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1. Introduction

In this paper, we consider a hyperbolic structure on a manifold to be a
Riemannian metric of constant sectional curvature −1 which is not necessarily
complete. A hyperbolic 3-manifold is an orientable 3-manifold with a hyperbolic
structure. It is well known that the complement of the figure-eight knot K
in the 3-dimensional sphere S3 admits a complete, finite volume hyperbolic
structure σ∞. By Mostow-Prasad rigidity, such a hyperbolic structure on S3 −
K is unique. Incomplete hyperbolic structures are also of interest. Indeed,
Thurston [8] analyzed the flexibility of hyperbolic structures on S3 − K by
allowing incomplete hyperbolic structures. In fact, he showed that there are
deformations of σ∞ on S3−K that are not complete hyperbolic structures. Such
deformations are holomorphically parametrized by points in an open subset U
of a complex affine plane curve C. The curve C and this subset U are given in
(1) and (2) below.

When the parameter of deformation becomes close to the boundary ∂U or
enters C−U , degeneration of hyperbolic structures on S3−K occurs. There are
cases in which such degeneration results in closed 3-manifolds obtained by Dehn
fillings of S3 −K with other types of geometric structure. In fact, twenty such
cases have been identified. In each case, this resultant closed 3-manifold is one
of the following types: a Sol-manifold, a P̃SL2(R)-manifold, a Haken manifold
which is decomposed into a P̃SL2(R)-manifold and a Euclidean manifold along
an embedded torus, or a Euclidean orbifold.

The genus of the curve C is one, because C is of degree four and has two
ordinary double points. In fact, we give an explicit form of a birational map
from C to a non-singular plane cubic curve in Weierstrass form E, which is
given in (4) below. The curve E is an example of what is called an ‘elliptic
curve defined over Q’. It is well known that any elliptic curve is an abelian
group under an addition law. In this paper, we see that there is a concrete
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correspondence between the closed 3-manifolds mentioned above (except the
P̃SL2(R)-manifolds) and some points of finite order on the elliptic curve E.
In particular, the Haken manifolds mentioned above correspond exactly to the
rational points of E, which form a cyclic group of order four.

2. Deformation of hyperbolic structures and hyperbolic Dehn fill-
ing

In this section, we briefly describe a concrete treatment of the deformation
of hyperbolic structures on 3-manifolds realized by deforming ideal tetrahe-
dra. We also review some well-known results concerning the hyperbolic Dehn
filling for the figure-eight knot complement (see Thurston [8], [9], [10], Cooper-
Hodgson-Kerckhoff [1] and Neumann-Zagier [7]).

An ideal tetrahedron S is an oriented 3-dimensional simplex in H3 ∪ ∂H3

whose vertices are located on ∂H3. An ideal tetrahedron is determined up to
an isometry by a single complex number as follows (see Fig. 1 and Ref. [10]).
Consider an oriented 3-dimensional simplex in H3 ∪ ∂H3 whose vertices are on
∂H3. Transform it by application of the unique orientation-preserving isometry
of H3 that sends the first three vertices of the simplex to the points 0, 1 and
∞ in the upper half-space model of H3. Its congruence class is determined by
the position of the last vertex, which is given by some point z ∈ C − {0, 1}.
Therefore, we write S = S(z). This complex number z is a parameter of
isometry classes of ideal tetrahedra. The Euclidean triangle cut out of any
vertex of S(z) by a horosphere section is similar to the triangle in C with
vertices 0, 1 and z. With each edge of S(z) is associated one of the three
numbers z, (z − 1)/z and 1/(1 − z). This number is called the modulus of the
edge. If z is on the real line, then the ideal tetrahedron S(z) is flattened and
contained within a 2-dimensional hyperbolic subspace of H3. If Im(z) > 0, the
map of the simplex preserves orientation. Therefore, an ideal tetrahedron S(z)
with Im(z) > 0 is said to be positive. If Im(z) < 0, the map of the simplex
reverses orientation, and therefore an ideal tetrahedron S(z) with Im(z) < 0 is
said to be negative. When we construct hyperbolic 3-manifolds by gluing the
faces of ideal tetrahedra, we usually use positive ones. Note that S(z), S((z −
1)/z), S(1/(1− z)), S(1/z), S(z/(z − 1)) and S(1− z) are transformed among
each other by orientation-preserving isometries. These orientation-preserving
isometries change the order of the vertices of the simplex. By contrast, an ideal
tetrahedra S(z) is transformed to S(z) by the orientation-reversing isometry
that is given by the composition of the inverse of the map of the simplex to
S(z) and the map of the simplex to S(z).

In this paper, we denote the figure-eight knot in the 3-dimensional sphere
S3 by K. It is well known that its complement, S3 − K, admits a complete,
finite volume hyperbolic structure σ∞. The hyperbolic 3-manifold (S3−K,σ∞)
is obtained by gluing the faces of two ideal tetrahedra S(z∞) and S(w∞) by
orientation-reversing isometries according to the diagram in Fig. 2 (see [8]),
where z∞ = w∞ = −ω2 and ω = e2πi/3. Thus, we write (S3 − K,σ∞) =
S(z∞) ∪ S(w∞). Because all the faces of any ideal tetrahedron are congruent,
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Figure 1.

a complex S(z) ∪ S(w) (≈ S3 −K) can be obtained by identifying their faces
using orientation-reversing isometries with the same gluing pattern as S(z∞)∪
S(w∞). The necessary condition that S(z)∪S(w) becomes a smooth hyperbolic
manifold is given by the algebraic equation z(z − 1)w(w − 1) = 1. We denote
by C the affine plane curve defined by this equation:

(1) C = {(z, w) ∈ C2 | z(z − 1)w(w − 1) = 1}.

The complete hyperbolic structure σ∞ corresponds to the point (z∞, w∞) on
the affine plane curve C. Next, we define the set U as

(2) U := {(z, w) ∈ C2 | z(z − 1)w(w − 1) = 1, Im(z) > 0, Im(w) > 0}.

Therefore, U is an open neighborhood of (z∞, w∞) in C that is biholomorphic
to the region

{z ∈ C | Im(z) > 0} −
{
z ∈ C

∣∣∣∣∣ z =
1
2

+ yi

(
y ≥

√
15
2

)}
.

If (z, w) ∈ U−{(z∞, w∞)}, then S(z)∪S(w) constitutes an incomplete, smooth
hyperbolic structure σ on S3 −K. We denote the hyperbolic 3-manifold (S3 −
K,σ) by (S3 −K)(z, w) and call it a deformation of (S3 −K,σ∞). The affine
plane curve C is called the ‘deformation curve’ of hyperbolic structures on the
figure-eight knot complement S3 −K.

Associated with each point (z, w) ∈ U is a representation ρ : π1(S3 −
K) → PSL2(C). The image of ρ is not necessarily a discrete subgroup of
PSL2(C). Let ρ∞ denote a representation that corresponds to (z∞, w∞). Then
the image ρ∞(π1(S3 −K)) is a torsion-free discrete subgroup of PSL2(C) and
H3/ρ∞(π1(S3 − K)) is identically the complete, finite volume hyperbolic 3-
manifold (S3 −K,σ∞).

Let T be a boundary torus of a sufficiently small tubular neighborhood
of K in S3 and m and l be the standard meridian and longitude of K on T ,
respectively. Then for each coprime pair of integers (p, q), one can obtain a
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Figure 2.

closed 3-manifold (S3 −K)(p,q) by carrying out the Dehn filling along K while
killing the homotopy class of the simple closed curve pm + ql. First, we give
the following remark.

• If (p, q) = (±1, 0), then (S3 −K)(p,q) admits a spherical structure. In
fact, both of (S3 −K)(±1,0) are homeomorphic to S3.

Let (z, w) be a point in U . Then, associated with a representation ρ :
π1(S3−K) → PSL2(C) corresponding to (z, w) is a representation µ : π1(T ) →
C∗. Note that there are two choices of µ according to the orientation of the axis
of ρ(m). Following Neumann-Zagier [7], we make a choice as µ(m) = (1 − z)w
and µ(l) = z2(1 − z)2. Then, if (z, w) �= (z∞, w∞), we define the generalized
Dehn filling coefficient (p, q) ∈ R2 by the equation

(3) p log {(1 − z)w} + q log {z2(1 − z)2} = 2πi,

where the log is taken such that −π < arg ≤ π. Note that if (z, w) ∈ U −
{(z∞, w∞)}, there is a unique solution (p, q) to this equation,
because log {(1 − z)w} is not a real multiple of log {z2(1 − z)2} if (z, w) ∈ U−
{(z∞, w∞)}. If (z, w) = (z∞, w∞), we stipulate that (p, q) = ∞. Now, define
the map

ψ : U → R2 ∪ {∞}
by

ψ((z, w)) = (p, q),

where (p, q) is taken as above.
The image of the map ψ includes every coprime pair of integers except

the following twenty: (±1, 0), (0,±1), (±1,±1), (±2,±1), (±3,±1), (±4,±1)
(see [8, Sections 4.6 and 4.7]). Thus, if (p, q) is a coprime pair of integers
and it is not one of these exceptions, then the closed 3-manifold (S3 −K)(p,q)

admits a hyperbolic structure σ. This hyperbolic structure σ on (S3 −K)(p,q)

is identically the completion of the hyperbolic structure σ of (S3 − K)(z, w),
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where (z, w) is an element of the inverse image of (p, q) under ψ. By contrast,
the twenty exceptions listed above do not induce hyperbolic structures. For
example, for (p, q) = (±1, 0), (S3 − K)(p,q) admits a spherical structure, as
described above. In each of the other eighteen exceptional cases, there is a
point (z0, w0) on ∂U that satisfies the equation (3) with the coprime pair of
integers in question. Therefore the hyperbolic structure becomes degenerate
when (z, w) tends to the point (z0, w0) and another type of geometric structure
appears on (S3 −K)(p,q) as follows (see [8, Section 4.9] and [1, Section 5.7]):

• If (p, q) = (0,±1), then (S3−K)(p,q) admits a Sol-structure. The image
of the corresponding representation ρ(p,q) : π1(S3 −K) → PSL2(C) is included
in PSL2(R).

• If (p, q) = (±1,±1), (±2,±1) or (±3,±1), then (S3 − K)(p,q) admits
a P̃SL2(R)-structure. The image of the corresponding representation ρ(p,q) :
π1(S3 −K) → PSL2(C) is included in PSL2(R).

• If (p, q) = (±4,±1), then (S3−K)(p,q) contains an incompressible torus
that splits (S3 −K)(p,q) into the union of the trefoil knot complement and the
non-trivial I-bundle over the Klein bottle, where I denotes the closed interval
[0, 1]. The trefoil knot complement has a P̃SL2(R)-structure, and the non-
trivial I-bundle over the Klein bottle has a Euclidian structure. The images of
the representations corresponding to them are included in PSL2(R) and SO(3),
respectively.

Thurston showed in his lecture notes [8, Section 4.11] that for each coprime pair
of integers (p, q), except for (±4,±1) and (0,±1), the 3-manifold (S3 −K)(p,q)

is not Haken.
Consider the case in which the generalized Dehn filling coefficient (p, q) ∈

R2 − {(0, 0)} satisfies the conditions that p is not 0 and q/p is rational. Then,
choose a coprime pair of integers (α, β) so that q/p = β/α. With these condi-
tions, in some cases a closed 3-manifold (S3 − K)(α,β) obtained by the Dehn
filling of type (α, β) along K has a hyperbolic 3-cone-structure of cone angle
2π|α/p| with a simple closed curve as its singular locus and in some cases it
does not.

Now, consider in particular the case that q = 0. In this case, (α, β) is
taken as (α, β) = (1, 0) if p is positive and (α, β) = (−1, 0) if p is negative.
Note that (S3 −K)(±1,0) are both homeomorphic to S3, and the singularities
of the cone-structures appear along K.

First, let us consider the case of positive p. Analyzing this case, Thurston
found that the image of ψ includes the open interval ( 2π

sin−1(
√

15/4)
,+∞) of

the p-axis. (Note that 2π/ sin−1(
√

15/4) ≈ 4.76679 . . . .) Therefore S3 admits
a hyperbolic 3-cone-structure of cone angle 2π/p for each p > 2π

sin−1(
√

15/4)

with singular locus K. Subsequent to Thurston’s work, Hilden, Lozano and
Montesinos-Amilibia [5] obtained a one-parameter family of 3-cone-manifolds
{(S3, τ (p))}p∈[3,+∞] whose sectional curvature increases monotonically from
−1 at p = +∞ to 0 at p = 3 and whose singular locus is the figure-eight
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knot K with cone angle 2π/p. The 3-cone-manifold (S3, τ (+∞)) coincides
with the hyperbolic 3-manifold (S3, σ∞). The 3-cone-manifold (S3, τ (3)) is a
Euclidean 3-orbifold with K the singular locus of cone angle 2π/3. For each
p ∈ (3,+∞), appropriately rescaling the Riemannian metric of (S3, τ (p)), we
obtain a hyperbolic 3-cone-manifold (S3, τ̂(p)) whose singular locus is K with
cone angle 2π/p. This cone-manifold collapses to a point as p ↘ 3. Thus,
it can be concluded that the hyperbolic 3-cone-manifold (S3, τ̂(p)) is rescaled
to converge to the Euclidean 3-orbifold (S3, τ (3)) as p → 3 (see also Cooper-
Hodgson-Kerckhoff [1, Section 5.7]).

Now, consider the case of negative p. In this case, p moves in the open in-
terval (−∞,− 2π

sin−1(
√

15/4)
), and the argument given above again holds. Denote

by (S3, τ (−3)) the Euclidean 3-orbifold that is obtained in this case. For each
p ∈ [−∞,−3]∪[3,+∞], there corresponds a representation ρbτ(p) : π1(S3−K) →
PSL2(C). With the Euclidean 3-orbifolds (S3, τ (±3)) are associated represen-
tations ρτ(±3) : π1(S3 −K) → SO(3). Applying the conjugation operation, it
is found that the representation ρbτ(p) converges to ρτ(±3) as p→ ±3.

3. A birational map from the deformation curve C to an elliptic
curve in Weierstrass form

Let V be the projective completion of the complex affine plane curve C.
Then V = {(x0 : x1 : x2) ∈ CP2 | x1(x1 − x0)x2(x2 − x0) = x4

0}. Next, denote
by A and B the points at infinity of C that correspond to the points (0 : 0 : 1)
and (0 : 1 : 0) on V , respectively. The points (0 : 0 : 1) and (0 : 1 : 0) are
ordinary double points. Thus the genus of C is one.

The curve C is transformed to a non-singular cubic curve in Weierstrass
form E under the following birational map:

(4)

C : z(z − 1)w(w − 1) = 1�	
z=u, w= 1
v

u2v + v2 − uv − u2 + u = 0�	
u=
X1
X0

, v=
X2
X0

X2
1X2 +X0X

2
2 −X0X1X2 −X0X

2
1 +X2

0X1 = 0�	
X0=−x0−x1, X1=x2, X2=−x1

−x0x
2
1 − x3

1 + x0x1x2 + x0x
2
2 + x2

0x2 = 0�	
x=
x1
x0

, y=
x2
x0

E : y2 + xy + y = x3 + x2

The curve E is the elliptic curve referred to as 15A8 in the table of Cremona
[2].

For any elliptic curve, we can define an addition law. Representing the
addition operation so defined by +, the points on such a curve form an abelian
group under +, with some point O as the identity element. The addition law
applying to the elliptic curve E : y2 +xy+y = x3 +x2 is stated explicitly in the
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appendix. We choose the point at infinity of E as the identity element. Using
the addition law on E, we consider the operation of addition applied to points
on C. Note that this addition law on C depends on the choice of the birational
transformations from C to E, and it is determined up to a translation on E.

Let E(Q) be the Mordell-Weil group over Q that is the subset consisting
of all rational points of E. E(Q) is a subgroup of the elliptic curve E, and on
E it is isomorphic to Z/4Z, the cyclic group of order 4 (see [2]). Under the
birational map given in (4), the singular point A (resp., B) of the deformation
curve C is transformed to two non-singular points A1 and A3 (resp., B2 and B4)
on E. The four points A1, B2, A3 and B4 on E form the Mordell-Weil group
E(Q). In fact, we have A1 = (0,−1), 2A1 = B2 = (−1, 0), 3A1 = A3 = (0, 0)
and 4A1 = B4 = O.

4. Points of finite order on the elliptic curve E and Dehn filling on
the figure-eight knot

4.1. Rational points on E and Haken manifolds
Culler and Shalen [3] investigated the character varieties of representations

of fundamental groups of hyperbolic 3-manifolds. One of the assertions that
they proved is that in a hyperbolic 3-manifold there corresponds an incom-
pressible surface to each ideal point of a complex affine algebraic curve in its
character variety. Subsequently, Yoshida [12] constructed an explicit realiza-
tion of the general theory formulated by Culler and Shalen for the special case
of hyperbolic one-cusp 3-manifolds that are decomposed into ideal tetrahedra.
Instead of the character varieties, he used deformation curves of hyperbolic
structures given by ideal tetrahedral decompositions. He also defined ideal
points of deformation curves and their slopes. Our complex affine plane curve
C is an example of such deformation curves. He showed that there are four
ideal points on our deformation curve C and explicitly constructed incompress-
ible surfaces whose boundary slopes are equal to those of the four ideal points.
These ideal points are located on the boundary of U and they correspond to
(p, q) = (±4,±1). In fact, when these incompressible surfaces are capped with
disks, they form the incompressible tori mentioned in Section 2.

Let a1, b2, a3 and b4 denote the ideal points of C corresponding to (4,−1),
(−4,−1), (4, 1) and (−4, 1), respectively. It can be shown that the four rational
points A1, B2, A3 and B4 on E correspond respectively to the four ideal points
a1, b2, a3 and b4 of C under the rational map given in (4). In fact, the points
A1, B2, A3 and B4 are ideal points in the sense of Culler and Shalen. There-
fore, on hyperbolic structures of the figure-eight knot complement S3 −K, the
rational points of its deformation curve correspond exactly to the closed Haken
3-manifolds (S3−K)(±4,±1) that contain incompressible surfaces resulting from
non-trivial splittings of π1(S3 −K).
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4.2. Points of finite order on E and Sol manifolds
Let us consider the point t1 := ( 1−√

5
2 , 1+

√
5

2 ) on C. This point is located on
the boundary ∂U of U . If (p, q) = (0, 1) and (z, w) = ( 1−√

5
2 , 1+

√
5

2 ) , then p, q, z
and w satisfy the equation (3). There are paths in U that individually connect
t1 and the original point (z∞, w∞) (= (−ω2,−ω2)). By appropriately choosing
one such path, we can observe the simultaneous degeneration of hyperbolic
structures on S3 − K and appearance of the Sol structure on (S3 − K)(0,1),
as discussed in Section 2 (see Refs. [1], [4] and [8] for details). The point t1
corresponds to the point T := ( 1+

√
5

2 , 1+
√

5
2 ) on E under the birational map

given in (4). Therefore the point T on the elliptic curve E can be considered as
corresponding to the 3-manifold (S3 −K)(0,1) with Sol structure that appears
through the degeneration of hyperbolic structures on S3 −K.

Using the formulas given in the appendix, we can see that 2T = A3, 3T =
( 1−√

5
2 ,−2+

√
5), 4T = B2, 5T = ( 1−√

5
2 , 1−√

5
2 ), 6T = A1, 7T = ( 1+

√
5

2 ,−2−√
5)

and 8T = O. The three points t3 := ( 1−√
5

2 , 1−√
5

2 ), t5 := ( 1+
√

5
2 , 1−√

5
2 ) and

t7 := ( 1+
√

5
2 , 1+

√
5

2 ) on C correspond respectively to the three points 3T , 5T and
7T on E under the birational map given in (4). It is also seen from the equation
(3) that t3, t5 and t7 correspond to the generalized Dehn filling coefficients
(0,−1), (0,−1) and (0, 1), respectively. Thus, as in the case of T , the point
5T can be regarded as corresponding to the Sol structure on (S3 − K)(0,−1).
However, the points t3 and t7 do not represent the limits of sequences of points
in U , because the two paths connecting the original point (z∞, w∞) to t3 and
to t7 must cross the region C − U . To this time, there has been no method
proposed to construct hyperbolic structures along a path connecting the points
(z∞, w∞) and t3 or t7. Therefore, at the present time, we cannot regard the
points 3T and 7T as corresponding to geometric 3-manifolds obtained by Dehn
filling of the hyperbolic 3-manifold (S3 −K,σ∞).

4.3. Points of finite order on E and Euclidean orbifolds
The original point (z∞, w∞) (= (−ω2,−ω2)) on the deformation curve

C corresponds to the point R := (ω2,−1) on E under the birational map
given in (4). Also, we can demonstrate that 2R = A1 and that the point
5R corresponds to (z∞, w∞)(= (−ω,−ω)) under the birational map given in
(4). Because Im(−ω) < 0, the ideal tetrahedron S(−ω) is negative and we
can regard S(−ω) ∪ S(−ω) as a hyperbolic 3-manifold that overlaps (S3 −
K,σ∞) = S(−ω2) ∪ S(−ω2) by the orientation-reversing isometry. To this
time, there has been no method proposed to construct a path consisting of
deformations of the hyperbolic structure σ∞ that connects (S3 −K)(z∞, w∞)
and (S3 −K)(z∞, w∞). Therefore, at the present time, we cannot assume that
the hyperbolic 3-manifold (S3 − K)(z∞, w∞) can be obtained by hyperbolic
Dehn filling of the original hyperbolic 3-manifold (S3 −K)(z∞, w∞).

The point on C corresponding to the point 7R = (ω2,−ω2) on E is
(−ω,−ω2). Note that because Im(−ω) < 0, the point (−ω,−ω2) is not con-
tained in U . However, by considering the equation (3) on the Riemann surface
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of C, we can choose a path connecting the two points (z∞, w∞) and (−ω, ω2)
along which the degeneration of hyperbolic structures on S3 −K occurs. On
the endpoint of this path, (−ω, ω2), the Euclidean 3-orbifold (S3, τ (3)) appears,
as described in Section 2. This leads us to believe that 7R corresponds to the
Euclidean 3-orbifold (S3, τ (3)) that results from the degeneration of the hyper-
bolic structures (see Refs. [1] and [4] for details). As in the case of 7R, we can
regard 3R = (ω,−ω) as corresponding to the Euclidean 3-orbifold (S3, τ (−3))
given in Section 2.

4.4. Theorem
Summerizing the results obtained above, we have the following theorem.

Theorem. Let K be the figure-eight knot in the 3-dimensional sphere
S3. Also, let

C : z(z − 1)w(w − 1) = 1

be the deformation curve of hyperbolic structures on the figure-eight knot com-
plement S3 − K. For each coprime pair of integers (p, q), let us denote by
(S3 −K)(p,q) a closed 3-manifold obtained from S3 −K by a Dehn filling along
K that kills the homotopy class of the simple closed curve pm + ql, where m
and l are the standard meridian and longitude of K in S3. Then, we have the
following:

(i) The deformation curve C is birationally equivalent to the elliptic curve

E : y2 + xy + y = x3 + x2.

The conductor of E is 15 and the Mordell-Weil group E(Q) is isomorphic to
Z/4Z, the cyclic group of order four.

(ii) The four points A1 := (0,−1), B2 := (−1, 0), A3 := (0, 0) and B4 := O
on E form the Mordell-Weil group E(Q), where O denotes the point at infinity
of E.

(iii) The two points R := (ω2,−1) and T := ( 1+
√

5
2 , 1+

√
5

2 ) on E are of order
eight and satify the relations 2R = 6T = A1, 4R = 4T = B2, 6R = 2T = A3

and 8R = 8T = B4 = O. Here, ω denotes the complex number e2πi/3.
(iv) There are the following correspondences among the points nR and nT

(n = 1, . . . , 8), excluding 5R, 3T and 7T , on the elliptic curve E and the 3-
manifolds (S3 −K)(p,q) ((p, q) = ∞, (±4,±1), (±1, 0), (0,±1)) with geometric
structures, where (S3 −K)∞ represents the unsurgered manifold S3 −K.
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R ⇐⇒ S3 −K, with a complete, finite volume
hyperbolic structure,

2R = 6T = A1 ⇐⇒ (S3 −K)(4,−1), which contains an incompressible
torus that gives rise to a splitting into a Euclidean
manifold and a P̃SL2(R)-manifold,

3R ⇐⇒ (S3 −K)(−1,0), with a Euclidean orbifold structure
of cone angle 2π/3 along the singular locus K,

4R = 4T = B2 ⇐⇒ (S3 −K)(−4,−1), which contains an incompressible
torus that gives rise to a splitting into a Euclidean
manifold and a P̃SL2(R)-manifold,

6R = 2T = A3 ⇐⇒ (S3 −K)(4,1), which contains an incompressible
torus that gives rise to a splitting into a Euclidean
manifold and a P̃SL2(R)-manifold,

7R ⇐⇒ (S3 −K)(1,0), with a Euclidean orbifold structure
of cone angle 2π/3 along the singular locus K,

8R = 8T = B4 = O⇐⇒ (S3 −K)(−4,1), which contains an incompressible
torus that gives rise to a splitting into a Euclidean
manifold and a P̃SL2(R)-manifold,

T ⇐⇒ (S3 −K)(0,1), with a Sol-structure,
5T ⇐⇒ (S3 −K)(0,−1), with a Sol-structure.

Figure 3.

Remark. The correspondence in (iv) is not canonical, because it de-
pends on the choice of the birationl maps from C to E. It is determined up to
a translation of E.

Appendix

In this appendix, we explicitly state the addition law on the elliptic curve
E : y2 + xy + y = x3 + x2 (see Knapp [6] or Ueno [11]). The elliptic curve E
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has a unique point at infinity. Denote this point by O. If we identify (x, y) ∈ E
with the point (1 : x : y) on the corresponding projective variety of E, then
O = (0 : 0 : 1). Let P = (x1, y1) and Q = (x2, y2) be points on E. The
following are formulas to compute P +Q:

• If x1 �= x2, then

(x1, y1) + (x2, y2) = (x3, y3),

where

x3 =
(
y2 − y1
x2 − x1

)2

+
(
y2 − y1
x2 − x1

)
− 1 − x1 − x2,

y3 = −
(
y2 − y1
x2 − x1

+ 1
)
x3 −

(
y1x2 − y2x1

x2 − x1

)
− 1.

• If x1 = x2 and y1 + y2 + x2 + 1 = 0, then

(x1, y1) + (x1, y2) = O.

• If x1 = x2, y1 = y2 and y1 + y2 + x2 + 1 = 0, then

2(x1, y1) = O.

• If x1 = x2, y1 = y2 and y1 + y2 + x2 + 1 �= 0, then

2(x1, y1) = (x3, y3),

where

x3 =
(

3x2
1 + 2x1 − y1

2y1 + x1 + 1

)2

+
(

3x2
1 + 2x1 − y1

2y1 + x1 + 1

)
− 1 − 2x1,

y3 = −
(

3x2
1 + 2x1 − y1

2y1 + x1 + 1
+ 1
)
x3 −

( −x3
1 − y1

2y1 + x1 + 1

)
− 1.

• −(x1, y1) = (x1,−x1 − y1 − 1).

The points on E form an abelian group under this addition law. The point O
is the identity element of the group.
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