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Positive definite class functions on a topological
group and characters of factor representations

By

Takeshi Hirai and Etsuko Hirai

Introduction

In this paper, we prove four important theorems in the general theory
of representations of topological groups. The first one is the combination of
Theroems 1.5.4 and 1.6.1, and the second one is Theorem 1.6.2 in Section 1.
The third and the fourth ones are Theorems 2.6.1 and 2.6.2 in Section 2. Let
us explain a little more in detail.

1. Let G be a Hausdorff topological group, P(G) the set of continuous
positive definite functions on G, K(G) the set of f ∈ P(G) which are invariant
under inner automorphisms on G, K1(G) the set of f ∈ K(G) normalized
as f(e) = 1 at the identity element e ∈ G, and E(G) the set of extremal
points in the convex set K1(G). For each f ∈ P(G) normalized as f(e) = 1,
Gelfand-Raikov [GR] constructed a cyclic continuous unitary representation (=
UR) πf with a unit cyclic vector v0 such that f(g) = 〈πf (g)v0, v0〉 (g ∈ G)
(cf. 1.2 below). Let π be a UR of G, and U = π(G)′′ the von Neumann algebra
generated by π(G) = {π(g); g ∈ G}. Assume that U has a faithful normal finite
trace t on the set U+ of non-negative elements in U. The unique extention of t
to a linear form on U is denoted by φ = φt, and the function

f(g) = φ(π(g)) (g ∈ G)(1)

is continuous in g (Proposition 1.5.1) and positive definite and invariant: f ∈
K1(G).

Let π1 and π2 be two URs of G, and Ui = πi(G)′′ (i = 1, 2) the von Neu-
mann algebra generated by πi(G). We say that π1 and π2 are quasi-equivalent
if there exists an isomorphism Φ from U1 onto U2 as ∗-algebras such that
Φ

(
π1(g)

)
= π2(g) for g ∈ G.

Theorem A (from Theorems 1.5.4 and 1.6.1). Let π be a continuous
unitary representation (= UR) of G such that the von Neumann algebra U =
π(G)′′ has a faithful normal finite trace t on the set U+ of positive elements.
Normalize t as t(I) = 1 and put f = φ ◦ π ∈ K1(G) as in (1). Then, UR π
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is quasi-equivalent to the UR πf associated to f in [GR] (cf. 1.2 below). An
isomorphism Φ from U to Uf = πf (G)′′ can be given explicitly.

A UR π is called factorial if U is a factor. If the factor is of finite type,
there exists a unique faithful finite normal trace t normalized as t(I) = 1. Then
the function f(g) = φ(π(g)) ∈ K1(G) is called a character of π. Our second
main theorem (Theorem 1.6.2) says the following.

Theorem B. For a Hausdorff topological group G, let URff(G) be the
set of all quasi-equivalence classes of URs of G, factorial of finite type. Then
there exists a canonical bijective correspondence between URff(G) and E(G)
through (1) above.

In [Dix2, 17.3], the above canonical bijection is asserted under the condition
that G is locally compact and unimodular.

2. Now let K≤1(G) ⊃ K1(G) be the set of f ∈ K(G) such that f(e) ≤
1. Then the set of extremal points of K≤1(G) is the union of E(G) and 0.
In the case where G is locally compact, it is known that the weak topol-
ogy σ(L∞(G), L1(G)) in K1(G) is equivalent to the compact uniform topol-
ogy (cf. [Dix2, 13.5]), and that the convex set K≤1(G) is weakly compact
(cf. [Dix2, 17.3]). We extend these results to the case where G = limn→∞Gn
is the inductive limit of a countable inductive system G1 → G2 → · · · → Gn →
· · · of locally compact groups, where each homomorphism from Gn into Gn+1

is assumed to be homeomorphic. In [TSH], this kind of inductive system is
called a countable LCG inductive system and there were proved that G with
the inductive limit topology τind becomes a topological group and that G has
sufficiently many continuous positive definite functions and sufficiently many
unitary representations.

For this kind of group G, let C be the family of compact subsets of G, BC
the σ-ring generated by C, and MC(G) be the space of bounded measures on
(G,BC). Further let Cb(G) be the space of bounded continuous functions on
G, then Cb(G) ⊃ K(G) and we have a natural pairing of Cb(G) and MC(G)
through integration.

The principal parts of our third and fourth main theorems (Theorems 2.6.1
and 2.6.2) are stated as follows, which are generalizations of the corresponding
results in the case of locally compact groups.

Theorem C. Let G be the limit group of a countable LCG inductive
system with the inductive limit topology τind. Then the convex sets K≤1(G)
and K1(G) are compact in the weak topology σ(Cb(G),MC(G)).

Theorem D. Let G be as in the above theorem, and P(G) the set of all
continuous positive definite functions on G. Then, on every bounded subset of
P(G), the weak topology σ(Cb(G),MC(G)) is equivalent to the compact uniform
topology.

By Theorem C, there holds for the compact convex set K1(G) and the set
of its extremal points E(G) the integral expression theorem of Choquet-Bishop-
K. de Leeuw (Theorem 5.6 in [BL]), which will be applied in [HH2].
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3. We know that general theories for traces of von Neumann algebras and
C∗-algebras and for characters of their factor representations have been well
studied and also well exposed in several text books such as [Dix1], [Dix2] and
[Pede]. However, for the level of topological groups, the situation is not yet
satisfactory at the point connecting the theory for representations of groups to
those of von Neumann algebras and C∗-algebras. Thus we prepared this paper.

We will apply the results in this paper to our succeeding work for determin-
ing explicitly all the characters of factor representations of finite type for the
wreath product group G = S∞(T ) of a compact group T with the infinite sym-
metric group S∞. This group is the inductive limit of Gn = Sn(T ) ∼= Tn�Sn

and is not locally compact if T is not discrete.

1. Positive definite functions and characters of factor representa-
tions

1.0. Positive definite functions on a topological group
Let G be a Hausdorff topological group, and P(G) the set of all continuous

positive definite functions on G. For an f ∈ P(G), we have f(g−1) = f(g), and
Krĕın’s inequality [Krei]

|f(g) − f(h)|2 ≤ 2f(e){f(e) −
(f(gh−1))} (g, h ∈ G),

where e denotes the identity element of G. Define the kernel of f as Nf := {g ∈
G; f(g) = f(e)}, then, f(gk) = f(kg) = f(g) (k ∈ Nf , g ∈ G), and especially
Nf is a group. The intersection N =

⋂
f∈P(G)Nf is a closed normal subgroup

of G. Introduce in the quotient group G̃ := G/N the quotient topology, then
any f becomes a continuous positive definite function on G̃, and any continuous
unitary representation (= UR) of G becomes a UR of G̃.

In this paper we study continuous positive definite functions on a group G
and URs ofG, so it is essentially sufficient for us to consider G̃ in place ofG. The
quotient group G̃ has sufficiently many continuous positive definite functions
and sufficiently many URs. Furthermore for any two different g̃, h̃ ∈ G̃, there
exists a continuous positive definite function f̃ such that f̃(g̃) �= f̃(h̃), because
they can be separated by a UR.

A Hausdorff topological group is completely regular as a topological space,
and we may ask if it has sufficiently many URs, what kind of characterization
is possible as a topological space.

1.1. Weak topologies and representations
Let G be a topological group with a Hausdorff topology τG, and assume

that it has sufficiently many positive definite functions. Denote by Cb(G) the
space of all bounded continuous functions on G, and by B(G) the σ-field of
Borel measurable subsets of G. Since we do not know much about the topolog-
ical characterization of such a group, we introduce here a sub-σ-field B0(G),
the smallest σ-field making all ϕ ∈ Cb(G) measurable.

Denote by Mb(G) (resp. M0
b (G)) the space of all bounded Borel measur-
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able (resp. B0(G)-measurable) functions on G, by Mb(G) (resp. M0
b(G)) that

of all bounded complex Borel measures (resp. B0(G)-measures) on G, and by
F(G) the space of finite linear combinations of unit point masses δg giving a
mass 1 on a point g ∈ G. Then Mb(G) ⊃ M0

b (G) ⊃ Cb(G) ⊃ P(G), and P(G)
separates any two points of G. Put

‖ψ‖ = supg∈G |ψ(g)| (ψ ∈Mb(G)),

‖µ‖ = sup‖ψ‖≤1,ψ∈Mb(G) |µ(ψ)| (µ ∈ Mb(G)).
(2)

The norm ‖ψ‖ is natural on the space Cb(G), and ‖µ‖ is natural on the space
Mb(G). Put ‖µ‖0 = sup‖ϕ‖≤1 |µ(ϕ)|, where ϕ varies in Cb(G), then it gives a
norm on M0

b(G) but may not be a norm (but seminorm) on Mb(G), because
functions in Cb(G) may not be able to separate two measures in Mb(G) in the
case where B0(G) � B(G). In that case, we have a question: Under what
condition, can any µ ∈ M0

b(G) be uniquely extended to a Borel measure in
Mb(G) ?

For a real-valued ψ ∈ Mb(G), put µ(ψ) = (
µ)(ψ) +
√−1(�µ)(ψ), and

define real-valued measures 
µ,�µ. Put |µ| = |
µ|+|�µ|, then ‖µ‖ ≤ ‖ |µ| ‖ ≤
2‖µ‖. We consider a pairing between Mb(G) and Mb(G) given by

Mb(G) ×Mb(G) � (µ, ψ) �−→ µ(ψ) = ψ(µ) :=
∫
G

ψ(g) dµ(g) ∈ C,(3)

and denote by σ(Mb(G),Mb(G)) the weak topology induced on Mb(G), and
also by σ(Mb(G), Cb(G)) the one obtained by restricting Mb(G) to Cb(G).

Lemma 1.1.1. The space of point masses F(G) is everywhere dense in
Mb(G) (resp. M0

b(G)) in the weak topology σ(Mb(G),Mb(G)) (resp. σ(M0
b(G),

M0
b (G))). Moreover let BL be the bounded subset of Mb(G) (resp. M0

b(G))
defined by ‖|µ|‖ ≤ L, then F(G) ∩BL is dense in BL.

Proof. Take a µ ∈ Mb(G). For a real valued function ψ ∈ Mb(G), the
integral µ(ψ) =

∫
G
ψ(g) dµ(g) is defined as follows. For a < b in R, put

[a < ψ ≤ b] = {g ∈ G ; a < ψ(g) ≤ b}. For an integer n > 0, we take a
finite decomposition ∆n of G given by En,i = [i/n < ψ ≤ (i + 1)/n], and
then corresponding to a choice of elements gn,i ∈ En,i, we define a Riemannian
sum as Σ∆n

=
∑

i ψ(gn,i)µ(En,i). Then
∫
G
ψ(g) dµ(g) = limn→∞ Σ∆n

. Put
an,i = µ(En,i), then we have Σ∆n

= µn(ψ) with µn =
∑
i an,iδgn,i

∈ F(G) and
µ(ψ) = limn→∞ µn(ψ).

A fundamental neighbourhood of µ is given by a finite number of real
ψk ∈ Mb(G), 1 ≤ k ≤ N, and ε > 0 as U(µ; (ψk); ε) = {ν ∈ Mb(X); |(µ −
ν)(ψk)| < ε (∀k)}. Considering a measurable decomposition of G finer than any
of {[i/n < ψk ≤ (i+ 1)/n]}, 1 ≤ k ≤ N, and a Riemannian sum corresponding
to it, we see that the neighbourhood U(µ; (ψk); ε) contains an element in F(G).

For the denseness of F(G) ∩BL in BL, it is enough to note that ‖|µn|‖ ≤∑
i(|
µ| + |�µ|)(En,i) = ‖|µ|‖.
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Remark 1.1.1. A Hausdorff topological group is necessarily completely
regular, and for a point g and a closed set F not containing g, there exists a
continuous function ϕ ∈ Cb(G) such that ϕ(g) = 0 and ϕ = 1 on F . This means
that the weak topology σ(Mb(G), Cb(G)) restricted on F(G) is Hausdorff.

Suppose that the weak topology σ(Mb(G), Cb(G)) is not Hausdorff. Put
K(G) = {µ ∈ Mb(G);µ(ϕ) = 0 (ϕ ∈ Cb(G))}. Then, K(G) ∩ F(G) = {0},
and any σ(Mb(G), Cb(G))-continuous linear form F on F(G) can be extended
uniquely to a continuous linear form F ′ on Mb(G)/K(G) and so such a one F ′′

on Mb(G) vanishing on K(G).

A unitary representation (= UR) π of G on a Hilbert space H = V (π) is
by definition assumed to be weakly continuous, that is, for any v1, v2 ∈ H, the
map G � g �→ 〈π(g)v1, v2〉 ∈ C is continuous. In other words, let τw be the
weak topology in the space B(H) of all bounded linear operators on H, then
the map G � g �→ π(g) ∈ B(H) is continuous in τG and τw.

We define π(µ) for µ ∈ Mb(G) by the following integral which converges
in τw:

〈π(µ)v1, v2〉 =
∫
G

〈π(g)v1, v2〉 dµ(g) (v1, v2 ∈ V (π)).(4)

Lemma 1.1.2. The map Mb(G) � µ �→ π(µ) ∈ B(H) is continuous in
the topologies σ(Mb(G), Cb(G)) (or σ(Mb(G),Mb(G))) and τw.

We also consider the ultra-weak topology τuw (resp. ultra-strong topology
τus) on B(H) which is defined by the family of seminorms given by

s(T ) =
∣∣ ∑

1≤i≤∞〈Tvi, vi〉
∣∣ (

resp. s(T ) =
( ∑

1≤i≤∞ ‖Tvi‖2
)1/2

)
for every series vi ∈ H,

∑
i≥1 ‖vi‖2 <∞. Then, on every bounded set of B(H),

the topology τuw coincides with the one τw. Since ‖π(µ)‖ ≤ ‖µ‖, we see from
Lemma 1.1.2 the following.

Lemma 1.1.3. The map µ �→ π(µ) is continuous in σ(Mb(G), Cb(G))
(or σ(Mb(G), Mb(G))) and τuw, on every bounded subset (with respect to ‖µ‖).

For µ ∈ Mb(G), put µ∗(ψ) = µ(ψ∗) with ψ∗(g) := ψ(g−1). Further we
wish to introduce in Mb(G) (or M0

b(G)) a convolution product µ1 ∗ µ2 for
µ1, µ2 ∈ Mb(G) (resp. M0

b(G)) by

(µ1 ∗ µ2)(ψ) =
∫∫

G×G
ψ(g1g2) dµ1(g1)dµ2(g2)(5)

for any ψ ∈ Mb(G) (resp. ψ ∈ Cb(G)). If this is possible, then Mb(G) (resp.
M0
b(G)) becomes a ∗-algebra.

To check this possibility, we should analyse the measurability of the prod-
uct map Λ : G×G � (g1, g2) �→ g1g2 ∈ G. For a σ-ring B(G) of subsets of G, we
say that (G,B(G)) is a measurable group if the inverse map G � g → g−1 ∈ G
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and the product map Λ are measurable. Let Mb(B(G)) and Mb(B(G)) be
the spaces of bounded measures and that of bounded measurable functions on
(G,B(G)) respectively.

If B(G) × B(G) = B(G×G), then (G,B(G)) is measurable.

Lemma 1.1.4. Let (G,B(G)) be a measurable group. Assume that
Mb(B(G)) can separate any two points of Mb(B(G)), then the formula (5)
for ψ ∈ Mb(B(G)) defines the convolution product and Mb(B(G)) becomes a
∗-algebra.

In this case, for ψ ∈Mb(B(G)), the integration on G×G in the right hand
side of (5) can be rewritten as an iterated integral. Hence, for a UR π of G,
µ �→ π(µ) gives a representation of ∗-algebra Mb(B(G)). If B(G) ⊂ B(G), then
Mb(B(G)) ⊂ Mb(G). We have a question: Under what topological condition on
G, is (G,B(G)) or (G,B0(G)) a measurable group ?

Note 1.1.2. (i) Representations of measurable groups were studied in
[Mack].

(ii) A weak topology similar to σ(Mb(G), Cb(G)) is utilized in the definition
of hypergroups in [BH, §1]. However the base spaces for hypergroups are always
assumed to be locally compact.

1.2. Construction of cyclic representations
Let P1(G) be the set of f ∈ P(G) normalized as f(e) = 1, and E(G) the

set of extremal points of the convex set P1(G). Take an f ∈ P1(G). As in
[GR], we introduce in F(G) an inner product by

(µ1, µ2)f := f(µ ∗
2 ∗ µ1) =

∫∫
G×G

f(g2g1) dµ(g1) dµ ∗
2 (g2)(6)

=
∫∫

G×G
f(g −1

2 g1) dµ(g1) dµ2(g2),

where µ2(ψ) := µ2(ψ). Put Jf = {µ ; (µ1, µ)f = 0 (∀µ1 ∈ F(G))}, then Jf
is a left ideal, and a positive definite inner product, denoted by 〈µ f

1 , µ
f
2 〉f , is

induced on F(G)/Jf , where µ f
1 denotes the canonical image of µ1 in F(G)/Jf .

Here we have

〈δ fg1 , δ fg2〉f = (δg1 , δg2)f = f(g −1
2 g1).(7)

This inner product is invariant under left translations L(g0), where L(g0)µ(g) =
µ(g −1

0 g) (g0 ∈ G), and the latter induces a unitary representation πf on the
completion Hf of F(G)/Jf . This UR is, above all, continuous thanks to the
continuity of f , and have a unit cyclic vector v0 = δ fe , and f is recovered from
πf by f(g) = 〈πf (g)v0, v0〉f .

For an f ∈ P1(G), the UR πf is irreducible if and only if f is extremal in
P1(G) or f ∈ E(G) ([GR, Theorems 1 and 2]).

The representation πf generates a von Neumann algebra Uf = πf (G)′′.
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Properties of πf . (i) Any matrix element Fv1,v2(g) = 〈πf (g)v1, v2〉f
(v1, v2 ∈ Hf ) is continuous in g as a uniform convergence limit of linear com-
binations of f(g −1

2 gg1) = 〈πf (g)δ fg1 , δ fg2〉f (g1, g2 ∈ G), and moreover Fv1,v2 is
bounded.

(ii) For µ ∈ Mb(G), the operator πf (µ) is defined weakly by 〈π(µ)v1, v2〉f
=

∫
G
Fv1,v2(g) dµ(g). Since 〈π(µ)v1, πf (g′)v2〉f is continuous in g′ and is

bounded, we have for ν ∈ Mb(G),

〈πf (µ)v1, πf (ν)v2〉f =
∫
G

dν∗(g′)
∫
G

Fv1,v2(g
′g) dµ(g).(8)

Proposition 1.2.1. (i) For µ ∈ Mb(G), the integral
∫
G
f(g′g) dµ(g) is

bounded and continuous in g′ ∈ G, and for µ, ν ∈ Mb(G),∫
G

dµ∗(g′)
∫
G

f(g′g) dµ(g) = 〈πf (µ)v0, πf (µ)v0〉f = ‖πf (µ)v0‖ 2
f ≥ 0,(9)

〈πf (µ)v0, πf (ν)v0〉f =
∫
G

dν∗(g′)
∫
G

f(g′g) dµ(g).(10)

(ii) The integrals (9) and (10) can be rewritten as a double integral on
G × G if f(g′g) is (B(G) × B(G))-measurable in (g′, g), and it is the case if
Λ−1(B0(G)) ⊂ B(G) × B(G) or if (G,B(G)) is a measurable group.

Remark 1.2.1 (Equivalence to GNS construction). Let G be locally
compact and Cc(G) the space of continuous functions on G with compact
supports. Denote by dg a left-invariant Haar measure on G and let ∆(h) =
d(gh)/dg (h ∈ G) be the modular function. Introduce in Cc(G) two operations

ϕ∗(g) = ∆(g)−1ϕ(g−1), ϕ ∗ ψ(g) =
∫
G

ϕ(h−1g)ψ(h) dh,

for ϕ, ψ ∈ Cc(G). Then, ‖ϕ∗‖1 = ‖ϕ‖1, ‖ϕ ∗ψ‖1 ≤ ‖ϕ‖1 ‖ψ‖1, for the L1-norm
‖ · ‖1, and Cc(G) is a ∗-subalgebra of the ∗-Banach algebra L1(G). The spaces
Cc(G) and L1(G) are embedded naturally into Mb(G) through ψ(g) �→ ψ(g)dg,
and the norm ‖ψ(g)dg‖ is equivalent to ‖ψ‖1.

In this case, the so-called GNS construction of a cyclic representation,
associated to an f ∈ P1(G), is given by using integration with respect to a
Haar measure. We remark here that the UR obtained by GNS construction is
equivalent to the previous Gelfand-Raikov representation (πf ,Hf ) constructed
by using F(G) but not integration.

Fix an f ∈ P1(G). Introduce in Cc(G) a positive semidefinite inner product
as

(ψ1, ψ2)′f :=
∫∫

G×G
f(h−1g)ψ1(g)ψ2(h) dg dh (ψ1, ψ2 ∈ Cc(G) ).

Let J ′
f be the kernel of (· , · )′f , and take a quotient Cc(G)/J ′

f . Completing it
with respect to the positive definite inner product, we get a Hilbert space H′

f .
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The left multiplication of Cc(G) generates a representation π′
f of Cc(G) and

also a UR of G on H′
f .

We define a linear map Φ′ of Cc(G) into Hf , the completion of F(G)/Jf ,
as follows. As an operator-valued function on G, G � g �→ πf (g) is weakly
continuous and, since πf (g)’s are unitary, is strongly continuous. So, for ev-
ery ψ ∈ Cc(G), the operator-valued integration πf (ψ) =

∫
G
πf (g)ψ(g) dg is

strongly convergent and ‖πf (ψ)‖ ≤ ‖ψ‖1. It defines a representation of ∗-
algebra Cc(G) and also of L1(G) on the space Hf . For v0 = δ fe ∈ Hf , put
Φ′(ψ) := πf (ψ)v0. Then, for ψ1, ψ2 ∈ Cc(G),

〈Φ′(ψ1),Φ′(ψ2)〉f =
∫
G

∫
G

ψ1(g)ψ2(h) 〈πf (g)v0, πf (h)v0〉f dg dh

=
∫
G

∫
G

ψ1(g)ψ2(h) f(h−1g) dg dh = (ψ1, ψ2)′f .

Hence Φ′ induces a linear map Φ′′ from Cc(G)/J ′
f into Hf which can be ex-

tended to an isomorphism Φ : H′
f → Hf of two Hilbert spaces.

(•) The extended linear map Φ : H′
f → Hf intertwines two unitary repre-

sentations π′
f and πf of G as Φ · π′

f (g) = πf (g) · Φ (g ∈ G).

The inverse isomorphism Φ−1 from Hf to H′
f is given already in [GR]. Let

{V } be the net of all relatively compact neighbourhoods of e ∈ G with the
order of inclusion. Take functions ψV ∈ Cc(G) such that ψV ≥ 0, supp(ψV ) ⊂
V,

∫
G
ψV (g) dg = 1. Then,

‖πf (ψV )v0−v0‖2 =
∫∫

G×G
〈πf (g)v0−v0, πf (h)v0−v0〉ψV (g)ψV (h) dg dh → 0

in Hf as V → e. Corresponding to this strong convergence of πf (ψV )v0 to v0,
through the isomorphism Φ−1, the image of ψV in Cc(G)/J ′

f converges strongly
to an element ξ0 = Φ−1(v0) ∈ H′

f . To prove directly this strong convergence of
ψV + J ′

f in H′
f is not so simple and it is given in the proof of [GR, Theorem 4,

p.7].

1.3. Normal traces on von Neumann algebras
Let U be a von Neumann algebra contained in the algebra B(H) of all

bounded linear operators on a Hilbert space H, and U+ be its subset consisting
of all non-negative operators. A trace t on U+ is by definition a map to R≥0 ∪
{+∞} such that t(S+T ) = t(S)+ t(T ) (S, T ∈ U+), t(λT ) = λt(T ) (λ ≥ 0, T ∈
U+) and t(UTU−1) = t(T ) for any unitary element U ∈ U. It is called finite
if t(S) < +∞ for any S ∈ U+, and semifinite if, for each S ∈ U+, t(S) is the
supremum of t(T ) for those T ∈ U+ such that T ≤ S and t(T ) <∞. It is called
faithful if t(S) = 0 for an S ∈ U+ implies S = 0.

A semifinite trace t on U+ is called normal if, for each increasing net Tα of
U+ with supremum S ∈ U+, t(S) is the supremum of t(Tα). A positive linear
form φ on U is called normal if t = φ|U+ is normal. A trace t′ is said to be
majorized by t (notation: t′ ≤ t) if t′(T ) ≤ t(T ) (T ∈ U+) or t − t′ is again a
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trace. A finite trace t on U+ can be extended uniquely to a linear form φ = φt
on U.

On a factor, two semifinite faithful normal traces are proportional ([Dix1,
I.6.4]).

Lemma 1.3.1 ([Dix1, I.4.2]). For a positive linear form φ on a von
Neumann algebra U, the following conditions are mutually equivalent:

(i) φ is normal ;
(ii) φ is ultra-weakly continuous;
(iii) φ(S) =

∑
1≤i<∞〈Svi, vi〉 (S ∈ U) with

∑
1≤i<∞ ‖vi‖2 <∞.

Lemma 1.3.2 ([Dix1, I.6.4]). Let Z be the center of U and t a semifinite
normal trace on U+. For a fixed A ∈ Z, 0 ≤ A ≤ I, put tA(T ) = t(AT ) (T ∈
U+). Then it is a normal trace majorized by t : tA ≤ t. Conversely any normal
trace majorized by t is given in this form.

Moreover we need the following fact which we quote from [Dix1] for exact-
ness:

Lemma 1.3.3 (from [Dix1, I.3.3, Theorem 1]). Let M be a ultra-weakly
closed linear subspace of B(H), M∗ the dual of the Banach space M, Mr the
ball ‖T‖ ≤ r of M, and φ a linear form on M. Put ωx,y(T ) = 〈Tx, y〉 (x, y ∈
H).

(i) The following conditions are equivalent:
(i1) φ is weakly continuous;
(i2) φ is strongly continuous;
(i3) φ =

∑
finite ωxi,yi

.

(ii) The following conditions are equivalent:
(ii1) φ is ultra-weakly continuous;
(ii2) φ is ultra-strongly continuous;
(ii3) φ =

∑
1≤i<∞ ωxi,yi

, with
∑

1≤i<∞ ‖xi‖2 < +∞,
∑

1≤i<∞ ‖yi‖2 <
+∞;

(ii4) [resp. (ii5)] The restriction of φ on M1 is ultra-weakly (resp. weakly)
continuous;

(ii6) [resp. (ii7)] The restriction of φ on M1 is ultra-strongly (resp.
strongly) continuous.

1.4. Factoriality of the representation πf
For an f ∈ P(G), we give in 1.2 a cyclic UR πf on the Hilbert space Hf ,

which is the completion of F(G)/Jf , with Jf the kernel of the Hermitian form
(µ, ν)f = f(ν∗ ∗ µ), µ, ν ∈ F(G) (cf. [GR]).

Let K(G) be the set of all continuous positive definite invariant functions
on G, K1(G) the subset of K(G) consisting of all normalized ones as f(e) = 1,
and E(G) the set of all extremal points in the convex set K1(G). For two
positive definite functions f and f ′, we say that f ′ is majorized by f (notation:
f ′ ≤ f) if f − f ′ is again positive definite. If f is continuous, then any f ′
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majorized by f is automatically continuous [GR, p.3]. For f, f ′ ∈ K(G), we
say that f ′ is majorized by f (notation: f ′ � f) if f − f ′ is again in K(G).

Suppose f ∈ K(G) ⊂ P(G). Then the kernel Jf is a two-sided ideal
and the inner product is invariant not only under left translations but also
under right translations R(g0), where R(g0)µ(g) = µ(gg0). They induce a UR
on Hf denoted by ρf , which generates von Neumann algebra Vf = ρf (G)′′

(bicommutant). It is proved that Vf is equal to the commutant algebra (Uf )′

of Uf = πf (G)′′ (cf. Remark 1.4.1). The common center Zf = Uf ∩ Vf of Uf
and Vf is descrived as follows (cf. [Tho, Lemma 2]).

Lemma 1.4.1. Let Z+
f be the set of positive hermitian operators in Zf =

Uf∩Vf . Then there exists a bijective correspondence between Z+
f and the subset

M(f) ⊂ K(G) given as

M(f) = { f ′ ∈ K(G) ; f ′ � λf for some λ ≥ 0}.(11)

The correspondence C �→ f ′ is given by f ′(µ ∗
2 ∗µ1) = (µ1, µ2)f ′ = 〈Cµ f

1 , µ
f
2 〉f .

Proof. Take an f ′ ∈ M(f), then λf − f ′ ∈ K(G) for some λ > 0, and
so 0 ≤ (µ, µ)f ′ ≤ λ(µ, µ)f . Therefore there exists a unique positive hermitian
operator 0 ≤ C ≤ λI on Hf such that (µ1, µ2)f ′ = 〈Cµ f

1 , µ
f
2 〉f (µ1, µ2 ∈

F(G)). Then, for µ1, µ2 ∈ F(G) and g ∈ G,

(L(g)µ1, L(g)µ2)f ′ = (µ1, µ2)f ′ , (R(g)µ1, R(g)µ2)f ′ = (µ1, µ2)f ′ .

Therefore C ∈ U′
f ∩ V′

f = Vf ∩ Uf = Zf , whence C ∈ Z +
f .

Conversely take a C ∈ Z +
f . Put

f ′(g) = 〈C πf (g)v0, v0〉f = 〈πf (g)
√
Cv0,

√
Cv0〉f (g ∈ G)

with v0 = δ fe . Then f ′ is continuous and positive definite. Since C and so
√
C

commute with left translations πf (g0), g0 ∈ G, we have

(12) f ′(g) =
〈√

Cπf (g0g)δ fe ,
√
Cπf (g0)δ fe

〉
f

=
〈√

C
(
δg0g

)f
,
√
C

(
δg0

)f〉
f
.

Since
√
C commutes with right translations ρf (g1), g1 ∈ G, and since R(g1)δg =

δgg −1
1

, we get

f ′(g) =
〈√

C
(
δgg −1

1

)f
,
√
C

(
δg −1

1

)f〉
f

= f ′(g1gg −1
1 ),

by (12), whence f ′ is invariant. Moreover, ‖C‖ f−f ′ is positive definite because,
(‖C‖ f−f ′)(g) = 〈πf (g)Dv0, Dv0〉f with D =

√‖C‖ I − C. Hence f ′ ∈M(f).

Thus the center Zf = Uf∩Vf is reduced to CI if and only if any f ′ ∈ K(G)
majorized by f is a scalar multiple of f . This gives us a criterion for that the
representation πf is factorial or the von Neumann algebra Uf = πf (G)′′ is a
factor. Recall that a von Neumamm algebra U is called a factor if its center
U ∩ U′ is trivial.
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Theorem 1.4.2. Let f ∈ K1(G). Then the representation πf is fac-
torial (of finite type) if and only if f is extremal or f ∈ E(G). If πf is fac-
torial, then it is of finite type, and the unique normalized faithful finite nor-
mal trace of Uf = πf (G)′′ is given as φ(T ) = 〈Tv0, v0〉f , and there holds
f(µ) = 〈πf (µ)v0, v0〉f (µ ∈ Mb(G)) with v0 = δ fe .

For a von Neumann algebra V on a Hilbert space H, a vector a ∈ H is
called in [Dix1, I.6.3] a trace-element for V if ωa(T ) := 〈Ta, a〉 (T ∈ V) is a
trace on V. Thus the unit vector v0 = δ fe is a trace-element for Uf = πf (G)′′.

Remark 1.4.1. For the completeness, we give a proof for (Uf )′ = Vf .
Let A be an associative algebra over C with an involutive anti-automorphism
x → x∗, and a positive definite inner product (x|y) which makes it a pre-
Hilbert space. We call A a Hilbert algebra if it satisfies the following axioms
([Dix1, I.5]):

(i) (x|y) = (y∗|x∗) ;
(ii) (xy|z) = (y|x∗z) ;
(iii) For any x ∈ A, the map A � y �→ xy ∈ A is continuous ;
(iv) The set of elements xy (x, y ∈ A) is total in A.
Denote by H the Hilbert space obtained by completing A. The mappings

y → xy, y → yx extend uniquely to elements Ux, Vx in B(H) respectively. By
(iv), the weak closure of the set Ux (resp. Vx), x ∈ A, gives a von Neumann
algebra U(A) (resp. V(A)). Theorem 1 in [Dix1, I.5.2] asserts that

U(A)′ = V(A), V(A)′ = U(A).(13)

In our present situation, for a fixed f ∈ K(G), put A = F(G)/Jf with the
two-sided ideal Jf and, for x = µ f

1 and y = µ f
2 in it, (x|y) = 〈µ f

1 , µ
f
2 〉f . For

the axiom (iii), put z = νf , then Uzx = zx = νfµ f
1 = (ν ∗µ1)f = πf (ν)µ

f
1 and

(zx|y) =
∫
G

〈πf (g)µ f
1 , µ

f
2 〉f dν(g),

∴ |(zx|y)| ≤
∫
G

|〈πf (g)µ f
1 , µ

f
2 〉f | d|ν|(g)

≤
∫
G

‖µ f
1 ‖f‖µ f

2 ‖f d|ν|(g) = Cν ‖x‖ ‖y‖,

with Cν = |ν|(G) and ‖x‖ = ‖µ f
1 ‖f . We see from |(zx|y)| ≤ Cν ‖x‖ ‖y‖ that

‖zx‖ ≤ Cν ‖x‖ and so ‖Uz‖ ≤ Cν , whence the axiom (iii).
In this case, we have U(A) = Uf ,V(A) = Vf , and (13) above gives (Uf )′ =

Vf as is desired.

1.5. Standard realization of URs with finite normal traces
Let π be a UR of G and U = π(G)′′ the von Neumann algebra generated

by π(G), and Z the center of U. Take a finite trace t on U+, if exists, and extend
it uniquely to a linear form φ = φt on U and put

f(g) = φ
(
π(g)

)
(g ∈ G).(14)
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Proposition 1.5.1. The function f = φ ◦ π on G is positive definite
and invariant. Suppose t or eqivalently φ is normal. Then f is continuous and
so f ∈ K(G), and for µ ∈ Mb(G), we have φ

(
π(µ)

)
= f(µ) =

∫
G
f(g) dµ(g).

Proof. The positive definiteness of f comes from that of φ. Further, since
φ(S1S2) = φ(S2S1), we have f(g1g2) = f(g2g1) (g1, g2 ∈ G), or f(g1g2g −1

1 ) =
f(g2).

For the second assertion, note that the map G � g �→ π(g) ∈ B(H) is
weakly continuous, and that φ is ultra-weakly continuous by Lemma 1.3.1 and
so weakly continuous on every bounded set by Lemma 1.3.3 (ii). Then f is
continuous, as a composition of two continuous maps.

The map Mb(G) � µ �→ π(µ) ∈ B(H) is continuous for σ(Mb(G),Mb(G))
and τuw on the bounded set BL by Lemma 1.1.3. Then, by Lemma 1.3.3 (ii),
the linear map µ �→ φ(π(µ)) is continuous on BL. On the other hand, the map
µ �→ f(µ) is continuous by itself. Two maps φ(π(µ)) and f(µ), both continuous
on BL, coincide with each other on the subspace F(G), and since BL ∩ F(G) is
dense in BL by Lemma 1.1.1, they are identical.

Let π be a UR of G, t its faithful normal finite trace on U = π(G)′′

normalized as t(I) = 1, φ = φt, and f = φ ◦ π ∈ K1(G). Let us compair these
things with the corresponding ones for the cyclic representation (πf ,Hf ) in 1.2
associated to f .

First introduce in U a Hermitian inner product by

〈T1, T2〉φ := φ(T ∗
2 T1) = φ(T1T

∗
2 ) (T1, T2 ∈ U).(15)

Then, since t is faithful, we have ‖T‖ 2
φ := 〈T, T 〉φ = t(T ∗T ) > 0 for any T �= 0.

Therefore U becomes a pre-Hilbert space which we denote by Uφ and a T ∈ U
considered as an element of Uφ is denoted by Tφ (but we omit the superfix φ if it
is too cumbersome). The Hilbert space obtained by completing Uφ is denoted
by Hφ. Note that if ‖T‖ ≤ M , then 0 ≤ T ∗T ≤ M2 I with I the identity
operator, and 0 ≤ φ(T ∗T ) ≤ φ(M2 I) = M2 φ(I) = M2, whence ‖T‖φ ≤ ‖T‖.
The identical injective map T → Tφ = T from (U, ‖ · ‖) into (Hφ, ‖ · ‖φ) is
continuous with dense image.

On U, we have the right regular representation US and the left regular
anti-representation VS (S ∈ U) as

US(T ) := ST, VS(T ) := TS (T ∈ U),(16)

and, on the level of group representations, Lπ(g) and Rπ(g) given by

Lπ(g)T := π(g)T, Rπ(g)T := Tπ(g−1) = Tπ(g)∗ (g ∈ G).(17)

Then we have, for S ∈ U such that ‖S‖ ≤M ,

‖US(T )‖ 2
φ = φ((ST )∗(ST )) = φ(TT ∗S∗S) ≤ φ(M2 · TT ∗) ≤M2φ(TT ∗),

whence ‖US(T )‖φ ≤ M ‖T‖φ, because 0 ≤ TT ∗S∗S ≤ M2 · TT ∗. This means
that ‖US(Tφ)‖φ ≤ ‖S‖ ‖Tφ‖φ, and so ‖US‖ ≤ ‖S‖, where ‖US‖ denotes the
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operator norm on the Hilbert space Hφ. Hence US is continuous in the norm
‖ · ‖φ. Its natural extension onto Hφ is denoted by ŨS . Similarly we have a
natural extension ṼS of VS onto Hφ. On the other hand, Lπ(g) and Rπ(g) are
both unitary on Uφ, and can be extended respectively to unitary representations
L̃π(g) = Ũπ(g) and R̃π(g) = Ṽπ(g)∗ on Hφ.

Here we quote for exactness two fundamental facts from [Dix1] as follows.
For von Neumann algebras A and B, a map Φ from A into B is called a ho-
momorphism (resp. anti-homomorphism) if it is a homomorphism (resp. anti-
homomorphism) for the ∗-algebra structures of A and B.

Lemma 1.5.2 ([Dix1, I.1.5, Proposition 8]). Let A and B be von Neu-
mann algebras and Φ a homomorphism or anti-homomorphism of A into B.
Then,

(i) Φ(A+) ⊂ B+;
(ii) If E is a projection of A, Φ(E) is a projection of B;
(iii) For each S ∈ A, we have ‖Φ(S)‖ ≤ ‖S‖; if Φ is injective, we have

‖Φ(S)‖ = ‖S‖;
(iv) If S is a hermitian operator of A, then Φ(S) is an hermitian operator

of B. If h is a (complex-valued) continuous function of a real variable such that
h(0) = 0, then Φ(h(S)) = h(Φ(S)).

Lemma 1.5.3 ([Dix1, I.3.4, Theorem 2(i)]). Let A be a ∗-algebra of op-
erators in a Hilbert space H, and A1 the unit ball of A. Then the following eight
conditions are equivalent:

(1) (resp. (2)) A (resp. A1) is weakly closed;
(3) (resp. (4)) A (resp. A1) is strongly closed;
(5) (resp. (6)) A (resp. A1) is ultra-weakly closed;
(7) (resp. (8)) A (resp. A1) is ultra-strongly closed.

By Lemma 1.5.3, we know that U is a strong closure of π(F(G)). For any
fixed T ∈ U, take a net Aα = π(να) ∈ π(F(G)) strongly convergent to T . Then
there exists an M > 0 such that ‖Aα‖, ‖T‖ ≤M , and we have for v1, v2 ∈ H,

|〈(Aα − T )∗(Aα − T )v1, v2〉| ≤ ‖(Aα − T )v1‖ · ‖(Aα − T )v2‖ −→ 0,

whence (Aα − T )∗(Aα − T ) converges weakly to 0. Therefore, by Lemma 1.3.3
(ii), φ

(
(Aα − T )∗(Aα − T )

)
= ‖Aα − T‖ 2

φ → 0. This means that A φ
α → Tφ

in Uφ, and that π(F(G))φ := {Aφ;A ∈ π(F(G))} is dense in Uφ. in the norm
‖ · ‖φ.

Now consider the dense subspace π(F(G))φ ⊃ π(G)φ of Hφ. Then, for
g1, g2 ∈ G,

(18) 〈π(g1)φ, π(g2)φ〉φ = 〈π(g1), π(g2)〉φ = φ(π(g2)∗π(g1)) = f(g −1
2 g1).

On the other hand, f(g −1
2 g1) = (δg1 , δg2)f = 〈δfg1 , δfg2〉f . So 〈π(g1)φ, π(g2)φ〉φ =

〈δfg1 , δfg2〉f , and accordingly 〈π(µ1)φ, π(µ2)φ〉φ = 〈µ f
1 , µ

f
2 〉f (µ1, µ2 ∈ π(F(G))).

This means that the map

Γ : π(F(G))φ � π(µ)φ −→ µf ∈ Hf(19)
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is an isomorphism from the subspace π(F(G))φ of Uφ into Hf . Hence by natural
extension we get an isomorphism of Hilbert spaces from Hφ onto Hf . Denote
it again by Γ.

Let us transform through Γ the representations ŨS , ṼS and L̃π(g), R̃π(g)
from the space Hφ onto the space Hf . The following is one of our main results
in Section 1.

Theorem 1.5.4. Let π be a UR of G with a faithful normal finite trace
t on U = π(G)′′. Normalize t as t(I) = 1 and put φ = φt, f = φ ◦ π ∈ K1(G).

(i) The UR L̃π(g) (resp. R̃π(g)) of G on the space Hφ is equivalent to the
UR πf (resp. ρf ) on the space Hf through Γ: for g ∈ G,

Γ · L̃π(g) · Γ−1 = Γ · Ũπ(g) · Γ−1 = πf (g),

Γ · R̃π(g) · Γ−1 = Γ · Ṽπ(g)∗ · Γ−1 = ρf (g).
(20)

The UR L̃π of G generates the von Neumann algebra Ũ isomorphic to Uf =
πf (G)′′. Similarly for the UR R̃π and Vf = ρf (G)′′.

(ii) The map Φ : S → Γ · ŨS · Γ−1 (resp. Φ′ : S → Γ · ṼS · Γ−1) is a quasi-
isomorphism (resp. quasi-anti-isomorphism) from the von Neumann algebra U
onto the von Neumann algebra Uf (resp. Vf ) which has a trace-element and
also is cyclic. Moreover

Φ
(
π(g)

)
= πf (g), Φ′(π(g)∗

)
= ρf (g) (g ∈ G).

Proof. (i) Note that the subset π(G)φ = {π(h)φ;h ∈ G} of Uφ is to-
tal in Hφ. The UR L̃π(g) is expressed for the element π(h)φ as π(h)φ →(
π(g)π(h)

)φ = π(gh)φ. Through the isomorphism Γ, this is written as δ fh →
(δgh)f = πf (g)(δ

f
h ). This means that Γ · L̃π(g) · Γ−1 = πf (g). Similarly for

R̃π(g) and πf (g).
From this, the statement for the isomorphism of Ũ and Uf is now clear.
(ii) Since Uf is isomorphic to Ũ, it is sufficient for us to prove that the

map Ω : U � S → ŨS ∈ Ũ gives a quasi-isomorphism. To this, it is enough
to get Ω(U) = Ũ. For calculations here, we introduce a compact notation as
ΩS := ŨS . We know that any projection E ∈ U is mapped to a projection
ΩE ∈ Ũ, and that ‖ΩS‖ = ‖ŨS‖ = ‖S‖, by Lemma 1.5.2 (ii) and (iii). Note
further that if Sα → S strongly in U, then ΩSα → ΩS strongly in Ũ, by Lemma
1.5.5 below.

On the other hand, the set of unitary operators {π(g); g ∈ G} (resp.
{Ωπ(g) = Ũπ(g); g ∈ G}) generates strongly the von Neumann algebra U (resp.
Ũ), by Lemma 1.5.3. By Lemma 1.5.7 below, we know that the image Ω(U) ⊂ Ũ

is a von Neumann algebra. It contains the generating subset Ωπ(G) of Ũ, whence
Ω(U) = Ũ.

Note that the theorem above shows that the Gelfand-Raikov represen-
tation πf , which has a trace-element and is cyclic, is standard among URs
corresponding to the same f ∈ K1(G) (cf. Remark 1.5.1 below).
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Lemma 1.5.5. Suppose that Sα → S strongly in U. Then, ΩSα → ΩS
strongly in Ũ.

Proof. First note that {Sα} is bounded. For v1, v2 ∈ H,

|〈(Sα − S)∗(Sα − S)v1, v2〉| ≤ ‖(Sα − S)v1‖ ‖(Sα − S)v2‖ → 0,

whence (Sα−S)∗(Sα−S) → 0 weakly and is bounded in U. Therefore we have
T ∗(Sα−S)∗(Sα−S)T → 0 weakly. Thus we get φ

(
T ∗(Sα−S)∗(Sα−S)T

) → 0.
On the other hand, ‖(ΩSα − ΩS)Tφ‖ 2

φ = φ(T ∗(Sα − S)∗(Sα − S)T ). Hence
‖(ΩSα − ΩS)Tφ‖φ → 0. Note that {ΩSα} is bounded and that {Tφ} is dense
in Hφ, we see that ΩSα → ΩS strongly.

Lemma 1.5.6 ([Dix1, I.4.1, Lemma 4]). Let A be a ∗-algebra of opera-
tors in H containing the identity operator IH on H. Every positive linear form
φ on A defines a Hilbert space K, a linear mapping Γ of A onto a dense linear
subspace of K, and a norm-decreasing homomorphism Φ of A into B(K), such
that, if we put x = Γ(IH) ∈ K, we have Γ(T ) = Φ(T )x and φ(T ) = 〈Φ(T )x, x〉
for each T ∈ A. Furthermore, Φ(IH) = IK. If φ is faithful, Φ is an isomorphism
of A onto Φ(A), and x is separating for Φ(A).

Definition 1.5.1. Let A and B be von Neumann algebras. A linear
mapping Φ of A into B is said to be positive if Φ(A+) ⊂ B+. We say that
Φ is normal positive if, further, for every increasing filtering set F ⊂ A with
supremum T ∈ A+, Φ(F) ⊂ B has a supremum Φ(T ).

Lemma 1.5.7 ([Dix1, I.4.3, Proposition 1]). Let A be a von Neumann
algebra, φ a normal positive linear form on A, and Φ the canonical homomor-
phism defined above by φ. Then, Φ is normal and Φ(A) is a von Neumann
algebra.

Remark 1.5.1. Let G be a compact group and π a multiple of an ir-
reducible UR δ with multiplicity m, 1 ≤ m ≤ ∞. Then, t corresponds to the
normalized character χδ(g)/ dim δ. The representation π has a trace-element if
and only if m ≥ dim δ, and it is cyclic if and only if m ≤ dim δ. The represen-
tation L̃π (∼= πf ) on Uφ = Hφ is equivalent to (dim δ)-multiple of δ acting on
the space of matrix elements of δ. Therefore, in this case, the transition from π
to L̃π is nothing but an adjustment of multiplicity (from m to dim δ), to have
a trace-element and at the same time to be cyclic.

Remark 1.5.2. The von Neumann algebra U = π(G)′′ with a faithful
trace t is a typical example of Hilbert algebras in [Dix1, I.5], when it is equipped
with the innner product 〈·, ·〉φ with φ = φt. However, in our discussions, the
detailed result in [Dix1, I.6.2] on traces of Hilbert algebras is not necessary.

1.6. Extremal positive definite class functions as characters
By the discussions until now, we see that the ∗-algebra F(G) plays a de-

cisive role. Therefore we apply the definition of quasi-equivalence in [Dix2,
V.5.3.2] for the ∗-algebra A = F(G).
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Definition 1.6.1. Let π1 and π2 be two URs of G. Put Ui = πi(G)′′ =
πi(A)′′ (i = 1, 2). Then, π1 and π2 are said to be quasi-equivalent if there exists
an isomorphism Φ (for the ∗-algebra structures) from U1 onto U2 such that
Φ(π1(a)) = π2(a) for a ∈ A = F(G), or equivalently Φ(π1(g)) = π2(g) for
g ∈ G.

With this notion of quasi-equivalence, we see easily from Theorem 1.5.4
the following.

Theorem 1.6.1. Let the assumptions and the notations be as in The-
orem 1.5.4. Then, the unitary representation L̃π of G is equivalent to πf , and
is quasi-equivalent to the original π. So π is quasi-equivalent to πf .

According to [Dix2, 5.3], we know that a UR quasi-equivalent to a fac-
tor representation is also factorial, and that a factor representation is quasi-
equivalent to a subrepresentation on any non-zero invariant closed subspace,
and so quasi-equivalent to a cyclic one. Our second main theorem in Section 1
is given as follows.

Theorem 1.6.2. For a Hausdorff topological group G, let URff(G) be
the set of all quasi-equivalence classes of continuous URs of G, factorial of
finite type. Then there exists a canonical bijection between URff(G) and E(G)
through (21) below.

Let π be a UR of G, factorial of finite type, and t the unique faithful finite
normal trace on U+ normalized as t(I) = 1, where U = π(G)′′. We put

f(g) = φ(π(g)) (g ∈ G),(21)

with φ = φt the linear extension of t to U. The quasi-equivalence calss [π] ∈
URff(G) of π corresponds bijectively to f ∈ E(G). In this connection, every
element f in E(G) is called a character of G of finite type. For an f ∈ E(G),
the Gelfand-Raikov representation πf is a standard representative of the quasi-
equivalent class in URff(G) having the character f , and πf has a trace-element
which is also a cyclic vector.

Note 1.6.1. In [Dix2, 17.3], the above canonical bijective correspon-
dence is asserted under the condition that G is locally compact and unimodular
(cf. also [Gode]).

2. Topologies on the spaces of continuous positive definite func-
tions P(G) and of such class functions K≤1(G), K1(G)

2.1. Weak topologies and compact uniform topology
In this section, we study topologies in P(G) ⊃ K(G) ⊃ K≤1(G) ⊃ K1(G),

several weak topologies and also compact uniform topology. Our final aim is
to establish Theorems 2.6.1 and 2.6.2.
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First take the weak topology σ(Cb(G),Mb(G)) and its restrictions onto
K(G) ⊂ P(G) ⊂ Cb(G). For µ ∈ Mb(G), put Dµ = {z ∈ C; |z| ≤ ‖µ‖}
and then put D =

∏
µ∈Mb(G)Dµ, which is compact with the product topology.

We can define a map Ψ : K≤1(G) → D as Ψ(f) = (µ(f))µ∈Mb(G), because
|µ(f)| ≤ f(e)‖µ‖ ≤ ‖µ‖. Through the map Ψ, the set K≤1(G) with the weak
topology is homeomorphically imbedded into the compact set D.

We ask if the image Ψ(K≤1(G)) is closed or equivalently if it is compact.
For a boundary point b = (b(µ)) of it, we see that the map µ → b(µ) is a

linear map on Mb(G), continuous in the norm, since |b(µ)| ≤ ‖µ‖. Furthermore
it is positive and invariant in the sense that b(µ∗∗µ) ≥ 0, b(µ1∗µ2) = b(µ2∗µ1),
if the convolution product here is well-defined. For µ = δg ∈ F(G), we get a
positive definite, invariant function g �→ b(δg) on G. The above question is
devided into two questions as follows:

(a) Is g �→ b(δg) continuous on G ?
(b) For µ ∈ Mb(G), is b(µ) given by an integral as b(µ) =

∫
G
b(δg) dµ(g) ?

We also introduce other weak topologies in certain restricted cases,
and compair them with the compact uniform topology in P(G) and K(G) ⊃
K≤1(G).

2.2. Case of locally compact groups and its generalization
From now on we restrict ourselves to the case of locally compact groups

G and also to the case of limit groups G = limn→∞Gn of countable LCG
inductive systems (Gn)n≥1. In these cases we introduce another weak topology
more suitable to the situation, and compair it later with the compact uniform
topology in the bounded subsets P≤M (G) and K≤M (G) defined by f(e) ≤M .

Let G be as above. Denote by C the family of all compact subsets of
G, and by BC the σ-ring of subsets of G generated by C. Note that every
B ∈ BC is covered by a σ-compact set. Let MC(G) be the set of all bounded
complex measures on (G,BC). When G is locally compact, its Haar measures
are regular measures defined on BC but not on the whole of B(G) when G is
not σ-compact (cf. Remark 2.2.2).

For a µ ∈ MC(G), there exists a (not necessarily unique) set A ∈ BC such
that µ(B \ A) = 0 for any B ∈ BC . In this case, we say that µ is supported
by A. For every ϕ ∈ Cb(G), its restriction on a measurable subset A ∈ BC
is BC-measurable on A. For a measure µ ∈ MC(G), take a measurable set
A ∈ BC supporting µ. Then the integral

∫
A
ϕ(g) dµ(g) is independent of the

choice of A, and is denoted simply by
∫
G
ϕ(g) dµ(g).

We have a natural pairing

MC(G) × Cb(G) � (µ, ϕ) �−→ µ(ϕ) = ϕ(µ) :=
∫
G

ϕ(g) dµ(g),

and so get a weak topology σ(Cb(G),MC(G)) which we restrict on P(G) and
K(G). Replacing Mb(G) by MC(G), we have similar assertions as Lemmas
1.1.1, 1.1.2, 1.1.3 in Section 1, and Lemma 2.2.1 below.

Lemma 2.2.1. Let G be locally compact. The space of measures on G
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corresponding to L1(G) is everywhere dense in MC(G) in the topology
σ(MC(G), Cb(G)).

Proof. Take an approximate identity given as follows. For a compact
neighbourhood V of e, let ψV (g) ≥ 0 be a continuous function with sup-
port contained in V such that

∫
V
ψV (g) dg = 1. Then ψV (g)dg converges in

σ(MC(G), Cb(G)) to the delta measure δe supported by {e}. For a fixed g0 ∈ G,
put L(g0)ψ(g) := ψ(g −1

0 g) (g ∈ G). Then the net {L(g0)ψV dg} converges to
δg0 . Hence the weak closure of L1(G) contains F(G).

On the other hand, we can prove as for Lemma 1.1.1 that F(G) is every-
where dense in MC(G).

According to the restriction of µ from Mb(G) to MC(G), we modify the
homeomorphic imbedding Ψ into D as follows. Put Ψ′ : K≤1(G) → D′ as

D′ =
∏

µ∈MC(G)

Dµ, Ψ′(f) = (µ(f))µ∈MC(G).

We take a boundary point b = (b(µ)) of Ψ′(K≤1(G)) in D′ similarly as for D
and Ψ.

Remark 2.2.1. Let M0
C(G) be the set of bounded complex measures

µ on (G,BC) such that µ is regular [Halm, Chapter X] in case G is locally
compact, and such that µ|Gn

is regular for any n in case G = limn→∞Gn.
If G is locally compact, it is known that the space of compactly-supported

continuous functions Cc(G) can separate two elements of M0
C(G) and so the

weak topology σ(M0
C(G), Cb(G)) is Hausdorff, and that the convolution product

in M0
C(G) can be naturally defined (cf. [Halm, §51, Theorem E]).
Consider the case of G = limn→∞Gn. Note that any compact subset

is contained in some Gn. Moreover any ϕn ∈ Cc(Gn) can be extended to a
ϕn+1 ∈ Cc(Gn+1) in such a way that ‖ϕn‖∞ = ‖ϕn+1‖∞, and accordingly
we get ϕ = limk→∞ ϕk ∈ Cb(G) extending ϕn. This means that Cb(G) can
separate two elements of M0

C(G).
For µ, ν ∈ M0

C(G), we can choose an A ∈ BC supporting both of µ and
ν which is a union of countable number of compact sets Ci, i ≥ 1. Then the
convolution µ ∗ ν, supported by AA = ∪i,j≥1CiCj , can be defined as follows:
Put Di = Ci \ ∪1≤k<iCk ⊂ Ci and for ϕ ∈ Cb(G)∫

G

ϕ(g) d(µ ∗ ν)(g) :=
∑
i,j≥1

∫∫
Di×Dj

ϕ(g′g) dµ(g′) dν(g).

Choose a Gm ⊃ Di, Dj , then the integral
∫∫
Di×Dj

can be considered on Gm ×
Gm because ϕ(g′g) is mesurable in (g′, g) ∈ Gm×Gm with respect to (µ|Gm

)×
(ν|Gm

), thanks to the regularity of µ|Gm
, ν|Gm

. Moreover this integral is equal
to the repeated integral

∫
Di

∫
Dj

.

Remark 2.2.2. In the case where G is not σ-compact, the whole space
G does not belong to BC , and a continuous function on G is not necessarily
BC-measurable.
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Let G be locally compact. A left invariant Haar measure dg on (G,BC)
is σ-finite if and only if G is σ-compact. When G is not σ-compact, to give
the dual space L1(G)∗ of L1(G), which contains Cb(G) naturally, we should
be careful. We call a function f BC-locally-measurable if f |B is measurable for
any B ∈ BC .

For 1 ≤ p < ∞, Lp(G) is defined as the space of functions such that
f is measurable (and so Sf := {g ∈ G; f(x) �= 0} ∈ BC), and ‖f‖p :=(∫

Sf
|f(g))|p dg

)1/p

< ∞. The space Lp(G) is its quotient space under the
equivalence relation ∼, where f1 ∼ f2 if f1 = f2 almost everywhere (a.e.).

For p = ∞, let L̃∞(G) be the space of all BC-locally-measurable functions
for which ‖f‖∞ := sup{ ‖f |B‖∞ ; B ∈ BC} < ∞, where ‖f |B‖∞ denotes the
L∞-norm of f |B on a set B. The equivalence relation needed here is f1 ≈ f2,
rougher than f1 ∼ f2 (i.e., f1 ∼ f2 implies f1 ≈ f2), given as follows. For
two BC-locally-measurable functions f1 and f2, if f1|B = f2|B (a.e.) for any
B ∈ BC , we say that f1 is equal to f2 BC-locally-almost-everywhere, and denote
this equivalence relation by f1 ≈ f2. The quotient space L̃∞(G)/≈ is denoted
by L̃∞(G), and it is naturally isomorphic to the dual space L1(G)∗.

In Dixmier’s book [Dix2, 17], the dual space L1(G)∗ of L1(G) is denoted
simply by L∞(G) eventhough G is not assumed to be σ-compact. Therefore
L∞(G) there is equal to L̃∞(G) above.

2.3. Problem in the case of a locally compact G
In this case, a kind of affirmative answers to the problems (a) and (b) were

obtained already in [GR] and is exposed in [Dix2] as follows.

Proposition 2.3.1 ([GR, Theorem 4], [Dix2, 13.4.5 (i)]). Let f ∈ L∞(G)
and put ω(ψ) =

∫
G
f(g)ψ(g)dg (ψ ∈ L1(G)) with a left-invariant Haar measure

dg, the continuous linear form defined by f . Then ω is positive if and only
if f coincides with a continuous positive definite function BC-locally-almost-
everywhere (cf. Remark 2.2.2).

Proposition 2.3.2 ([GR, Theorem 5], [Dix2, 13.5.2]). For a locally
compact group G, the weak topology σ(L∞(G), L1(G)) on the set P1(G) = {f ∈
P(G); f(e) = 1} coincides with the compact uniform topology.

However we consider here another weak topology σ(Cb(G),MC(G)) in
K≤1(G) stronger than σ(L∞(G), L1(G)). A boundary point b of Ψ′(K≤1(G)) ⊂
D′ gives a positive linear form on L1(G), continuous in the norm. Then, by
Proposition 2.3.1, the latter coincides with a linear form given by a continuous
positive definite function f b on G in such a way that b(µ) =

∫
G
f b(g)ψ(g)dg

for µ = ψ(g)dg with ψ ∈ L1(G). Actually f b is an element of K≤1(G).
In turn, f b gives a positive invariant linear form f̃ b : µ �→ f b(µ) :=∫

G
f b(g) dµ(g) on MC(G), which coincides with µ �→ b(µ) on L1(G)(↪→ MC(G)),

and is continuous in the weak topology σ(MC(G), Cb(G)). By Lemma 2.2.1 we
see that the linear form µ �→ b(µ) on L1(G) has a unique extension to a weakly
continuous one f̃ b on MC(G).
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We ask if the linear form µ �→ b(µ) coincides with f̃ b on the whole of
MC(G), and especially if there holds that f b(g) = b(δg) (g ∈ G).

2.4. Problem for G = limn→∞Gn of a countable LCG inductive sys-
tem

Let (Gn)n≥1 be a countable LCG inductive system and G = limn→∞Gn
its limit group equipped with the inductive limit topology τind. Here it is
assumed by definition that Gn’s are locally compact and each homomorphism
Gn → Gn+1 is homeomorphic into. Note that, by [TSH, Theorem 5.7], G has
sufficiently many continuous positive definite functions. Note further that the
space of measures MC(Gn) on Gn is canonically imbedded into MC(G).

Take a boundary element b of Ψ′(K≤1(G)) ⊂ D′. Then, discussing only
on Gn, we get for each n a continuous positive definite class function fn ∈
K≤1(Gn) such that b(µ) =

∫
Gn

fn(gn)ψn(gn)dgn for dµ(gn) = ψn(gn)dgn (ψn ∈
L1(Gn; dgn)), where dgn (gn ∈ Gn) denotes a left invariant Haar measure on
Gn.

We ask if the consistency condition fn+1|Gn
= fn holds for the system of

functions {fn(gn)}n≥1.

2.5. Topologies in P(G) and K(G) for a locally compact group G

Proposition 2.5.1. Let G be locally compact, and M > 0.
(i) On P≤M (G) := {f ∈ P(G); ‖f‖ = f(e) ≤ M}, the weak topology

σ(Cb(G),MC(G)) is weaker than or equivalent to the compact uniform
topology τcu.

(ii) On P≤M (G), the weak topology σ(Cb(G),Cδe+L1(G)) is stronger than
or equivalent to τcu.

Proof. (i) Take a neighbourhood of 0 in the topology σ(Cb(G),MC(G))
as

U((µi)1≤i≤N ; ε) = {f ∈ Cb(G); |µi(f)| < ε (1 ≤ i ≤ N)},
where µ1, µ2, . . . , µN ∈ MC(G) and ε > 0. Then, for any ε′ > 0, there exists
a compact set C such that |µi|(B \ C) < ε′ for any i and B ∈ BC , where
|µi| = |
(µi)| + |�(µi)|. Take a B ∈ BC which supports any of µi. Suppose
that maxg∈C |f(g)| < ε′, then

|µi(f)| ≤
∣∣∣∣
∫
B∩C

f(g) dµi(g)
∣∣∣∣ +M · |µi|(B \ C) ≤ ε′(|µi|(B) +M).

If ε′(|µi|(B) +M) < ε, then f belongs to the neighbourhood U((µi)1≤i≤N ; ε).
(ii) (After the proof of [Dix2, 13.5.2]) Let us prove that, for a fixed f0

∈ P≤M (G) and a compact set C ⊂ G, there exists a neighbourhood
U((µi)i=1,2; ε′) of 0 in σ(Cb(G),Cδe + L1(G)) with µ1 = δe and µ2 = ψ(g)dg
with a ψ ∈ L1(G), such that |f(g)−f0(g)| < ε (g ∈ C) if f−f0 ∈ U((µi)i=1,2; ε′).

First there exists a compact neighbourhood V of e ∈ G such that

|f0(e) − f0(g)| < ε′ (g ∈ V ).
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Let µ1 = δe and µ2 = a−1χV (g)dg, where χV is the characteristic function of
V and a =

∫
V
dg. Let U be a neighbourhood of f0 in σ(Cb(G),Cδe + L1(G))

defined by the following conditions on f ∈ P≤M (G):

|µ1(f − f0)| = |f(e) − f0(e)| < ε′,

|µ2(f − f0)| = a−1

∣∣∣∣
∫
V

(f(g) − f0(g)) dg
∣∣∣∣ < ε′.

Then, for f ∈ U , we have a−1
∣∣∫
V

(f(e) − f(g)) dg
∣∣ < 3ε′.

On the other hand, take an f ∈ U . Then, for any g ∈ G,

|(µ2 ∗ f)(g) − f(g)|
= a−1

∣∣∣∣
∫
V

(f(h−1g) − f(g)) dh
∣∣∣∣ ≤ a−1

∫
V

|f(h−1g) − f(g)| dh.

By Krĕın’s inequality, we have |f(h−1g)−f(g)|2 ≤ 2f(e){f(e)−
f(h)}, whence
the right hand side is majorized by

a−1
√

2M
∫
V

|f(e) −
f(h)|1/2 dh

≤ a−1
√

2M
(∫

V

|f(e) −
f(h)| dh
)1/2 (∫

V

dh

)1/2

≤ a−1
√

2M
√

3aε′
√
a =

√
6Mε′,

because 0 ≤ f(e)−
f(h) = 
(f(e)−f(h)). Hence, |(µ2∗f)(g)−f(g)| ≤ √
6Mε′.

Here we apply [Dix2, 13.5.1] which we quote below as Lemma 2.5.2 for
the convenience of the reader. Then, there exists a neighbourhood U ′ of f0
in P≤M (G) in the weak topology σ(L∞(G), L1(G)) such that f ∈ U ′ gives for
µ2 = a−1χV (g) dg,

|µ2 ∗ f(g) − µ2 ∗ f0(g)| ≤ ε′ (g ∈ C).

Thus we get for f ∈ U ∩ U ′,

|f(g) − f0(g)| ≤ ε′ + 2
√

6Mε′ (g ∈ C).

Lemma 2.5.2 (from [Dix2, 13.5.1]). Let B be a bounded subset of
L∞(G), and ψ ∈ L1(G). If f ∈ B converges to f0 ∈ B in the weak topol-
ogy σ(L∞(G), L1(G)), then ψ ∗ f converges to ψ ∗ f0 in the compact uniform
topology τcu.

It follows immediately from Proposition 2.5.1 the following variant of
Proposition 2.3.2.

Theorem 2.5.3. Let G be locally compact. On every bounded set of
P(G), the weak topology σ(Cb(G),MC(G)) is equivalent to the compact uniform
topology τcu.
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We slitely generalize the following result (Theorem 2.5.4) in [Dix2] and get
Theorem 2.5.5 below.

Theorem 2.5.4 ([Dix2, 17.3.5]). Let G be locally compact and unimod-
ular.

(i) The convex set K≤1(G) is compact in the weak topology σ(L∞(G),
L1(G)).

(ii) The extremal points of K≤1(G) are 0 and characters of finite type equal
to 1 at e.

(iii) K≤1(G) is the weakly closed convex hull of 0 and the set of characters
E(G) of finite type normalized as f(e) = 1.

Theorem 2.5.5. Let G be locally compact.
(i) The convex sets K≤1(G) and K1(G) are compact in the weak topology

σ(Cb(G),MC(G)).
(ii) The set of extremal points of K≤1(G) is {0} ∪E(G).
(iii) K≤1(G) (resp. K1(G)) is the closed convex hull of {0} ∪ E(G) (resp.

E(G)) in the weak topology σ(Cb(G),MC(G)).

Proof. (i) Imbed K≤1(G) homeomorphically into D′ by Ψ′ : f �→ (µ(f))
(µ ∈ MC(G)). We denote µ(f) also by f(µ). Take a boundary point b = (b(µ))
of Im(Ψ′) ⊂ D′. Then there exists a net fα ∈ K≤1(G) for which Ψ′(fα) =
(fα(µ)) converges to b, or equivalently, for any µ, limα fα(µ) = b(µ).

Since |b(µ)| ≤ ‖µ‖, the map L1(G) � ψ → F (ψ) := b(ψ(g)dg) gives an
invariant positive linear form on L1(G) such that |F (ψ)| ≤ ‖ψ‖. Then by
Proposition 2.3.1 it is given by an f b ∈ K≤1(G) as F (ψ) =

∫
G
f b(g)ψ(g)dg =

f b(µ) with µ = ψ(g)dg. InK≤1(G) ⊂ Cb(G), fα converges to f b in the topology
σ(Cb(G),MC(G)), and therefore fα converges to f b in K≤1(G) ⊂ P≤1(G) in
the topology σ(Cb(G),Cδe + L1(G)). Hence, by (ii) of Proposition 2.5.1, fα
converges to f b uniformly on every compact.

Take a µ ∈ MC(G). Then there exists an A ∈ BC such that |µ|(B \A) = 0
for any B ∈ BC . Moreover, for an ε > 0, there exists a compact set Cε such
that |µ|(A \ Cε) < ε. Since fα, f b ∈ K≤1(G), we have |fα(g)| ≤ fα(e) ≤ 1 and∣∣∣∣∣

∫
A\Cε

fα(g) dµ(g)

∣∣∣∣∣ ≤ |µ|(A \ Cε) < ε,

and similarly for f b. Hence |f b(µ) − fα(µ)| is majorized by

∣∣∣∣
∫
A∩Cε

(f b − fα)(g) dµ(g)
∣∣∣∣ +

∣∣∣∣∣
∫
A\Cε

fα(g) dµ(g)

∣∣∣∣∣ +

∣∣∣∣∣
∫
A\Cε

f b(g) dµ(g)

∣∣∣∣∣
≤ |µ|(A) × sup

g∈Cε

|f b(g) − fα(g)| + 2ε.

Therefore we see that limα fα(µ) = f b(µ), whence b(µ) = f b(µ). This means
that b = (b(µ)) = (f b(µ)) = Ψ′(f b) ∈ Ψ′(K≤1(G)), and so Ψ′(K≤1(G)) is
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compact in D′. This proves the compactness of K≤1(G) and so the assertion
(i).

We omit the proofs of the assertions (ii) and (iii).

2.6. The case of the limit of a countable LCG inductive system
Let G = limn→∞Gn be the limit group of a countable LCG inductive sys-

tem (Gn)n≥1. Then MC(Gn) ⊂ MC(Gn+1) ⊂ · · · ⊂ MC(G). Take a boundary
point b = (b(µ))µ∈MC(G) of Ψ′(K≤1(G)) in D′. Restricting the range of in-
dices µ of b(µ) from the whole MC(G) to the subspace MC(Gn), we get a point
bn = (b(µ))µ∈MC(Gn) of

∏
µ∈MC(Gn)Dµ. Working for Gn and bn as a case of

a locally compact group, we can apply Theorem 2.5.5 or its proof for (i), and
get a continuous positive definite class function fn ∈ K≤1(Gn) on Gn for which
bn = (fn(µ))µ∈MC(Gn) or

bn(µ) = b(µ) =
∫
Gn

fn(gn) dµ(gn) (∀µ ∈ MC(Gn)).

Comparing this expression for MC(Gn) and that for MC(Gn+1), we see from the
inclusion MC(Gn) ⊂ MC(Gn+1) that the consistency condition fn+1|Gn

= fn
holds, and we get a function f = limn→∞ fn on the whole G. With respect to
the inductive limit topology τind on G, f is continuous because fn = f |Gn

is
continuous on Gn for each n, and then f ∈ K≤1(G). Thus b = Ψ′(f). Hence
we have proved that Ψ′(K≤1(G)) is closed in D′ and consequently that K≤1(G)
is compact in the weak topology σ(Cb(G),MC(G)).

In this way we get one of our main results in this section as follows.

Theorem 2.6.1. Let G = limn→∞Gn be the inductive limit of a count-
able LCG inductive system (Gn)n≥1. Then the assertions (i), (ii) and (iii) of
Theorem 2.5.5 hold for G too.

Theorem 2.6.1 above answers affirmatively to the questions (a) and (b) in
2.1 in the case of the limit group G of a countable LCG inductive system.

Remark 2.6.1. The wreath product G = S∞(T ) of a compact group
T with the infinite symmetric group S∞ is considered as the limit of a count-
able LCG inductive system of compact groups Gn = Sn(T ) ∼= Tn � Sn, the
wreath product of T with the n-th symmetric group Sn. The topological group
(G, τind) is σ-compact but not locally compact except when T is finite.

By Theorem 2.6.1, there holds for the compact convex set K1(G) and the
set of its extremal points E(G) the integral expression theorem of Choquet-
Bishop-K. de Leeuw (Theorem 5.6 in [BL]), which will be applied in [HH2] suc-
ceeding [HH1].

For the topologies in the set of continuous positive definite functions P(G),
we have another main theorem, a similar result as Theorem 2.5.3.

Theorem 2.6.2. Let G be as in Theorem 2.6.1. On every bounded set of
P(G), the weak topology σ(Cb(G),MC(G)) is equivalent to the compact uniform
topology τcu.
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Proof. Let us consider topologies on a bounded set P≤M (G). First note
that any compact subset C of G = limn→∞Gn is contained in some Gn (cf. e.g.,
Proposition 6.5 in [HSTH]). Then we see from Theorem 2.5.3 applied to Gn
that the uniform convergence of a net fα to f on C comes from the convergence
of fα|Gn

to f |Gn
in the weak topology σ(Cb(Gn),MC(Gn)). Thus τcu is weaker

than or equivalent to σ(Cb(G),MC(G)).
Conversely fix a µ ∈ MC(G). Take an A ∈ BC supporting it. Then, for

any ε > 0, there exists a compact subset Cε such that |µ|(A \ Cε) < ε, and we
have

|µ(fα − f)| ≤ 2Mε+
∫
A∩Cε

|fα(g) − f(g)| d|µ|(g).

Hence, if |fα(g) − f(g)| ≤ ε′ on Cε, then |µ(fα − f)| ≤ 2Mε + |µ|(A)ε′. This
evaluation proves that τcu is stronger than or equivalent to σ(Cb(G),MC(G)).

Added in Proof. Very recently we found a counter example to Theorem
2.5.5. We thank Prof. J. Faraut for suggesting it to the first author. At the
present moment, we should withdraw Theorem 2.5.5 and 2.6.1 and accordingly
Theorem C in Introduction, and we hope that we can present correct versions
of them in near future.
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