(x) for x ∈ R
3
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can be written as

(2.8) v(t, x) = Uc[φ, ψ](t, x) + Lc[Φ](t, x).

Conversely, if φ ∈ C3, ψ ∈ C2, and ∂α
x Φ ∈ C (|α| ≤ 2), then v defined by (2.8)

is the classical solution to (2.7).
We start with a decay estimate for homogeneous wave equations.

Lemma 2.1. Let c > 0 and κ ≥ 1. Then we have

w+(t, |x|)wc(t, |x|)κ |Uc[φ, ψ](t, x)| ≤ C (‖φ‖2+κ + ‖∂xφ‖2+κ + ‖ψ‖2+κ)(2.9)

for any (t, x) ∈ [0,∞) × R
3. Here C is a positive constant.

For the proof, see Asakura [1] for instance.

Next we state a decay estimate for inhomogeneous wave equations.

Lemma 2.2. Let c be a positive constant. Suppose δ ≥ 0 and κ > 0.
Then we have

w+(t, |x|)wc(t, |x|)κ |Lc[Φ](t, x)|
≤ CΨδ(t) sup

(τ,y)∈[0,t]×R3
|y|w+(τ, |y|)1+κw−(τ, |y|)1+δ|Φ(τ, y)|(2.10)

for (t, x) ∈ [0,∞) × R
3, where

Ψδ(t) =

{
log(2 + t) when δ = 0,
1 when δ > 0.

Proof. This kind of decay estimate is studied by many authors (see the
references cited in Section 1; see also Katayama [4] and [5], and Kubota–
Yokoyama [8]). But for the sake of completeness, we give a proof here. Without
loss of generality, we may assume c = 1. Then, we can express L1[Φ] as

(2.11) L1[Φ](t, x) =
1

4πr

∫ t

0

dτ

∫ r+t−τ

|r−(t−τ)|
λdλ

∫ 2π

0

Φ
(
τ, λΘ

(
τ, λ, ϕ; t, x

))
dϕ,

where r = |x| and Θ is some S2-valued function (see John [3] for the detail).
Set

(2.12) Iκ,δ(t, r) =
1
r

∫ t

0

dτ

∫ r+t−τ

|r−(t−τ)|
w+(τ, λ)−(1+κ)w−(τ, λ)−(1+δ)dλ.

Our task is to prove

(2.13) Iκ,δ(t, r) ≤ CΨδ(t)w+(t, r)−1w1(t, r)−κ,

because (2.11) and (2.13) yield (2.10) immediately.
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Assume r ≥ 2
(
1+ max

j=1,...,m
cj
)
t. Then we have w1(t, r) ≥ Cw+(t, r). Noting

that we also have w−(τ, λ) ≥ Cw+(τ, λ) for (τ, λ) satisfying |r− (t− τ )| ≤ λ ≤
r + t− τ and 0 ≤ τ ≤ t, we obtain

Iκ,δ(t, r) ≤Iκ,0(t, r) ≤ C

r

∫ t

0

dτ

∫ r+t−τ

r−t+τ

w+(τ, λ)−(2+κ)dλ

≤C
r

∫ t

0

(1 + r − t+ 2τ )−(1+κ)dτ

≤Ct
r
w1(t, r)−(1+κ) ≤ Cw+(t, r)−1w1(t, r)−κ,

which implies (2.13).
Now we assume r ≤ 2

(
1 + max

j=1,...,m
cj
)
t. For j = 1, . . . ,m, we introduce

(2.14) Ij,κ,δ(t, r) =
1
r

∫ t

0

dτ

∫ r+t−τ

|r−(t−τ)|
w+(τ, λ)−(1+κ)wcj

(τ, λ)−(1+δ)dλ.

We are going to prove that each Ij,κ,δ is bounded by the right-hand side of
(2.13). Once we prove it, we immediately find (2.13) true, because we have

(2.15) Iκ,δ(t, r) ≤
m∑

j=1

Ij,κ,δ(t, r).

By setting

(2.16) p = τ + λ, q = λ− cjτ ,

we get

(2.17) Ij,κ,δ(t, r) =
1

(cj + 1)r

∫ t+r

|t−r|
(1 + p)−(1+κ)dp

∫ p

pj

(1 + |q|)−(1+δ)dq,

where 2pj = (1 − cj)p + (1 + cj)(r − t). Noting that we have pj ≥ −cjp for
p ≥ |t− r|, we obtain

Ij,κ,δ(t, r) ≤C
r

∫ t+r

|t−r|
(1 + p)−(1+κ)dp

∫ p

−cjp

(1 + |q|)−(1+δ)dq

≤C
r

Ψδ(t)
∫ t+r

|t−r|
(1 + p)−(1+κ)dp.

(2.18)

Since we have∫ t+r

|t−r|
(1 + p)−(1+κ)dp ≤ (t+ r − |t− r|)w1(t, r)−(1+κ) ≤ 2rw1(t, r)−(1+κ),

(2.18) leads to

(2.19) Ij,κ,δ(t, r) ≤ CΨδ(t)w1(t, r)−(1+κ).
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When r ≤ t/2, or when r ≤ 1/2, (2.19) implies (2.13) because we have
w+(t, r) ≤ Cw1(t, r) for such t and r.

On the other hand, if r ≥ t/2 and r ≥ 1/2, since we have r ≥ Cw+(t, r)
and ∫ t+r

|t−r|
(1 + p)−(1+κ)dp ≤ Cw1(t, r)−κ

for such t and r, (2.13) follows from (2.18). This completes the proof.

3. Proof of the main theorem

In this section, we will give a proof of Theorem 1.1.
Using the weights w+ and wc defined in Section 2, we introduce

|||ψ(t, ·)|||s,κ =
m∑

j=1

∑
|α|≤s

sup
x∈R3

∣∣w+(t, |x|)wcj
(t, |x|)κ∂α

xψj(t, x)
∣∣(3.1)

for a sufficiently smooth function ψ = (ψj)1≤j≤m, a non-negative integer s and
a positive constant κ. We also define

|||ψ|||s,κ,T = sup
t∈[0,T )

|||ψ(t, ·)|||s,κ,(3.2)

for 0 < T ≤ ∞. Here ψ, s and κ are as in the above.
First we consider the following system:

(3.3)

{
�ci

vi = Gi(v) (1 ≤ i ≤ m),
v = εf, ∂tv = εg at t = 0,

where

Gi(v) =
∑

(j,k)∈R

αijkvjvk.

Here αijk and R are defined as in Theorem 1.1.
For κ ≥ 1, B > 0 and 0 < T ≤ ∞, we define

Y κ
T (B) =

{
v ∈ C

(
[0, T ) × R

3
)
;

∂α
x v ∈ C

(
[0, T ) × R

3
)

for |α| ≤ 2, and |||v|||2,κ,T ≤ B
}
.

(3.4)

For v ∈ Y κ
T (B) with some B > 0 and T > 0, we introduce

V [v](t, x) =
(
Lci

[Gi(v)](t, x)
)
1≤i≤m

.

Note that ∂α
xV [v] with |α| ≤ 2 belongs to C

(
[0,∞) × R

3
)
.
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Lemma 3.1. Let M > 0 and κ > 1. If a positive parameter ε is suffi-
ciently small, then we have

(3.5) V [v] ∈ Y κ
∞(Mε/2)

for any v ∈ Y κ
∞(Mε), and

(3.6) |||V [v] − V [ṽ]|||2,κ,∞ ≤ 1
2
|||v − ṽ|||2,κ,∞

holds for any v, ṽ ∈ Y κ
∞(Mε).

Proof. If cj �= ck, remembering (2.4), we get

|∂α
x (vjvk)(t, x)| ≤Cw+(t, |x|)−2wcj

(t, |x|)−κwck
(t, |x|)−κ|||v|||22,κ,∞

≤Cw+(t, |x|)−2−κw−(t, |x|)−κM2ε2
(3.7)

for any (t, x) ∈ [0,∞) × R
3 and any multi-index α with |α| ≤ 2, provided

v ∈ Y κ
∞(Mε). Therefore Lemma 2.2 with δ = κ− 1(> 0) implies

(3.8) w+(t, |x|)wci
(t, |x|)κ |∂α

xLci
[Gi(v)](t, x)| ≤ CM2ε2 (1 ≤ i ≤ m, |α| ≤ 2)

for any (t, x) ∈ [0,∞) × R
3, and this yields

(3.9) |||V [v]|||2,κ,∞ ≤ CM2ε2

for any v ∈ Y κ
∞(Mε).

Just in the same manner, we obtain

(3.10) |||V [v] − V [ṽ]|||2,κ,∞ ≤ CMε|||v − ṽ|||2,κ,∞

for any v, ṽ ∈ Y κ
∞(Mε). Choose ε1 = 1/(2CM). Then (3.9) and (3.10) imply

the desired results for ε ∈ (0, ε1].

Using Lemma 3.1, we obtain the following:

Proposition 3.1. Assume (f, g) ∈ Xκ with some κ > 1. Then there
exists a positive constant ε1 such that (3.3) admits a unique global solution

v = (vj)1≤j≤m ∈ C2
(
[0,∞) × R

3; Rm
)
,

provided ε ∈ (0, ε1]. Moreover the above solution v satisfies

(3.11) |||v|||2,κ,∞ ≤Mε

with some positive constant M .

Proof. Define a sequence of functions {v(N)}∞N=0 by

v(0) =
(
Uci

[εfi, εgi]
)
1≤i≤m

,(3.12)

v(N) = v(0) + V [v(N−1)] for N ≥ 1.(3.13)
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From Lemma 2.1, we see

|||v(0)|||2,κ,∞ ≤ Cε

∑
|α|≤3

‖∂α
x f‖2+κ +

∑
|α|≤2

‖∂α
x g‖2+κ

 .

Therefore, if we choose sufficiently large M , we see v(0) ∈ Y κ
∞(Mε/2). From

(3.5) in Lemma 3.1, we inductively find v(N) ∈ Y κ
∞(Mε) for all N ≥ 1, provided

that ε is sufficiently small. We also see that {v(N)}∞N=0 is a Cauchy sequence
in Y κ

∞(Mε) from (3.6) in Lemma 3.1 for small ε. Therefore v(N) converges to
some v ∈ Y κ

∞(Mε) as N → ∞, and passing to the limit in (3.13), we find

v = v(0) + V [v].

Now it is easy to see that this v is the classical solution to (3.3).

Finally we are going to prove Theorem 1.1. Let u be a solution to (1.1) with
Fi(u) = Gi(u)+Hi(u), and v be the solution to (3.3) satisfying |||v|||2,κ,∞ ≤Mε
with κ > 1. Set z = u− v, and we see that z satisfies

(3.14)

{
�ci

zi = G̃i(v, z) +Hi(v + z) (1 ≤ i ≤ m),
z(0, x) = ∂tz(0, x) = 0,

where

G̃i(v, z) = Gi(v + z) −Gi(v) =
∑

(j,k)∈R

αijk (vjzk + zjvk + zjzk) .

Conversely, if z is a solution to (3.14), then u = v + z is the solution to (1.1).
Therefore, it suffices for the proof of Theorem 1.1 to show that there exists a
solution w ∈ C2

(
[0, T ) × R

3
)

to (3.14) as far as T satisfies T ≤ exp(C1ε
−3)

with some positive constant C1.
We define a mapping Z by

Z[z] =
(
Lci

[G̃i(v, z) +Hi(v + z)]
)

1≤i≤m
.

Lemma 3.2. There exist three positive constants ε0, C1 and C2 such
that

ε ≤ ε0, B ≥ C2M
3 and T ≤ exp(C1ε

−3)

imply

(3.15) Z[z] ∈ Y 1
T

(
Bε3

)
for any z ∈ Y 1

T

(
Bε3

)
, and

(3.16) |||Z[z] − Z[z̃]|||2,1,T ≤ 1
2
|||z − z̃|||2,1,T

for any z, z̃ ∈ Y 1
T

(
Bε3

)
.
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Proof. Let 1 ≤ i ≤ m and α be a multi-index with |α| ≤ 2 in what follows.
Suppose that ε is small so that we have Mε+Bε3 << 1. Then we have

|∂α
xHi(v + z)| ≤ C


∑

|β|≤2

|∂β
xv|
3

+

∑
|β|≤2

|∂β
x z|
3
 ,

which leads to

|∂α
xHi(v + z)(t, x)| ≤Cw+(t, |x|)−3w−(t, |x|)−3κM3ε3

+ w+(t, |x|)−3w−(t, |x|)−3B3ε9

≤Cw+(t, |x|)−3w−(t, |x|)−3(M3 +B3ε6)ε3
(3.17)

for (t, x) ∈ [0, T ) × R
3 and z ∈ Y 1

T (Bε3). Applying Lemma 2.2 with κ = 1 and
δ = 2, we obtain

(3.18) w+wci
|∂α

xLci
[Hi(v + z)]| ≤ C(M3 +B3ε6)ε3

in [0, T ) × R
3 for any z ∈ Y 1

T (Bε3). Similarly we have

(3.19) w+wci
|∂α

xLci
[Hi(v + z) −Hi(v + z̃)]| ≤ C(M2ε2 +B2ε6)|||z − z̃|||2,1,T

in [0, T ) × R
3 for any z, z̃ ∈ Y 1

T (Bε3).
Now we are going to treat terms in G̃i(v, w). We assume cj �= ck. Then

we have

|∂α
x (vjzk)| ≤ w−2

+ w−κ
cj
w−1

ck
|||v|||2,κ,∞|||z|||2,1,T ≤ Cw−3

+ w−κ
− MBε4(3.20)

in [0, T ) × R
3 for any z ∈ Y 1

T (Bε3). Since κ > 1, Lemma 2.2 implies

(3.21) w+wci
|∂α

xLci
[vjzk + zjvk]| ≤ CMBε4

in [0, T ) × R
3 for z ∈ Y 1

T (Bε3), and we also get

(3.22) w+wci
|∂α

xLci
[vj(zk − z̃k) + (zj − z̃j)vk]| ≤ CMε|||z − z̃|||2,1,T

in [0, T ) × R
3 for any z, z̃ ∈ Y 1

T (Bε3).
Similarly to (3.7), we get

(3.23) |∂α
x (zjzk)| ≤ Cw−3

+ w−1
− B2ε6

in [0, T )×R
3 for z ∈ Y 1

T (Bε3). Now, Lemma 2.2 with κ = 1 and δ = 0 gives us

(3.24) w+wci
|∂α

xLci
[zjzk]| ≤ C log(2 + T )B2ε6

in [0, T ) × R
3 for any z ∈ Y 1

T (Bε3). In the same manner, we obtain

(3.25) w+wci
|∂α

xLci
[zjzk − z̃j z̃k]| ≤ C log(2 + T )Bε3|||z − z̃|||2,1,T
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in [0, T ) × R
3 for any z, z̃ ∈ Y 1

T (Bε3).
From (3.18), (3.21) and (3.24) we find

(3.26) |||Z(z)|||2,1,T ≤ C
(
M3 +MBε+B3ε6 +B2ε3 log(2 + T )

)
ε3

for z ∈ Y 1
T (Bε3). (3.19), (3.22) and (3.25) yield

|||Z(z) − Z(z̃)|||2,1,T

≤ C(M2ε2 +Mε+B2ε6 +Bε3 log(2 + T ))|||z − z̃|||2,1,T

(3.27)

for z, z̃ ∈ Y 1
T (Bε3).

Choose some B satisfying B ≥ 4CM3. Assume that ε is so small to satisfy

C(Mε+B2ε6) ≤ 1
2
,

and that T satisfies

(3.28) log(2 + T ) ≤ 1
4CBε3

in (3.26). Then we get |||Z(z)|||2,1,T ≤ Bε and consequently we obtain (3.15).
Also, if T satisfies (3.28) and ε is so small that we have

C(M2ε2 +Mε+B2ε6) ≤ 1
4

in (3.27), then we obtain (3.16). This completes the proof.

Now we are in a position to conclude the proof of Theorem 1.1. Let ε, B
and T be chosen so that (3.15) and (3.16) hold. Then Lemma 3.2 says that
Z is a contraction mapping on Y 1

T (Bε3), and we see that there exists a unique
fixed point z ∈ Y 1

T (Bε3), namely we have z = Z[z]. It is easy to verify that
this z is the classical solution to (3.14). This completes the proof of Theorem
1.1.
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