On extensions of projective indecomposable modules

By
Masafumi Murai

Introduction

Let G be a finite group and p a prime. Let (K, R, k) be a p-modular system. We assume that K contains the $|G|$-th roots of unity and that k is algebraically closed. Suppose we are given a normal subgroup N of G such that G / N is a p-group and a G-invariant block b of N such that $N=Q C_{N}(Q)$ for a defect group Q of b. Then, as is well-known, b has (up to isomorphism) a unique projective indecomposable $R N$-module V. It seems natural to ask whether there exists an extension U to G of V such that a vertex of U intersects N trivially. Let B be a unique block of G covering b. In Section 3, we obtain two necessary conditions such a module U must satisfy. Let P be a vertex of U and W a P-source of U. Then
(1) $P Q$ is a defect group of B;
(2) W is an endo-permutation module, which is identified with a lift of a source of a unique simple $k G$-module in B.
(cf. Proposition 3.3, Corollary 3.17.)
In Section 4 we study the case where G / N is cyclic (and (1) holds for a p-subgroup P with $P \cap Q=1$) and show that any indecomposable $R G$-module in B with vertex P and a P-source W as in (2) is actually an extension of V.
(Although we have mentioned only $R G$-modules, we also obtain similar results for $k G$-modules.)

In Section 1 we define an action of the group of capped endo-permutation modules over p-groups P (Dade [1, 2]) on the set of indecomposable P-modules. In Section 2 we determine vertices and sources of certain indecomposable modules.

Notation and convention

Let o denote R or k. For $o G$-modules $V_{i}(i=1,2), V_{1} \otimes V_{2}$ stands for $V_{1} \otimes_{o} V_{2}$. Also for a direct product $G=G_{1} \times G_{2}$ and $o G_{i}$-modules $V_{i}(i=1,2)$, $V_{1} \times V_{2}$ stands for the external tensor product $V_{1} \otimes_{o} V_{2}$. We denote by 1_{G} the trivial $o G$-module of rank one. For an $R G$-module U, let $U^{*}=U / \pi U$, where πR is the maximal ideal of R. For a $k G$-module X, an $R G$-module L such that

[^0]$L^{*} \cong X$ is said to be a lift of X. For an $o G$-module U, let U^{\wedge} be the dual module of U. For a subgroup $Q(\neq 1)$ of G, let $\mathcal{H}(Q)$ be the set of all proper subgroups of Q. Let $I(o G)$ be the augmentation ideal of $o G$. Throughout this paper all $o G$-modules are assumed to be o-free of finite rank. Since we often use such expressions as "a unique module (up to isomorphism)" we suppress for brevity the words "(up to isomorphism)" in most cases.

1. Groups of capped endo-permutation modules

Let $P(\neq 1)$ be a p-group. For a set \mathcal{X} of subgroups of P and $o P$-modules U, V, we write $U \equiv V \oplus O(\mathcal{X})$, if there exists an \mathcal{X}-projective oP-module W (or 0) such that $U \cong V \oplus W$. (In particular, $U \equiv O(\mathcal{X})$ means that U is \mathcal{X} projective.) An $o P$-module V is called (Dade [1]) an endo-permutation module if $V \otimes V^{\wedge}$ is a permutation module, where V^{\wedge} is the dual module of V. An endopermutation $o P$-module V is said to be capped, if V has an indecomposable summand with vertex P. In that case, such a summand is determined up to isomorphism and is denoted by $\operatorname{cap}(V)([1$, p. 470]). Let $\operatorname{Ep}(o P)$ be the set of (isomorhism classes of) indecomposable endo-permutation $o P$-modules with vertex P. (In [1], $\operatorname{Ep}(o P)$ is denoted by $\operatorname{Ind}_{P}(o P)$.) As in [1, Corollary 3.13 and Proposition 6.5], $\mathrm{Ep}(o P)$ forms an abelian group:

For $U, V \in \operatorname{Ep}(o P)$, the product $U \cdot V$ is a unique indecomposable summand with vertex P of $U \otimes V$. So $U \otimes V \equiv U \cdot V \oplus O(\mathcal{H}(P))$. (In Dade's notation [1], $U \cdot V \cong \operatorname{cap}(U \otimes V)$.) In $\operatorname{Ep}(o P)$ the identity is 1_{P} (the trivial oP-module of rank one) and the inverse of V is V^{\wedge}. So $V \otimes V^{\wedge} \equiv 1_{P} \oplus O(\mathcal{H}(P))$.

Let $\operatorname{Ind}(o P)$ be the set of (isomorhism classes of) non-projective indecomposable $o P$-modules. In this section we define a vertex-preserving action of the group $\operatorname{Ep}(o P)$ on the set $\operatorname{Ind}(o P)$. Let \mathcal{Q} be a set of representatives of P-conjugacy classes of all subgroups $(\neq 1)$ of P. For any $Q \in \mathcal{Q}$, let $\operatorname{Ind}(o P \mid Q)$ be the set of (isomorphism classes of) indecomposable o $o P$-modules with vertex Q. Then we have

$$
\operatorname{Ind}(o P)=\bigcup_{Q \in \mathcal{Q}} \operatorname{Ind}(o P \mid Q) \quad \text { (disjoint) }
$$

Thus it suffices to define an action of $\operatorname{Ep}(o P)$ on $\operatorname{Ind}(o P \mid Q)$ for each $Q \in \mathcal{Q}$. We begin with the case where $Q=P$.

Lemma 1.1. For $W \in \operatorname{Ep}(o P)$ and $V \in \operatorname{Ind}(o P \mid P)$, let $W \otimes V \cong \bigoplus_{i} X_{i}$ be a decomposition of $W \otimes V$ into indecomposable summands X_{i}. Then there is a unique X_{i} with vertex P.

Proof. Tensoring with W^{\wedge}, we get $\bigoplus_{i} W^{\wedge} \otimes X_{i} \equiv V \oplus O(\mathcal{H}(P))$, since $W^{\wedge} \otimes W \equiv 1_{P} \oplus O(\mathcal{H}(P))$. Thus, for some $i, W^{\wedge} \otimes X_{i} \equiv V \oplus O(\mathcal{H}(P))$ and then P is a vertex of X_{i}. On the other hand, if $j \neq i, W^{\wedge} \otimes X_{j} \equiv O(\mathcal{H}(P))$. Tensoring with W, we get that $X_{j} \equiv O(\mathcal{H}(P))$, as required.

Let us denote the summand X_{i} in the above lemma by $W \cdot V$. (If $V \in$ $\operatorname{Ep}(o P)(\subseteq \operatorname{Ind}(o P \mid P))$, two definitions of $W \cdot V$ are at hand, but they coincide
with each other, of course.) So we have $W \otimes V \equiv W \cdot V \oplus O(\mathcal{H}(P))$ with $W \cdot V \in \operatorname{Ind}(o P \mid P)$. This defines an action of $\operatorname{Ep}(o P)$ on $\operatorname{Ind}(o P \mid P)$. Namely we have:

Proposition 1.2. Let $W, W^{\prime} \in \operatorname{Ep}(o P)$ and $V \in \operatorname{Ind}(o P \mid P)$. Then
(i) $W \cdot\left(W^{\prime} \cdot V\right) \cong\left(W \cdot W^{\prime}\right) \cdot V$, and
(ii) $1_{P} \cdot V \cong V$.

Proof. (i) Since $W \otimes\left(W^{\prime} \otimes V\right) \cong\left(W \otimes W^{\prime}\right) \otimes V$, the result follows.
(ii) This is obvious.

To define an action of $\operatorname{Ep}(o P)$ on $\operatorname{Ind}(o P \mid Q), Q \in \mathcal{Q}$, we need the following proposition. We note that for any $W \in \operatorname{Ep}(o P), W_{Q}$ is capped and $\operatorname{cap}\left(W_{Q}\right)$ is well-defined ([1, Proposition 3.10]).

Proposition 1.3. Let $Q \in \mathcal{Q}$. For $W \in \operatorname{Ep}(o P)$ and $V \in \operatorname{Ind}(o P \mid Q)$, let $W \otimes V \cong \bigoplus_{i} X_{i}$ be a decomposition of $W \otimes V$ into indecomposable summands X_{i}. Then there is an X_{i} with vertex Q and the isomorphism class of such X_{i} is uniquely determined. In fact, X_{i} is then isomorphic to $\left(\operatorname{cap}\left(W_{Q}\right) \cdot X\right)^{P}$ for a Q-source X of V.

Proof. Let X be a Q-source of V. Since $V \cong X^{P}$ by Green's theorem, we get $W \otimes V \cong\left(W_{Q} \otimes X\right)^{P}$. Since

$$
W_{Q} \equiv m \times \operatorname{cap}\left(W_{Q}\right) \oplus O(\mathcal{H}(Q))
$$

for a positive integer m, we have

$$
W \otimes V \equiv m \times\left(\operatorname{cap}\left(W_{Q}\right) \cdot X\right)^{P} \oplus O(\mathcal{H}(Q))
$$

where $\operatorname{cap}\left(W_{Q}\right) \cdot X$ is defined by the action of $\operatorname{Ep}(o Q)$ on $\operatorname{Ind}(o Q \mid Q)$. Since $\left(\operatorname{cap}\left(W_{Q}\right) \cdot X\right)^{P}$ is indecomposable with vertex Q by Green's theorem, the result follows.

Definition 1.4. Let $Q \in \mathcal{Q}$. For $W \in \operatorname{Ep}(o P)$ and $V \in \operatorname{Ind}(o P \mid Q)$, put

$$
W \cdot V=\left(\operatorname{cap}\left(W_{Q}\right) \cdot X\right)^{P},
$$

where X is a Q-source of V.
This defines an action of $\operatorname{Ep}(o P)$ on $\operatorname{Ind}(o P \mid Q)$. Namely we have:
Theorem 1.5. Let $W, W^{\prime} \in \operatorname{Ep}(o P)$ and $V \in \operatorname{Ind}(o P \mid Q)$, where $Q \in \mathcal{Q}$. Then
(i) $W \cdot\left(W^{\prime} \cdot V\right) \cong\left(W \cdot W^{\prime}\right) \cdot V$, and
(ii) $1_{P} \cdot V \cong V$.

Proof. (i) Let X be a Q-source of V. We have

$$
\begin{aligned}
W \cdot\left(W^{\prime} \cdot V\right) & \cong W \cdot\left(\operatorname{cap}\left(W_{Q}^{\prime}\right) \cdot X\right)^{P} \\
& \cong\left\{\operatorname{cap}\left(W_{Q}\right) \cdot\left(\operatorname{cap}\left(W_{Q}^{\prime}\right) \cdot X\right)\right\}^{P} \\
& \cong\left\{\left(\operatorname{cap}\left(W_{Q}\right) \cdot \operatorname{cap}\left(W_{Q}^{\prime}\right)\right) \cdot X\right\}^{P} \\
& \cong\left\{\operatorname{cap}\left(\left(W \cdot W^{\prime}\right)_{Q}\right) \cdot X\right\}^{P},
\end{aligned}
$$

since the map sending W to $\operatorname{cap}\left(W_{Q}\right)$ is a group homomorphism from $\operatorname{Ep}(o P)$ to $\operatorname{Ep}(o Q)\left(\left[1\right.\right.$, Proposition 3.15]). Hence $W \cdot\left(W^{\prime} \cdot V\right) \cong\left(W \cdot W^{\prime}\right) \cdot V$.
(ii) This is obvious.

2. Extensions of indecomposable modules and the Green correspondence

In this section, G is a group and N is a normal subgroup of G such that G / N is a p-group. Suppose we are given an indecomposable $o G$-module U such that U_{N} is indecomposable. Let $\operatorname{Ind}(o[G / N], U)$ be the set of (isomorphism classes of) all indecomposable $o[G / N]$-modules W such that $\operatorname{Inf}(W) \otimes U$ is indecomposable, where Inf denotes the inflation via the natural homomorphism $G \rightarrow G / N$. We have:

Lemma 2.1. Every indecomposable $k[G / N]$-module belongs to $\operatorname{Ind}(k[G / N], U)$ and every indecomposable endo-permutation $R[G / N]$-module belongs to $\operatorname{Ind}(R[G / N], U)$.

Proof. The first assertion is proved in [5, Theorem VII 9.12]. If W is an indecomposable endo-permutation $R[G / N]$-module, then W^{*} is indecomposable ([1, Corollary 6.3]). So the second follows from [8, Lemma 1.1(i)].

In the following we assume that our U satisfies:
For a vertex P of U, it holds that $G=P N, P \cap N=1$ and a P-source of U is an endo-permutation $o P$-module.

In this situation we shall determine the vertices and sources of $\operatorname{Inf}(W) \otimes U$ for $W \in \operatorname{Ind}(o P, U)$. (Here P is naturally identified with G / N.) Let W_{0} be a P-source of U. Since $N_{G}(P)=P \times C_{N}(P)$, the Green correspondent of U with respect to $\left(G, N_{G}(P), P\right)$ is of the form $W_{0} \times Y$ for a projective indecomposable $o C_{N}(P)$-module Y. We begin with a special case.

Lemma 2.2. For every $W \in \operatorname{Ind}(o P, U)$ with vertex $P, \operatorname{Inf}(W) \otimes U$ is the Green correspondent of $\left(W_{0} \cdot W\right) \times Y$ with respect to $\left(G, N_{G}(P), P\right)$. Here $W_{0} \cdot W$ is defined as in Section 1.

Proof. Clearly $\left(W_{0} \cdot W\right) \times Y \mid\left(W \otimes W_{0}\right) \times Y$ and $\left(W \otimes W_{0}\right) \times Y \mid(\operatorname{Inf}(W) \otimes$ $U)_{N_{G}(P)}$. Here $\operatorname{Inf}(W) \otimes U$ is P-projective and $\left(W_{0} \cdot W\right) \times Y$ has vertex P, so P is a vertex of $\operatorname{Inf}(W) \otimes U$ and the result follows.

Theorem 2.3. For every $W \in \operatorname{Ind}(o P, U), \operatorname{Inf}(W) \otimes U$ has a vertex and a source in common with $W_{0} \cdot W$.

Proof. We claim that for any subgroup Q of $P, U_{Q N}$ has vertex Q and source $\operatorname{cap}\left(\left(W_{0}\right)_{Q}\right)$. Indeed, we have that $\operatorname{cap}\left(\left(W_{0}\right)_{Q}\right) \mid\left(U_{Q N}\right)_{Q}=U_{Q}$ and that $U_{Q N} \mid\left(\left(W_{0}\right)^{G}\right)_{Q N} \cong\left(\left(W_{0}\right)_{Q}\right)^{Q N}$. So the claim follows.

Now let $W \in \operatorname{Ind}(o P, U)$. Let Q be a vertex of W and let X be a Q-source of W. By the above, the Green correspondent of $U_{Q N}$ with respect to ($Q N, Q \times$ $\left.C_{N}(Q), Q\right)$ is of the form $\operatorname{cap}\left(\left(W_{0}\right)_{Q}\right) \times Y^{\prime}$ for a projective indecomposable $o C_{N}(Q)$-module Y^{\prime}. Now $\left(\operatorname{Inf}(X) \otimes U_{Q N}\right)^{G} \cong \operatorname{Inf}\left(X^{P}\right) \otimes U \cong \operatorname{Inf}(W) \otimes$ U. Hence $\operatorname{Inf}(X) \otimes U_{Q N}$ is indecomposable and has a vertex and a source in common with $\operatorname{Inf}(W) \otimes U$. By Lemma $2.2, \operatorname{Inf}(X) \otimes U_{Q N}$ has vertex Q and the Green correspondent of it with respect to $\left(Q N, Q \times C_{N}(Q), Q\right)$ is $\left(\operatorname{cap}\left(\left(W_{0}\right)_{Q}\right) \cdot X\right) \times Y^{\prime} \cong\left(W_{0} \cdot W\right) \times Y^{\prime}$. Thus the result follows.

3. Sources of extensions of projective indecomposable modules

In this section, by (G, N, b), we mean the following data:
(\#) G is a group, N is a normal subgroup of G, b is a G-invariant block of N such that $N=Q C_{N}(Q)$ for a defect group Q of b.

Given such data, clearly Q is normal in G. Let V be the unique projective indecomposable $o N$-module in b. (In an earlier version of the present paper, the author treated the case when Q was central in N. The possibility of relaxing this condition to the one as above was pointed out by the referee.)

The following extends slightly a result of Dade, cf. [2, Theorem 13.13].
Theorem 3.1. With the notation above, suppose that there is an extension U to G of V. Let P be a vertex of U and W a P-source of U. Then the following conditions are equivalent.
(i) $P \cap N=1$.
(ii) $P \cap Q=1$.
(iii) $U^{\wedge} \otimes U$ is a trivial source o G-module.
(iv) U_{P} is an endo-permutation oP-module.
(v) W is an (indecomposable) endo-permutation oP-module (with vertex $P)$.
(vi) $\operatorname{rank}_{o} W$ is prime to p.

Proof. (i) \Leftrightarrow (ii): Let B be the block of G to which U belongs. Let D be a defect group of B with $P \leqq D$. Since b is a G-invariant block covered by B, we have $Q=D \cap N$. So $P \cap Q=P \cap D \cap N=P \cap N$. Thus the result follows.
(i) \Rightarrow (v): Clearly $U_{P N}$ has vertex P and P-source W, so we may assume $G=P N$. We show that we may assume Q is central in N. We first note that $C_{N}(Q)$ is a normal subgroup of G with $\left|G / C_{N}(Q)\right|$ a power of p. Let b_{0} be the unique block of $C_{N}(Q)$ covered by b. Then b_{0} is G-invariant. Clearly b_{0} has defect group $Z(Q)$, which is central in $C_{N}(Q)$. Let L be an indecomposable $o\left[P C_{N}(Q)\right]$-module such that $L \mid W^{P C_{N}(Q)}$ and that $U \mid L^{G}$. Then, by Green's
theorem, $U \cong L^{G}$, since $P C_{N}(Q)$ is a subnormal subgroup of G with $\mid G$: $P C_{N}(Q) \mid$ a power of p. So L has vertex P and W is a P-source of L. By Mackey decomposition, $V \cong U_{N} \cong\left(L^{G}\right)_{N} \cong\left(L_{C_{N}(Q)}\right)^{N}$, since $P C_{N}(Q) \cap N=$ $(P \cap N) C_{N}(Q)=C_{N}(Q)$. This yields that $L_{C_{N}(Q)}$ is the unique projective indecomposable $o C_{N}(Q)$-module in b_{0}. Thus we may assume $G=P C_{N}(Q)$ and Q is central in N.

Consider the block ideal b as an $o G$-module via the conjugation action. We claim $\operatorname{Inv}_{Q}\left(U^{\wedge} \otimes U\right) \cong b$ as $o G$-modules. Indeed, let $\rho: b \rightarrow \operatorname{End}_{o}(U) \cong U^{\wedge} \otimes U$ be the representation of b on U. Clearly ρ induces an $o G$-homomorphism, say ρ^{\prime}, from b to $\operatorname{Inv}_{Q}\left(\operatorname{End}_{o}(U)\right)=\operatorname{End}_{o Q}(U)$. It suffices to show that ρ^{\prime} is an isomorphism. Clearly ρ^{\prime} is injective, since U_{N} is a unique projective indecomposable module in b. To prove that ρ^{\prime} is surjective we first consider the case when $o=k$. Put $U_{Q} \cong n(k Q)$ for an integer n. Then $\operatorname{dim}_{k} \operatorname{End}_{k Q}(U)=$ $n^{2}|Q|$. On the other hand, $\operatorname{dim}_{k} b=\left(\operatorname{dim}_{k} U\right)^{2} /|Q|$. So $\operatorname{dim}_{k} \operatorname{End}_{k Q}(U)=$ $\operatorname{dim}_{k} b$. Hence ρ^{\prime} is surjective. This shows that when $o=R, \operatorname{End}_{R Q}(U)=$ $\operatorname{Im} \rho^{\prime}+\pi \operatorname{End}_{R Q}(U)$, so $\operatorname{End}_{R Q}(U)=\operatorname{Im} \rho^{\prime}$ by Nakayama's lemma. Thus the claim is proved.

Put $D=P Q$. For the P-source W of U, we claim $W^{D} \mid U_{D}$. Indeed, since $W \mid U_{P}$, there is an indecomposable summand X of U_{D} such that $W \mid X_{P}$. Then P is a vertex of X and W is a P-source of X. Hence $X \cong W^{D}$ by Green's theorem. So the claim follows. We also have $W^{D} \cong \operatorname{Inf}(W) \otimes\left(1_{P}\right)^{D}$, where $\operatorname{Inf}(W)$ is defined through the natural isomorphism $D / Q \cong P$. Hence

$$
\operatorname{Inf}(W)^{\wedge} \otimes\left(1_{P}\right)^{D} \otimes \operatorname{Inf}(W) \otimes\left(1_{P}\right)^{D} \mid\left(U^{\wedge} \otimes U\right)_{D}
$$

By Mackey decomposition, $\left(1_{P}\right)^{D} \mid\left(1_{P}\right)^{D} \otimes\left(1_{P}\right)^{D}$, so

$$
\operatorname{Inf}(W)^{\wedge} \otimes \operatorname{Inf}(W) \otimes\left(1_{P}\right)^{D} \mid\left(U^{\wedge} \otimes U\right)_{D}
$$

Since $\operatorname{Inf}(W)^{\wedge} \otimes \operatorname{Inf}(W)$ is trivial on Q,

$$
\begin{aligned}
\operatorname{Inv}_{Q}\left(\operatorname{Inf}(W)^{\wedge} \otimes \operatorname{Inf}(W) \otimes\left(1_{P}\right)^{D}\right) & =\operatorname{Inf}(W)^{\wedge} \otimes \operatorname{Inf}(W) \otimes \operatorname{Inv}_{Q}\left(\left(1_{P}\right)^{D}\right) \\
& \cong \operatorname{Inf}(W)^{\wedge} \otimes \operatorname{Inf}(W) \otimes 1_{D} \\
& \cong \operatorname{Inf}(W)^{\wedge} \otimes \operatorname{Inf}(W),
\end{aligned}
$$

as $o D$-modules. So, by the above,

$$
\operatorname{Inf}(W)^{\wedge} \otimes \operatorname{Inf}(W) \mid \operatorname{Inv}_{Q}\left(\left(U^{\wedge} \otimes U\right)_{D}\right) \cong b_{D}
$$

as $o D$-modules. Since b is a direct summand of $o N$, we get that $\operatorname{Inf}(W)^{\wedge} \otimes$ $\operatorname{Inf}(W)$ is a permutation $o D$-module by Green's theorem. Restriction to P shows that $W^{\wedge} \otimes W$ is a permutation $o P$-module, as required.
(i) and $(\mathrm{v}) \Rightarrow$ (iii): Put $H=P N$. It suffices to show $U_{H} \otimes U_{H}$ is a trivial source module. We have $U_{H} \mid W^{H} \cong \operatorname{Inf}(W) \otimes\left(1_{P}\right)^{H}$, where $\operatorname{Inf}(W)$ is defined through the natural isomorphism $H / N \cong P$. Thus

$$
U_{H}^{\wedge} \otimes U_{H} \mid \operatorname{Inf}(W)^{\wedge} \otimes\left(1_{P}\right)^{H} \otimes \operatorname{Inf}(W) \otimes\left(1_{P}\right)^{H},
$$

which is a permutation module. So (iii) follows.
(iii) \Rightarrow (iv): Since $\left(U^{\wedge} \otimes U\right)_{P}$ must be a permutation module by Green's theorem, the result follows.
(iv) $\Rightarrow(\mathrm{v})$: This is clear.
$(\mathrm{v}) \Rightarrow(\mathrm{vi})$: This follows from [1, Lemma 6.4].
(vi) $\Rightarrow(\mathrm{i})$: As a direct summand of $U_{P \cap N}, W_{P \cap N}$ is projective, so $P \cap N=$ 1.

The following follows from Green's theorem ([9, Problem 6(iii) on p.302]).
Lemma 3.2. Let M be a normal subgroup of a group H. Let X be an $o H$-module such that X_{M} is indecomposable. Then $\operatorname{vx}(X) M$ contains a p-Sylow subgroup of H.

Proposition 3.3. Let U, P be as in Theorem 3.1. Let B be the block of G to which U belongs. Then $P Q$ is a defect group of B.

Proof. Let D be a defect group of B such that $D \geqq P$. By Lemma 3.2, $|G: P N|$ is prime to p, so $D N=P N$. Hence $D=P(D \cap N)=P Q$, since $D \cap N=Q$. Thus $P Q$ is a defect group of B.

Hereafter we consider exclusively (G, N, b) satisfying (\sharp) for which G / N is a p-group. We are interested in the existence of extensions to G of the unique projective indecomposable $o \mathrm{~N}$-module in b which satisfy the condition (i) of Theorem 3.1. So in view of Proposition 3.3, we add an assumption on defect groups of the unique block of G covering b, and consider (G, N, B, b, P) such that:
($\sharp \sharp)(G, N, b)$ satisfies the condition (\sharp) above, B is a unique block of G covering b, P is a p-subgroup $(\neq 1)$ of G with $G=P N$ and $P \cap N=1$, and $P Q$ is a defect group of B.

Given such data, we let $D=P Q$. Let V be the unique projective indecomposable $R N$-module in b as before.

We begin by determining all indecomposable $o G$-modules with vertex P in B and similar modules in a (unique) block of G / Q dominated by B. First we prepare some group-theoretical facts.

Lemma 3.4. With the notation above, we have

$$
O^{p}\left(N_{G}(D)\right) \leqq C_{N}(D) \leqq C_{N}(P) \leqq N_{G}(P) \leqq N_{G}(D)
$$

Proof. It suffices to show $O^{p}\left(N_{G}(D)\right) \leqq C_{N}(D)$, the rest being obvious. Let x be a p^{\prime}-element of $N_{G}(D)$. Then $[D, x] \leqq D \cap N=Q$ and $[Q, x]=1$, since $x \in C_{N}(Q)$. As is well-known, this implies $[D, x]=1$. So $x \in C_{N}(D)$, as required.

Let \widetilde{B} be the Brauer correspondent of B in $N_{G}(D)$. Let $\left\{b_{i} ; 1 \leqq i \leqq t\right\}$ be the set of blocks of $N_{G}(P)$ such that $b_{i}{ }^{G}=B$. Since $N_{G}(P)=P \times C_{N}(P)$,
each b_{i} covers a unique block b_{i}^{\prime} of $C_{N}(P)$. Let $\left\{\beta_{m}\right\}$ be the set of blocks of $C_{N}(D)$ covered by \widetilde{B} (note that $C_{N}(D) \triangleleft N_{G}(D)$). For a block β, let $\mathrm{l}(\beta)$ be the number of irreducible Brauer characters in β. We have the following.

Lemma 3.5. (i) Each $b_{i}^{\prime}, 1 \leqq i \leqq t$, covers some β_{m}.
(ii) $l(\widetilde{B})=1$ and $\mathrm{l}\left(b_{i}^{\prime}\right)=1$ for all $i, 1 \leqq i \leqq t$.

Proof. (i) By the First Main Theorem $b_{i}{ }^{G}=B$ if and only if $b_{i}{ }^{N_{G}(D)}=\widetilde{B}$. On the other hand, since $N_{G}(D) / C_{N}(D)$ is a p-group by Lemma 3.4, $\operatorname{Br}_{P}\left(e_{\widetilde{B}}\right)=$ $e_{\widetilde{B}} \in k C_{N}(D)$, where $e_{\widetilde{B}}$ is the block idempotent of $k N_{G}(D)$ corresponding to \widetilde{B} and $\mathrm{Br}_{P}: Z k N_{G}(D) \rightarrow Z k N_{G}(P)$ is the Brauer homomorphism. Thus

$$
\sum e_{b_{i}^{\prime}}=\sum e_{b_{i}}=\sum e_{\beta_{m}}
$$

and the result follows.
(ii) As is well-known, $D \cap C_{N}(D)$ is a defect group of β_{m}. Clearly $D \cap C_{N}(D)$ is central in $C_{N}(D)$. Thus $1\left(\beta_{m}\right)=1$. Then $1(\widetilde{B})=1$, since $N_{G}(D) / C_{N}(D)$ is a p-group. Similarly $\mathrm{l}\left(b_{i}^{\prime}\right)=1$ by (i).

Let $1 \leqq i \leqq t$. By Lemma $3.5, b_{i}^{\prime}$ has a unique projective indecomposable $R C_{N}(P)$-module. This module is denoted by Y_{i}. For every $W \in \operatorname{Ind}(R P \mid P)$, let $U_{i}(W)$ be the Green correspondent of $W \times Y_{i}$ with respect to $\left(G, N_{G}(P), P\right)$ (note that $W \times Y_{i}$ is indecomposable and has vertex P [9, Problem 9 on p.302]). For every $W \in \operatorname{Ind}(k P \mid P)$, let $U_{i}^{\prime}(W)$ be the Green correspondent of $W \times Y_{i}{ }^{*}$ with respect to $\left(G, N_{G}(P), P\right)$. For these modules, we have the following.

Proposition 3.6. The set $\left\{U_{i}(W) ; 1 \leqq i \leqq t, W \in \operatorname{Ind}(R P \mid P)\right\}$ is a set of representatives of the isomorphism classes of all indecomposable $R G$-modules with vertex P in B. Further, for $1 \leqq i \leqq t$ and $W \in \operatorname{Ind}(R P \mid P), U_{i}(W)_{N}$ is a multiple of V.

Proposition 3.6'. The set $\left\{U_{i}^{\prime}(W) ; 1 \leqq i \leqq t, W \in \operatorname{Ind}(k P \mid P)\right\}$ is a set of representatives of the isomorphism classes of all indecomposable $k G$-modules with vertex P in B. Further, for $1 \leqq i \leqq t$ and $W \in \operatorname{Ind}(k P \mid P), U_{i}^{\prime}(W)_{N}$ is a multiple of V^{*}.

Proof. We prove only Proposition 3.6; the proof of Proposition 3.6' is similar. Let L be an indecomposable $R G$-module with vertex P in B. Let W be a P-source of L. Then, since $N_{G}(P)=P \times C_{N}(P)$, we have $W^{N_{G}(P)} \cong$ $W \times R C_{N}(P)$, so the Green correspondent of L with respect to $\left(G, N_{G}(P), P\right)$ is of the form $W \times Y$ for a projective indecomposable $R C_{N}(P)$-module Y. Then $Y \cong Y_{i}$ for some i by the Nagao-Green theorem [9, Theorem 5.3.12]. So $L \cong U_{i}(W)$. It also follows from the Nagao-Green theorem that modules of the form $U_{i}(W)$ lie in B. Thus the first assertion follows.

Since $P \cap N=1, U_{i}(W)_{N}$ is projective. So the second follows.

We also need to consider certain $o[G / Q]$-modules. Let us introduce some notation. Put $\bar{G}=G / Q$ and for every $H \leqq G$ put $\bar{H}=H Q / Q$. As is wellknown, B contains a unique simple $k G$-module, say S, so there is a unique block \bar{B} of \bar{G} which is dominated by B. Let \bar{S} be the unique simple $k \bar{G}$-module in \bar{B}. Clearly \bar{B} has defect group $\bar{D}=\bar{P}$. Let \bar{b} be the unique block of \bar{N} dominated by b. Of course \bar{b} has defect 0 . Clearly $(\bar{G}, \bar{N}, \bar{B}, \bar{b}, \bar{P})$ satisfies ($\neq \sharp$). Let B^{\prime} be the Brauer correspondent of \bar{B} in $N_{\bar{G}}(\bar{P})$. We have $N_{\bar{G}}(\bar{P})=\bar{P} \times C_{\bar{N}}(\bar{P})$. So if b^{\prime} is the block of $C_{\bar{N}}(\bar{P})$ covered by B^{\prime}, b^{\prime} has defect 0 and b^{\prime} contains a unique projective indecomposable $R C_{\bar{N}}(\bar{P})$-module Z (with Z^{*} simple). Via the natural isomorphism $\bar{P} \cong P, \operatorname{Ind}(o \bar{P})$ may be identified with $\operatorname{Ind}(o P)$ and we denote by $\bar{W} \in \operatorname{Ind}(o \bar{P})$ the module corresponding to $W \in \operatorname{Ind}(o P)$. Clearly \bar{P} is a vertex of \bar{S}. Let \bar{W}_{0} be a \bar{P}-source of \bar{S}. So $\bar{W}_{0}=\overline{W_{0}}$ for $W_{0} \in \operatorname{Ind}(k P \mid P)$. Since $\bar{S}_{\bar{N}}$ is the unique simple module in \bar{b}, W_{0} is an endopermutation module by Theorem 3.1. The following lemma characterizes W_{0} inside G.

Lemma 3.7. $\quad \bar{W}_{0}$, or W_{0}, is unique up to isomorphism and W_{0} is (up to isomorphism) a unique indecomposable summand of S_{P} with vertex P.

Proof. Since $N_{\bar{G}}(\bar{P})=\bar{P} \times C_{\bar{N}}(\bar{P})$, we see \bar{W}_{0} is uniquely determined ($[9$, Theorem 3.3.6]). Of course, P is a vertex of W_{0}. If $W=\operatorname{Inf}\left(\bar{W}_{0}\right)$, where Inf is taken via the natural homomorphism $D \rightarrow D / Q=\bar{P}$, then W is a D-source of S and $W_{P} \cong W_{0}$. So $W_{0} \mid S_{P}$. Conversely, let L be an indecomposable summand of S_{P} with vertex P. Then $\bar{L} \mid \bar{S}_{\bar{P}}$ and \bar{P} is a vertex of \bar{L}. So \bar{L} is a \bar{P}-source of \bar{S} and we get $\bar{L} \cong \bar{W}_{0}$ by the above. Thus $L \cong W_{0}$. This completes the proof.

For every $W \in \operatorname{Ind}(R P \mid P)$, let $\bar{U}(\bar{W})$ be the Green correspondent of $\bar{W} \times Z$ with respect to $\left(\bar{G}, \bar{N}_{\bar{G}}(\bar{P}), \bar{P}\right)$. For every $W \in \operatorname{Ind}(k P \mid P)$, let $\bar{U}^{\prime}(\bar{W})$ be the Green correspondent of $\bar{W} \times Z^{*}$ with respect to ($\left.\bar{G}, \bar{N}_{\bar{G}}(\bar{P}), \bar{P}\right)$.
 First Main Theorem, we get the following.

Proposition 3.8. The set $\{\bar{U}(\bar{W}) ; W \in \operatorname{Ind}(R P \mid P)\}$ is a set of representatives of the isomorphism classes of all indecomposable $R \bar{G}$-modules with vertex \bar{P} in \bar{B}.

Proposition 3.8'. The set $\left\{\bar{U}^{\prime}(\bar{W}) ; W \in \operatorname{Ind}(k P \mid P)\right\}$ is a set of representatives of the isomorphism classes of all indecomposable $k \bar{G}$-modules with vertex \bar{P} in \bar{B}.

The indecomposable modules under investigation are closely related to each other. To see this, we need some general facts. In the following Lemmas $3.9,3.10$ and 3.11 , let M be a normal subgroup of G. Let $\theta: G \rightarrow G / M$ be the natural homomorphism. We define a functor θ^{*} as follows: For a subgroup H of G with $H \geqq M$ and an $o H$-module U, we set $\theta^{*}(U)=U / U I(o M)$. So $\theta^{*}(U)$ is an $o[H / M]$-module. (We note that $\theta^{*}(U)$ may be 0 or may not be o-free in general.)

Lemma 3.9. We have the following isomorphisms.
(i) $\quad \theta^{*}(U \oplus V) \cong \theta^{*}(U) \oplus \theta^{*}(V)$ for $o G$-modules U and V.
(ii) $\theta^{*}(U \otimes \operatorname{Inf}(W)) \cong \theta^{*}(U) \otimes W$ for an $o G$-module U and an o $[G / M]$ module W.
(iii) $\theta^{*}(U / \pi U) \cong \theta^{*}(U) / \pi \theta^{*}(U)$ for an $R G$-module U.
(iv) $\left\{\theta^{*}(U)\right\}_{H / M} \cong \theta^{*}\left(U_{H}\right)$ for an oG-module U, where $G \geqq H \geqq M$.
(v) $\left\{\theta^{*}(U)\right\}^{G / M} \cong \theta^{*}\left(U^{G}\right)$ for an oH-module U, where $G \geqq H \geqq M$.

In particular, if U is an H-projective o G-module for a subgroup H of G, then $\theta^{*}(U)$ is $H M / M$-projective.

Proof. For the proof, we use a well-known isomorphism: $\theta^{*}(U) \cong U \otimes_{o H}$ $o[H / M]$ for an $o H$-module U, cf. [9, Theorem 1.9.17(i)]. We extend θ to an algebra homomorphism from $o G$ onto $o[G / M]$ and denote the image of $\alpha \in o G$ by $\bar{\alpha}$.
(i) This is obvious.
(ii) Define $f:(U \otimes \operatorname{Inf}(W)) \otimes_{o G} o[G / M] \longrightarrow\left(U \otimes_{o G} o[G / M]\right) \otimes W$ by

$$
f((u \otimes w) \otimes \bar{\alpha})=((u \otimes \overline{1} \otimes w) \bar{\alpha}, \quad u \in U, w \in W, \alpha \in o G
$$

Then f is an isomorphism; the inverse of f is given by

$$
(u \otimes \bar{\alpha}) \otimes w \longrightarrow(u \alpha \otimes w) \otimes \overline{1}, \quad u \in U, w \in W, \alpha \in o G
$$

(iii) Define $f:\left(U \otimes_{R} k\right) \otimes_{k G} k[G / M] \rightarrow\left(U \otimes_{R G} R[G / M]\right) \otimes_{R} k$ by

$$
f((u \otimes \lambda) \otimes \overline{\varphi(\alpha)})=u \otimes \bar{\alpha} \otimes \lambda, \quad u \in U, \lambda \in k, \alpha \in R G
$$

where $\varphi: R G \rightarrow k G$ is the natural map. Then f is an isomorphism.
(iv) Define $f: U \otimes_{o G} o[G / M] \rightarrow U \otimes_{o H} o[H / M]$ by

$$
f(u \otimes \bar{\alpha})=u \alpha \otimes \overline{1}, \quad u \in U, \alpha \in o G .
$$

Then f is an isomorphism; the inverse of f is given by

$$
u \otimes \bar{\alpha} \longrightarrow u \otimes \bar{\alpha}, \quad u \in U, \alpha \in o H
$$

(v) Define $f:\left(U \otimes_{o H} o[H / M]\right) \otimes_{o[H / M]} o[G / M] \rightarrow\left(U \otimes_{o H} o G\right) \otimes_{o G} o[G / M]$ by

$$
f((u \otimes \bar{\alpha}) \otimes \bar{\beta})=(u \otimes 1) \otimes \bar{\alpha} \bar{\beta}, \quad u \in U, \alpha \in o H, \beta \in o G .
$$

Then f is an isomorphism; the inverse of f is given by

$$
(u \otimes \alpha) \otimes \bar{\beta} \longrightarrow(u \otimes \overline{1}) \otimes \bar{\alpha} \bar{\beta}, \quad u \in U, \alpha, \beta \in o G .
$$

The last assertion follows from (i) and (v). This completes the proof.
Lemma 3.10. Let U be a projective indecomposable o G-module and let T be a simple $k G$-module corresponding to U. Then $\theta^{*}(U)$ is isomorphic to the projective indecomposable o $[G / M]$-module corresponding to T, if $M \leqq \operatorname{Ker} T$; a zero module, otherwise.

Proof. We first consider the case when $o=k$. If $\theta^{*}(U) \neq 0$, then there is a surjection $\theta^{*}(U) \rightarrow T$, since the head of U is simple and isomorphic to T. Thus $M \leqq$ Ker T. Conversely, if $M \leqq$ Ker T, then the required conclusion follows by Landrock [6, II 11.15].

Now assume $o=R$. Since $\theta^{*}(U) \mid \theta^{*}(R G) \cong R[G / M]$ by Lemma 3.9, $\theta^{*}(U)$ is projective or 0 . Then, since $\theta^{*}(U) / \pi \theta^{*}(U) \cong \theta^{*}(U / \pi U)$ by Lemma 3.9, the conclusion follows from the first paragraph.

Lemma 3.11. Let H be a subgroup of G with $H \geqq M$. Put $\bar{G}=G / M$ and $\bar{H}=H / M$. Let B (resp. b) be a block of G (resp. H). Assume the following conditions: B (resp. b) dominates a unique block \bar{B} (resp. \bar{b}) of \bar{G} (resp. $\bar{H}) ; b^{G}$ is defined and equals $B ; \bar{b}^{\bar{G}}$ is defined. Then $\bar{b}^{\bar{G}}=\bar{B}$.

Proof ([3, Proposition 1.2.16]). Let $f: Z k G \rightarrow Z k \bar{G}$ be the algebra homomorphism induced by the natural homomorphism $G \rightarrow \bar{G}$. Define g : $Z k H \rightarrow Z k \bar{H}$ similarly. Define $s_{H}: Z k G \rightarrow Z k H$ by $s_{H}(\widehat{K})=\sum_{x \in K \cap H} x$, where K are conjugacy classes of G. Define $s_{\bar{H}}: Z k \bar{G} \rightarrow Z k \bar{H}$ similarly. Then $s_{\bar{H}} \circ f=g \circ s_{H}$. From this and our assumption that $b^{G}=B$, we see that B dominates $\bar{b}^{\bar{G}}$. Thus $\bar{b}^{\bar{G}}=\bar{B}$.

Now we return to our original situation. Let \widetilde{b} be a block of $N_{N}(D)(=$ $\left.N_{G}(D) \cap N\right)$ covered by \widetilde{B}. It is easy to see that $N_{N}(D)$ is the inverse image of $C_{\bar{N}}(\bar{P})$ in G.

Lemma 3.12. (i) B^{\prime} is a unique block of $\overline{N_{G}(D)}$ which is dominated by \widetilde{B}.
(ii) \widetilde{b} dominates b^{\prime} and $Y_{i}{ }^{N_{N}(D)}$ is a projective indecomposable $R N_{N}(D)$ module in \widetilde{b}.

Proof. (i) By Lemma 3.5, \widetilde{B} contains a unique simple $k N_{G}(D)$-module, so \widetilde{B} dominates a unique block $B^{\prime \prime}$ of $\overline{N_{G}(D)}=N_{\bar{G}}(\bar{P})$. Clearly $B^{\prime \prime}$ has defect group $\bar{D}=\bar{P}$, and $B^{\prime \prime} \bar{G}=\bar{B}$ by Lemma 3.11. So $B^{\prime \prime}=B^{\prime}$ by the First Main Theorem. Thus the result follows.
(ii) Since $N_{G}(D)=D N_{N}(D)$, we see that \widetilde{b} is a unique block of $N_{N}(D)$ which is covered by \widetilde{B}. This yields the first assertion.

By Lemma 3.4 and Green's theorem $Y_{i}{ }^{N_{N}(D)}$ and $Y_{i}{ }^{N_{G}(D)}$ are projective indecomposable. By Lemma 3.5, b_{i}^{\prime} covers some β_{m}. Then, by Mackey decomposition, $\left(Y_{i}{ }^{N_{G}(D)}\right)_{C_{N}(D)}$ has a summand in β_{m}. Since $N_{G}(D) / C_{N}(D)$ is a p-group, it follows that $Y_{i}{ }^{N_{G}(D)}$ belongs to \widetilde{B}. Then we see that $Y_{i}{ }^{N_{N}(D)}$ belongs to \widetilde{b} by the first paragraph. This completes the proof.

In the rest of this section, let $\theta: G \rightarrow G / Q$ be the natural homomorphism. Let θ^{*} be the functor defined as above. Now we prove the following.

Theorem 3.13. For every $W \in \operatorname{Ind}(R P \mid P)$ and $i, 1 \leqq i \leqq t$, we have $\theta^{*}\left(U_{i}(W)\right) \cong \bar{U}(\bar{W}) \oplus M_{i}(W)$ for an $\mathcal{H}(\bar{P})$-projective $R \bar{G}$-module $M_{i}(W)$.

Theorem 3.13'. For every $W \in \operatorname{Ind}(k P \mid P)$ and $i, 1 \leqq i \leqq t$, we have $\theta^{*}\left(U_{i}^{\prime}(W)\right) \cong \bar{U}^{\prime}(\bar{W}) \oplus M_{i}^{\prime}(W)$ for an $\mathcal{H}(\bar{P})$-projective $k \bar{G}$-module $M_{i}^{\prime}(W)$.

Proof. Here we give only the proof of Theorem 3.13; Theorem 3.13^{\prime} is proved in a similar way. Put $Y=Y_{i}$ and $\widetilde{Y}=1_{P} \times Y$. First we claim that P acts trivially on $\theta^{*}\left(\widetilde{Y}^{N_{G}(D)}\right)$. Let $u \in P, x \in N_{G}(D)$ and $y \in \widetilde{Y}$. Put $x u x^{-1}=v z$ with $v \in P, z \in Q$. Then

$$
(y \otimes x)(u-1)=y \otimes v z x-y \otimes x=(y \otimes x)\left(x^{-1} z x-1\right)
$$

since P acts trivially on \tilde{Y}. Thus the claim follows .
Now

$$
\begin{aligned}
\theta^{*}\left(\widetilde{Y}^{N_{G}(D)}\right)_{\overline{N_{N}(D)}} & \cong \theta^{*}\left(\left(\widetilde{Y}^{N_{G}(D)}\right)_{N_{N}(D)}\right) & & \text { (by Lemma } 3.9) \\
& \cong \theta^{*}\left(Y^{N_{N}(D)}\right) & & \text { (by Mackey decomposition) }
\end{aligned}
$$

Thus

$$
\theta^{*}\left(\widetilde{Y}_{G}^{N_{G}(D)}\right) \cong 1_{\bar{P}} \times \theta^{*}\left(Y^{N_{N}(D)}\right)
$$

By Lemmas 3.10 and 3.12 (ii), $\theta^{*}\left(Y^{N_{N}(D)}\right) \cong Z$. Hence

$$
\begin{equation*}
\theta^{*}\left(\widetilde{Y}^{N_{G}(D)}\right) \cong 1_{\bar{P}} \times Z . \tag{1}
\end{equation*}
$$

Put $\widetilde{W}=\bar{W} \times 1_{C_{\bar{N}}(\bar{P})}$. Let $\operatorname{Inf}(\widetilde{W})$ be the inflation of \widetilde{W} via the natural homomorphism $N_{G}(D) \rightarrow N_{\bar{G}}(\bar{P})$. Then

$$
\begin{align*}
\theta^{*}\left((W \times Y)^{N_{G}(D)}\right) & \cong \theta^{*}\left(\left(\operatorname{Inf}(\widetilde{W})_{N_{G}(P)} \otimes \widetilde{Y}\right)^{N_{G}(D)}\right) \tag{2}\\
& \cong \theta^{*}\left(\operatorname{Inf}(\widetilde{W}) \otimes \widetilde{Y}^{N_{G}(D)}\right) \\
& \cong \widetilde{W} \otimes \theta^{*}\left(\widetilde{Y}^{N_{G}(D)}\right) \quad \quad \text { (by Lemma 3.9) } \\
& \cong \bar{W} \times Z \quad \quad \text { by }(1)) .
\end{align*}
$$

Thus
(3) $\quad \theta^{*}\left((W \times Y)^{G}\right) \cong \theta^{*}\left(\left\{(W \times Y)^{N_{G}(D)}\right\}^{G}\right)$

$$
\cong\left\{\theta^{*}\left((W \times Y)^{N_{G}(D)}\right)\right\}^{\bar{G}} \quad(\text { by Lemma } 3.9)
$$

$$
\cong(\bar{W} \times Z)^{\bar{G}}
$$

$$
\cong \bar{U}(\bar{W}) \oplus M
$$

where M is an $\mathcal{H}(\bar{P})$-projective module.
On the other hand, $(W \times Y)^{G} \cong U_{i}(W) \oplus L$, where L is an $\mathcal{H}(P)$-projective module. So

$$
\begin{equation*}
\theta^{*}\left((W \times Y)^{G}\right) \cong \theta^{*}\left(U_{i}(W)\right) \oplus \theta^{*}(L) \tag{4}
\end{equation*}
$$

and, by Lemma 3.9, $\theta^{*}(L)$ is $\mathcal{H}(\bar{P})$-projective. Comparison of (3) and (4) yields the result. This completes the proof.

Let \bar{V} be the unique projective indecomposable $R \bar{N}$-module in \bar{b}. We determine the extensions to \bar{G} of \bar{V}. Let V be the unique projective indecomposable $R N$-module in b, as before. Let \bar{T} be the unique simple $k \bar{N}$-module in \bar{b}. Clearly \bar{S} is a unique extension of \bar{T} to \bar{G}.

Lemma 3.14. We have the following isomorphism.
(i) $\theta^{*}(V) \cong \bar{V}$.
(ii) $\theta^{*}(V / \pi V) \cong \bar{T}$.

Proof. (i) Since the simple $k N$-module corresponding to V is trivial on Q, the assertion follows from Lemma 3.10.
(ii) By Lemma 3.9 and (i), $\theta^{*}(V / \pi V) \cong \theta^{*}(V) / \pi \theta^{*}(V) \cong \bar{V} / \pi \bar{V} \cong \bar{T}$.

Lemma 3.15. An $R \bar{G}$-module L is an extension of \bar{V} if and only if L is a lift of \bar{S}.

Proof. Let L be an extension of \bar{V}. Then $L_{\bar{N}}^{*} \cong \bar{T}$, so $L^{*} \cong \bar{S}$. Conversely if L is a lift of \bar{S}, then $L_{\bar{N}}^{*} \cong \bar{T}$. Hence $L_{\bar{N}} \cong \bar{V}$.

Let $\operatorname{Lf}\left(W_{0}\right)$ be a set of representatives of the isomorphism classes of all indecomposable endo-permutation $R P$-modules W with vertex P such that $W^{*} \cong W_{0}$.

Theorem 3.16. The set $\left\{\bar{U}(\bar{W}) ; W \in \operatorname{Lf}\left(W_{0}\right)\right\}$ is a set of representatives of the isomorphism classes of all extensions of \bar{V} to \bar{G}. In particular, the number of isomorphism classes of such extensions equals $\left|\operatorname{Lf}\left(W_{0}\right)\right|=\left|P / P^{\prime}\right|>$ 0 , where P^{\prime} is the commutator subgroup of P.

Proof. Let L be an extension of \bar{V} to \bar{G}. By Lemma 3.15, L is a lift of \bar{S}. So, since L lies in \bar{B}, we see that L has vertex \bar{P}. If \bar{W} is a \bar{P}-source of L, then $W \in \operatorname{Ep}(R P)$ by Theorem 3.1. Clearly we have $\bar{W}^{*} \mid L_{\bar{P}}^{*} \cong \bar{S}_{\bar{P}}$. Since \bar{W}^{*} is indecomposable with vertex \bar{P} (cf. [1, Corollary 6.3] and [2, Proposition 12.1]), we get $\bar{W}^{*} \cong \bar{W}_{0}$ by Lemma 3.7. By Proposition 3.8, we get $L \cong \bar{U}(\bar{W})$.

Now let L_{1} be an R-form of an irreducible character of height 0 in \bar{B}. Then it is easy to see that L_{1} is an extension of \bar{V} to \bar{G}. By the above, $L_{1} \cong \bar{U}\left(\overline{W_{1}}\right)$ with $W_{1} \in \operatorname{Lf}\left(W_{0}\right)$. Let $W \in \operatorname{Lf}\left(W_{0}\right)$. By Lemma 2.2, $\bar{U}(\bar{W}) \cong$ $\operatorname{Inf}\left({\overline{W_{1}}}^{\wedge} \cdot \bar{W}\right) \otimes L_{1}$. Since ${\overline{W_{1}}}^{\wedge} \cdot \bar{W}$ has R-rank 1 (cf. [2, Proposition 12.1]), $\bar{U}(\bar{W})$ also is an extension of \bar{V}. The equality $\left|\operatorname{Lf}\left(W_{0}\right)\right|=\left|P / P^{\prime}\right|$ also follows from [2, Proposition 12.1], since K contains the $|G|$-th roots of unity. This completes the proof.

Now we obtain a necessary condition for an indecomposable $R G$ - (resp. $k G$-) module in B with vertex P to be an extension of V (resp. V^{*}).

Corollary 3.17. Let $W \in \operatorname{Ind}(R P \mid P)$ and $1 \leqq i \leqq t$. If $U_{i}(W)$ is an extension of V, then $W \in \operatorname{Lf}\left(W_{0}\right)$. Furthermore, for $W \in \operatorname{Lf}\left(W_{0}\right)$, the following are equivalent.
(i) $U_{i}(W)$ is an extension of V.
(ii) $\theta^{*}\left(U_{i}(W)\right) \cong \bar{U}(\bar{W})$.

Proof. Assume that $U_{i}(W)$ is an extension of V. Then we have

$$
\theta^{*}\left(U_{i}(W)\right)_{\bar{N}} \cong \theta^{*}\left(U_{i}(W)_{N}\right) \cong \theta^{*}(V) \cong \bar{V}
$$

In particular, $\theta^{*}\left(U_{i}(W)\right)$ is indecomposable. Hence, by Theorem 3.13, $\theta^{*}\left(U_{i}(W)\right) \cong \bar{U}(\bar{W})$. So $\bar{U}(\bar{W})$ is an extension of \bar{V} and $W \in \operatorname{Lf}\left(W_{0}\right)$ by Theorem 3.16.

Let $W \in \operatorname{Lf}\left(W_{0}\right)$. (i) \Rightarrow (ii): This follows from the first paragraph.
(ii) \Rightarrow (i): Put $U_{i}(W)_{N} \cong n V$ for an integer n. Then

$$
\theta^{*}\left(U_{i}(W)\right)_{\bar{N}} \cong n \bar{V} .
$$

Since $\bar{U}(\bar{W})$ is an extension of \bar{V} by Theorem 3.16, we get $n=1$. This completes the proof.

Corollary 3.17'. Let $W \in \operatorname{Ind}(k P \mid P)$ and $1 \leqq i \leqq t$. If $U_{i}^{\prime}(W)$ is an extension of V^{*}, then $W \cong W_{0}$. Furthermore, the following are equivalent.
(i) $U_{i}^{\prime}\left(W_{0}\right)$ is an extension of V^{*}.
(ii) $\theta^{*}\left(U_{i}^{\prime}\left(W_{0}\right)\right) \cong \bar{S}$.

Proof. Assume that $U_{i}^{\prime}(W)$ is an extension of V^{*}. Then we have

$$
\theta^{*}\left(U_{i}^{\prime}(W)\right)_{\bar{N}} \cong \theta^{*}\left(U_{i}^{\prime}(W)_{N}\right) \cong \theta^{*}\left(V^{*}\right) \cong \bar{T} .
$$

Thus $\theta^{*}\left(U_{i}^{\prime}(W)\right) \cong \bar{S}$. Hence, by Theorem 3.13', $\theta^{*}\left(U_{i}^{\prime}(W)\right) \cong \bar{U}^{\prime}(\bar{W})$. So $\bar{U}^{\prime}(\bar{W}) \cong \bar{S}$ and $W \cong W_{0}$.
(i) \Rightarrow (ii): This follows from the first paragraph.
(ii) \Rightarrow (i): Put $U_{i}^{\prime}\left(W_{0}\right)_{N} \cong n V^{*}$ for an integer n. Then

$$
\theta^{*}\left(U_{i}^{\prime}(W)\right)_{\bar{N}} \cong n \bar{T} .
$$

So $n=1$ and (i) follows.
As the following corollaries show, the existence of an extension of V (resp. V^{*}) to G with vertex P is equivalent to a statement neater than Theorem 3.13 (resp. Theorem 3.13').

Corollary 3.18. Let $1 \leqq i \leqq t$. The following are equivalent.
(i) $U_{i}(W)$ is an extension of V for every $W \in \operatorname{Lf}\left(W_{0}\right)$.
(ii) $U_{i}(W)$ is an extension of V for some $W \in \operatorname{Lf}\left(W_{0}\right)$.
(iii) $\theta^{*}\left(U_{i}(W)\right)$ is indecomposable for some $W \in \operatorname{Lf}\left(W_{0}\right)$.
(iv) $\theta^{*}\left(U_{i}(W)\right) \cong \bar{U}(\bar{W})$ for some $W \in \operatorname{Ep}(R P)$.

Proof. (i) \Rightarrow (ii): This is trivial.
(ii) \Rightarrow (iii): This follows from Corollary 3.17.
(iii) \Rightarrow (iv): Assume that $\theta^{*}\left(U_{i}\left(W_{1}\right)\right)$ is indecomposable for $W_{1} \in \operatorname{Lf}\left(W_{0}\right)$.

By Corollary 3.17 (and Theorem 3.13), $U_{i}\left(W_{1}\right)$ is an extension of V. Let $W \in \operatorname{Ep}(R P)$. By Lemma 2.2,

$$
U_{i}(W) \cong \operatorname{Inf}\left(W_{1}^{\wedge} \cdot W\right) \otimes U_{i}\left(W_{1}\right)
$$

So

$$
\begin{aligned}
\theta^{*}\left(U_{i}(W)\right) & \cong \operatorname{Inf}\left(W_{1} \wedge \cdot W\right) \otimes \theta^{*}\left(U_{i}\left(W_{1}\right)\right) & & (\text { by Lemma } 3.9) \\
& \cong \operatorname{Inf}\left(W_{1} \wedge \cdot W\right) \otimes \bar{U}\left(\bar{W}_{1}\right) & & (\text { by Theorem 3.13 }),
\end{aligned}
$$

where Inf is taken via the natural isomorphism $\bar{G} / \bar{N} \cong \bar{P} \cong P$. Since $\bar{U}\left(\bar{W}_{1}\right)$ is an extension of \bar{V} by Theorem 3.16, $\theta^{*}\left(U_{i}(W)\right)$ is indecomposable by Lemma 2.1. Thus the result follows from Theorem 3.13.
(iv) \Rightarrow (i): This follows from Corollary 3.17.

Corollary 3.18'. Let $1 \leqq i \leqq t$. The following are equivalent.
(i) $U_{i}^{\prime}\left(W_{0}\right)$ is an extension of V^{*}.
(ii) $\theta^{*}\left(U_{i}^{\prime}(W)\right) \cong \bar{U}^{\prime}(\bar{W})$ for every $W \in \operatorname{Ind}(k P \mid P)$.

Proof. (i) \Rightarrow (ii): Let $W \in \operatorname{Ind}(k P \mid P)$. We have

$$
U_{i}^{\prime}(W) \cong \operatorname{Inf}\left(W_{0}^{\wedge} \cdot W\right) \otimes U_{i}^{\prime}\left(W_{0}\right)
$$

by Lemma 2.2. So

$$
\theta^{*}\left(U_{i}^{\prime}(W)\right) \cong \operatorname{Inf}\left(W_{0}^{\wedge} \cdot W\right) \otimes \theta^{*}\left(U_{i}^{\prime}\left(W_{0}\right)\right) \quad(\text { by Lemma 3.9 })
$$

By Corollary 3.17,$\theta^{*}\left(U_{i}^{\prime}\left(W_{0}\right)\right)_{\bar{N}} \cong \bar{T}$, which is simple. Thus we get the result by Lemma 2.1 and Theorem 3.13'.
(ii) \Rightarrow (i): We have $\theta^{*}\left(U_{i}^{\prime}\left(W_{0}\right)\right) \cong \bar{U}^{\prime}\left(\bar{W}_{0}\right) \cong \bar{S}$. So we get the result by Corollary 3.17^{\prime}.

4. The case where P is cyclic

In this section, by (G, N, B, b, P) we mean the following data:
(\#\#\#) (G, N, B, b, P) satisfies the condition (\#\#) in Section 3 and P is cyclic.
We retain the notation introduced in Section 3. We shall prove the following.

Theorem 4.1. For every $i(1 \leqq i \leqq t)$ and every $W \in \operatorname{Lf}\left(W_{0}\right), U_{i}(W)$ is an extension of V.

We postpone the proof for a while and give consequences of Theorem 4.1.
Theorem 4.1'. For every $i(1 \leqq i \leqq t), U_{i}^{\prime}\left(W_{0}\right)$ is an extension of V^{*}.

Proof. Let $W \in \operatorname{Lf}\left(W_{0}\right)$. By definition,

$$
\left(W \times Y_{i}\right)^{G} \cong U_{i}(W) \oplus L,
$$

where L is an $\mathcal{H}(P)$-projective module. Reducing modulo p,

$$
\begin{equation*}
\left(W_{0} \times Y_{i}{ }^{*}\right)^{G} \cong U_{i}(W)^{*} \oplus L^{*} . \tag{1}
\end{equation*}
$$

On the other hand, by definition,

$$
\begin{equation*}
\left(W_{0} \times Y_{i}^{*}\right)^{G} \cong U_{i}^{\prime}\left(W_{0}\right) \oplus M, \tag{2}
\end{equation*}
$$

where M is an $\mathcal{H}(P)$-projective module. By Theorem 4.1, $U_{i}(W)$ is an extension of V. So $U_{i}(W)_{N}^{*} \cong V^{*}$, and $U_{i}(W)^{*}$ is indecomposble. Clearly there exists a vertex A of $U_{i}(W)^{*}$ with $A \leqq P$. By Lemma 3.2, $G=A N$. Thus $A=P$. So by (1) and (2), we get $U_{i}(W)^{*} \cong U_{i}^{\prime}\left(W_{0}\right)$. Therefore $U_{i}^{\prime}\left(W_{0}\right)$ is an extension of V^{*}.

From Theorem 4.1, Proposition 3.6 and Corollary 3.17, we obtain the following.

Corollary 4.2. The set $\left\{U_{i}(W) ; 1 \leqq i \leqq t, W \in \operatorname{Lf}\left(W_{0}\right)\right\}$ is a set of representatives of the isomorphism classes of all extensions of V to G with vertex P.

Also, from Theorem 4.1' , Proposition 3.6^{\prime} and Corollary 3.17^{\prime}, we obtain the following.

Corollary 4.2'. The set $\left\{U_{i}^{\prime}\left(W_{0}\right) ; 1 \leqq i \leqq t\right\}$ is a set of representatives of the isomorphism classes of all extensions of V^{*} to G with vertex P.

Proof of Theorem 4.1. First we show that it suffices to consider the case when Q is central in N.
(Reduction) Assume that the theorem is true under the assumption that Q is central in N. Then it is true in general.

To see this, put $G_{0}=P C_{N}(Q)$ and $N_{0}=C_{N}(Q)$. Clearly N_{0} is a normal subgroup of G with $\left|G / N_{0}\right|$ a power of p. Let b_{0} be the unique block of N_{0} covered by b. Then, since b is G-invariant, b_{0} is G-invariant. Clearly b_{0} has defect group $Z(Q)$, which is central in N_{0}. Let B_{0} be the unique block of G_{0} covering b_{0}. Then, as is well-known, (for examaple, cf. [7, Lemma 4.13]), $P Z(Q)$ is a defect group of B_{0}. Thus $\left(G_{0}, N_{0}, B_{0}, b_{0}, P\right)$ satisfies (\#\#\#).

Let S_{0} be the unique simple $k G_{0}$-module in B_{0}. We claim that S_{0} is a summand of $S_{G_{0}}$. Let U (resp. U_{0}) be the unique projective indecomposable $k G$ - (resp. $k G_{0^{-}}$) module in B (resp. B_{0}). By Green's theorem, $U_{0}{ }^{G}$ is
projective indecomposable. Now $G=G_{0} N$ and $G_{0} \cap N=P C_{N}(Q) \cap N=$ $(P \cap N) C_{N}(Q)=N_{0}$. So, by Mackey decomposition, $U_{0}{ }^{G}$ lies in a block of G covering b, namely B. Thus $U_{0}{ }^{G} \cong U$. So, by Nakayama relation S_{0} is a constituent of $S_{G_{0}}$. Then a repeated use of Clifford's theorem proves the claim. Let W_{1} be an indecomposable summand of $\left(S_{0}\right)_{P}$ with vertex P, cf. Lemma 3.7. By the claim, we see $W_{1} \cong W_{0}$ by Lemma 3.7.

Let $1 \leqq i \leqq t$ and $W \in \operatorname{Lf}\left(W_{0}\right)$. Let L be an indecomposable $R G_{0}$-module such that $L \mid W^{G_{0}}$ and that $U_{i}(W) \mid L^{G}$. Then, by Green's theorem, $U_{i}(W) \cong L^{G}$. Thus L has vertex P and W is a P-source of L. Since $L^{G} \cong U_{i}(W)$ lies in B, we see that L lies in B_{0} by Mackey decomposition. Thus by Proposition 3.6 (applied to $\left(G_{0}, N_{0}, B_{0}, b_{0}, P\right)$), there exist a block β of $N_{G_{0}}(P)$ and a projective indecomposable $R C_{N_{0}}(P)$-module Y in the block of $C_{N_{0}}(P)$ covered by β such that $\beta^{G_{0}}=B_{0}$ and that L is the Green correspondent of $W \times Y$ with respect to $\left(G_{0}, N_{G_{0}}(P), P\right)$. Hence, by our assumption, $L_{N_{0}} \cong V_{0}$, where V_{0} is a unique projective indecomposable $R N_{0}$-module in b_{0}. Then $U_{i}(W)_{N} \cong\left(L^{G}\right)_{N} \cong V_{0}{ }^{N}$ by Mackey decomposition and $V_{0}{ }^{N} \cong V$ by Green's theorem. Thus $U_{i}(W)$ is an extension of V, as required.

Hereafter we consider only the case when Q is central in N. We argue by induction on $|G|$. Let $|P|=p^{n}, n \geqq 1$. Fix i and put $B_{0}=b_{i}, V_{0}=Y_{i}$. Let $W \in \operatorname{Lf}\left(W_{0}\right)$. Put $M=W \times Y_{i}$ and $U=U_{i}(W)$.

Let P_{1} be the unique subgroup of P of order p. We distinguish two cases:
(CASE 1) $N_{G}\left(P_{1} Q\right)=G, \quad$ (CASE 2) $N_{G}\left(P_{1} Q\right) \neq G$.
(CASE 1) Put $G_{1}=N_{G}\left(P_{1}\right)$ and let $B_{1}=B_{0}{ }^{G_{1}}$. Let D_{1} be a defect group of B_{1} such that $P \leqq D_{1}$. Put $N_{1}=G_{1} \cap N$ and let b_{1} be a block of N_{1} covered by B_{1}. We have :
(1.a) $\left(G_{1}, N_{1}, B_{1}, b_{1}, P\right)$ satisfies the same assumption as (G, N, B, b, P).

Clearly $G_{1}=P N_{1}$ with $P \cap N_{1}=1$. We have $D_{1}=P\left(D_{1} \cap N_{1}\right)$. Since $B_{1}{ }^{G}=B$, we get $D_{1} \cap N_{1} \leqq_{G} D \cap N=Q$. Since Q is normal in G, we get $D_{1} \cap N_{1}=D_{1} \cap Q$. So $D_{1} \cap N_{1}$ is central in N_{1} and, since P mormalizes $D_{1} \cap N_{1}, D_{1} \cap N_{1}$ is normal in G_{1}. Thus $D_{1} \cap N_{1}$ is a defect group of b_{1}. Then, since $\left|D_{1} / D_{1} \cap N_{1}\right|=\left|G_{1} / N_{1}\right|, b_{1}$ is G_{1}-invariant. Thus (1.a) is proved.

We prepare a group-theoretical fact, which enables us to reduce the proof to the case of ($G_{1}, N_{1}, B_{1}, b_{1}, P$) by arguments similar to those used in (Reduction).
(1.b) $\quad O^{p}(G) \leqq N_{1}$.

Let x be a p^{\prime}-element of G. Since $P_{1} Q$ is normal in G by assumption and $x \in N,\left[x, P_{1} Q\right] \leqq P_{1} Q \cap N=Q$. Since Q is central in $N,[x, Q]=1$. As is well-known, this implies $\left[x, P_{1} Q\right]=1$. Thus $x \in C_{G}\left(P_{1}\right) \cap N \leqq N_{1}$ and (1.b) follows.

Let X be the Green correspondent of M with respect to $\left(G_{1}, N_{G}(P)=\right.$ $\left.N_{G_{1}}(P), P\right)$. So X belongs to B_{1} by the Nagao-Green theorem [9, Theorem 5.3.12]. Let V_{1} be the unique projective indecomposable $R N_{1}$-module in b_{1} and let S_{1} be the unique simple $k G_{1}$-module in B_{1}. Let W_{1} be an indecomposable summand of $\left(S_{1}\right)_{P}$ with vertex P.
(1) $X^{G} \cong U$.
(2) S_{1} is a direct summand of $S_{G_{1}}$.
(3) If $X_{N_{1}} \cong V_{1}$, then $U_{N} \cong V$.
(4) $W_{1} \cong W_{0}$.
X^{G} is indecomposable by (1.b) and Green's theorem. Then P is a common vertex of X and X^{G}, so (1) follows. By (1)

$$
\operatorname{dim}_{k} \operatorname{Hom}_{G}(U / \pi U, S)=\operatorname{dim}_{k} \operatorname{Hom}_{G_{1}}\left(X / \pi X, S_{G_{1}}\right)
$$

On the other hand, by (1.b) and a repeated use of of Clifford's theorem, we get $S_{G_{1}} \cong m S_{1} \oplus L$ for some integer m and a semi-simple module L not involving S_{1}. Since $\operatorname{Hom}_{G}(U / \pi U, S) \neq 0$, we get $m \neq 0$ and (2) follows. Then $S_{N_{1}}$ involves $\left(S_{1}\right)_{N_{1}}$ and hence $V \mid V_{1}{ }^{N}$ by Nakayama relation. By Green's theorem, we get $V_{1}{ }^{N} \cong V$. Then (3) follows from (1) and Mackey decomposition. (4) follows from (2), cf. the proof of (Reduction).

By (1.c)(3), it suffices to show that X is an extension of V_{1}.
Clearly S_{1} is trivial on P_{1}. Hence by (1.c)(4), W_{0} is trivial on P_{1}. So, if $n=1$, then W_{0} is the trivial module and W has R-rank one. Thus $X=M$ is an extension of $V_{1}=V_{0}$. Thus we may assume $n \geqq 2$. In the following put $\overline{\bar{H}}=H P_{1} / P_{1}$ for any subgroup H of G_{1}. We write \bar{G}_{1} and \bar{N}_{1} for $\overline{G_{1}}$ and $\overline{N_{1}}$, respectively. Let \bar{B}_{0} be the unique block of $\overline{N_{G}(P)}$ dominated by B_{0}. Let \bar{B}_{1} be the unique block of \bar{G}_{1} dominated by B_{1}. Let \bar{b}_{1} be the block of \bar{N}_{1} identified with b_{1} via the natural isomorphism $\bar{N}_{1} \cong N_{1}$. Let \bar{V}_{1} be the module in \bar{b}_{1} identified with V_{1} via the same isomorphism.
(1.d) (1) $\left(\bar{G}_{1}, \bar{N}_{1}, \bar{B}_{1}, \bar{b}_{1}, \bar{P}\right)$ satisfies the same assumption as $(G, N, B, b$, $P)$.
(2) $\bar{B}_{0}^{\bar{G}_{1}}=\bar{B}_{1}$.
(3) \bar{V}_{1} is a unique projective indecomposable $R \bar{N}_{1}$-module in \bar{b}_{1}.

Indeed, (1) follows from (1.a). (2) follows from Lemma 3.11. (3) is clear.
As we have shown, W_{0} is regarded as a \bar{P}-module, which we denote by \bar{W}_{0}. Also, S_{1} is regarded as a \bar{G}_{1}-module, which we denote by \bar{S}_{1}. Then the following is clear:
(1.e) \bar{S}_{1} is a unique simple $k \bar{G}_{1}$-module in $\bar{B}_{1}, \bar{W}_{0} \mid\left(\bar{S}_{1}\right)_{\bar{P}}$, and \bar{P} is a
vertex of \bar{W}_{0}.
For the group $N_{\bar{G}_{1}}(\bar{P})$, the following are clear:
(1) $\overline{N_{G}(P)}=N_{\bar{G}_{1}}(\bar{P})=\bar{P} \times \overline{C_{N}(P)}$.
(2) $\overline{C_{N}(P)}=C_{\bar{N}_{1}}(\bar{P})$.
(3) There is a natural isomorphism: $\overline{C_{N}(P)} \cong C_{N}(P)$.

Let \bar{V}_{0} be the $\overline{C_{N}(P)}$-module identified with V_{0} via the natural isomorphism in (1.f)(3). The following is clear:
(1.g) \bar{V}_{0} is a (unique) projective indecomposable $R C_{\bar{N}_{1}}(\bar{P})$-module in the block of $C_{\bar{N}_{1}}(\bar{P})$ covered by \bar{B}_{0}.

By (1.d)(1) and (1.e), we can choose $W^{\prime} \in \operatorname{Lf}\left(\bar{W}_{0}\right)$. Put $M^{\prime}=W^{\prime} \times$ \bar{V}_{0}. By (1.g), M^{\prime} belongs to \bar{B}_{0}. Let X^{\prime} be the Green correspondent of M^{\prime} with respect to $\left(\bar{G}_{1}, N_{\bar{G}_{1}}(\bar{P}), \bar{P}\right)$. By applying the induction hypothesis to $\left(\bar{G}_{1}, \bar{N}_{1}, \bar{B}_{1}, \bar{b}_{1}, \bar{P}\right)$, we get that X^{\prime} is an extension of \bar{V}_{1}. Thus:
(1.h) $\operatorname{Inf}\left(X^{\prime}\right)$ is an extension of V_{1}.

On the other hand, we have:
(1.i) $\operatorname{Inf}\left(X^{\prime}\right)$ is the Green correspondent of $\operatorname{Inf}\left(M^{\prime}\right)$ with respect to $\left(G_{1}, N_{G}(P), P\right)$.

Now, since $\operatorname{Inf}\left(W^{\prime}\right) \in \operatorname{Ep}(R P)$ and $\operatorname{Inf}\left(W^{\prime}\right)^{*} \cong W_{0} \cong W^{*}$, there exists an $R P$-module L of rank 1 such that $\operatorname{Inf}\left(W^{\prime}\right) \cong L \otimes W$, cf. [2, Proposition 12.1]. Let $\operatorname{Inf}(L)$ be the inflation of L to G_{1} via the natural homomorphism $G_{1} \rightarrow G_{1} / N_{1} \cong P$. Then

$$
\begin{aligned}
\operatorname{Inf}\left(M^{\prime}\right)^{G_{1}} & \cong\left(\operatorname{Inf}\left(W^{\prime}\right) \times V_{0}\right)^{G_{1}} \\
& \cong\left(\operatorname{Inf}(L)_{N_{G}(P)} \otimes M\right)^{G_{1}} \\
& \cong \operatorname{Inf}(L) \otimes M^{G_{1}} \\
& \cong(\operatorname{Inf}(L) \otimes X) \oplus A,
\end{aligned}
$$

where A is an $\mathcal{H}(P)$-projective module. Thus, by (1.i), $\operatorname{Inf}\left(X^{\prime}\right) \cong \operatorname{Inf}(L) \otimes X$. Then, by (1.h), $X_{N_{1}} \cong V_{1}$. Thus the proof is complete in (CASE 1).
(CASE 2) Put $G_{2}=N_{G}\left(P_{1} Q\right)$. Since $Q \triangleleft G$ and P is a cyclic p-group, we have the following.
(2.a) $\quad N_{G}(P) \leqq N_{G}(D) \leqq G_{2}$.

Put $B_{2}=B_{0}^{G_{2}}$ and let b_{2} be a block of $G_{2} \cap N$ covered by B_{2}. We have
$G_{2}=P N_{2}$ with $N_{2}=G_{2} \cap N$.
(2.b) $\quad\left(G_{2}, N_{2}, B_{2}, b_{2}, P\right)$ satisfies the same assumption as (G, N, B, b, P).

It suffices to show that D is a defect group of B_{2}. (Indeed, if this is the case then b_{2} is G_{2}-invariant and $D \cap N_{2}=Q$ is a defect group of b_{2}.) Since $B_{2}=\left(B_{0}^{N_{G}(D)}\right)^{G_{2}}, D$ is contained in a defect group of B_{2}. On the other hand, since $B_{0}{ }^{G}=B$ and $B_{0}^{G_{2}}=B_{2}, B_{2}{ }^{G}=B$. Thus a defect group of B_{2} is contained in a G-conjugate of D. Hence the result follows.

Let X be the Green correspondent of M with respect to $\left(G_{2}, N_{G}(P), P\right)$.
(2.c) $X^{G} \cong U \oplus L$ for a projective $R G$-module L.

Clearly U is the Green correspondent of X with respect to $\left(G, G_{2}, P\right)$ and $X^{G} \cong U \oplus L$, where L is an \mathcal{X}-projective module. Here $\mathcal{X}=\left\{P \cap P^{x} ; x \in\right.$ $\left.G \backslash G_{2}\right\}$. Then it is easy to see $\mathcal{X}=\{1\}$, because P is a cycllc p-group. Thus (2.c) follows.

In the following we put $\bar{H}=H Q / Q$ for any subgroup H of G. By the induction hypothesis applied to $\left(G_{2}, N_{2}, B_{2}, b_{2}, P\right)$ and Corollary 3.18, $X / X I(R Q)$ is indecomposable with vertex \bar{P}. So, as in (2.c), we get the following.
(2.d) $(X / X I(R Q))^{\bar{G}} \cong \bar{U} \oplus \bar{L}$ for an indecomposable $R \bar{G}$-module \bar{U} and a projective $R \bar{G}$-module \bar{L}.

We now show the following, cf. the proof of Lemma III.5.13 in Feit [4].
(2.e) $\operatorname{Hom}_{G, Q}\left(U^{*}, S\right)=0$. Here the left hand side denotes the k-vector space of Q-projective $k G$-homomorphisms from U^{*} to S.

Let $\phi: U^{*} \rightarrow S$ be a Q-projective $k G$-homomorphism. Let I be the injective hull of U^{*} and let $e: U^{*} \rightarrow I$ be the essential homomorphism. Since U_{Q}^{*} is projective, $0 \rightarrow U_{Q}^{*} \rightarrow I$ splits. Take a $k G$-homomorphism $f: I_{Q} \rightarrow U_{Q}^{*}$ such that $f e=\operatorname{id}_{U^{*}}$. Choose a $k Q$-homomorphlsm $\psi: U^{*} \rightarrow S$ such that $\phi=\operatorname{Tr}_{Q}^{G}(\psi)$ and let $g=\operatorname{Tr}_{Q}^{G}(\psi f)$. Then $\phi=g e$. Put $I=\bigoplus_{s} P_{s}$ with P_{s} projective indecomposable. If $e\left(U^{*}\right)$ projects onto some P_{s}, then $P_{s} \mid U^{*}$. This shows U has a projective summand (Feit [4, I.17.11]), a contradiction. Thus $e\left(U^{*}\right) \subseteq I J(k G)$, where $J(k G)$ is the radical of $k G$. Hence $\phi\left(U^{*}\right)=0$, as required.
(2.f) $U / U I(R Q)$ is projective-free.

Indeed,

$$
\begin{aligned}
0 & =\operatorname{Hom}_{G, Q}\left(U^{*}, S\right) \\
& =\operatorname{Hom}_{\bar{G}, \bar{Q}}\left(U^{*} / U^{*} I(k Q), S\right) \quad(\text { by }(2 . \mathrm{e})) \\
& =\operatorname{Hom}_{\bar{G}, \overline{1}}\left(U^{*} / U^{*} I(k Q), S\right)
\end{aligned}
$$

Thus $U^{*} / U^{*} I(k Q)$ is projective-free. By Lemma 3.9,

$$
U^{*} / U^{*} I(k Q) \cong(U / U I(R Q))^{*}
$$

Thus $U / U I(R Q)$ is projective-free.
From (2.c) and Lemma 3.9, we get

$$
(2 . \mathrm{g}) \quad(X / X I(R Q))^{\bar{G}} \cong U / U I(R Q) \oplus L / L I(R Q)
$$

Thus, by (2.f), comparison of (2.d) and (2.g) shows that
(2.h) $U / U I(R Q) \cong \bar{U}$,
which implies that U is an extension of V. Indeed, (2.h) shows that the condition (iii) of Corollary 3.18 holds, so by Corollary 3.18(i), U is an extension of V. This completes the proof of Theorem 4.1.

Let (G, N, B, b, P) be as above. Put $|P|=p^{n}$ and let

$$
J(n)=\left\{j ; j \text { is an integer prime to } p \text { and } 1 \leqq j<p^{n}\right\}
$$

For every $j \in J(n)$, let W_{j} be the unique indecomposable $k P$-module of dimension j. Let $1 \leqq i \leqq t$. Let W_{0} be as above. Define $U_{i}^{\prime}\left(W_{j}\right), j \in J(n)$, and $U_{i}^{\prime}\left(W_{0}\right)$ as above. We have $U_{i}^{\prime}\left(W_{j}\right)_{N} \cong n_{i j} V^{*}$ for an integer $n_{i j}$ (cf. Proposition 3.6^{\prime}). The following shows, in particular, W_{0} (and hence a D-source of S) is determined if we know the Green correspondent of $W_{1} \times Y_{i}{ }^{*}$ with respect to $\left(G, N_{G}(P), P\right)$.

Corollary 4.3. Let $1 \leqq i \leqq t$ and $j \in J(n)$. Then we have
(i) $U_{i}^{\prime}\left(W_{j}\right) \cong \operatorname{Inf}\left(W_{0} \cdot W_{j}\right) \otimes U_{i}^{\prime}\left(W_{0}\right)$.
(ii) $n_{i j} \in J(n)$; in fact, for a fixed i, the map $j \rightarrow n_{i j}$ is a permutation on $J(n)$ of order at most 2 .
(iii) $\operatorname{dim}_{k} W_{0}=n_{i 1}$.

Proof. We note that $W_{0} \wedge \cong W_{0}$.
(i) By Theorem $4.1^{\prime}, U_{i}^{\prime}\left(W_{0}\right)$ is an extension of V^{*}. So the result follows from Lemma 2.2.
(ii) By (i), $n_{i j}=\operatorname{dim}_{k}\left(W_{0} \cdot W_{j}\right)$. So $n_{i j} \in J(n)$. If $n_{i j}=m$, then $W_{0} \cdot W_{j} \cong W_{m}$. Thus $n_{i m}=\operatorname{dim}_{k}\left(W_{0} \cdot W_{m}\right)=\operatorname{dim}_{k}\left(W_{0} \cdot\left(W_{0} \cdot W_{j}\right)\right)=j$.
(iii) We have $n_{i 1}=\operatorname{dim}_{k}\left(W_{0} \cdot W_{1}\right)=\operatorname{dim}_{k}\left(W_{0}\right)$.

This completes the proof.

Acknowledgements. The author would like to express his heartfelt gratitude to the referee for simplifications of the proofs of Theorem 3.13 (and Theorem 3.13') and Theorem 4.1, for suggesting the extensions of the results in Sections 3 and 4, and for critical reading of the manuscript.

Meiji-machi 2-27
Izumi Toki-shi
Gifu 509-5146
Japan

References

[1] E. C. Dade, Endo-permutation modules over p-groups, I, Ann. of Math. 107 (1978), 459-494.
[2] \qquad , Endo-permutation modules over p-groups, II, Ann. of Math. 108 (1978), 317-346.
[3] _, The numbers and heights of characters in blocks, preprint.
[4] W. Feit, The Representation Theory of Finite Groups, North Holland, Amsterdam, 1982.
[5] B. Huppert and N. Blackburn, Finite Groups II, Springer-Verlag, Berlin, 1982.
[6] P. Landrock, Finite group algebras and their modules, Cambridge University Press, Cambridge, 1983.
[7] M. Murai, Block induction, normal subgroups and characters of height zero, Osaka J. Math. 31 (1994), 9-25.
[8] , Normal subgroups and heights of characters, J. Math. Kyoto Univ. 36 (1996), 31-43.
[9] H. Nagao and Y. Tsushima, Representations of Finite Groups, Academic Press, New York, 1989.

[^0]: Received September 11, 1995
 Revised September 18, 1997

