Realizations of factor representations of finite type with emphasis on their characters for wreath products of compact groups with the infinite symmetric group

By
Takeshi Hirai, Etsuko Hirai and Akihito Hora

Abstract

Characters of factor representations of finite type of the wreath products $G=\mathfrak{S}_{\infty}(T)$ of any compact groups T with the infinite symmetric group \mathfrak{S}_{∞} were explicitly given in [HH4]-[HH6], as the extremal continuous positive definite class functions f_{A} on G determined by a parameter A. In this paper, we give a special kind of realization of a factor representation π^{A} associated to f_{A}. This realization is better than the Gelfand-Raikov realization $\pi_{f}, f=f_{A}$, in [GR] at least at the point where a matrix element $\left\langle\pi^{A}(g) v_{0}, v_{0}\right\rangle$ of π^{A} for a cyclic vector v_{0} can be calculated explicitly, which is exactly equal to the character f_{A} (and so π^{A} has a trace-element v_{0}). So the positive-definiteness of class functions f_{A} given in [HH4]-[HH6] is automatically guaranteed, a proof of which occupies the first half of [HH6] in the case of T infinite. The case where T is abelian contains the cases of infinite Weyl groups and the limits $\mathfrak{S}_{\infty}\left(\boldsymbol{Z}_{r}\right)=\lim _{n \rightarrow \infty} G(r, 1, n)$ of complex reflexion groups.

Introduction

Let A be a datum which determines a character f_{A} of the wreath product group $\mathfrak{S}_{\infty}(T)$ of compact group T with the infinite symmetric group \mathfrak{S}_{∞}. We mean by a character an extremal continuous positive definite class function on the group. The precise parametrization through A is recalled in Section 2. The aim of this paper is to construct a nice realization of a factor representation of finite type of $\mathfrak{S}_{\infty}(T)$ for any A which yields f_{A} as its matrix element.

The character formula for \mathfrak{S}_{∞} was established by Thoma in [Tho2]. Later in [VK1], Vershik-Kerov characterized the Thoma parameters as asymptotic frequencies of growing Young diagrams and showed that the characters of \mathfrak{S}_{∞}

[^0]are expressed as pointwise limits of the normalized irreducible characters of \mathfrak{S}_{n}, the symmetric group of degree n. Hirai captured the Thoma characters in [Hir] by using a different kind of approximation procedure. This method has an advantage that it is applicable to general wreath product groups including the infinite Weyl groups of other types. In a series of works [HH1]-[HH6], HiraiHirai obtained a complete character formula for the wreath product $\mathfrak{S}_{\infty}(T)$ of any compact group T with the infinite symmetric group \mathfrak{S}_{∞}.

On the other hand, Vershik-Kerov constructed in [VK2] a factor representation of finite type of \mathfrak{S}_{∞} which realizes the Thoma character as its matrix element. It is useful to give such a nice realization of the factor representation. Among its applications, let us mention here two cases. In [BG], Bożejko-Guţă obtained a class of generalized Brownian motions associated with the Thoma characters. A positive definite function on $\mathcal{P}_{2}(\infty)$, the set of the pair partitions, is needed to introduce a Gaussian state of the algebra generated by the field operators on a certain Fock space. They used the realization due to VershikKerov to extend the Thoma character on \mathfrak{S}_{∞} to $\mathcal{P}_{2}(\infty)$. Another example is due to Biane in [Bia] concerning asymptotic concentration which is observed in irreducible decomposition of some representations of \mathfrak{S}_{n} as $n \rightarrow \infty$. For example, in irreducible decomposition of the regular representation of \mathfrak{S}_{n}, we see that a typical irreducible component occupies a dominant size (the so-called limit shape of Young diagrams) under appropriate scaling limit. Biane showed in [Bia] that such a concentration phenomenon is observed in a sequence of the Vershik-Kerov factor representations and that the typical irreducible component is characterized by using free probability theory. See also [Hor] for a survey on this concentration phenomenon and free probability.

Motivated by these facts in the above paragraphs, we are led to construct those realizations analogous to Vershik-Kerov's for the explicitly given characters of $\mathfrak{S}_{\infty}(T)$. Apart from expected similar applications to the case of \mathfrak{S}_{∞}, we note that our realization gives an alternative simpler proof of the positivedefiniteness for f_{A} in [HH4]-[HH6], which is given at first as a class function on the group by a formula (cf. the right hand side of (2.6) below), and which should be proved to be positive definite and extremal, and then to cover all characters of factor representations of finite type of the group.

The paper is organized as the table of contents. After reviewing the character formula for $\mathfrak{S}_{\infty}(T)$, we construct our realization of the factor representation step by step.

1. Wreath product $\mathfrak{S}_{\infty}(T)$ of a compact group T with the infinite symmetric group \mathfrak{S}_{∞}

1.1. Wreath product $\mathfrak{S}_{\infty}(T)$ of a compact group T with \mathfrak{S}_{∞}

A permutation σ on a set J is called finite if its $\operatorname{support} \operatorname{supp}(\sigma):=\{j \in$ $J ; \sigma(j) \neq j\}$ is finite, and we denote by \mathfrak{S}_{J} the group of all finite permutations on J. The infinite symmetric group \mathfrak{S}_{∞} is the permutation group \mathfrak{S}_{N} on the set of natural numbers \boldsymbol{N}.

Let T be a compact group. We consider a wreath product group $\mathfrak{S}_{J}(T)$ of T with a permutation group \mathfrak{S}_{J} as follows:

$$
\begin{equation*}
\mathfrak{S}_{J}(T)=D_{J}(T) \rtimes \mathfrak{S}_{J}, D_{J}(T)=\prod_{j \in J}^{\prime} T_{j}, \quad T_{j}=T(j \in J) \tag{1.1}
\end{equation*}
$$

where the symbol Π^{\prime} means the restricted direct product or, for $d=\left(t_{j}\right)_{j \in J} \in$ $D_{J}(T), t_{i}=e_{T}$ the identity element of T, except a finite number of $i \in J$. An element $\sigma \in \mathfrak{S}_{J}$ acts on $D_{J}(T)$ as

$$
\begin{equation*}
D_{J}(T) \ni d=\left(t_{j}\right)_{j \in J} \stackrel{\sigma}{\longmapsto} \sigma(d)=\left(t_{j}^{\prime}\right)_{j \in J} \in D_{J}(T), \tag{1.2}
\end{equation*}
$$

where $t_{j}^{\prime}=t_{\sigma^{-1}(j)}(j \in J)$. Identifying groups $D_{J}(T)$ and \mathfrak{S}_{J} with their images in the semidirect product $\mathfrak{S}_{J}(T)$, we have $\sigma d \sigma^{-1}=\sigma(d)$. The groups $\mathfrak{S}_{I_{n}}, D_{I_{n}}(T)$ and $\mathfrak{S}_{I_{n}}(T)$ for $I_{n}=\{1,2, \ldots, n\} \subset \boldsymbol{N}$ are denoted by $\mathfrak{S}_{n}, D_{n}(T)$ and $\mathfrak{S}_{n}(T)$ respectively, then $G:=\mathfrak{S}_{\infty}(T)$ is an inductive limit of compact groups $G_{n}:=\mathfrak{S}_{n}(T)=D_{n}(T) \rtimes \mathfrak{S}_{n}$. An inductive system $\left(H_{n}\right)_{n \geq 1}$ is called in [TSH] a countable $L C G$ inductive system if each H_{n} is locally compact and each homomorphism $H_{n} \rightarrow H_{n+1}$ is homeomorphic. Introducing in the inductive limit $H:=\lim _{n \rightarrow \infty} H_{n}$ the inductive limit topology $\tau_{i n d}$, we get a topological group [TSH, Theorem 5.7], and it has sufficiently many continuous positive definite functions and so continuous unitary representations [TSH, Section 5]. The present system $\left(G_{n}\right)_{n \geq 1}$ is an example of a countable LCG inductive system.

When T is a non-trivial finite group, the topology $\tau_{i n d}$ on $G=\mathfrak{S}_{\infty}(T)$ is discrete, and all the characters of factor representations of finite type were given in [HH1]-[HH2].

When T is infinite, $\tau_{i n d}$ is neither discrete nor locally compact, and all such characters for G were given in [HH4] and [HH6].

A natural subgroup of $G=\mathfrak{S}_{\infty}(T)$ is given as a wreath product of T with the alternating group \mathfrak{A}_{∞} as $G^{\prime}:=\mathfrak{A}_{\infty}(T)=D_{\infty}(T) \rtimes \mathfrak{A}_{\infty}$.

In the case where T is abelian, let $S \subset T$ be a subgroup, and assume that S is open in T or equivalently the index $[T: S]$ is finite. We define a subgroup $G^{S}:=\mathfrak{S}_{\infty}^{S}(T)=D_{\infty}^{S}(T) \rtimes \mathfrak{S}_{\infty}$ as follows: put $P(d)=\prod_{j \in N} t_{j}$ for $d=\left(t_{j}\right)_{j \in N} \in D_{\infty}(T)$, and

$$
\begin{equation*}
\mathfrak{S}_{\infty}^{S}(T):=D_{\infty}^{S}(T) \rtimes \mathfrak{S}_{\infty} \tag{1.3}
\end{equation*}
$$

with $D_{\infty}^{S}(T):=\left\{d=\left(t_{j}\right)_{j \in N} ; P(d) \in S\right\}$. Then G^{S} is a normal subgroup with a finite index $\left[G: G^{S}\right]=[T: S]$.

For the groups G^{\prime}, G^{S} and $G^{S}:=\mathfrak{A}_{\infty}^{S}(T):=D_{\infty}^{S}(T) \rtimes \mathfrak{A}_{\infty}$, there hold also the similar character formulas for factor representations of finite type.

This kind of groups $\mathfrak{S}_{\infty}(T)$ and $\mathfrak{S}_{\infty}^{\left\{e_{T}\right\}}(T)$ with T abelian, contain the infinite Weyl groups of classical types, $W_{\mathbf{A}_{\infty}}=\mathfrak{S}_{\infty}$ of type $\mathbf{A}_{\infty}, W_{\mathbf{B}_{\infty}}=$ $\mathfrak{S}_{\infty}\left(\boldsymbol{Z}_{2}\right)$ of type $\mathbf{B}_{\infty} / \mathbf{C}_{\infty}$, and $W_{\mathbf{D}_{\infty}}=\mathfrak{S}_{\infty}^{e}\left(\boldsymbol{Z}_{2}\right)$ of type \mathbf{D}_{∞}, and moreover the inductive limits $\mathfrak{S}_{\infty}\left(\boldsymbol{Z}_{r}\right)=\lim _{n \rightarrow \infty} G(r, 1, n)$ of complex reflexion groups $G(r, 1, n)=\mathfrak{S}_{n}\left(\boldsymbol{Z}_{r}\right)(\mathrm{cf} .[\mathrm{AK}],[\mathrm{Kaw}],[\mathrm{Sho}])$.

1.2. Standard decomposition of elements and conjugacy classes

An element $g=(d, \sigma) \in G=\mathfrak{S}_{\infty}(T)$ is called basic in the following two cases:

CASE 1: $\quad \sigma$ is cyclic and $\operatorname{supp}(d):=\left\{j \in N ; t_{j} \neq e_{T}\right\} \subset \operatorname{supp}(\sigma) ;$
CASE 2: $\quad \sigma=\mathbf{1}$ and for $d=\left(t_{i}\right)_{i \in \boldsymbol{N}}, t_{q} \neq e_{T}$ only for one $q \in \boldsymbol{N}$.
The element $(d, \mathbf{1})$ in Case 2 is denoted by ξ_{q}, and $\operatorname{put} \operatorname{supp}\left(\xi_{q}\right):=\operatorname{supp}(d)=$ $\{q\}$.

For a cyclic permutation σ of ℓ integers, we define its length as $\ell(\sigma)=\ell$, and for the identity permutation $\mathbf{1}$, put $\ell(\mathbf{1})=1$ for convenience. In this connection, ξ_{q} is also denoted by $\left(t_{q},(q)\right)$ with a trivial cyclic permutation (q) of length 1 . In Cases 1 and 2, put $\ell(g)=\ell(\sigma)$ for $g=(d, \sigma)$, and $\ell\left(\xi_{q}\right)=1$.

An arbitrary element $g=(d, \sigma) \in G$, is expressed as a product of basic elements as

$$
\begin{equation*}
g=\xi_{q_{1}} \xi_{q_{2}} \cdots \xi_{q_{r}} g_{1} g_{2} \cdots g_{m} \tag{1.4}
\end{equation*}
$$

with $g_{j}=\left(d_{j}, \sigma_{j}\right)$ in Case 1, in such a way that the supports of these components, $q_{1}, q_{2}, \ldots, q_{r}$, and $\operatorname{supp}\left(g_{j}\right)=\operatorname{supp}\left(\sigma_{j}\right)(1 \leq j \leq m)$, are mutually disjoint. This expression of g is unique up to the orders of $\xi_{q_{k}}$'s and g_{j} 's, and is called standard decomposition of g. Note that $\ell\left(\xi_{q_{k}}\right)=1$ for $1 \leq k \leq r$ and $\ell\left(g_{j}\right)=\ell\left(\sigma_{j}\right) \geq 2$ for $1 \leq j \leq m$, and that, for \mathfrak{S}_{∞}-components, $\sigma=\sigma_{1} \sigma_{2} \cdots \sigma_{m}$ gives the cycle decomposition of σ.

To write down conjugacy class of g, we introduce some notations. Denote by $[t]$ the conjugacy class of $t \in T$, and by T / \sim the set of all conjugacy classes of T, and $t \sim t^{\prime}$ denotes that $t, t^{\prime} \in T$ are mutually conjugate in T. For a basic component $g_{j}=\left(d_{j}, \sigma_{j}\right)$ of g, let $\sigma_{j}=\left(\begin{array}{llll}i_{j, 1} & i_{j, 2} & \ldots & i_{j, \ell_{j}}\end{array}\right)$ and put $K_{j}:=\operatorname{supp}\left(\sigma_{j}\right)=\left\{i_{j, 1}, i_{j, 2}, \ldots, i_{j, \ell_{j}}\right\}$ with $\ell_{j}=\ell\left(\sigma_{j}\right)$. For $d_{j}=\left(t_{i}\right)_{i \in K_{j}}$, we put

$$
\begin{equation*}
P_{\sigma_{j}}\left(d_{j}\right):=\left[t_{\ell_{j}}^{\prime} t_{\ell_{j}-1}^{\prime} \cdots t_{2}^{\prime} t_{1}^{\prime}\right] \in T / \sim \quad \text { with } t_{k}^{\prime}=t_{i_{j, k}}\left(1 \leq k \leq \ell_{j}\right) \tag{1.5}
\end{equation*}
$$

Lemma 1.1. Let $\sigma \in \mathfrak{S}_{\infty}$ be a cycle, and put $K=\operatorname{supp}(\sigma)$ and $G_{K}=$ $\mathfrak{S}_{K}(T)$.
(i) An element $g=(d, \sigma) \in G_{K}$ is conjugate in it to $g^{\prime}=\left(d^{\prime}, \sigma\right) \in G_{K}$ with $d^{\prime}=\left(t_{i}^{\prime}\right)_{i \in K}, t_{i}^{\prime}=e_{T}\left(i \neq i_{0}\right),\left[t_{i_{0}}^{\prime}\right]=P_{\sigma}(d)$ for any $i_{0} \in K$ arbitrarily fixed.
(ii) Identify $\tau \in \mathfrak{S}_{\infty}$ with its image in $G=\mathfrak{S}_{\infty}(T)$. Then we have, for $g=(d, \sigma)$,

$$
\tau g \tau^{-1}=\left(\tau(d), \tau \sigma \tau^{-1}\right)\left(=:\left(d^{\prime}, \sigma^{\prime}\right)(p u t)\right)
$$

and $P_{\sigma^{\prime}}\left(d^{\prime}\right)=P_{\sigma}(d)$.
Theorem 1.2. For an element $g \in G=\mathfrak{S}_{\infty}(T)$, let its standard decomposition into basic elements be $g=\xi_{q_{1}} \xi_{q_{2}} \cdots \xi_{q_{r}} g_{1} g_{2} \cdots g_{m}$ in (1.4), with $\xi_{q_{k}}=\left(t_{q_{k}},\left(q_{k}\right)\right)$ and $g_{j}=\left(d_{j}, \sigma_{j}\right), \sigma_{j}$ cyclic, $\operatorname{supp}\left(d_{j}\right) \subset \operatorname{supp}\left(\sigma_{j}\right)$. Then the conjugacy class of g is determined by

$$
\begin{equation*}
\left[t_{q_{k}}\right] \in T / \sim \quad(1 \leq k \leq r) \quad \text { and } \quad\left(P_{\sigma_{j}}\left(d_{j}\right), \ell\left(\sigma_{j}\right)\right) \quad(1 \leq j \leq m) \tag{1.6}
\end{equation*}
$$

where $P_{\sigma_{j}}\left(d_{j}\right) \in T / \sim$ and $\ell\left(\sigma_{j}\right) \geq 2$.

1.3. The case where T is abelian

Assume T be abelian. Then the set T / \sim of conjugacy classes is equal to T itself. Take a $g \in G$ and take its standard decompositon (1.4). For $g_{j}=\left(d_{j}, \sigma_{j}\right)$, put $g_{j}^{\prime}:=\left(d_{j}^{\prime}, \sigma_{j}\right)$, where $d_{j}^{\prime}=\left(t_{i}^{\prime}\right)_{i \in N}$ with $t_{i_{0}}^{\prime}=P\left(d_{j}\right)=\prod_{i \in K_{j}} t_{i}$ for some $i_{0} \in K_{j}:=\operatorname{supp}\left(\sigma_{j}\right)$, and $t_{i}^{\prime}=e_{T}$ elsewhere.

Lemma 1.3. Let T be abelian. For a $g \in G=\mathfrak{S}_{\infty}(T)$, let its standard decomposition be $g=\xi_{q_{1}} \xi_{q_{2}} \cdots \xi_{q_{r}} g_{1} g_{2} \cdots g_{m}$ in (1.4). Define $g_{j}^{\prime}(1 \leq j \leq m)$ as above and put $g^{\prime}=\xi_{q_{1}} \xi_{q_{2}} \cdots \xi_{q_{r}} g_{1}^{\prime} g_{2}^{\prime} \cdots g_{m}^{\prime}$. Then, g and g^{\prime} are mutually conjugate in G.

Corollary 1.4. A complete set of parameters of the conjugacy classes of non-trivial elements $g \in G=\mathfrak{S}_{\infty}(T)$ is given by

$$
\begin{equation*}
\left\{t_{1}^{\prime}, t_{2}^{\prime}, \ldots, t_{r}^{\prime}\right\} \quad \text { and } \quad\left\{\left(u_{j}, \ell_{j}\right) ; 1 \leq j \leq m\right\} \tag{1.7}
\end{equation*}
$$

where $t_{k}^{\prime}=t_{q_{k}} \in T^{*}:=T \backslash\left\{e_{T}\right\}, u_{j}=P\left(d_{j}\right) \in T, \ell_{j} \geq 2$, and $r+m>0$.
2. Characters of $\mathfrak{S}_{\infty}(T)$ with T compact and of $\mathfrak{S}_{\infty}^{S}(T)$ with $S \subset T$ abelian compact

2.1. Character formula for factor representations of finite type of $\mathfrak{S}_{\infty}(T)$

Let \widehat{T} be the dual of T consisting of all equivalence classes of continuous irreducible unitary representations ($=$ IURs). We identify every equivalence class with one of its representative. Thus $\zeta \in \widehat{T}$ is an IUR and denote by χ_{ζ} its character: $\chi_{\zeta}(t)=\operatorname{tr}(\zeta(t))(t \in T)$, then $\operatorname{dim} \zeta=\chi_{\zeta}\left(e_{T}\right)$.

For a $g \in G=\mathfrak{S}_{\infty}(T)$, let its standard decomposition into basic components be

$$
\begin{equation*}
g=\xi_{q_{1}} \xi_{q_{2}} \cdots \xi_{q_{r}} g_{1} g_{2} \cdots g_{m} \tag{2.1}
\end{equation*}
$$

where the supports of components, $q_{1}, q_{2}, \ldots, q_{r}$, and $\operatorname{supp}\left(g_{j}\right):=\operatorname{supp}\left(\sigma_{j}\right)$ $(1 \leq j \leq m)$, are mutually disjoint. Furthermore, $\xi_{q_{k}}=\left(t_{q_{k}},\left(q_{k}\right)\right), t_{q_{k}} \neq e_{T}$, with $\ell\left(\xi_{q_{k}}\right)=1$ for $1 \leq k \leq r$, and σ_{j} is a cycle of length $\ell\left(\sigma_{j}\right) \geq 2$ and $\operatorname{supp}\left(d_{j}\right) \subset K_{j}=\operatorname{supp}\left(\sigma_{j}\right)$. For $d_{j}=\left(t_{i}\right)_{i \in K_{j}} \in D_{K_{j}}(T) \hookrightarrow D_{\infty}(T)$, put $P_{\sigma_{j}}\left(d_{j}\right)$ as in (1.5).

For one-dimensional charcters of \mathfrak{S}_{∞}, we introduce simple notation as

$$
\begin{equation*}
\chi_{\varepsilon}(\sigma):=\operatorname{sgn}_{\mathfrak{S}}(\sigma)^{\varepsilon} \quad\left(\sigma \in \mathfrak{S}_{\infty} ; \varepsilon=0,1\right) \tag{2.2}
\end{equation*}
$$

As a parameter for characters of G, we prepare a set

$$
\begin{equation*}
\alpha_{\zeta, \varepsilon}(\zeta \in \widehat{T}, \varepsilon \in\{0,1\}) \quad \text { and } \quad \mu=\left(\mu_{\zeta}\right)_{\zeta \in \widehat{T}} \tag{2.3}
\end{equation*}
$$

of decreasing sequences of non-negative real numbers $\alpha_{\zeta, \varepsilon}=\left(\alpha_{\zeta, \varepsilon, p}\right)_{p \in \boldsymbol{N}}$,

$$
\alpha_{\zeta, \varepsilon, 1} \geq \alpha_{\zeta, \varepsilon, 2} \geq \alpha_{\zeta, \varepsilon, 3} \geq \cdots \geq 0
$$

and a set of non-negative $\mu_{\zeta} \geq 0(\zeta \in \widehat{T})$, which altogether satisfy the condition

$$
\begin{align*}
\sum_{\zeta \in \widehat{T}} \sum_{\varepsilon \in\{0,1\}}\left\|\alpha_{\zeta, \varepsilon}\right\|+\|\mu\| & =1 \tag{2.4}\\
\text { with }\left\|\alpha_{\zeta, \varepsilon}\right\|=\sum_{p \in N} \alpha_{\zeta, \varepsilon, p}, \quad\|\mu\| & =\sum_{\zeta \in \widehat{T}} \mu_{\zeta} .
\end{align*}
$$

Theorem 2.1 ([HH4]-[HH6]). Let $G=\mathfrak{S}_{\infty}(T)$ be a wreath product group of a compact group T with \mathfrak{S}_{∞}. Then, for a parameter

$$
\begin{equation*}
A:=\left(\left(\alpha_{\zeta, \varepsilon}\right)_{(\zeta, \varepsilon) \in \widehat{T} \times\{0,1\}} ; \mu\right) \tag{2.5}
\end{equation*}
$$

in (2.3)-(2.4), the following formula determines a character f_{A} of G : for an element $g \in G$, let (2.1) be its standard decomposition, then

$$
\begin{align*}
f_{A}(g)= & \prod_{1 \leq k \leq r}\left\{\sum_{\zeta \in \widehat{T}}\left(\sum_{\varepsilon \in\{0,1\}} \sum_{p \in N} \frac{\alpha_{\zeta, \varepsilon, p}}{\operatorname{dim} \zeta}+\frac{\mu_{\zeta}}{\operatorname{dim} \zeta}\right) \chi_{\zeta}\left(t_{q_{k}}\right)\right\} \tag{2.6}\\
& \times \prod_{1 \leq j \leq m}\left\{\sum_{\zeta \in \widehat{T}}\left(\sum_{\varepsilon \in\{0,1\}} \sum_{p \in \boldsymbol{N}}\left(\frac{\alpha_{\zeta, \varepsilon, p}}{\operatorname{dim} \zeta}\right)^{\ell\left(\sigma_{j}\right)} \chi_{\varepsilon}\left(\sigma_{j}\right)\right) \chi_{\zeta}\left(P_{\sigma_{j}}\left(d_{j}\right)\right)\right\}
\end{align*}
$$

where $\chi_{\varepsilon}\left(\sigma_{j}\right)=\operatorname{sgn}_{\mathfrak{S}}\left(\sigma_{j}\right)^{\varepsilon}=(-1)^{\varepsilon\left(\ell\left(\sigma_{j}\right)-1\right)}$.
Conversely any character of G is given in the form of f_{A}.
Remark 2.1. The case of \mathfrak{S}_{∞} itself can be considered as a special case of $\mathfrak{S}_{\infty}(T)$ with the trivial $T=\left\{e_{T}\right\}$. In this case, we have in [Tho2] a parameter (α, β) with decreasing sequences of non-negative real numbers $\alpha=$ $\left(\alpha_{p}\right)_{p \in N}, \beta=\left(\beta_{p}\right)_{p \in N}$ satisfying $\|\alpha\|+\|\beta\| \leq 1$. Take the trivial representation $\mathbf{1}_{T}$ of $T=\left\{e_{T}\right\}$ superfluously and put $\mu=\left(\mu_{\mathbf{1}_{T}}\right)$ with $\mu_{\mathbf{1}_{T}}=1-\|\alpha\|-\|\beta\|$. Then we have the corresponding parameter $A=\left(\left(\alpha_{\zeta, \varepsilon}\right)_{(\zeta, \varepsilon) \in \widehat{T} \times\{0,1\}} ; \mu\right)$, satisfying the equality condition (2.4).

Remark 2.2. Assume T be finite. Put $\widehat{T}^{*}:=\widehat{T} \backslash\left\{\mathbf{1}_{T}\right\}$ with the trivial representation $\mathbf{1}_{T}$ of T and $T^{*}=T \backslash\left\{e_{T}\right\}$. Then, $\sum_{\zeta \in \widehat{T}}(\operatorname{dim} \zeta) \chi_{\zeta}=0$ and $1=\chi_{\mathbf{1}_{T}}=-\sum_{\zeta \in \widehat{T}^{*}}(\operatorname{dim} \zeta) \chi_{\zeta}$ on T^{*}. By this linear dependence between characters χ_{ζ}, we may accept the parameter A for f_{A} not necessarily under the equality condition (2.4) but under the weaker inequality condition $\sum_{\zeta \in \widehat{T}} \sum_{\varepsilon \in\{0,1\}}\left\|\alpha_{\zeta, \varepsilon}\right\|+\|\mu\| \leq 1$, loosing the validity of the formula of f_{A} for $t_{q_{k}}=e_{T}$ and accordingly for $g=e$ (cf. [HH2]). However we insist here to keep the condition (2.4), called (MAX) condition, and keep the uniqueness of the parameter A and the validity of the character formula even for $t_{q_{k}}=e_{T}$ and $g=e$.

Remark 2.3. For a $g=(d, \sigma) \in G=D_{\infty}(T) \rtimes \mathfrak{S}_{\infty}$, put $\operatorname{supp}(g):=$ $\operatorname{supp}(\sigma) \subset \boldsymbol{N}$. Let $K(G)$ denote the set of continuous positive definite class functions on G and $K_{1}(G)$ the normalized ones in $K(G)$. An $f \in K(G)$ is called factorizable if $f\left(g_{1} g_{2}\right)=f\left(g_{1}\right) f\left(g_{2}\right)$ for any g_{1}, g_{2} such that $\operatorname{supp}\left(g_{1}\right) \cap$ $\operatorname{supp}\left(g_{2}\right)=\emptyset$. The set of all factorizable $f \in K_{1}(G)$ is denoted by $F(G)$, and that of all extremal $f \in K_{1}(G)$ or characters of G is denoted by $E(G)$. It is proved in [HH6, Section 4] that $f \in K_{1}(G)$ is extremal if and only if it is factorizable, that is, $E(G)=F(G)$. This important fact helps us to analyse situations and to calculate matrix elements in the succeeding sections.

Note that, in the first half of $[\mathrm{HH} 6]$, it is proved that the class function f_{A} given by the formula (2.6) is positive definite if the parameter A in (2.5) is given by (2.3)-(2.4), and that, in the second half of [HH6], it is proved that the set $E^{\prime}(G)$ of such functions f_{A} is exactly equal to the set $F(G)$ of normalized factorizable positive definite class functions: $E^{\prime}(G)=F(G)$. Since $E(G)=F(G)$, we have $E^{\prime}(G)=F(G)=E(G)$.
2.2. Characters of $\mathfrak{S}_{\infty}(T)=D_{\infty}(T) \rtimes \mathfrak{S}_{\infty}, T$ abelian

When T is abelian, the general character formula (2.6) for $G=\mathfrak{S}_{\infty}(T)=$ $D_{\infty}(T) \rtimes \mathfrak{S}_{\infty}$ with a compact group T has a simplified form. In this abelian case, \widehat{T} is nothing but the dual group consisting of all one-dimensional characters of T, and for each $\zeta \in \widehat{T}$, its character χ_{ζ} is identified with ζ itself.

For a $g \in G$, let its standard decomposition be as in (2.1),

$$
g=\xi_{q_{1}} \xi_{q_{2}} \cdots \xi_{q_{r}} g_{1} g_{2} \cdots g_{m}
$$

with $\xi_{q_{k}}=\left(t_{q_{k}},\left(q_{k}\right)\right), t_{q_{k}} \neq e_{T}$, for $1 \leq k \leq r$, and $g_{j}=\left(d_{j}, \sigma_{j}\right)$ for $1 \leq j \leq m$. Put $K_{j}=\operatorname{supp}\left(\sigma_{j}\right)$, and for $d_{j}=\left(t_{i}\right)_{i \in K_{j}} \in D_{K_{j}}(T) \hookrightarrow D_{\infty}(T)$, put

$$
\begin{equation*}
P_{K_{j}}\left(d_{j}\right)=\prod_{i \in K_{j}} t_{i}, \quad \zeta\left(d_{j}\right):=\zeta\left(P_{K_{j}}\left(d_{j}\right)\right)=\prod_{i \in K_{j}} \zeta\left(t_{i}\right) . \tag{2.7}
\end{equation*}
$$

As a parameter for characters of G, we prepare a set

$$
\begin{equation*}
\alpha_{\zeta, \varepsilon}(\zeta \in \widehat{T}, \varepsilon \in\{0,1\}) \quad \text { and } \quad \mu=\left(\mu_{\zeta}\right)_{\zeta \in \widehat{T}} \tag{2.8}
\end{equation*}
$$

of decreasing sequences of non-negative real numbers $\alpha_{\zeta, \varepsilon}=\left(\alpha_{\zeta, \varepsilon, p}\right)_{p \in \boldsymbol{N}}$, and a set of non-negative $\mu_{\zeta} \geq 0(\zeta \in \widehat{T})$, which satisfy the condition

$$
\begin{equation*}
\sum_{\zeta \in \widehat{T}} \sum_{\varepsilon \in\{0,1\}}\left\|\alpha_{\zeta, \varepsilon}\right\|+\|\mu\|=1 \tag{2.9}
\end{equation*}
$$

Theorem 2.2 ([HH1], [HH4]-[HH6]). Let $G=\mathfrak{S}_{\infty}(T)$ be a wreath product group of a compact abelian group T with \mathfrak{S}_{∞}. Then, for a parameter $A:=\left(\left(\alpha_{\zeta, \varepsilon}\right)_{(\zeta, \varepsilon) \in \widehat{T} \times\{0,1\}} ; \mu\right)$ in (2.8)-(2.9), the following formula determines a character f_{A} of G : for an element $g \in G$, let its standard decomposition be
as above, then

$$
\begin{align*}
f_{A}(g)= & \prod_{1 \leq k \leq r}\left\{\sum_{\zeta \in \widehat{T}}\left(\sum_{\varepsilon \in\{0,1\}} \sum_{p \in N} \alpha_{\zeta, \varepsilon, p}+\mu_{\zeta}\right) \zeta\left(t_{q_{k}}\right)\right\} \\
& \times \prod_{1 \leq j \leq m}\left\{\sum_{\zeta \in \widehat{T}}\left(\sum_{\varepsilon \in\{0,1\}} \sum_{p \in \boldsymbol{N}}\left(\alpha_{\zeta, \varepsilon, p}\right)^{\ell\left(\sigma_{j}\right)} \cdot \chi_{\varepsilon}\left(\sigma_{j}\right)\right) \zeta\left(d_{j}\right)\right\} \tag{2.10}
\end{align*}
$$

where $\chi_{\varepsilon}\left(\sigma_{j}\right)=\operatorname{sgn}_{\mathfrak{S}}\left(\sigma_{j}\right)^{\varepsilon}=(-1)^{\varepsilon\left(\ell\left(\sigma_{j}\right)-1\right)}$, and $\zeta\left(d_{j}\right)$ as in (2.7).
Conversely any character of G is given in the form of f_{A}.
2.3. Characters of the subgroup $\mathfrak{S}_{\infty}^{S}(T) \subset \mathfrak{S}_{\infty}(T)$ with $S \subset T$ abelian

Let T be abelian and $S \subset T$ an open subgroup. Let $G^{S}=\mathfrak{S}_{\infty}^{S}(T)=$ $D_{\infty}^{S}(T) \rtimes \mathfrak{S}_{\infty}$ be the natural subgroup defined in (1.3). Then it has a general character formula similar to that for $G=\mathfrak{S}_{\infty}(T)$.

Take an element $g \in G^{S}=\mathfrak{S}_{\infty}^{S}(T)$ and let its standard decomposition as an element of $G \supset G^{S}$ be $g=\xi_{q_{1}} \xi_{q_{2}} \cdots \xi_{q_{r}} g_{1} g_{2} \cdots g_{m}$ with $\xi_{q_{k}}=\left(t_{q_{k}},\left(q_{k}\right)\right)$ and $g_{j}=\left(d_{j}, \sigma_{j}\right), d_{j}=\left(t_{i}\right)_{i \in K_{j}}, K_{j}=\operatorname{supp}\left(\sigma_{j}\right)$. Note that each component $\xi_{q_{k}}$ does not necessarily belong to G^{S}, and that the component $g_{j}=\left(d_{j}, \sigma_{j}\right)$ belongs to G^{S} if and only if $P\left(d_{j}\right)=\prod_{i \in K_{j}} t_{i} \in S$. Even so, we have the following character formula for the subgroup G^{S}, deduced from Theorem 2.2.

Theorem 2.3 ([HH5], [HH6]). Let $G^{S}=\mathfrak{S}_{\infty}^{S}(T)$ be the subgroup of $G=\mathfrak{S}_{\infty}(T)$ given by (1.3) with T abelian and compact and $S \subset T$ an open subgroup. Then, for a parameter $A=\left(\left(\alpha_{\zeta, \varepsilon}\right)_{(\zeta, \varepsilon) \in \widehat{T} \times\{0,1\}} ; \mu\right)$ in $(2.8)-(2.9)$, the following formula determines a character f_{A}^{S} of G^{S} : for an element $g \in G^{S}$, let its standard decomposition be as above, then

$$
\begin{align*}
f_{A}^{S}(g)= & \prod_{1 \leq k \leq r}\left\{\sum_{\zeta \in \widehat{T}}\left(\sum_{\varepsilon \in\{0,1\}} \sum_{p \in \boldsymbol{N}} \alpha_{\zeta, \varepsilon, p}+\mu_{\zeta}\right) \zeta\left(t_{q_{k}}\right)\right\} \tag{2.11}\\
& \times \prod_{1 \leq j \leq m}\left\{\sum_{\zeta \in \widehat{T}}\left(\sum_{\varepsilon \in\{0,1\}} \sum_{p \in \boldsymbol{N}}\left(\alpha_{\zeta, \varepsilon, p}\right)^{\ell\left(\sigma_{j}\right)} \cdot \chi_{\varepsilon}\left(\sigma_{j}\right)\right) \zeta\left(d_{j}\right)\right\}
\end{align*}
$$

where $\chi_{\varepsilon}\left(\sigma_{j}\right)=\operatorname{sgn}_{\mathfrak{S}}\left(\sigma_{j}\right)^{\varepsilon}=(-1)^{\varepsilon\left(\ell\left(\sigma_{j}\right)-1\right)}$, and $\zeta\left(d_{j}\right)$ as in (2.7).
Conversely any character of G^{S} is given in the form of f_{A}^{S}.
For the proofs, see [HH5, Section 17] and [HH6, Section 14].
The parameter $A=\left(\left(\alpha_{\zeta, \varepsilon}\right)_{(\zeta, \varepsilon) \in \widehat{T} \times\{0,1\}} ; \mu\right)$ for f_{A}^{S} is not unique even under the normalization condition (2.9). Define a translation $R\left(\zeta_{0}\right)$ on A by an element $\zeta_{0} \in \widehat{T}$ as

$$
\begin{equation*}
R\left(\zeta_{0}\right) A:=\left(\left(\alpha_{\zeta, \varepsilon}^{\prime}\right)_{(\zeta, \varepsilon) \in \widehat{T} \times\{0,1\}} ; R\left(\zeta_{0}\right) \mu\right) \tag{2.12}
\end{equation*}
$$

with $\quad \alpha_{\zeta, \varepsilon}^{\prime}=\alpha_{\zeta \zeta_{0}{ }^{-1}, \varepsilon}((\zeta, \varepsilon) \in \widehat{T} \times\{0,1\}) ; \quad R\left(\zeta_{0}\right) \mu=\left(\mu_{\zeta}^{\prime}\right)_{\zeta \in \widehat{T}}, \mu_{\zeta}^{\prime}=\mu_{\zeta \zeta_{0}{ }^{-1}}$.

Proposition 2.4. Assume that two parameters for characters

$$
A=\left(\left(\alpha_{\zeta, \varepsilon}\right)_{(\zeta, \varepsilon) \in \widehat{T} \times\{0,1\}} ; \mu\right) \quad \text { and } \quad A^{\prime}=\left(\left(\alpha_{\zeta, \varepsilon}^{\prime}\right)_{(\zeta, \varepsilon) \in \widehat{T} \times\{0,1\}} ; \mu^{\prime}\right)
$$

both satisfy the normalization condition (2.9). Then, they determine the same character on G^{S}, or $f_{A}^{S}=f_{A^{\prime}}^{S}$, if and only if $A^{\prime}=R\left(\zeta_{0}\right) A$ for some $\zeta_{0} \in \widehat{T}$ which is trivial on S.

In this case, as characters on the bigger group $G \supset G^{S}$, we have $f_{A^{\prime}}(g)=$ $\pi_{\zeta_{0}}(g) \cdot f_{A}(g)(g \in G)$, where $\pi_{\zeta_{0}}$ is a one-dimensional character of G defined as $\pi_{\zeta_{0}}(g):=\zeta_{0}(P(d))$ for $g=(d, \sigma) \in G$. Thus each character of finite type on G^{S} has at most and in general $|T / S|$ number of different extensions as characters on G.

3. Special realization of factor representations of $\mathfrak{S}_{\infty}(T), T$ abelian compact

Let T be abelian compact. Take a parameter $A=\left(\left(\alpha_{\zeta, \varepsilon}\right)_{(\zeta, \varepsilon) \in \widehat{T} \times\{0,1\}} ; \mu\right)$ in (2.8)-(2.9), and consider the character f_{A} in (2.10) of $G=\mathfrak{S}_{\infty}(T)$ corresponding to it. In this section, we construct a factor representation of finite type π^{A} of $G=\mathfrak{S}_{\infty}(T)$ such that in its representation space \mathcal{H}^{A} there exists a cyclic unit vector w_{0} such that $\left\langle\pi^{A}(g) w_{0}, w_{0}\right\rangle=f_{A}(g)(g \in G)$. So w_{0} is a trace-element of π^{A}.

First put

$$
\begin{equation*}
\mathcal{X}=\left(\bigsqcup_{(\zeta, \varepsilon) \in \widehat{T} \times\{0,1\}} \mathcal{N}_{\zeta, \varepsilon}\right) \bigsqcup\left(\bigsqcup_{\zeta \in \widehat{T}} \Xi_{\zeta}\right) \tag{3.1}
\end{equation*}
$$

where $\mathcal{N}_{\zeta, \varepsilon}=\{(\zeta, \varepsilon, p) ; p \in \boldsymbol{N}\} \cong \boldsymbol{N}, \Xi_{\zeta}=\left\{(\zeta, \xi) ; \xi \in\left[0, \mu_{\zeta}\right]\right\} \cong\left[0, \mu_{\zeta}\right](\zeta \in$ $\widehat{T})$, and put $\mathcal{X}_{\text {disc }}=\bigsqcup_{(\zeta, \varepsilon) \in \widehat{T} \times\{0,1\}} \mathcal{N}_{\zeta, \varepsilon}$ and $\mathcal{X}_{\text {cont }}=\bigsqcup_{\zeta \in \widehat{T}} \Xi_{\zeta}$, then $\mathcal{X}=$ $\mathcal{X}_{\text {disc }} \bigsqcup \mathcal{X}_{\text {cont }}$.

Let ν be a probability measure on \mathcal{X} given by A through

$$
\begin{equation*}
\nu(\{(\zeta, \varepsilon, p)\})=\alpha_{\zeta, \varepsilon, p}(p \in \boldsymbol{N}), \quad d \nu((\zeta, \xi))=d \xi \quad\left(\xi \in\left[0, \mu_{\zeta}\right]\right) \tag{3.2}
\end{equation*}
$$

where $d \xi$ denotes the Lebesgues measure on the interval $\left[0, \mu_{\zeta}\right]$.
Put $I=I_{N}$ for $N=1,2, \ldots, \infty$, where $I_{N}=\{1,2, \ldots, N\}$ for $N<\infty$ and $I_{\infty}=N$, and further put $G_{I}=\mathfrak{S}_{I}(T)=D_{I}(T) \rtimes \mathfrak{S}_{I}$ as in Section 1. Then $G_{I}=\mathfrak{S}_{N}(T)$ for $I=I_{N}$. We put $\mathcal{X}^{I}=\left\{\boldsymbol{x}=\left(x_{i}\right)_{i \in I}, x_{i} \in \mathcal{X}_{i}=\mathcal{X}(i \in I)\right\}$ and take the product measure $\nu^{I}=\prod_{i \in I} \nu_{i}$ with $\nu_{i}=\nu$ on $\mathcal{X}_{i}=\mathcal{X}$. Then the permutation group \mathfrak{S}_{I} acts on $\mathcal{X}^{I}=\prod_{i \in I} \mathcal{X}_{i}$ as $\sigma(\boldsymbol{x})=\left(x_{\sigma^{-1}(i)}\right)$ for $\sigma \in \mathfrak{S}_{I}$, and leaves invariant ν^{I}.
3.1. Fundamental representations of $G_{I}=\mathfrak{S}_{I}(T)$

3.1.1. Representation $\Pi_{\mathcal{X}}^{\prime}$

For each $x \in \mathcal{X}$, we prepare a T-module as follows. For $x=(\zeta, \varepsilon, p) \in \mathcal{X}_{\text {disc }}$ with $(\zeta, \varepsilon) \in \widehat{T} \times\{0,1\}, p \in \boldsymbol{N}$, put $V(x)=V(\zeta, \varepsilon, p)=V(\zeta, \varepsilon)$ and $Z_{x}=Z_{\zeta, \varepsilon}$,

Figure 1. Image of $\mathcal{X}=\mathcal{X}_{\text {disc }} \sqcup \mathcal{X}_{\text {cont }}$
where $V(\zeta, \varepsilon) \cong \boldsymbol{C}$ is a one-dimensional T-module indexed by $\varepsilon=0,1$ such that

$$
\begin{equation*}
Z_{\zeta, \varepsilon}(t) v=\zeta(t) v \quad(v \in V(\zeta, \varepsilon), t \in T) \tag{3.3}
\end{equation*}
$$

For $x=(\zeta, \xi) \in \mathcal{X}_{\text {cont }}$ with $\zeta \in \widehat{T}$, put $V(x)=V(\zeta, \xi)=V(\zeta)$ and $Z_{x}=\zeta$, where $V(\zeta) \cong \boldsymbol{C}$ is a one-dimensional T-module such that

$$
\begin{equation*}
Z_{\zeta}(t) v=\zeta(t) v \quad(v \in V(\zeta), t \in T) \tag{3.4}
\end{equation*}
$$

Denote by $\boldsymbol{V}(\mathcal{X})$ the sum of a direct sum and a direct integral of $V(x)$'s as

$$
\boldsymbol{V}(\mathcal{X})=\sum_{x \in \mathcal{X}_{\text {disc }}}^{\oplus} V(x) \bigoplus \int_{\mathcal{X}_{\text {cont }}}^{\oplus} V(x) d \nu(x)=\int_{\mathcal{X}}^{\oplus} V(x) d \nu(x)
$$

For a measurable vector field $\boldsymbol{v}=(\boldsymbol{v}(x))_{x \in \mathcal{X}}, \boldsymbol{v}(x) \in V(x)$, on \mathcal{X}, define its norm as

$$
\|\boldsymbol{v}\|^{2}=\int_{\mathcal{X}}\|\boldsymbol{v}(x)\|^{2} d \nu(x)
$$

Then the vector field $\mathbf{1}_{\mathcal{X}}=\left(1_{x}\right)$ with $1_{x}=1 \in V(x) \cong \boldsymbol{C}$ is a unit vector since $\left\|\mathbf{1}_{\mathcal{X}}\right\|^{2}=\int_{\mathcal{X}} d \nu(x)=1$. The Hilbert space $\boldsymbol{V}(\mathcal{X})$ consists of measurable vector fields \boldsymbol{v} with $\|\boldsymbol{v}\|<\infty$, and on it we have a T-module structure as

$$
\begin{equation*}
\left(Z_{\mathcal{X}}(t) \boldsymbol{v}\right)(x):=Z_{x}(t) \boldsymbol{v}(x) \quad(x \in \mathcal{X}) \tag{3.5}
\end{equation*}
$$

Take copies $\boldsymbol{V}(\mathcal{X})_{i}=\boldsymbol{V}\left(\mathcal{X}_{i}\right)=\boldsymbol{V}(\mathcal{X})$ for $i \in I$ and make tensor product

$$
\boldsymbol{W}(\mathcal{X})=\otimes_{i \in I} \boldsymbol{V}(\mathcal{X})_{i}=\otimes_{i \in I} \boldsymbol{V}\left(\mathcal{X}_{i}\right)
$$

with respect to a reference vector $\left(\mathbf{1}_{\mathcal{X}_{i}}\right)_{i \in I}$. This means that the space is spanned by the set of decomposable elements $\otimes_{i \in I} \boldsymbol{v}_{i}$ such that $\boldsymbol{v}_{i}=\mathbf{1}_{\mathcal{X}_{i}}$ for sufficiently large $i \in I$.

We give a unitary representation $\Pi_{\mathcal{X}}^{\prime}$ of $G_{I}=D_{I}(T) \rtimes \mathfrak{S}_{I}$ on $\boldsymbol{W}(\mathcal{X})$ as follows. First we put for $d=\left(t_{i}\right)_{i \in I} \in D_{I}(T)$ as

$$
\Pi_{\mathcal{X}}^{\prime}(d)\left(\otimes_{i \in I} \boldsymbol{v}_{i}\right):=\otimes_{i \in I}\left(Z_{\mathcal{X}_{i}}\left(t_{i}\right) \boldsymbol{v}_{i}\right)
$$

for $\boldsymbol{w}=\otimes_{i \in I} \boldsymbol{v}_{i} \in \boldsymbol{W}(\mathcal{X})=\otimes_{i \in I} \boldsymbol{V}\left(\mathcal{X}_{i}\right)$ with $\boldsymbol{v}_{i} \in \boldsymbol{V}\left(\mathcal{X}_{i}\right)$, and put for $\sigma \in \mathfrak{S}_{I}$, $\kappa(\sigma) \boldsymbol{w}:=\otimes_{i \in I} \boldsymbol{v}_{\sigma^{-1}(i)}$. Then we have $\kappa(\sigma) \cdot \Pi^{\prime}(d) \cdot \kappa\left(\sigma^{-1}\right)=\Pi^{\prime}(\sigma(d))$ with $\sigma(d)=\left(t_{\sigma^{-1}(i)}\right)_{i \in I}$. From this we get the following result.

Lemma 3.1. For $g=(d, \sigma) \in G_{I}=D_{I}(T) \rtimes \mathfrak{S}_{I}$, put

$$
\Pi_{\mathcal{X}}^{\prime}(g) \boldsymbol{w}:=\Pi_{\mathcal{X}}^{\prime}(d) \kappa(\sigma) \boldsymbol{w}
$$

for $\boldsymbol{w} \in \boldsymbol{W}(\mathcal{X})=\otimes_{i \in I} \boldsymbol{V}\left(\mathcal{X}_{i}\right)$. Then $\Pi_{\mathcal{X}}^{\prime}$ is a unitary representation of G_{I}.

3.1.2. Representation $\Pi_{\mathcal{X}}$

Let us rewrite the above representation using vector fields on $\mathcal{X}^{I}=\prod_{i \in I} \mathcal{X}_{i}$ and intoduce a multiplier coming from 1-cocycle for $\left(\mathfrak{S}_{I}, \mathcal{X}^{I}\right)$. A decomposable element $\boldsymbol{w}=\otimes_{i \in I} \boldsymbol{v}_{i} \in \boldsymbol{W}(\mathcal{X})=\otimes_{i \in I} \boldsymbol{V}\left(\mathcal{X}_{i}\right)$ can be considered as a measurable vector field on \mathcal{X}^{I} with values $\boldsymbol{w}(\boldsymbol{x})=\otimes_{i \in I} \boldsymbol{v}_{i}\left(x_{i}\right) \in \otimes_{i \in I} V\left(x_{i}\right)$ at $\boldsymbol{x}=\left(x_{i}\right)_{i \in I} \in$ \mathcal{X}^{I}, where the last tensor product is taken with respcet to the reference vector $\left(1_{x_{i}}\right)_{i \in I}, 1_{x_{i}}=1 \in V\left(x_{i}\right) \cong \boldsymbol{C}$ when $I=\boldsymbol{N}$.

For the action of $\sigma \in \mathfrak{S}_{I}$, the value of $\kappa(\sigma) \boldsymbol{w}$ at $\boldsymbol{x}=\left(x_{i}\right)_{i \in I} \in \mathcal{X}^{I}$ is

$$
\begin{align*}
(\kappa(\sigma) \boldsymbol{w})(\boldsymbol{x})=\otimes_{i \in I} \boldsymbol{v}_{\sigma^{-1}(i)}\left(x_{i}\right) & =\kappa^{\prime}(\sigma)\left(\otimes_{i \in I} \boldsymbol{v}_{i}\left(x_{\sigma(i)}\right)\right)= \tag{3.6}\\
& =\kappa^{\prime}(\sigma)\left(\boldsymbol{w}\left(\sigma^{-1}(\boldsymbol{x})\right)\right),
\end{align*}
$$

where $\kappa^{\prime}(\sigma)$ at the right hand sides denotes an action similar to $\kappa(\sigma)$ on the spaces of values given as

$$
\kappa^{\prime}(\sigma): \otimes_{i \in I} V\left(x_{i}\right) \ni \otimes_{i \in I} v_{i} \longmapsto \otimes_{i \in I} v_{\sigma^{-1}(i)} \in \otimes_{i \in I} V\left(x_{\sigma^{-1}(i)}\right) .
$$

We remark that in the present case $\operatorname{dim} V\left(x_{i}\right)=1$ for all $i \in I$, and so we can omit $\kappa^{\prime}(\sigma)$ if we identify canonically each $\otimes_{i \in I} V\left(x_{i}\right)$ with \boldsymbol{C}. However we treat in Section 4 the case where $\operatorname{dim} V\left(x_{i}\right)>1$, and for $I=I_{N}, N<\infty, \kappa^{\prime}(\sigma)$ is a linear map from $V_{1} \otimes V_{2} \otimes \cdots \otimes V_{N}$ to $V_{\sigma^{-1}(1)} \otimes V_{\sigma^{-1}(2)} \otimes \cdots \otimes V_{\sigma^{-1}(N)}$ with $V_{i}=V\left(x_{i}\right)$.

Now we can define an operator $\Pi_{\mathcal{X}}(g)$ for $g=(d, \sigma) \in G_{I}$. Denote by $\mathcal{H}(\mathcal{X})$ the Hilbert space of measurable vector fields $\boldsymbol{w}=(\boldsymbol{w}(\boldsymbol{x}))_{\boldsymbol{x} \in \mathcal{X}^{I}}, \boldsymbol{x}=\left(x_{i}\right)_{i \in I} \in$ \mathcal{X}^{I} with norm $\|\boldsymbol{w}\|^{2}:=\int_{\mathcal{X}^{I}}\|\boldsymbol{w}(\boldsymbol{x})\|^{2} d \nu^{I}(\boldsymbol{x})$, then we put

$$
\begin{equation*}
\left(\Pi_{\mathcal{X}}(g) \boldsymbol{w}\right)(\boldsymbol{x})=(-1)^{j(\sigma, \boldsymbol{x})} Z_{\boldsymbol{x}}(d) \kappa^{\prime}(\sigma)\left(\boldsymbol{w}\left(\sigma^{-1}(\boldsymbol{x})\right)\right), \tag{3.7}
\end{equation*}
$$

where $Z_{\boldsymbol{x}}(d)=\prod_{i \in I} Z_{x_{i}}\left(t_{i}\right)$ for $d=\left(t_{i}\right)_{i \in I}$, and $j(\sigma, \boldsymbol{x})$ is the number of inversions in $\left(\sigma^{-1}(i)\right)_{i \in J_{1}(\boldsymbol{x})}$ with $J_{1}(\boldsymbol{x})=\left\{i \in I ; x_{i} \in \bigsqcup_{\zeta \in \widehat{T}} \mathcal{N}_{\zeta, 1}\right\}$.

Proposition 3.2. The formula (3.7) gives a unitary representation of G_{I} on $\mathcal{H}(\mathcal{X})$.

Proof. For the factor $(-1)^{j(\sigma, \boldsymbol{x})}$, the 1-cocycle condition

$$
\begin{equation*}
(-1)^{j(\tau \sigma, \boldsymbol{x})}=(-1)^{j(\tau, \boldsymbol{x})}(-1)^{j\left(\sigma, \tau^{-1}(\boldsymbol{x})\right)} \tag{3.8}
\end{equation*}
$$

should be guranteed. Put $J=J_{1}(\boldsymbol{x})$ for simplicity, then $J_{1}\left(\tau^{-1}(\boldsymbol{x})\right)=\tau^{-1} J$, since $\tau^{-1}(\boldsymbol{x})=\left(x_{\tau(i)}\right)_{i \in I}$. Let $z_{i}(i \in I)$ be independent variables and put $z=\left(z_{i}\right)_{i \in I}, \sigma(z)=\left(z_{\sigma^{-1}(i)}\right)_{i \in I}$, and for a subset $K \subset I$, put $\nabla_{K}(z)=$ $\prod_{j<k ; j, k \in K}\left(z_{j}-z_{k}\right)$. Then,

$$
\nabla_{K}(\sigma(z))=\prod_{j<k ; j, k \in K}\left(z_{\sigma^{-1}(j)}-z_{\sigma^{-1}(k)}\right)=(-1)^{m} \nabla_{\sigma^{-1} K}(z)
$$

where m is the number of inversions in $\left\{\sigma^{-1}(k) ; k \in K\right\}$. Hence,

$$
\nabla_{J}(\tau(z))=(-1)^{j(\tau, \boldsymbol{x})} \nabla_{\tau^{-1} J}(z), \quad \nabla_{J}((\tau \sigma)(z))=(-1)^{j(\tau \sigma, \boldsymbol{x})} \nabla_{(\tau \sigma)^{-1} J}(z)
$$

On the ther hand, the latter can be calculated in another way as

$$
\begin{aligned}
\nabla_{J}((\tau \sigma)(z)) & =\prod_{j<k ; j, k \in J}\left(z_{\sigma^{-1}\left(\tau^{-1}(j)\right)}-z_{\sigma^{-1}\left(\tau^{-1}(k)\right)}\right) \\
& =(-1)^{j(\tau, \boldsymbol{x})} \prod_{j^{\prime}<k^{\prime} ; \boldsymbol{j}^{\prime}, k^{\prime} \in \tau^{-1} J}\left(z_{\sigma^{-1}\left(j^{\prime}\right)}-z_{\sigma^{-1}\left(k^{\prime}\right)}\right) \\
& =(-1)^{j(\tau, \boldsymbol{x})}(-1)^{j\left(\sigma, \tau^{-1}(\boldsymbol{x})\right)} \nabla_{(\tau \sigma)^{-1} J}(z),
\end{aligned}
$$

where we put $j^{\prime}=\tau^{-1}(j)$ etc. and take into account $\tau^{-1} J=J_{1}\left(\tau^{-1}(\boldsymbol{x})\right)$. Therefore we get the 1-cocycle condition (3.8).

Since $d \rightarrow \Pi_{\mathcal{X}}(d)$ and $\sigma \rightarrow \Pi_{\mathcal{X}}(\sigma)$ are unitary representations of $D_{I}(T)$ and \mathfrak{S}_{I} respectively, it is enough for us to verify the relation $\Pi_{\mathcal{X}}\left(\sigma^{-1}\right) \Pi_{\mathcal{X}}(d) \Pi_{\mathcal{X}}(\sigma)$ $=\Pi_{\mathcal{X}}\left(\sigma^{-1}(d)\right)$. From the formula (3.7) we have

$$
\begin{aligned}
\left(\Pi_{\mathcal{X}}\left(\sigma^{-1}\right) \Pi_{\mathcal{X}}(d) \Pi_{\mathcal{X}}(\sigma) \boldsymbol{w}\right)(\boldsymbol{x}) & =(-1)^{j(\sigma, \boldsymbol{x})}(-1)^{j\left(\sigma^{-1}, \sigma(\boldsymbol{x})\right)} \cdot Z_{\sigma(\boldsymbol{x})}(d) \boldsymbol{w}(\boldsymbol{x}) \\
& =\left(\Pi_{\mathcal{X}}\left(\sigma^{-1}(d)\right) \boldsymbol{w}\right)(\boldsymbol{x})
\end{aligned}
$$

In fact, we have $(-1)^{j(\sigma, \boldsymbol{x})}(-1)^{j\left(\sigma^{-1}, \sigma(\boldsymbol{x})\right)}=(-1)^{j\left(\sigma^{-1} \sigma, \boldsymbol{x}\right)}=1$ from (3.8) and $Z_{\sigma(\boldsymbol{x})}(d)=\prod_{i \in I} Z_{x_{\sigma^{-1}(i)}}\left(t_{i}\right)=\prod_{i \in I} Z_{x_{i}}\left(t_{\sigma(i)}\right)=Z_{\boldsymbol{x}}\left(\sigma^{-1}(d)\right)$.

Remark 3.1. For the symmetric group \mathfrak{S}_{I}, a unitary representation of it is defined in [VK2] by $h(x, y) \rightarrow \operatorname{sign}(\sigma, x) h(\sigma x, y)$, where $x=\left(x_{i}\right)_{i \in I}$ and $\operatorname{sign}(\sigma, x):=(-1)^{r}$ with $r=i(\sigma, x)$ the number of inversions in $\{\sigma(j) ; j \in$ $\left.J:=J_{1}(x)\right\}$. Here we have $i(\sigma, x)=j\left(\sigma^{-1}, \boldsymbol{x}\right)$ with $\boldsymbol{x}:=x$, and the action of $\sigma \in \mathfrak{S}_{I}$ on $x=\left(x_{i}\right)_{i \in I}$ in [VK2] should be understood as $\sigma x:=\left(x_{\sigma(i)}\right)_{i \in I}$ and so $(\tau \sigma) x=\sigma(\tau x)$. On the other hand, in the formula (3.13) in [BG], the unitary representation of \mathfrak{S}_{I} is translated from [VK2] as $h(x, y) \rightarrow(-1)^{i(\sigma, x)} h\left(\sigma^{-1} x, y\right)$. However, the multiplier $(-1)^{i(\sigma, x)}$ should be $(-1)^{i\left(\sigma^{-1}, x\right)}=(-1)^{j(\sigma, \boldsymbol{x})}$ with $\boldsymbol{x}:=x$, because the action $\sigma x:=\left(x_{\sigma^{-1}(i)}\right)_{i \in I}$ here is different from that in [VK2].

3.2. Calculation of matrix elements of $\Pi_{\mathcal{X}}$

Let us compute a matrix element of the representation $\Pi_{\mathcal{X}}$ with the parameter A. Take a $g=(d, \sigma) \in G_{I}=\mathfrak{S}_{I}(T)$ and let its standard decomposition into basic components be $g=\xi_{q_{1}} \xi_{q_{2}} \cdots \xi_{q_{r}} g_{1} g_{2} \cdots g_{m}$ as in (2.1) with $\xi_{q_{k}}=\left(t_{q_{k}},\left(q_{k}\right)\right), t_{q_{k}} \neq e_{T}, g_{j}=\left(d_{j}, \sigma_{j}\right), \sigma_{j}$ a cycle. Put $Q=\left\{q_{1}, q_{2}, \ldots, q_{r}\right\}$, $K_{j}=\operatorname{supp}\left(\sigma_{j}\right)$ and $K=\operatorname{supp}(\sigma)=\bigsqcup_{1 \leq j \leq m} K_{j}$. For the parameter A, we put

$$
p_{\zeta}=\left\|\alpha_{\zeta, 0}\right\|+\mu_{\zeta}, \quad q_{\zeta}=\left\|\alpha_{\zeta, 1}\right\| \quad(\zeta \in \widehat{T}) \quad \text { with } \quad\left\|\alpha_{\zeta, \varepsilon}\right\|=\sum_{p \in N} \alpha_{\zeta, \varepsilon, p}
$$

Let $\boldsymbol{w}^{0}=\otimes_{i \in I} \mathbf{1}_{\mathcal{X}_{i}} \in \mathcal{H}(\mathcal{X})$ and let us compute the matrix element $\phi(g)=$ $\left\langle\Pi_{\mathcal{X}}(g) \boldsymbol{w}^{0}, \boldsymbol{w}^{0}\right\rangle$. This is not so simple but we get a summation formula for $\phi(g)$ in general. The calculations here give us helpful indications for our later task to obtain the character f_{A} as a matrix element of a cyclic representation π^{A} corresponding to a unit cyclic vector $\mathbf{1}_{\Delta}$. From the formula (3.7) we get

$$
\begin{equation*}
\phi(g)=\int_{\mathcal{X}^{I}}(-1)^{j(\sigma, \boldsymbol{x})}\left(\prod_{i \in I} Z_{x_{i}}\left(t_{i}\right)\right) d \nu^{I}(\boldsymbol{x}) . \tag{3.9}
\end{equation*}
$$

Let $\left[K_{j}\right]$ be the smallest interval in \boldsymbol{N} containing K_{j}, and put $\bar{K}=$ $\bigcup_{1 \leq j \leq m}\left[K_{j}\right], \boldsymbol{x}_{\bar{K}}=\left(x_{i}\right)_{i \in \bar{K}}$, and $\boldsymbol{x}_{K}=\left(x_{i}\right)_{i \in K}$. Let $j\left(\sigma, \boldsymbol{x}_{\bar{K}}\right)$ be the number of inversions in $\left(\sigma^{-1}(i)\right)$ for $i \in J_{1}\left(\boldsymbol{x}_{\bar{K}}\right):=\left\{i \in \bar{K} ; x_{i} \in \bigsqcup_{\zeta \in \widehat{T}} \mathcal{N}_{\zeta, 1}\right\}$, and similarly for $j\left(\sigma, \boldsymbol{x}_{K}\right)$. Then we have $(-1)^{j(\sigma, \boldsymbol{x})}=(-1)^{j\left(\sigma, \boldsymbol{x}_{\bar{K}}\right)}$, but not necessarily $(-1)^{j(\sigma, \boldsymbol{x})}=(-1)^{j\left(\sigma, \boldsymbol{x}_{K}\right)}$. This complicates our calculations.

Lemma 3.3. Let $g=(d, \sigma) \in G_{I}=\mathfrak{S}_{I}(T)$ be with standard decomposition as above. Put for $d=\left(t_{i}\right)_{i \in I}, d_{\bar{K}}=\left(t_{i}\right)_{i \in \bar{K}}$ and $Z_{x_{\bar{K}}}\left(d_{\bar{K}}\right):=\prod_{i \in \bar{K}} Z_{x_{i}}\left(d_{i}\right)$ and $\nu^{\bar{K}}$ the product of $\nu_{i}=\nu$ on $\mathcal{X}_{i}=\mathcal{X}, i \in \bar{K}$. Assume $Q \cap \bar{K}=\emptyset$ for g, then,

$$
\phi(g)=\prod_{q \in Q}\left(\sum_{\zeta \in \widehat{T}}\left(p_{\zeta}+q_{\zeta}\right) \zeta\left(t_{q}\right)\right) \int_{\mathcal{X}^{\bar{K}}}(-1)^{j\left(\sigma, \boldsymbol{x}_{\bar{K}}\right)} Z_{\boldsymbol{x}_{\bar{K}}}\left(d_{\bar{K}}\right) d \nu^{\bar{K}}\left(\boldsymbol{x}_{\bar{K}}\right) .
$$

Further assume for σ that the multiplicative factor $(-1)^{j(\sigma, \boldsymbol{x})}$ has the property

$$
\begin{equation*}
(-1)^{j(\sigma, \boldsymbol{x})}=\prod_{1 \leq j \leq m}(-1)^{j\left(\sigma_{j}, \boldsymbol{x}_{K_{j}}\right)} \quad\left(\boldsymbol{x} \in \mathcal{X}^{I}\right) . \tag{3.10}
\end{equation*}
$$

Then, with $F\left(d_{j}, \sigma_{j}\right)=\int_{\mathcal{X}^{K_{j}}}(-1)^{j\left(\sigma_{j}, \boldsymbol{x}_{K_{j}}\right)} Z_{\boldsymbol{x}_{K_{j}}}\left(d_{j}\right) d \nu^{K_{j}}\left(\boldsymbol{x}_{K_{j}}\right)$,

$$
\phi(g)=\prod_{q \in Q}\left(\sum_{\zeta \in \widehat{T}}\left(p_{\zeta}+q_{\zeta}\right) \zeta\left(t_{q}\right)\right) \times \prod_{1 \leq j \leq m} F\left(d_{j}, \sigma_{j}\right)
$$

where $Z_{\boldsymbol{x}_{K_{j}}}\left(d_{K_{j}}\right)=\prod_{i \in K_{j}} Z_{x_{i}}\left(t_{i}\right)$, and $\nu^{K_{j}}$ is the product of $\nu_{i}=\nu$ on $\mathcal{X}_{i}=$ $\mathcal{X}, i \in K_{j}$.

Proof. If $Q \cap \bar{K}=\emptyset$, then for any $q \in Q$ the variable x_{q} in \boldsymbol{x} does not change the value $j(\sigma, \boldsymbol{x})$, and so we can perform independently the integration with respect to $d \nu\left(x_{q}\right)$ in the integral expression (3.9) of $\phi(g)$. Then we get

$$
\int_{\mathcal{X}_{q}} Z_{x_{q}}\left(t_{q}\right) d \nu\left(x_{q}\right)=\sum_{\zeta \in \widehat{T}}\left(\left\|\alpha_{\zeta, 0}\right\|+\mu_{\zeta}+\left\|\alpha_{\zeta, 1}\right\|\right) \zeta\left(t_{q}\right)=\sum_{\zeta \in \widehat{T}}\left(p_{\zeta}+q_{\zeta}\right) \zeta\left(t_{q}\right) .
$$

The second assertion is straightforward from the assumption.

Note that the assumptions in Lemma 3.3 are satisfied if all $K_{j}=\operatorname{supp}\left(\sigma_{j}\right)$ are intervals in \boldsymbol{N}. For the integration $F\left(d_{j}, \sigma_{j}\right)$ on $\mathcal{X}^{K_{j}}$, we examine two cases here.

CASE 1: $\sigma_{j}=\left(\begin{array}{llll}1 & 2 & 3 & \ldots\end{array}\right)^{-1}=\left(\begin{array}{llll}\ell \\ \ell & 1 & \ldots & 2\end{array}\right)$ with $\ell=\ell_{j}$ the length of σ_{j}.

In this case, $K_{j}=\{1,2, \ldots, \ell\}$. If $J_{1}\left(\boldsymbol{x}_{K_{j}}\right)$ does not contain ℓ, then $j\left(\sigma_{j}, \boldsymbol{x}_{K_{j}}\right)=0$, and the partial integration corresponding to this case gives us

$$
\prod_{1 \leq i<\ell}\left(\sum_{\zeta_{i} \in \widehat{T}}\left(p_{\zeta_{i}}+q_{\zeta_{i}}\right) \zeta_{i}\left(t_{i}\right)\right) \times\left(\sum_{\zeta_{\ell} \in \widehat{T}} p_{\zeta_{\ell}} \zeta_{\ell}\left(t_{\ell}\right)\right)
$$

If $J_{1}\left(\boldsymbol{x}_{K_{j}}\right)$ contains ℓ, then $j\left(\sigma_{j}, \boldsymbol{x}_{K_{j}}\right)=\left|J_{1}\left(\boldsymbol{x}_{K_{j}}\right)\right|-1$. Therefore the partial integration corresponding to this case is

$$
\prod_{1 \leq i<\ell}\left(\sum_{\zeta_{i} \in \widehat{T}}\left(p_{\zeta_{i}}-q_{\zeta_{i}}\right) \zeta_{i}\left(t_{i}\right)\right) \times\left(\sum_{\zeta_{\ell} \in \widehat{T}} q_{\zeta_{\ell}} \zeta_{\ell}\left(t_{\ell}\right)\right) .
$$

Therefore we get

$$
\begin{aligned}
& F\left(d_{j}, \sigma_{j}\right) \\
& \quad=\sum_{\zeta_{1}, \zeta_{2}, \ldots, \zeta_{\ell} \in \widehat{T}}\left\{\prod_{1 \leq i<\ell}\left(p_{\zeta_{i}}+q_{\zeta_{i}}\right) \cdot p_{\zeta_{\ell}}+\prod_{1 \leq i<\ell}\left(p_{\zeta_{i}}-q_{\zeta_{i}}\right) \cdot q_{\zeta_{\ell}}\right\} \prod_{1 \leq i \leq \ell} \zeta_{i}\left(t_{i}\right)
\end{aligned}
$$

CASE 2: $\sigma_{j}=\left(\begin{array}{llll}1 & 2 & 3 & \ldots\end{array}\right)$ with $\ell=\ell_{j}=\ell\left(\sigma_{j}\right)$.
In this case, $K_{j}=\{1,2, \ldots, \ell\}$. If $J_{1}\left(\boldsymbol{x}_{K_{j}}\right)$ does not contain 1 , then $j\left(\sigma_{j}, \boldsymbol{x}_{K_{j}}\right)=0$, and if $J_{1}\left(\boldsymbol{x}_{K_{j}}\right)$ contains 1, then $j\left(\sigma_{j}, \boldsymbol{x}_{K_{j}}\right)=\left|J_{1}\left(\boldsymbol{x}_{K_{j}}\right)\right|-1$. Therefore similar calculations as above give us

$$
\begin{aligned}
& F\left(d_{j}, \sigma_{j}\right) \\
& \quad=\sum_{\zeta_{1}, \zeta_{2}, \ldots, \zeta_{\ell} \in \widehat{T}}\left\{p_{\zeta_{1}} \cdot \prod_{2 \leq i \leq \ell}\left(p_{\zeta_{i}}+q_{\zeta_{i}}\right)+q_{\zeta_{1}} \cdot \prod_{2 \leq i \leq \ell}\left(p_{\zeta_{i}}-q_{\zeta_{i}}\right)\right\} \prod_{1 \leq i \leq \ell} \zeta_{i}\left(t_{i}\right)
\end{aligned}
$$

Example 3.1. Let $\sigma_{1}=\left(\begin{array}{ll}1 & 3\end{array}\right), \sigma_{2}=\left(\begin{array}{ll}2 & 4\end{array}\right)$. For $\boldsymbol{x} \in \mathcal{X}^{I}$, assume that $J_{1}(\boldsymbol{x})=\{1,4\},\{2,3\}$, then $j\left(\sigma_{1}, \boldsymbol{x}_{K_{1}}\right)=j\left(\sigma_{2}, \boldsymbol{x}_{K_{2}}\right)=0, j(\sigma, \boldsymbol{x})=1$, whence
the equality (3.10) does not hold. Moreover if $J_{1}(\boldsymbol{x})=\{1,2,4\},\{3,2,4\}$ (resp. $\{1,3,2\},\{1,3,4\}$), then $j\left(\sigma_{1}, \boldsymbol{x}_{K_{1}}\right)=0$ (resp. 1), $j\left(\sigma_{2}, \boldsymbol{x}_{K_{2}}\right)=1$ (resp. 0), $j(\sigma, \boldsymbol{x})=2$, and (3.10) does not hold. Otherwise (3.10) holds for $J_{1}(\boldsymbol{x}) \subset$ $\{1,2,3,4\}$. From this, we can write down the matrix element $\phi(g)$ for $g=(d, \sigma)$ with $d=\left(t_{1}, t_{2}, t_{3}, t_{4}, e_{T}, e_{T}, \ldots\right)$ in a certain sum.

Suggested by this example, we can give a general summation formula for $\phi(g)$ as follows. Devide \mathcal{X} as

$$
\mathcal{X}=\mathcal{X}^{0} \sqcup \mathcal{X}^{1} \quad \text { with } \quad \mathcal{X}^{0}:=\bigsqcup_{\zeta \in \widehat{T}}\left(\mathcal{N}_{\zeta, 0} \sqcup \Xi_{\zeta}\right), \mathcal{X}^{1}:=\bigsqcup_{\zeta \in \widehat{T}} \mathcal{N}_{\zeta, 1},
$$

and accordingly for $\mathcal{X}_{i}=\mathcal{X}(i \in I), \mathcal{X}_{i}=\mathcal{X}_{i}^{0} \sqcup \mathcal{X}_{i}^{1}$ with $\mathcal{X}_{i}^{0}=\mathcal{X}^{0}, \mathcal{X}_{i}^{1}=\mathcal{X}^{1}$. For a subset $\mathcal{I} \subset \bar{K}$, let $j(\sigma, \mathcal{I})$ be the number of inversions in $\sigma^{-1}(i), i \in \mathcal{I}$, and put $\mathcal{X}^{\bar{K}, \mathcal{I}}:=\left(\prod_{i \in \bar{K} \backslash \mathcal{I}} \mathcal{X}_{i}^{0}\right) \times\left(\prod_{i \in \mathcal{I}} \mathcal{X}_{i}^{1}\right)$, Then $(-1)^{j(\sigma, \boldsymbol{x})}=(-1)^{j(\sigma, \mathcal{I})}\left(\boldsymbol{x} \in \mathcal{X}^{\bar{K}, \mathcal{I}}\right)$ and $\mathcal{X}^{\bar{K}}=\bigsqcup_{\mathcal{I} \subset \bar{K}} \mathcal{X}^{\bar{K}, \mathcal{I}}$, and

$$
\int_{\mathcal{X}^{K}, \mathcal{I}} Z_{\boldsymbol{x}_{\bar{K}}}\left(d_{\bar{K}}\right) d \nu^{\bar{K}}\left(\boldsymbol{x}_{\bar{K}}\right)=\sum_{\zeta_{i} \in \widehat{T}(i \in \bar{K})}\left(\prod_{i \in \bar{K} \backslash \mathcal{I}} p_{\zeta_{i}}\right)\left(\prod_{i \in \mathcal{I}} q_{\zeta_{i}}\right) \prod_{i \in(Q \cap \bar{K}) \cup K} \zeta_{i}\left(t_{i}\right) .
$$

Proposition 3.4. For $g \in G=\mathfrak{S}_{\infty}(T)$, put $\bar{K}=\bigcup_{1 \leq j \leq m}\left[K_{j}\right]$. Then

$$
\begin{aligned}
\phi(g)= & \prod_{q \in Q \backslash \bar{K}}\left(\sum_{\zeta \in \widehat{T}}\left(p_{\zeta}+q_{\zeta}\right) \zeta\left(t_{q}\right)\right) \int_{\mathcal{X}^{\bar{K}}}(-1)^{j\left(\sigma, \boldsymbol{x}_{\bar{K}}\right)} Z_{\boldsymbol{x}_{\bar{K}}}\left(d_{\bar{K}}\right) d \nu^{\bar{K}}\left(\boldsymbol{x}_{\bar{K}}\right) \\
= & \prod_{q \in Q \backslash \bar{K}}\left(\sum_{\zeta \in \widehat{T}}\left(p_{\zeta}+q_{\zeta}\right) \zeta\left(t_{q}\right)\right) \times \\
& \times \sum_{\mathcal{I} \subset \bar{K}}(-1)^{j(\sigma, \mathcal{I})} \sum_{\zeta_{i} \in \widehat{T}(i \in \bar{K})}\left(\prod_{i \in \bar{K} \backslash \mathcal{I}} p_{\zeta_{i}}\right)\left(\prod_{i \in \mathcal{I}} q_{\zeta_{i}}\right) \prod_{i \in(Q \cap \bar{K}) \cup K} \zeta_{i}\left(t_{i}\right) .
\end{aligned}
$$

3.3. Construction of factor representations of finite type π^{A} of G_{I}

Starting formally from the fundamental representation $\Pi_{\mathcal{X}}$ given above, we construct bigger representation of G_{I}. For that, we introduce a new variable $\boldsymbol{y} \in \mathcal{X}^{I}$ controling multiplicities of representations and construct a unitary representation Π whose certain subrepresentation π^{A} gives a factor representation corresponding to f_{A}.

For $\boldsymbol{x}=\left(x_{i}\right)_{i \in I} \in \mathcal{X}^{I}$, take a tensor product $\boldsymbol{W}(\boldsymbol{x})=\otimes_{i \in I} V\left(x_{i}\right)$ with respect to a reference vector $\left(1_{x_{i}}\right)_{i \in I}$ with $1_{x_{i}}=1 \in V\left(x_{i}\right) \cong C$, and take a measurable vector field \boldsymbol{w} on $\mathcal{X}^{I} \times \mathcal{X}^{I}$ such that $\boldsymbol{w}(\boldsymbol{x}, \boldsymbol{y}) \in \boldsymbol{W}(\boldsymbol{x})$ for $(\boldsymbol{x}, \boldsymbol{y}) \in$ $\mathcal{X}^{I} \times \mathcal{X}^{I}$. We define $\boldsymbol{x} \sim \boldsymbol{y}$ if $\boldsymbol{x}=\tau(\boldsymbol{y})$ for some $\tau \in \mathfrak{S}_{I}$. The norm of \boldsymbol{w} is defined by

$$
\begin{equation*}
\|\boldsymbol{w}\|^{2}=\int_{\mathcal{X}^{I}} \sum_{\boldsymbol{y} \sim \boldsymbol{x}}\|\boldsymbol{w}(\boldsymbol{x}, \boldsymbol{y})\|^{2} d \nu^{I}(\boldsymbol{x}) \tag{3.12}
\end{equation*}
$$

and this gives us a Hilbert space \mathcal{H}. The action of $g=(d, \sigma) \in G_{I}$ is defined through $\Pi_{\mathcal{X}}(g)$ acting on \boldsymbol{x}-side as

$$
\begin{equation*}
(\Pi(g) \boldsymbol{w})(\boldsymbol{x}, \boldsymbol{y})=(-1)^{j(\sigma, \boldsymbol{x})} Z_{\boldsymbol{x}}(d) \kappa^{\prime}(\sigma)\left(\boldsymbol{w}\left(\sigma^{-1}(\boldsymbol{x}), \boldsymbol{y}\right)\right) \tag{3.13}
\end{equation*}
$$

Similarly as Proposition 3.2 , we can prove that (Π, \mathcal{H}) is a unitary representation of G_{I}.

Let Δ be the diagonal subset of $\mathcal{X}^{I} \times \mathcal{X}^{I}$ and $\mathbf{1}_{\Delta}$ its characteristic function, then $\left\|\mathbf{1}_{\Delta}\right\|^{2}=\int_{\mathcal{X}^{I}} d \nu^{I}(\boldsymbol{x})=1$. Let \mathcal{H}^{A} be the closed linear span of $\Pi\left(G_{I}\right) \mathbf{1}_{\Delta}$ and π^{A} be the restriction of Π on the subspace \mathcal{H}^{A}. Summarizing these results, we have the following.

Proposition 3.5. The set of measurable vector fields $\boldsymbol{w}(\boldsymbol{x}, \boldsymbol{y}),(\boldsymbol{x}, \boldsymbol{y}) \in$ $\mathcal{X}^{I} \times \mathcal{X}^{I}$, with norm (3.12) gives a Hilbert space \mathcal{H}, and $\Pi(g)\left(g \in G_{I}\right)$ in (3.13) is a unitary representation of G_{I} on \mathcal{H}. Its subrepresentation π^{A} on \mathcal{H}^{A} has a cyclic unit vector $\mathbf{1}_{\Delta}$.

3.4. Calculation of a matrix element for π^{A}

We calculate the matrix element for $\mathbf{1}_{\Delta}$ using integral expression

$$
\begin{align*}
& \left\langle\pi^{A}(g) \mathbf{1}_{\Delta}, \mathbf{1}_{\Delta}\right\rangle= \tag{3.14}\\
& \quad=\int_{\mathcal{X}^{I}} \sum_{\boldsymbol{y} \sim \boldsymbol{x}}(-1)^{j(\sigma, \boldsymbol{x})}\left\langle Z_{\boldsymbol{x}}(d) \kappa^{\prime}(\sigma)\left(\mathbf{1}_{\Delta}\left(\sigma^{-1}(\boldsymbol{x}), \boldsymbol{y}\right)\right), \mathbf{1}_{\Delta}(\boldsymbol{x}, \boldsymbol{y})\right\rangle d \nu^{I}(\boldsymbol{x}),
\end{align*}
$$

and get a factorizable positive definite class function on G_{I}.
Theorem 3.6. (i) The matrix element $\left\langle\pi^{A}(g) \mathbf{1}_{\Delta}, \mathbf{1}_{\Delta}\right\rangle$ is given by the same formula as that for the function f_{A} in Theorem 2.2. In particular, assume $I=\boldsymbol{N}$. Then the matrix element $\left\langle\pi^{A}(g) \mathbf{1}_{\Delta}, \mathbf{1}_{\Delta}\right\rangle$ is equal to the extremal positive definite class function f_{A} on $G_{I}=\mathfrak{S}_{\infty}(T)$ in Theorem 2.2 corresponding to a parameter $A=\left(\left(\alpha_{\zeta, \varepsilon}\right)_{(\zeta, \varepsilon) \in \widehat{T} \times\{0,1\}} ; \mu\right)$.
(ii) The cyclic representation π^{A} generated by $\mathbf{1}_{\Delta}$ is a factor representation of finite type with normalized character f_{A}.

Proof. Denote by $\Phi(g)$ the matrix element in (3.14). For $g=(d, \sigma) \in G_{I}$, the integrand in (3.14) is not zero only when $\sigma^{-1}(\boldsymbol{x})=\boldsymbol{y}=\boldsymbol{x}$.

For a general element $g \in G_{I}$, take its standard decomposition as in (2.1), $g=\xi_{q_{1}} \xi_{q_{2}} \cdots \xi_{q_{r}} g_{1} g_{2} \cdots g_{m}$, with $\xi_{q_{k}}=\left(t_{q_{k}},\left(q_{k}\right)\right), t_{q_{k}} \neq e_{T}$, for $1 \leq k \leq r$, and $g_{j}=\left(d_{j}, \sigma_{j}\right)$ for $1 \leq j \leq m$. Put $Q=\left\{q_{1}, q_{2}, \ldots, q_{r}\right\}, K_{j}=\operatorname{supp}\left(\sigma_{j}\right)$, and for $d_{j}=\left(t_{i}\right)_{i \in K_{j}} \in D_{K_{j}}(T), \zeta\left(d_{j}\right)=\prod_{i \in K_{j}} \zeta\left(t_{i}\right)$. The condition $\sigma^{-1}(\boldsymbol{x})=\boldsymbol{x}$ says that, for each j, all $x_{i}\left(i \in K_{j}\right)$ coincide with each other. So the set of such elements, taking from $\mathcal{X}^{K_{j}}$, is equal to the set of $x_{K_{j}}=\left(x_{i}\right)_{i \in K_{j}}$ given as

$$
\begin{aligned}
& \mathcal{Z}_{K_{j}}:=\bigsqcup_{(\zeta, \varepsilon)} \bigsqcup_{p \in N}\left\{x_{K_{j}} ;(\forall i) x_{i}=(\zeta, \varepsilon, p)\right\} \\
& \bigsqcup \bigsqcup_{\zeta \in \widehat{T}}\left\{x_{K_{j}} ;(\forall i) x_{i}=(\zeta, \xi), \xi \in\left[0, \mu_{\zeta}\right]\right\}
\end{aligned}
$$

where (ζ, ε) runs over $\widehat{T} \times\{0,1\}$. The point mass of $\left\{x_{K_{j}} ;(\forall i) x_{i}=(\zeta, \varepsilon, p)\right\}$ with respect to the product measure $\nu^{K_{j}}$ is equal to $\left(\alpha_{\zeta, \varepsilon, p}\right)^{\left|K_{j}\right|}=\left(\alpha_{\zeta, \varepsilon, p}\right)^{\ell\left(\sigma_{j}\right)}$.

The integral in (3.14) can be carried out independently on each component $\mathcal{X}_{q_{k}}$ and $\mathcal{X}^{K_{j}}$ because, if $\sigma^{-1}(\boldsymbol{x})=\boldsymbol{x}$, either $J_{1}(\boldsymbol{x}) \supset K_{j}$ or $J_{1}(\boldsymbol{x}) \cap K_{j}=\emptyset$ holds and the $\operatorname{sign}(-1)^{j(\sigma, \boldsymbol{x})}$ is decomposed into a product as

$$
(-1)^{j(\sigma, \boldsymbol{x})}=\prod_{1 \leq j \leq m} \chi_{\varepsilon_{j}}\left(\sigma_{j}\right)=\prod_{1 \leq j \leq m}(-1)^{\varepsilon_{j}\left(\ell\left(\sigma_{j}\right)-1\right)},
$$

if, for $1 \leq j \leq m$, the component of $x_{K_{j}}$ is given by $\left(\zeta_{j}, \varepsilon_{j}, p_{j}\right) \in \mathcal{X}_{\text {disc }}$. Thus $\Phi(g)$ is expressed as a product of integrals as

$$
\begin{align*}
& \prod_{q \in Q} \int_{\mathcal{X}} Z_{x}\left(t_{q}\right) d \nu(x) \times \\
& \quad \times \prod_{1 \leq j \leq m} \int_{\mathcal{Z}_{K_{j}}\left(\subset \mathcal{X}^{K_{j}}\right)}(-1)^{j\left(\sigma_{j}, x_{K_{j}}\right)} \prod_{i \in K_{j}} Z_{x_{i}}\left(t_{i}\right) d \nu^{K_{j}}\left(x_{K_{j}}\right) \tag{3.15}
\end{align*}
$$

For each factor of the first term, we get

$$
\int_{\mathcal{X}} Z_{x}\left(t_{q}\right) d \nu(x)=\sum_{(\zeta, \varepsilon) \in \widehat{T} \times\{0,1\}} \sum_{p \in N} \alpha_{\zeta, \varepsilon, p} \zeta\left(t_{q}\right)+\sum_{\zeta \in \widehat{T}} \mu_{\zeta} \zeta\left(t_{q}\right) .
$$

For each factor of the second term, the integral for the integration subdomain $\bigsqcup_{\zeta \in \widehat{T}}\left\{x_{K_{j}} ;(\forall i) x_{i}=(\zeta, \xi), \xi \in\left[0, \mu_{\zeta}\right]\right\} \subset \mathcal{Z}_{K_{j}} \subset \mathcal{X}^{K_{j}}$ is zero because for each $\zeta \in \widehat{T}$ the domain is a one-dimensional subset in $\left[0, \mu_{\zeta}\right]^{\left|K_{j}\right|}$ of dimension $\ell_{j}=\left|K_{j}\right| \geq 2$. On the other hand, the value of the integrand for the subdomain $\bigsqcup_{p \in N}\left\{x_{K_{j}} ;(\forall i) x_{i}=(\zeta, \varepsilon, p)\right\}$ is $\zeta\left(d_{j}\right) \chi_{\varepsilon}\left(\sigma_{j}\right)$, and so we have

$$
\begin{aligned}
\int_{\mathcal{Z}_{K_{j}}}(-1)^{j\left(\sigma_{j}, x_{K_{j}}\right)} & \prod_{i \in K_{j}} Z_{x_{i}}\left(t_{i}\right) d \nu^{K_{j}}\left(x_{K_{j}}\right)= \\
& =\sum_{(\zeta, \varepsilon) \in \widehat{T} \times\{0,1\}} \sum_{p \in \boldsymbol{N}}\left(\alpha_{\zeta, \varepsilon, p}\right)^{\ell\left(\sigma_{j}\right)} \chi_{\varepsilon}\left(\sigma_{j}\right) \zeta\left(d_{j}\right)
\end{aligned}
$$

By calculations above, we get the product formula for $\Phi(g)$ as for f_{A} in (2.10), and in case $I=\boldsymbol{N}$ we get $\Phi=f_{A}$, and the first assertion of the theorem is proved.

For the second assertion, note that the matrix element corresponding to the cyclic vector $\mathbf{1}_{\Delta}$ is equal to f_{A}, whence π^{A} is equivalent to the GelfandRaikov representation π_{f} associated to $f=f_{A}$. On the other hand, f_{A} is known in Theorem 2.2 as a normalized character of a factor representation of finite type. Therefore the Gelfand-Raikov representation $\pi_{f_{A}}$ is known to be factorial of finite type and its character is equal to f_{A}, according to a general theory for the representation of topological groups (Theorem 1.6.2 in [HH3]).

Remark 3.2. In the paper [HH6], the positive-definiteness of the class functions f_{A} is proved in the first half. Theorem 3.6 above and Theorem 4.7
below give another proof of the positive-definiteness of the functions f_{A}. See also Remark 2.3.

Remark 3.3. For $I=\boldsymbol{N}$, the cyclic representation π^{A} has

$$
\left\langle\pi^{A}(g) \mathbf{1}_{\Delta}, \mathbf{1}_{\Delta}\right\rangle=f_{A}(g)
$$

as its character, and so the factor $\pi^{A}\left(G_{I}\right)^{\prime \prime}$ has $\mathbf{1}_{\Delta}$ as its trace-element in the sense of Definition 3 in [Dix, I.6.3].

3.5. Special cases of Theorem $\mathbf{3 . 6}$

Here we expose some details in certain special cases. This is to explain how we could arrive from the study of special cases to Theorem 3.6 in the most general case, and also to become more familiar to the method of constructing factor representations.
3.5.1. Special case: $\sum_{\varepsilon \in\{0,1\}}\left\|\alpha_{\zeta, \varepsilon}\right\|=1$ for a cetain $\zeta \in \widehat{T}$ for A

We fix $\zeta \in \widehat{T}$. Let us examine first the simplest case where $\alpha_{\zeta, \varepsilon}=$ $(1,0,0, \ldots)$ for some $\varepsilon \in\{0,1\}$. For each $i \in I$, let $V(\zeta, \varepsilon)_{i}$ be a copy of $V(\zeta, \varepsilon)$ in (3.3), and consider a tensor product $\otimes_{i \in I} V(\zeta, \varepsilon)_{i}$ and make it a $G_{I^{-}}$ module by an action of $g=(d, \sigma) \in G_{I}$ with $d=\left(t_{i}\right)_{i \in I}, t_{i} \in T_{i}=T$, given as

$$
P_{\zeta, \varepsilon}((d, \sigma))\left(\otimes_{i \in I} v_{i}\right)=\chi_{\varepsilon}(\sigma) \zeta(d)\left(\otimes_{i \in I} v_{\sigma^{-1}(i)}\right)
$$

where $\zeta(d)=\prod_{i \in I} \zeta\left(t_{i}\right)=\zeta\left(\prod_{i \in I} t_{i}\right)$.
Lemma 3.7. The above formula gives a one-dimensional unitary representation (unitary character) of G_{I}. If $I=\boldsymbol{N}$, the parameter

$$
A=\left(\left(\alpha_{\zeta, \varepsilon}\right)_{(\zeta, \varepsilon) \in \widehat{T} \times\{0,1\}} ; \mu\right)
$$

corresponding to this factor representation of type II_{1} is an extreme case where $\alpha_{\zeta, \varepsilon}=(1,0,0, \ldots)$ for $a(\zeta, \varepsilon) \in \widehat{T} \times\{0,1\}$ and accordingly all other parameters are zero.

Starting from this simplest case, we examine more general case where $\left\|\alpha_{\zeta, 0}\right\|+\left\|\alpha_{\zeta, 1}\right\|=1$ for a fixed $\zeta \in \widehat{T}$ in $A=\left(\left(\alpha_{\zeta, \varepsilon}\right)_{(\zeta, \varepsilon) \in \widehat{T} \times\{0,1\}} ; \mu\right)$, and accordingly all other parameters in A are zero. In this case the measure space (\mathcal{X}, ν) is given as $\mathcal{X}=\bigsqcup_{\varepsilon \in\{0,1\}} \mathcal{N}_{\zeta, \varepsilon}$ with pointwise measure $\nu(\{(\zeta, \varepsilon, p)\})=$ $\alpha_{\zeta, \varepsilon, p}$.
(I) Take copies of T-module $V(\zeta, \varepsilon)$ as $V(x)=V(\zeta, \varepsilon)$ for $x=(\zeta, \varepsilon, p), p \in$ \boldsymbol{N}, and consider its direct integral or weighted direct sum as follows. For a vector field $\boldsymbol{v}=(v(x))_{x \in \mathcal{X}}, v(x) \in V(x)$, on \mathcal{X}, we put $\|\boldsymbol{v}\|^{2}=\int_{\mathcal{X}}|v(x)|^{2} d \nu(x)=$ $\sum_{x \in \mathcal{X}} \alpha_{x}|v(x)|^{2}$, and denote the space of such vector fields by

$$
\boldsymbol{V}(\mathcal{X})=\int_{\mathcal{X}}^{\oplus} V(x) d \nu(x)=\sum_{x \in \mathcal{X}}^{\oplus} V(x)
$$

Take copies $\boldsymbol{V}(\mathcal{X})_{i}=\boldsymbol{V}\left(\mathcal{X}_{i}\right), i \in I$, and make tensor product $\boldsymbol{W}(\mathcal{X})=$ $\otimes_{i \in I} \boldsymbol{V}\left(\mathcal{X}_{i}\right)$ with respect to the reference vector $\left(\mathbf{1}_{\mathcal{X}_{i}}\right)_{i \in I}$. On $\boldsymbol{W}(\mathcal{X})$, we have a unitary representation $\Pi_{\mathcal{X}}^{\prime}$ as in Lemma 3.1.
(II) Consider a Hilbert space $\mathcal{H}(\mathcal{X})$ of vector fields $\boldsymbol{w}(\boldsymbol{x}), \boldsymbol{x}=\left(x_{i}\right) \in$ $\mathcal{X}^{I}=\prod_{i \in I} \mathcal{X}_{i}$ with norm $\|\boldsymbol{w}\|^{2}:=\int_{\mathcal{X}^{I}}\|\boldsymbol{w}(\boldsymbol{x})\|^{2} d \nu^{I}(\boldsymbol{x})$, then we have a unitay representation $\Pi_{\mathcal{X}}$ on it given for $g=(d, \sigma) \in G_{I}$ as

$$
\left(\Pi_{\mathcal{X}}(g) \boldsymbol{w}\right)(\boldsymbol{x})=(-1)^{j(\sigma, \boldsymbol{x})} \zeta(d) \kappa^{\prime}(\sigma)\left(\boldsymbol{w}\left(\sigma^{-1}(\boldsymbol{x})\right) \quad(\boldsymbol{w} \in \mathcal{H}(\mathcal{X}))\right.
$$

(III) Now introduce a new parameter \boldsymbol{y} which controls the multiplicities of representations, and construct a new representation Π. For $\boldsymbol{x}=\left(x_{i}\right)_{i \in I} \in \mathcal{X}^{I}$, take a tensor product $W(\boldsymbol{x})=\otimes_{i \in I} V\left(x_{i}\right)$ with respect to a reference vector $\left(1_{x_{i}}\right)_{i \in I}$, and take a measurable vector field \boldsymbol{w} on $\mathcal{X}^{I} \times \mathcal{X}^{I}$ such that $\boldsymbol{w}(\boldsymbol{x}, \boldsymbol{y}) \in$ $\boldsymbol{W}(\boldsymbol{x})$ for $(\boldsymbol{x}, \boldsymbol{y}) \in \mathcal{X}^{I} \times \mathcal{X}^{I}$. The norm of \boldsymbol{w} is defined by (3.12), and the Hilbert space consisting of such \boldsymbol{w} that $\|\boldsymbol{w}\|<\infty$ is denoted by \mathcal{H}. The action of $g=(d, \sigma) \in G_{I}$ on \mathcal{H} is defined as

$$
(\Pi(g) \boldsymbol{w})(\boldsymbol{x}, \boldsymbol{y})=(-1)^{j(\sigma, \boldsymbol{x})} \zeta(d) \kappa^{\prime}(\sigma)\left(\boldsymbol{w}\left(\sigma^{-1}(\boldsymbol{x}), \boldsymbol{y}\right)\right)
$$

Let Δ be the diagonal subset of $\mathcal{X}^{I} \times \mathcal{X}^{I}$ and $\mathbf{1}_{\Delta}$ its characteristic function, then $\left\|\mathbf{1}_{\Delta}\right\|=1$. Let $\left(\pi^{A}, \mathcal{H}^{A}\right)$ be the cyclic representation generated by $\mathbf{1}_{\Delta}$ under Π. We calculate the matrix element $\Phi(g)=\left\langle\pi^{A}(g) \mathbf{1}_{\Delta}, \mathbf{1}_{\Delta}\right\rangle$ for $\mathbf{1}_{\Delta}$ as

$$
\begin{align*}
& \Phi(g)= \\
& \quad=\int_{\mathcal{X}^{I}} \sum_{\boldsymbol{y} \sim \boldsymbol{x}}\left\langle(-1)^{j(\sigma, \boldsymbol{x})} \zeta(d) \kappa^{\prime}(\sigma)\left(\mathbf{1}_{\Delta}\left(\sigma^{-1}(\boldsymbol{x}), \boldsymbol{y}\right)\right), \mathbf{1}_{\Delta}(\boldsymbol{x}, \boldsymbol{y})\right\rangle d \nu^{I}(\boldsymbol{x}), \tag{3.16}
\end{align*}
$$

and get the following result:
Assume $I=\boldsymbol{N}$. The matrix element $\left\langle\pi^{A}(g) \mathbf{1}_{\Delta}, \mathbf{1}_{\Delta}\right\rangle$ is equal to the extremal positive definite class function f_{A} corresponding to a parameter $A=$ $\left(\left(\alpha_{\zeta, \varepsilon}\right)_{(\zeta, \varepsilon) \in \widehat{T} \times\{0,1\}} ; \mu\right)$ with $\left\|\alpha_{\zeta, 0}\right\|+\left\|\alpha_{\zeta, 1}\right\|=1$.
3.5.2. Special case: $\|\mu\|=1$ for A

Fix a $\zeta \in \widehat{T}$. Define a character of the subgroup $D_{I}(T) \subset G_{I}(T)$ by $\zeta_{D}(d)=\zeta\left(\prod_{i \in I} t_{i}\right)$ for $d=\left(t_{i}\right)_{i \in I}$, and consider the induced representation $\pi_{\zeta}=\operatorname{Ind}_{D_{I}(T)}^{G_{I}(T)} \zeta_{D}$ realized naturally on the space $\ell^{2}\left(\mathfrak{S}_{I}\right)$.

Lemma 3.8. The vector $v^{0}=\delta_{1} \in \ell^{2}\left(\mathfrak{S}_{I}\right)$ is cyclic, where $\mathbf{1}$ denotes the identity element in \mathfrak{S}_{I}. The matrix element $\left\langle\pi_{\zeta}(g) v^{0}, v^{0}\right\rangle$ is equal to $\zeta(d)$ for $g=(d, \mathbf{1})$, and vanishes outside of $D_{I}(T) \subset G_{I}(T)$. Assume $I=\boldsymbol{N}$. Then the induced representation π_{ζ} is factorial of type I_{1}, and the corresponding parameter $A=\left(\left(\alpha_{\zeta, \varepsilon}\right)_{(\zeta, \varepsilon) \in \widehat{T} \times\{0,1\}} ; \mu\right)$ is an extreme case where $\mu_{\zeta}=1$ and accordingly all other parameters are zero.

We give another realization of this factor representation. To be more general, we treat the case where $\|\mu\|=\sum_{\zeta \in \widehat{T}} \mu_{\zeta}=1$ in $A=\left(\left(\alpha_{\zeta, \varepsilon}\right)_{(\zeta, \varepsilon) \in \widehat{T} \times\{0,1\}} ;\right.$
$\mu)$. In this case the measure space (\mathcal{X}, ν) is given as $\mathcal{X}=\bigsqcup_{\zeta \in \widehat{T}} \Xi_{\zeta}, \Xi_{\zeta}=$ $\left\{\left(\zeta, \xi_{\zeta}\right), \xi_{\zeta} \in\left[0, \mu_{\zeta}\right]\right\}$ with the Lebesgue measure $d \xi_{\zeta}$ on the interval $\left[0, \mu_{\zeta}\right]$. Let $V(\zeta)$ be a one-dimensional T-module given in (3.4), and take copies of it as $V\left(\zeta, \xi_{\zeta}\right)=V(\zeta), \xi_{\zeta} \in \Xi_{\zeta}$.
(I) For a measurable vector field $\boldsymbol{v}=(v(x))_{x \in \mathcal{X}}, v(x) \in V(x)$, we put $\|\boldsymbol{v}\|^{2}=\int_{\mathcal{X}}|v(x)|^{2} d \nu(x)$, and denote by

$$
\boldsymbol{V}(\mathcal{X})=\int_{\mathcal{X}}^{\oplus} V(x) d \nu(x)=\sum_{\zeta \in \widehat{T}}^{\oplus} \int_{\Xi_{\zeta}}^{\oplus} V\left(\zeta, \xi_{\zeta}\right) d \xi_{\zeta}
$$

the space of such vector fields that $\|\boldsymbol{v}\|<\infty$. Take copies $\boldsymbol{V}(\mathcal{X})_{i}=\boldsymbol{V}\left(\mathcal{X}_{i}\right)$ and make tensor product $\boldsymbol{W}(\mathcal{X})=\otimes_{i \in I} \boldsymbol{V}\left(\mathcal{X}_{i}\right)$ with respect to the reference vector $\left(\mathbf{1}_{\mathcal{X}}\right)_{i \in I}$. On the space $\boldsymbol{W}(\mathcal{X})$ we have a unitary representation $\Pi_{\mathcal{X}}^{\prime}$ as in Lemma 3.1.
(II) Going to the form of vector fields, we have another but similar unitary representation $\left(\Pi_{\mathcal{X}}, \mathcal{H}(\mathcal{X})\right.$) given as follows: for $g=(d, \sigma) \in G_{I}$

$$
\left(\Pi_{\mathcal{X}}(g) \boldsymbol{w}\right)(\boldsymbol{x})=Z_{\boldsymbol{x}}(d) \kappa^{\prime}(\sigma)\left(\boldsymbol{w}\left(\sigma^{-1}(\boldsymbol{x})\right)\right) \quad(\boldsymbol{w} \in \mathcal{H}(\mathcal{X}))
$$

where $\boldsymbol{x}=\left(x_{i}\right)_{i \in I} \in \mathcal{X}^{I}, Z_{x_{i}}=\zeta$ for $x_{i}=\left(\zeta, \xi_{\zeta}\right) \in \mathcal{X}_{i}$.
(III) Now introduce a new parameter \boldsymbol{y} which controls the multiplicities of representations and construct a new representation. For $\boldsymbol{x}=\left(x_{i}\right)_{i \in I} \in \mathcal{X}^{I}$, take a tensor product $W(\boldsymbol{x})=\otimes_{i \in I} V\left(x_{i}\right)$ with respect to a reference vector $\left(1_{x_{i}}\right)_{i \in I}$, and take a vector field \boldsymbol{w} on $\mathcal{X}^{I} \times \mathcal{X}^{I}$ such that $\boldsymbol{w}(\boldsymbol{x}, \boldsymbol{y}) \in \boldsymbol{W}(\boldsymbol{x})$ for $(\boldsymbol{x}, \boldsymbol{y}) \in \mathcal{X}^{I} \times \mathcal{X}^{I}$. The norm of \boldsymbol{w} is given by (3.12). The action of $g=(d, \sigma) \in G_{I}$ is defined as

$$
\begin{equation*}
(\Pi(g) \boldsymbol{w})(\boldsymbol{x}, \boldsymbol{y})=Z_{\boldsymbol{x}}(d) \kappa^{\prime}(\sigma)\left(\boldsymbol{w}\left(\sigma^{-1}(\boldsymbol{x}), \boldsymbol{y}\right)\right), \tag{3.17}
\end{equation*}
$$

where $Z_{\boldsymbol{x}}(d)=\prod_{i \in I} Z_{x_{i}}\left(t_{i}\right)$.
Let Δ be the diagonal subset of $\mathcal{X}^{I} \times \mathcal{X}^{I}$ and $\mathbf{1}_{\Delta}$ its characteristic function, then $\left\|\mathbf{1}_{\Delta}\right\|=1$. For the cyclic representation π^{A} generated by $\mathbf{1}_{\Delta}$, we calculate a matrix element and get the following result: In the case $I=\boldsymbol{N}$, the matrix element $\left\langle\pi^{A}(g) \mathbf{1}_{\Delta}, \mathbf{1}_{\Delta}\right\rangle$ is equal to the extremal positive definite class function f_{A} corresponding to a parameter $A=\left(\left(\alpha_{\zeta, \varepsilon}\right)_{(\zeta, \varepsilon) \in \widehat{T} \times\{0,1\}} ; \mu\right)$ with $\|\mu\|=1$.
3.6. The case of the subgroup $G_{I}^{S}=\mathfrak{S}_{I}^{S}(T)$ with $S \subset T$ abelian compact

The natural subgroup $G_{I}^{S}=\mathfrak{S}_{I}^{S}(T)$ of $G_{I}=\mathfrak{S}_{I}(T)$ is defined in (1.3) for T abelian and compact, and it is normal and the index $\left[G: G^{S}\right]$ is finite under the assumption that S is open in T. For $I=\boldsymbol{N}$, characters of $G_{I}^{S}=\mathfrak{S}_{\infty}^{S}(T)$ are given in Theorem 2.3. Note that, for $S=\left\{e_{T}\right\} \subset T=\boldsymbol{Z}_{2}$, we have $\mathfrak{S}_{\infty}^{S}\left(\boldsymbol{Z}_{2}\right)=W_{\mathbf{D}_{\infty}}$.

The group G_{I} is decomposed into G_{I}^{S}-cosets as $G_{I}=\bigsqcup_{t \in T / S} \widetilde{t} G_{I}^{S}=$ $\bigsqcup_{t \in T / S} G_{I}^{S} \tilde{t}$ with $\tilde{t}=\left(t, e_{T}, e_{T}, \ldots\right) \in D_{I}(T)$, where " $t \in T / S$ " means that
t runs over a complete system $\underset{\sim}{\sim} \underset{\sim}{\sim}$ representatives of T / S. The restriction of inner automorphism $g \mapsto \widetilde{t} g \widetilde{t}^{-1}$ on G_{I}^{S} is denoted by θ_{t}. Let \mathcal{H}_{0}^{A} be the closed span of $\pi^{A}\left(G_{I}^{S}\right) \mathbf{1}_{\Delta}$, then the representation space \mathcal{H}^{A} of π^{A} is a sum of $\pi^{A}(\widetilde{t}) \mathcal{H}_{0}^{A}, t \in T / S$, and is generated under G_{I}^{S} by a set of vectors $\left\{\boldsymbol{w}_{t}^{0}:=\pi^{A}(\widetilde{t}) \mathbf{1}_{\Delta} ; t \in T / S\right\}$.

Denote by π_{t}^{A} the representation of G_{I}^{S} obtained by restricting π^{A} onto $\pi^{A}(\widetilde{t}) \mathcal{H}_{0}^{A}$. Then it has a cyclic vector \boldsymbol{w}_{t}^{0} and the matrix element is given as $\left\langle\pi_{t}^{A}(g) \boldsymbol{w}_{t}^{0}, \boldsymbol{w}_{t}^{0}\right\rangle=f_{A}^{S}\left(\theta_{t^{-1}}(g)\right)=f_{A}^{S}(g)$ with $f_{A}^{S}=f_{A} \mid G_{I}^{S}$, because f_{A} is invariant under inner automorphisms.

In the case $I=\boldsymbol{N}$, we know by Theorem 2.3 that f_{A}^{S} is the normalized character of a factor representation of finite type of G_{I}^{S}. Therefore we see that each π_{t}^{A} is a factor representation of finite type having the same f_{A}^{S} as its character, and so they are all quasi-equivalent to each other. Thus we get the following result.

Theorem 3.9. Assume that T be abelian compact and $S \subset T$ be an open subgroup. Then, for the group $G_{I}^{S}=\mathfrak{S}_{\infty}^{S}(T)$ with $I=\boldsymbol{N}$, a factor representation of finite type with character f_{A}^{S} is realised by π_{t}^{A} with $t=e_{T} \in T$ on the space \mathcal{H}_{0}^{A} generated by $\mathbf{1}_{\Delta}$.

4. Special realization of factor representations of $\mathfrak{S}_{\infty}(T), T$ any compact

Let T be a compact group and we study the wreath products $G_{I}=$ $\mathfrak{S}_{I}(T)=D_{I}(T) \rtimes \mathfrak{S}_{I}$ for $I=I_{N}$ with $N=1,2, \ldots, \infty$ with $I_{\infty}=\boldsymbol{N}$. Put $G_{N}=\mathfrak{S}_{I_{N}}(T), G=\mathfrak{S}_{\infty}(T)$.

4.1. Factor representations of a compact group T

Denote by \widehat{T} the set of all equivalence classes of irreducible unitary representations of T, and for each $\zeta \in \widehat{T}$ we fix a representative of the class and denote it again by the same symbol ζ. Denote by $V(\zeta)$ the representation space of ζ and by χ_{ζ} its trace character.

4.1.1. A realization of cyclic factor representations of T

Fix a unit vector $v^{0} \in V(\zeta)$. Take a complete orthonormal basis $\left\{e_{j} ; 1 \leq\right.$ $j \leq \operatorname{dim} \zeta\}$ in $V(\zeta)$ such that $e_{1}=v^{0}$, and let $\zeta_{j k}(t)=\left\langle\zeta(t) e_{k}, e_{j}\right\rangle$ be matrix elements with respect to it, then $\zeta_{11}(t)=\left\langle\zeta(t) v^{0}, v^{0}\right\rangle$. Put

$$
\begin{equation*}
v_{\zeta}^{0}(s)=\zeta(s) v^{0}=\zeta(s) e_{1} \quad(s \in T) \tag{4.1}
\end{equation*}
$$

Lemma 4.1. (i) The elements v^{0} and $v_{\zeta}^{0}(s)$ are both cyclic in $V(\zeta)$, and $\left\langle\zeta(t) v_{\zeta}^{0}\left(s_{1}\right), v_{\zeta}^{0}\left(s_{2}\right)\right\rangle=\zeta_{11}\left(s_{2}^{-1} t s_{1}\right)$. Denote by $d s(s \in T)$ the normalized Haar measure on T, then

$$
\int_{T} \zeta_{11}\left(s^{-1} t s\right) d s=\frac{1}{\operatorname{dim} \zeta} \chi_{\zeta}(t)
$$

(ii) There holds the following integral relation:

$$
\begin{align*}
& \int_{T^{\ell}} \zeta_{11}\left(s_{1}^{-1} t_{1} s_{\ell}\right) \zeta_{11}\left(s_{2}^{-1} t_{2} s_{1}\right) \cdots \zeta_{11}\left(s_{\ell}^{-1} t_{\ell} s_{\ell-1}\right) d s_{1} d s_{2} \cdots d s_{\ell}= \tag{4.2}\\
& \quad=\frac{\chi_{\zeta}\left(t_{\ell} t_{\ell-1} \cdots t_{2} t_{1}\right)}{(\operatorname{dim} \zeta)^{\ell}}
\end{align*}
$$

Proof. It is sufficient for us to note the following two equalities:

$$
\begin{gathered}
\int_{T} \zeta_{11}\left(s^{-1} t s\right) d s=\sum_{k, \ell=1}^{\operatorname{dim} \zeta} \int_{T} \zeta_{1 k}\left(s^{-1}\right) \zeta_{k \ell}(t) \zeta_{\ell 1}(s) d s \\
=\sum_{k, \ell=1}^{\operatorname{dim} \zeta}(\operatorname{dim} \zeta)^{-1} \delta_{k \ell} \zeta_{k \ell}(t)=(\operatorname{dim} \zeta)^{-1} \chi_{\zeta}(t) \\
\int_{T} \zeta_{11}\left(s_{1}^{-1} t_{1} s_{\ell}\right) \zeta_{11}\left(s_{2}^{-1} t_{2} s_{1}\right) d s_{1} \\
=\sum_{j, k=1}^{\operatorname{dim} \zeta} \int_{T} \zeta_{1 j}\left(s_{1}^{-1}\right) \zeta_{j 1}\left(t_{1} s_{\ell}\right) \zeta_{1 k}\left(s_{2}^{-1} t_{2}\right) \zeta_{k 1}\left(s_{1}\right) d s_{1} \\
=(\operatorname{dim} \zeta)^{-1} \sum_{k=1}^{\operatorname{dim} \zeta} \zeta_{1 k}\left(s_{2}^{-1} t_{2}\right) \zeta_{k 1}\left(t_{1} s_{\ell}\right)=(\operatorname{dim} \zeta)^{-1} \zeta_{11}\left(s_{2}^{-1} t_{2} t_{1} s_{\ell}\right)
\end{gathered}
$$

For later use we define a continuous direct integral of the same irreducible representation ζ as follows. For $s \in T$, put $V(\zeta ; s)=V(\zeta)$, and the representation space $U(\zeta)$, the operator of representation $\zeta^{U}(t)$ and a special unit vector u_{ζ}^{0} are defined as follows:

$$
\begin{equation*}
U(\zeta)=\int_{T}^{\oplus} V(\zeta ; s) d s, \quad \zeta^{U}(t)=\int_{T}^{\oplus} \zeta(t) d s, \quad u_{\zeta}^{0}=\int_{T}^{\oplus} v_{\zeta}^{0}(s) d s \tag{4.3}
\end{equation*}
$$

Note that the above space $U(\zeta)$ is nothing but the $V(\zeta)$-valued L^{2}-space on $(T, d s)$, denoted by $L^{2}(T, d s ; V(\zeta))$, and the representation ζ^{U} acts on the space of values $V(\zeta)$. For this representation $\left(\zeta^{U}, U(\zeta)\right)$, the unit vector u_{ζ}^{0} is a traceelement for ζ. In fact, we get the normalized character of ζ as a matrix element for u_{ζ}^{0} thanks to Lemma 4.1:

$$
\begin{align*}
\left\langle\zeta^{U}(t) u_{\zeta}^{0}, u_{\zeta}^{0}\right\rangle & =\int_{T}\left\langle\zeta(t) v_{\zeta}^{0}(s), v_{\zeta}^{0}(s)\right\rangle d s= \tag{4.4}\\
& =\int_{T} \zeta_{11}\left(s^{-1} t s\right) d s=\frac{1}{\operatorname{dim} \zeta} \chi_{\zeta}(t)
\end{align*}
$$

4.1.2. Another realization of cyclic factor representations of T

We also prepare another type of a factor representation $\zeta^{U_{1}}$ for ζ. On the dual space $V(\zeta)^{\prime}$ of $V(\zeta)$, the adjoint representation ζ^{\prime} acts as $\left(\zeta(t) v, v^{\prime}\right)=$ $\left(v, \zeta^{\prime}\left(t^{-1}\right) v^{\prime}\right)(t \in T)$ for $v \in V(\zeta), v^{\prime} \in V(\zeta)^{\prime}$, where $\left(v, v^{\prime}\right):=v^{\prime}(v)$ denotes the natural pairing between these two spaces. Consider the tensor product $U_{1}(\zeta)=V(\zeta) \otimes V(\zeta)^{\prime}$ as a T-module through the action $\zeta^{U_{1}}=\zeta \otimes \mathbf{1}_{T}$ with the trivial representation $\mathbf{1}_{T}$ of T, that is,

$$
\begin{equation*}
\zeta^{U_{1}}(t)\left(v \otimes v^{\prime}\right)=(\zeta(t) v) \otimes v^{\prime} \quad\left(t \in T, v \in V(\zeta), v^{\prime} \in V(\zeta)^{\prime}\right) \tag{4.5}
\end{equation*}
$$

Note that $\left(\zeta^{U_{1}}, U_{1}(\zeta)\right)$ is canonically equivalent to the part corresponding to $\zeta \in \widehat{T}$ of the right regular representation $\left(R_{T}, L^{2}(T)\right)$, which is spanned by the matrix elements of ζ. Take a complete orhtonormal basis $\left\{e_{j} ; 1 \leq j \leq \operatorname{dim} \zeta\right\}$ in $V(\zeta)$ and its dual basis $\left\{e_{k}^{\prime} ; 1 \leq k \leq \operatorname{dim} \zeta\right\}$ in $V(\zeta)^{\prime}$ such as $\left(e_{j}, e_{k}^{\prime}\right)=\delta_{j k}$, and define a unit vector in $U_{1}(\zeta)$ as

$$
\begin{equation*}
u^{1}=\frac{1}{\sqrt{\operatorname{dim} \zeta}} \sum_{1 \leq j \leq \operatorname{dim} \zeta} e_{j} \otimes e_{j}^{\prime} \tag{4.6}
\end{equation*}
$$

Lemma 4.2. (i) The element u^{1} is independent of the orthonormal basis used to define it. In particular, $u^{1}=(1 / \sqrt{\operatorname{dim} \zeta}) \sum_{1 \leq j \leq \operatorname{dim} \zeta}\left(\zeta(s) e_{j}\right) \otimes$ $\left(\zeta^{\prime}(s) e_{j}^{\prime}\right)$ for any $s \in T$. Any element of $U_{1}(\zeta)=V(\zeta) \otimes V(\zeta)^{\prime}$ invariant under $\zeta \otimes \zeta^{\prime}$ is a scalar multiple of u^{1}.
(ii) The unit vectors u^{1} is cyclic under $\zeta^{U_{1}}$, and

$$
\left\langle\zeta^{U_{1}}(t) u^{1}, u^{1}\right\rangle_{U_{1}}=\frac{1}{\operatorname{dim} \zeta} \chi_{\zeta}(t)
$$

where $\langle\cdot, \cdot\rangle_{U_{1}}$ denotes the inner product in $U_{1}(\zeta)$.
Proof. (i) By calculation, we can prove that u^{1} is independent of the choice of $\left\{e_{j}\right\}$. An element $u=\sum_{1 \leq j, k \leq \operatorname{dim} \zeta} b_{j k}\left(e_{j} \otimes e_{k}^{\prime}\right)$ of $U_{1}(\zeta)$ is invariant if and only if the matrix $B=\left(b_{j k}\right)$ satisfies $\zeta(s) B^{t}\left(\zeta^{\prime}(s)\right)=B$ or $\zeta(s) B=B \zeta(s)$ for any $s \in T$. So the irreducibility of ζ guarantees that B is a scalar matrix, and so u is a scalar multiple of u^{1}.

We omit the proof of (ii).

Lemma 4.3.

$$
\begin{align*}
\int_{T^{\ell}} \chi_{\zeta}\left(s_{1}^{-1} t_{1} s_{\ell}\right) \chi_{\zeta}\left(s_{2}^{-1} t_{2} s_{1}\right) \cdots \chi_{\zeta}\left(s_{\ell}^{-1} t_{\ell} s_{\ell-1}\right) & d s_{1} d s_{2} \cdots d s_{\ell}= \tag{4.7}\\
& =\frac{\chi_{\zeta}\left(t_{\ell} t_{\ell-1} \cdots t_{2} t_{1}\right)}{(\operatorname{dim} \zeta)^{\ell-1}}
\end{align*}
$$

Remark 4.1. As a representation of $T \times T$, the representation $T \times T \ni$ $(t, s) \rightarrow \zeta(t) \otimes \zeta^{\prime}(s)$ on $U_{1}(\zeta)=V(\zeta) \otimes V(\zeta)^{\prime}$ gives a Hilbert algebra in the sense of [Dix, I.5], and concerning Lemma 4.2, we refer to Proposition 3 in [Dix, I.6.3].

4.2. Fundamental representations of G_{I}

Let $\mathcal{X}=\mathcal{X}_{\text {disc }} \bigsqcup \mathcal{X}_{\text {cont }}$, where

$$
\begin{array}{ll}
\mathcal{X}_{\text {disc }}=\bigsqcup_{(\zeta, \varepsilon) \in \hat{T} \times\{0,1\}} \mathcal{N}_{\zeta, \varepsilon}, & \mathcal{N}_{\zeta, \varepsilon}=\{(\zeta, \varepsilon, p) ; p \in \boldsymbol{N}\} \cong \boldsymbol{N} \\
\mathcal{X}_{\text {cont }}=\bigsqcup_{\zeta \in \widehat{T}} \Xi_{\zeta}, & \Xi_{\zeta}=\left\{(\zeta, \xi) ; \xi \in\left[0, \mu_{\zeta}\right]\right\} \cong\left[0, \mu_{\zeta}\right]
\end{array}
$$

and ν the probability measure on \mathcal{X} given by A as follows:

$$
\begin{equation*}
\nu(\{(\zeta, \varepsilon, p)\})=\alpha_{\zeta, \varepsilon, p}(p \in \boldsymbol{N}), \quad d \nu((\zeta, \xi))=d \xi \quad\left(\xi \in\left[0, \mu_{\zeta}\right]\right) \tag{4.8}
\end{equation*}
$$

We put for $I=I_{N}$ with $N=1,2, \ldots, \infty, \mathcal{X}^{I}=\prod_{i \in I} \mathcal{X}_{i}$ with $\mathcal{X}_{i}=\mathcal{X}(i \in$ $I)\}$ and $\nu^{I}=\prod_{i \in I} \nu_{i}$ with $\nu_{i}=\nu$. Then, the permutation group \mathfrak{S}_{I} acts on \mathcal{X}^{I} as $\sigma(\boldsymbol{x})=\left(x_{\sigma^{-1}(i)}\right)_{i \in I}$ for $\sigma \in \mathfrak{S}_{I}$ and $\boldsymbol{x}=\left(x_{i}\right)_{i \in I}, x_{i} \in \mathcal{X}_{i}$.

For each $x \in \mathcal{X}$, we prepare a T-module as follows.
I. First choice: For a discrete parameter $x=(\zeta, \varepsilon, p) \in \mathcal{X}_{\text {disc }}$ and also for a continuous parameter $x=(\zeta, \xi) \in \mathcal{X}_{\text {cont }}$, we put

$$
U(x)=U(\zeta)=\int_{T}^{\oplus} V(\zeta ; s) d s
$$

with the distinguished unit vector $u_{x}^{0}:=u_{\zeta}^{0}=\int_{T}^{\oplus} v_{\zeta}^{0}(s) d s$, and the action of $t \in T$ is given as follows. We denote an element $u=\int_{T}^{\oplus} u(s) d s$ with $u(s) \in V(\zeta ; s)=V(\zeta)$ simply by $u=(u(s))$ in the form of a vector field, then

$$
\begin{equation*}
\left(Z_{x}(t) u\right)(s):=\left(\zeta^{U}(t) u\right)(s)=\zeta(t)(u(s)) \tag{4.9}
\end{equation*}
$$

II. Second choice: For a discrete parameter $x=(\zeta, \varepsilon, p) \in \mathcal{X}_{\text {disc }}$, we put $U(x)=U(\zeta)=\int_{T}^{\oplus} V(\zeta ; s) d s$, as above (cf. Remark 4.2). For a continuous parameter $x=(\zeta, \xi) \in \mathcal{X}_{\text {cont }}$, put

$$
\begin{equation*}
U(x)=U_{1}(\zeta)=V(\zeta) \otimes V(\zeta)^{\prime}, \quad Z_{x}(t)=\zeta^{U_{1}}(t) \quad(t \in T) \tag{4.10}
\end{equation*}
$$

and $u_{x}^{0}:=u_{\zeta}^{1}$ the distinguished cyclic unit vector.

4.2.1. Unitary representation $\Pi_{\mathcal{X}}^{\prime}$ of G_{I}

Denote by $\boldsymbol{U}(\mathcal{X})$ the sum of a direct sum and a direct integral of $U(x)$'s as

$$
\boldsymbol{U}(\mathcal{X})=\sum_{x \in \mathcal{X}_{\text {disc }}}^{\oplus} U(x) \bigoplus \int_{\mathcal{X}_{\text {cont }}}^{\oplus} U(x) d \nu(x)=\int_{\mathcal{X}}^{\oplus} U(x) d \nu(x)
$$

For a measurable vector field $\boldsymbol{u}=(\boldsymbol{u}(x))_{x \in \mathcal{X}}, \boldsymbol{u}(x) \in U(x)$, on \mathcal{X}, define its norm as $\|\boldsymbol{u}\|^{2}=\int_{\mathcal{X}}\|\boldsymbol{u}(x)\|^{2} d \nu(x)$. Then the vector field $\boldsymbol{u}_{\mathcal{X}}^{0}=\left(u_{x}^{0}\right)_{x \in \mathcal{X}}$ with the distinguished unit vector $u_{x}^{0} \in U(x)$ has norm 1 , that is, $\left\|\boldsymbol{u}_{\mathcal{X}}^{0}\right\|=1$. The Hilbert space $\boldsymbol{U}(\mathcal{X})$ consists of measurable vector fields \boldsymbol{u} with $\|\boldsymbol{u}\|<\infty$, and the T-action on it is given by $\left(Z_{\mathcal{X}}(t) \boldsymbol{u}\right)(x)=Z_{x}(t)(\boldsymbol{u}(x))(x \in \mathcal{X})$

Take copies $\boldsymbol{U}(\mathcal{X})_{i}=\boldsymbol{U}\left(\mathcal{X}_{i}\right)=\boldsymbol{U}(\mathcal{X})$ for $i \in I$ and make tensor product $\boldsymbol{W}(\mathcal{X})=\otimes_{i \in I} \boldsymbol{U}(\mathcal{X})_{i}$ with respect to a reference vector $\left(\boldsymbol{u}_{\mathcal{X}_{i}}^{0}\right)_{i \in I}$. Then, on a decomposable elements $\boldsymbol{w}=\otimes_{i \in I} \boldsymbol{u}_{i} \in \boldsymbol{W}(\mathcal{X})$, elements $d \stackrel{\mathcal{N}}{=}\left(t_{i}\right)_{i \in I} \in D_{I}(T)$ with $t_{i} \in T_{i}=T$ and $\sigma \in \mathfrak{S}_{I}$ act respectively as

$$
\Pi_{\mathcal{X}}^{\prime}(d) \boldsymbol{w}:=\otimes_{i \in I}\left(Z_{\mathcal{X}_{i}}\left(t_{i}\right) \boldsymbol{u}_{i}\right), \quad \kappa(\sigma) \boldsymbol{w}:=\otimes_{i \in I} \boldsymbol{u}_{\sigma^{-1}(i)}
$$

and we get a unitary representation $\Pi_{\mathcal{X}}^{\prime}$ of G_{I} as follows.
Lemma 4.4. For $g=(d, \sigma) \in G_{I}=D_{I}(T) \rtimes \mathfrak{S}_{I}$, put

$$
\Pi_{\mathcal{X}}^{\prime}(g) \boldsymbol{w}:=\Pi_{\mathcal{X}}^{\prime}(d) \kappa(\sigma) \boldsymbol{w} \quad(\boldsymbol{w} \in \boldsymbol{W}(\mathcal{X}))
$$

Then this gives a unitary representation of G_{I}.

4.2.2. Unitary representation $\Pi_{\mathcal{X}}$ of G_{I}

We rewrite $\Pi_{\mathcal{X}}^{\prime}$ using vector fields on \mathcal{X}^{I} with values in $\boldsymbol{W}(\boldsymbol{x}):=\otimes_{i \in I} U\left(x_{i}\right)$ at $\boldsymbol{x}=\left(x_{i}\right)_{i \in I}, x_{i} \in \mathcal{X}$, and introduce a multiplier coming from a 1-cocycle for $\left(\mathfrak{S}_{I}, \mathcal{X}^{I}\right)$. Let $\mathcal{H}(\mathcal{X})$ be the Hilbert space of measurable vector fields $\boldsymbol{w}(\boldsymbol{x}) \in$ $\boldsymbol{W}(\boldsymbol{x}), \boldsymbol{x} \in \mathcal{X}^{I}$, such that $\|\boldsymbol{w}\|<\infty$, where $\|\boldsymbol{w}\|^{2}:=\int_{\mathcal{X}^{I}}\|\boldsymbol{w}(\boldsymbol{x})\|^{2} d \nu^{I}(\boldsymbol{x})$.

Recall that each space $U\left(x_{i}\right)$ is isomorphic to $L^{2}\left(T, d s ; V\left(\zeta_{i}\right)\right)$ for $x_{i}=$ $\left(\zeta_{i}, \varepsilon_{i}, p_{i}\right)$ or $\left(\zeta_{i}, \xi_{i}\right)$ in the first choice. Therefore, in turn, the value $\boldsymbol{v}=$ $\boldsymbol{w}(\boldsymbol{x}) \in \otimes_{i \in I} U\left(x_{i}\right)$ can be considered as an L^{2}-function $\boldsymbol{v}(\boldsymbol{s})$ of $\boldsymbol{s}=\left(s_{i}\right)_{i \in I} \in$ $T^{I}=\prod_{i \in I} T_{i}$ with values in $\otimes_{i \in I} V\left(\zeta_{i}\right)$, where the measure $d m(s)$ on T^{I} is the product of normalized Haar measures $d s_{i}$ on T_{i}. Here the permutation group \mathfrak{S}_{I} acts in two ways.
(i) The one is the action on the space of values $\otimes_{i \in I} V\left(\zeta_{i}\right)$ as

$$
\kappa^{\prime}(\sigma): \otimes_{i \in I} V\left(\zeta_{i}\right) \ni \otimes_{i \in I} v_{i} \longmapsto \otimes_{i \in I} v_{\sigma^{-1}(i)} \in \otimes_{i \in I} V\left(\zeta_{\sigma^{-1}(i)}\right)
$$

(ii) The other is the action on the variable $s=\left(s_{i}\right)_{i \in I} \in T^{I}$ as $\sigma(s)=$ $\left(s_{\sigma^{-1}(i)}\right)_{i \in I}$.

We denote by $\kappa^{\prime \prime}(\sigma)$ the simultaneous action of σ of type (i) and (ii).
The action $\kappa^{\prime \prime}(\sigma)$ is natural in the following point of view. Take a decomposable element $w:=\otimes_{i \in I} v_{i}$ with $v_{i} \in L^{2}\left(T_{i}, d s_{i} ; V_{i}\right)$, where v_{i} is given as a function in $s_{i} \in T_{i}$ with values in V_{i}. By $\sigma \in \mathfrak{S}_{I}$, we permute the components of w as $\otimes_{i \in I} v_{\sigma^{-1}(i)}$, then this is a function of $s=\left(s_{i}\right)_{i \in I} \in T^{I}=\prod_{i \in I} T_{i}$ given as $\otimes_{i \in I} v_{\sigma^{-1}(i)}\left(s_{\sigma^{-1}(i)}\right)$, and the last expression gives nothing but $\kappa^{\prime \prime}(\sigma)(w)$.

For our present case, take a decomposable element $\boldsymbol{w}=\otimes_{i \in I} \boldsymbol{u}_{i}$ with $\boldsymbol{u}_{i} \in$ $\boldsymbol{U}(\mathcal{X})_{i}=\boldsymbol{U}\left(\mathcal{X}_{i}\right)$, and consider $\otimes_{i \in I} \boldsymbol{u}_{i}$ as a vector field on \mathcal{X}^{I}. Then its value at a point $\boldsymbol{x}=\left(x_{i}\right)_{i \in I}, x_{i} \in \mathcal{X}$, is given by $\otimes_{i \in I} \boldsymbol{u}_{i}\left(x_{i}\right)$, and then by $\otimes_{i \in I} \boldsymbol{u}_{i}\left(x_{i}\right)\left(s_{i}\right)$ as a function of \boldsymbol{s}. A permutation $\sigma \in \mathfrak{S}_{I}$ acts as $\boldsymbol{w}=\otimes_{i \in I} \boldsymbol{u}_{i} \mapsto \otimes_{i \in I} \boldsymbol{u}_{\sigma^{-1}(i)}$. Its value at \boldsymbol{x} is $\otimes_{i \in I} \boldsymbol{u}_{\sigma^{-1}(i)}\left(x_{i}\right)$ and further is $\otimes_{i \in I} \boldsymbol{u}_{\sigma^{-1}(i)}\left(x_{i}\right)\left(s_{\sigma^{-1}(i)}\right)$ as a function in \boldsymbol{s}, which is expressed as $\kappa^{\prime \prime}(\sigma)\left(\otimes_{i \in I} \boldsymbol{u}_{i}\left(x_{\sigma(i)}\right)\right)=\kappa^{\prime \prime}(\sigma)\left(\boldsymbol{w}\left(\sigma^{-1}(\boldsymbol{x})\right)\right)$, that is,

$$
\begin{aligned}
\left(\otimes_{i \in I} \boldsymbol{u}_{\sigma^{-1}(i)}\right)(\boldsymbol{x})=\otimes_{i \in I} \boldsymbol{u}_{\sigma^{-1}(i)}\left(x_{i}\right) & =\kappa^{\prime \prime}(\sigma)\left(\otimes_{i \in I} \boldsymbol{u}_{i}\left(x_{\sigma(i)}\right)\right)= \\
& =\kappa^{\prime \prime}(\sigma)\left(\boldsymbol{w}\left(\sigma^{-1}(\boldsymbol{x})\right)\right)
\end{aligned}
$$

Proposition 4.5. For $g=(d, \sigma) \in G_{I}$ and $\boldsymbol{w} \in \mathcal{H}(\mathcal{X})$, put

$$
\begin{equation*}
\left(\Pi_{\mathcal{X}}(g) \boldsymbol{w}\right)(\boldsymbol{x})=(-1)^{j(\sigma, \boldsymbol{x})} Z_{\boldsymbol{x}}(d) \kappa^{\prime \prime}(\sigma)\left(\boldsymbol{w}\left(\sigma^{-1}(\boldsymbol{x})\right)\right) \tag{4.11}
\end{equation*}
$$

where $\boldsymbol{w}=(\boldsymbol{w}(\boldsymbol{x})), \boldsymbol{x}=\left(x_{i}\right)_{i \in I} \in \mathcal{X}^{I}$, and $Z_{\boldsymbol{x}}(d)=\prod_{i \in I} Z_{x_{i}}\left(t_{i}\right)$ with $Z_{x_{i}}$ in (4.9) in the case of the first choice, and $j(\sigma, \boldsymbol{x})$ is the number of inversions in $\left(\sigma^{-1}(i)\right)_{i \in J_{1}(\boldsymbol{x})}$ with $J_{1}(\boldsymbol{x})=\left\{i \in I ; x_{i} \in \bigsqcup_{\zeta \in \widehat{T}} \mathcal{N}_{\zeta, 1}\right\}$ for $\varepsilon=1$. Then $\Pi_{\mathcal{X}}$ is a unitary representation of G_{I} on $\mathcal{H}(\mathcal{X})$.

The proof is a word for word repetition of that for Proposition 3.2.
Furthermore in the case of the second choice, $Z_{x_{i}}$ for $x_{i}=\left(\zeta_{i}, \xi_{i}\right) \in \mathcal{X}_{\text {cont }}$ is chosen as in (4.10), and accordingly the transformation $\kappa^{\prime \prime}(\sigma): \boldsymbol{W}\left(\sigma^{-1}(\boldsymbol{x})\right) \rightarrow$ $\boldsymbol{W}(\boldsymbol{x})$ should be defined to realize the transformation $\boldsymbol{w}=\otimes_{i \in I} \boldsymbol{u}_{i} \mapsto$ $\otimes_{i \in I} \boldsymbol{u}_{\sigma^{-1}(i)}$ for decomposable elements $\boldsymbol{w} \in \boldsymbol{W}(\mathcal{X})=\otimes_{i \in I} \boldsymbol{U}\left(\mathcal{X}_{i}\right)$ with $\boldsymbol{u}_{i} \in$ $\boldsymbol{U}\left(\mathcal{X}_{i}\right)$. Hence $\kappa^{\prime \prime}(\sigma): \otimes_{i \in I} \boldsymbol{u}_{i}\left(x_{\sigma(i)}\right) \mapsto \otimes_{i \in I} \boldsymbol{u}_{\sigma^{-1}(i)}\left(x_{i}\right)$. Then the assertion in Proposition 4.5 holds in this case too.

4.3. Construction of factor representations of finite type of G_{I}

Now we introduce a new variable $\boldsymbol{y} \in \mathcal{X}^{I}$ controling multiplicities of representations and construct a unitary representation Π whose certain subrepresentation π^{A} gives a factor representation corresponding to f_{A}. For $\boldsymbol{x}=$ $\left(x_{i}\right)_{i \in I} \in \mathcal{X}^{I}$, take a tensor product $\boldsymbol{W}(\boldsymbol{x})=\otimes_{i \in I} U\left(x_{i}\right)$ with respect to a reference vector $\left(u_{x_{i}}^{0}\right)_{i \in I}$, and take a measurable vector field \boldsymbol{w} on $\mathcal{X}^{I} \times \mathcal{X}^{I}$ such that $\boldsymbol{w}(\boldsymbol{x}, \boldsymbol{y}) \in \boldsymbol{W}(\boldsymbol{x})$ for $(\boldsymbol{x}, \boldsymbol{y}) \in \mathcal{X}^{I} \times \mathcal{X}^{I}$. We define $\boldsymbol{x} \sim \boldsymbol{y}$ if $\boldsymbol{x}=\tau(\boldsymbol{y})$ for some $\tau \in \mathfrak{S}_{I}$ as before, and the norm of \boldsymbol{w} is defined by

$$
\begin{equation*}
\|\boldsymbol{w}\|^{2}=\int_{\mathcal{X}^{I}} \sum_{\boldsymbol{y} \sim \boldsymbol{x}}\|\boldsymbol{w}(\boldsymbol{x}, \boldsymbol{y})\|_{\boldsymbol{W}(\boldsymbol{x})}^{2} d \nu^{I}(\boldsymbol{x}) . \tag{4.12}
\end{equation*}
$$

Denoted by \mathcal{H} the Hilbert space of measurable vector fields \boldsymbol{w} with finite norms in (4.12).

The action on \mathcal{H} of $g=(d, \sigma) \in G_{I}$ is defined through $\Pi_{\mathcal{X}}(g)$ acting on \boldsymbol{x}-side as

$$
\begin{equation*}
(\Pi(g) \boldsymbol{w})(\boldsymbol{x}, \boldsymbol{y})=(-1)^{j(\sigma, \boldsymbol{x})} Z_{\boldsymbol{x}}(d) \kappa^{\prime \prime}(\sigma)\left(\boldsymbol{w}\left(\sigma^{-1}(\boldsymbol{x}), \boldsymbol{y}\right)\right) \tag{4.13}
\end{equation*}
$$

Proposition 4.6. The formula (4.13) gives a unitary representation of G_{I} on the space \mathcal{H}.

Let Δ be the diagonal subset of $\mathcal{X}^{I} \times \mathcal{X}^{I}$ and $\boldsymbol{u}_{\Delta}(\boldsymbol{x}, \boldsymbol{y})$ is a vector field supported by Δ such that $\boldsymbol{u}_{\Delta}(\boldsymbol{x}, \boldsymbol{y})=\mathbf{0}$ if $\boldsymbol{x} \neq \boldsymbol{y}$, and $\boldsymbol{u}_{\Delta}(\boldsymbol{x}, \boldsymbol{x})=\boldsymbol{u}^{0}(\boldsymbol{x})=$ $\otimes_{i \in I} u_{x_{i}}^{0} \in \boldsymbol{W}(\boldsymbol{x})=\otimes_{i \in I} U\left(x_{i}\right)$, then $\left\|\boldsymbol{u}_{\Delta}\right\|=1$. Denote by \mathcal{H}^{A} the closed linear span of $\Pi\left(G_{I}\right) \boldsymbol{u}_{\Delta}$ and by π^{A} the restriction of Π on the subspace \mathcal{H}^{A}. As will be proved in the following, the cyclic representation $\left(\pi^{A}, \mathcal{H}^{A}\right)$ is factorial of finite type with normalized character f_{A}.

4.4. Calculation of a matrix element for π^{A}

We calculate the matrix element of π^{A} for the cyclic vector \boldsymbol{u}_{Δ} as

$$
\begin{align*}
& \left\langle\pi^{A}(g) \boldsymbol{u}_{\Delta}, \boldsymbol{u}_{\Delta}\right\rangle= \tag{4.14}\\
& \quad=\int_{\mathcal{X}^{I}} \sum_{\boldsymbol{y} \sim \boldsymbol{x}}(-1)^{j(\sigma, \boldsymbol{x})}\left\langle Z_{\boldsymbol{x}}(d) \kappa^{\prime \prime}(\sigma)\left(\boldsymbol{u}_{\Delta}\left(\sigma^{-1}(\boldsymbol{x}), \boldsymbol{y}\right)\right), \boldsymbol{u}_{\Delta}(\boldsymbol{x}, \boldsymbol{y})\right\rangle_{\boldsymbol{W}(\boldsymbol{x})} d \nu^{I}(\boldsymbol{x})
\end{align*}
$$

and get the following result.
Theorem 4.7. (i) The matrix element $\left\langle\pi^{A}(g) \boldsymbol{u}_{\Delta}, \boldsymbol{u}_{\Delta}\right\rangle$ is given by the same formula as for the function f_{A} in Theorem 2.1. In particular, in the case $I=\boldsymbol{N}$, it is equal to the extremal positive definite class function f_{A} in Theorem 2.1 corresponding to a parameter $A=\left(\left(\alpha_{\zeta, \varepsilon}\right)_{(\zeta, \varepsilon) \in \widehat{T} \times\{0,1\}} ; \mu\right)$.
(ii) The cyclic representation π^{A} generated by \boldsymbol{u}_{Δ} is a factor representation of finite type with normalized character f_{A}.

Proof. Denote by $\Phi(g)$ the matrix element in (4.14). For $g=(d, \sigma) \in G_{I}$, the integrand in (4.14) is not zero only when $\sigma^{-1}(\boldsymbol{x})=\boldsymbol{y}=\boldsymbol{x}$.

For a general element $g \in G_{I}$, take its standard decomposition as in (2.1), $g=\xi_{q_{1}} \xi_{q_{2}} \cdots \xi_{q_{r}} g_{1} g_{2} \cdots g_{m}$, with $\xi_{q_{k}}=\left(t_{q_{k}},\left(q_{k}\right)\right), t_{q_{k}} \neq e_{T}$, for $1 \leq k \leq r$, and $g_{j}=\left(d_{j}, \sigma_{j}\right)$ for $1 \leq j \leq m$. Put $Q=\left\{q_{1}, q_{2}, \ldots, q_{r}\right\}, K_{j}=\operatorname{supp}\left(\sigma_{j}\right)$, and for $d_{j}=\left(t_{i}\right)_{i \in K_{j}} \in D_{K_{j}}(T)$, let $P_{\sigma_{j}}\left(d_{j}\right)$ be as in (1.5).

The condition $\sigma^{-1}(\boldsymbol{x})=\boldsymbol{x}$ says that, for each j, all $x_{i}\left(i \in K_{j}\right)$ coincide with each other. So the set of such elements, cut off in $\mathcal{X}^{K_{j}}$, is equal to the set of $x_{K_{j}}=\left(x_{i}\right)_{i \in K_{j}}$ given as

$$
\begin{aligned}
& \mathcal{Z}_{K_{j}}:=\bigsqcup_{(\zeta, \varepsilon)} \bigsqcup_{p \in N}\left\{x_{K_{j}} ;(\forall i) x_{i}=(\zeta, \varepsilon, p)\right\} \\
& \bigsqcup \bigsqcup_{\zeta \in \widehat{T}}\left\{x_{K_{j}} ;(\forall i) x_{i}=(\zeta, \xi), \xi \in\left[0, \mu_{\zeta}\right]\right\}
\end{aligned}
$$

where (ζ, ε) runs over $\widehat{T} \times\{0,1\}$. The point mass of $\left\{x_{K_{j}} ;(\forall i) x_{i}=(\zeta, \varepsilon, p)\right\}$ with respect to the product measure $\nu^{K_{j}}$ is equal to $\left(\alpha_{\zeta, \varepsilon, p}\right)^{\left|K_{j}\right|}=\left(\alpha_{\zeta, \varepsilon, p}\right)^{\ell\left(\sigma_{j}\right)}$. The mass of the set of continuous parameters

$$
\left\{x_{K_{j}} ;(\forall i) x_{i}=(\zeta, \xi), \xi \in\left[0, \mu_{\zeta}\right]\right\} \subset\left(\Xi_{\zeta}\right)^{K_{j}}
$$

with respect to the $\left|K_{j}\right|$-dimensional Lebesgues measure is zero, since it is a onedimensional subregion of $\left(\Xi_{\zeta}\right)^{K_{j}} \cong\left[0, \mu_{\zeta}\right]^{\left|K_{j}\right|}$ of dimension $\left|K_{j}\right|=\ell\left(\sigma_{j}\right) \geq 2$, where $\Xi_{\zeta}=\left\{(\zeta, \xi) ; \xi \in\left[0, \mu_{\zeta}\right]\right\} \subset \mathcal{X}_{\text {cont }}$.

The integral in (4.14) can be carried out independently on each component $\mathcal{X}_{q_{k}}$ and $\mathcal{X}^{K_{j}}$ because, if $\sigma^{-1}(\boldsymbol{x})=\boldsymbol{x}$, either $J_{1}(\boldsymbol{x}) \supset K_{j}$ or $J_{1}(\boldsymbol{x}) \cap K_{j}=\emptyset$ holds and the $\operatorname{sign}(-1)^{j(\sigma, x)}$ is decomposed into a product as

$$
(-1)^{j(\sigma, \boldsymbol{x})}=\prod_{1 \leq j \leq m} \chi_{\varepsilon_{j}}\left(\sigma_{j}\right)=\prod_{1 \leq j \leq m}(-1)^{\varepsilon_{j}\left(\ell\left(\sigma_{j}\right)-1\right)}
$$

if the component of $x_{K_{j}}$ is given by $\left(\zeta_{j}, \varepsilon_{j}, p_{j}\right) \in \mathcal{X}_{\text {disc }}$. Thus $\Phi(g)$ is expressed as a product as

$$
\begin{gather*}
\Phi(g)=\prod_{q \in Q} f_{q}\left(t_{q}\right) \times \prod_{1 \leq j \leq m} f_{K_{j}}\left(\left(d_{j}, \sigma_{j}\right)\right) \tag{4.15}\\
f_{q}\left(t_{q}\right)=\int_{\mathcal{X}}\left\langle Z_{x}\left(t_{q}\right) u_{x}^{0}, u_{x}^{0}\right\rangle_{U(x)} d \nu(x) \tag{4.16}
\end{gather*}
$$

$$
\begin{align*}
& f_{K_{j}}\left(\left(d_{j}, \sigma_{j}\right)\right)= \tag{4.17}\\
& =\int_{\mathcal{Z}_{K_{j}}}(-1)^{j\left(\sigma_{j}, x_{K_{j}}\right)}\left\langle\otimes_{i \in K_{j}}\left(Z_{x_{i}}\left(t_{i}\right) u_{x_{\sigma_{j}^{-1}(i)}^{0}}\right), \otimes_{i \in K_{j}} u_{x_{i}}^{0}\right\rangle_{\boldsymbol{W}\left(x_{K_{j}}\right)} d \nu^{K_{j}}\left(x_{K_{j}}\right)
\end{align*}
$$

For the last formula (4.17), we note that for $\sigma_{j}=\left(i_{1} i_{2} \cdots i_{\ell_{j}}\right), K_{j}=$ $\operatorname{supp}\left(\sigma_{j}\right)=\left\{i_{1}, i_{2}, \ldots, i_{\ell_{j}}\right\}$. An element in $\boldsymbol{W}\left(x_{K_{j}}\right)$ is regarded as a vector field on $T^{\ell_{j}}$, hence a function in $s_{1}, s_{2}, \ldots, s_{\ell_{j}}$, in such a manner as is indicated just before Proposition 4.5 (where ℓ_{j} denotes $\ell\left(\sigma_{j}\right)$). Namely, on the first argument of the inner product in (4.17), σ_{j} acted as follows:

$$
\begin{aligned}
& \left(\kappa^{\prime \prime}\left(\sigma_{j}\right)\left(\otimes_{i \in K_{j}} u_{x_{i}}^{0}\right)\right)\left(s_{1}, s_{2}, \ldots, s_{\ell_{j}}\right)=\kappa^{\prime}\left(\sigma_{j}\right)\left(\left(\otimes_{i \in K_{j}} u_{x_{i}}^{0}\right)\left(s_{1}, s_{2}, \ldots, s_{\ell_{j}}\right)\right) \\
& \quad=\kappa^{\prime}\left(\sigma_{j}\right)\left(\otimes_{i \in K_{j}} u_{x_{i}}^{0}\left(s_{i}\right)\right)=\otimes_{i \in K_{j}} u_{x_{\sigma_{j}^{-1}(i)}^{0}}\left(s_{\sigma_{j}^{-1}(i)}\right)
\end{aligned}
$$

This remark is essential in the computation of (4.18).
For the factor (4.16), we took $\left(Z_{x}(t) u\right)(s)=\left(\zeta^{U}(t) u\right)(s)=\zeta(t)(u(s))$ for a discrete parameter $x=(\zeta, \varepsilon, p)$, and the same for a continuous parameter $x=$ $(\zeta, \xi) \in \mathcal{X}_{\text {cont }}$ in the first choice, whereas $Z_{x}(t)=\zeta^{U_{1}}(t)$ for $x=(\zeta, \xi) \in \mathcal{X}_{\text {cont }}$ in the second choice. Then we get in any choice

$$
\int_{\mathcal{X}}\left\langle Z_{x}\left(t_{q}\right) u_{x}^{0}, u_{x}^{0}\right\rangle d \nu(x)=\sum_{(\zeta, \varepsilon) \in \widehat{T} \times\{0,1\}} \sum_{p \in N} \alpha_{\zeta, \varepsilon, p} \frac{\chi_{\zeta}\left(t_{q}\right)}{\operatorname{dim} \zeta}+\sum_{\zeta \in \widehat{T}} \mu_{\zeta} \frac{\chi_{\zeta}\left(t_{q}\right)}{\operatorname{dim} \zeta}
$$

For the factor (4.17), the integral on the region of continuous parameters $\bigsqcup_{\zeta \in \widehat{T}}\left\{x_{K_{j}} ;(\forall i) x_{i}=(\zeta, \xi), \xi \in\left[0, \mu_{\zeta}\right]\right\}$ is zero, since each of the subregion corresponding to $\Xi_{\zeta} \subset \mathcal{X}_{\text {cont }}$ is a one-dimensional subset in $\left[0, \mu_{\zeta}\right]^{\left|K_{j}\right|}$ and of measure 0 .

Put $\ell\left(\sigma_{j}\right)=\left|K_{j}\right|=\ell_{j}$, and $t_{1}^{\prime}=t_{i_{1}}, t_{2}^{\prime}=t_{i_{2}}, \ldots, t_{\ell_{j}}^{\prime}=t_{i_{\ell_{j}}}$ for $\sigma_{j}=$ $\left(\begin{array}{llll}i_{1} & i_{2} & \cdots & i_{\ell_{j}}\end{array}\right)$. Then the value of the integrand for the region of discrete parameters $\bigsqcup_{p \in N}\left\{x_{K_{j}} ;(\forall i) x_{i}=(\zeta, \varepsilon, p)\right\}$ is

$$
\begin{align*}
& (-1)^{j\left(\sigma_{j}, x_{K_{j}}\right)}\left\langle\otimes_{i \in K_{j}}\left(Z_{x_{i}}\left(t_{i}\right) u_{x_{\sigma_{j}^{-1}(i)}^{0}}^{0}\right), \otimes_{i \in K_{j}} u_{x_{i}}^{0}\right\rangle= \\
& \quad=(-1)^{\varepsilon\left(\ell_{j}-1\right)} \int_{T^{\ell_{j}}} \prod_{1 \leq k \leq \ell_{j}}\left\langle\zeta\left(t_{i_{k}}\right) u_{\zeta}^{0}\left(s_{k-1}\right), u_{\zeta}^{0}\left(s_{k}\right)\right\rangle d s_{1} d s_{2} \cdots d s_{\ell_{j}} \tag{4.18}
\end{align*}
$$

where we put $s_{\ell_{j}+1}=s_{1}$. By Lemmas 4.1 and 4.2 , the above integral is equal to

$$
\begin{align*}
& (-1)^{\varepsilon\left(\ell_{j}-1\right)} \int_{T^{\ell_{j}}} \zeta_{11}\left(s_{1}^{-1} t_{1}^{\prime} s_{\ell_{j}}\right) \zeta_{11}\left(s_{2}^{-1} t_{2}^{\prime} s_{1}\right) \cdots \\
& \quad \cdots \zeta_{11}\left(s_{\ell_{j}}^{-1} t_{\ell_{j}}^{\prime} s_{\ell_{j}-1}\right) d s_{1} d s_{2} \cdots d s_{\ell_{j}}= \tag{4.19}\\
& \quad=(-1)^{\varepsilon\left(\ell_{j}-1\right)} \frac{\chi_{\zeta}\left(t_{\ell_{j}}^{\prime} t_{\ell_{j}-1}^{\prime} \cdots t_{2}^{\prime} t_{1}^{\prime}\right)}{(\operatorname{dim} \zeta)^{\ell_{j}}}=\chi_{\varepsilon}\left(\sigma_{j}\right) \frac{\chi_{\zeta}\left(P_{\sigma_{j}}\left(d_{j}\right)\right)}{(\operatorname{dim} \zeta)^{\ell_{j}}}
\end{align*}
$$

where $P_{\sigma_{j}}\left(d_{j}\right)$ is defined in (1.5). Hence we have

$$
\begin{aligned}
& \int_{\mathcal{Z}_{K_{j}}}(-1)^{j\left(\sigma_{j}, x_{K_{j}}\right)}\left\langle\otimes_{i \in K_{j}}\left(Z_{x_{i}}\left(t_{i}\right) u_{x_{\sigma_{j}(i)}}^{0}\right), \otimes_{i \in K_{j}} u_{x_{i}}^{0}\right\rangle d \nu^{K_{j}}\left(x_{K_{j}}\right) \\
& \quad=\sum_{(\zeta, \varepsilon) \in \widehat{T} \times\{0,1\}} \sum_{p \in N}\left(\frac{\alpha_{\zeta, \varepsilon, p}}{\operatorname{dim} \zeta}\right)^{\ell\left(\sigma_{j}\right)} \chi_{\varepsilon}\left(\sigma_{j}\right) \chi_{\zeta}\left(P_{\sigma_{j}}\left(d_{j}\right)\right) .
\end{aligned}
$$

By the calculations above, we get the product formula for $\Phi(g)$ as for f_{A} in (2.5), and in the case $I=N, \Phi=f_{A}$ as is asserted in the theorem.

For the last assertion in (ii), the proof is similar as in the proof of Theorem 3.6.

Remark 4.2. From the computation of the integration (4.17) on the region of discrete parameters $\bigsqcup_{(\zeta, \varepsilon)} \bigsqcup_{p \in N}\left\{x_{K_{j}} ;(\forall i) x_{i}=(\zeta, \varepsilon, p)\right\}$, it can be seen that Lemma 4.3 is an obstacle why we cannot choose $Z_{x}(t)=\zeta^{U_{1}}(t)$ in the second choice II in 4.2 for discrete parameters $x=(\zeta, \varepsilon, p) \in \mathcal{X}_{\text {disc }}$, whereas we could choose it for continuous parameters $x=(\zeta, \xi)$ which appears actually only in the one-dimensional integration (4.16) on \mathcal{X}.

Remark 4.3. Let G be a topological group and K a closed subgroup of G. Then the pair (G, K) is called spherical if for any IUR T of G, the subspace $V(T)^{K}$ of all K-invariant vectors in the space $V(T)$ of T has dimension ≤ 1 [Ols, Definition 23.1]. An IUR T of G is said to be a spherical representation of a pair (G, K) if $\operatorname{dim} V(T)^{K}=1$.

For a topological group G, put $\mathbb{G}=G \times G$ and let $\Delta(G)(\cong G)$ be the subgroup of diagonal elements of G. Then the pair $(\mathbb{G}, \Delta(G))$ is always spherical [Ols, Corollary 24.4]. For an IUR T of \mathbb{G}, put $\pi=\left.T\right|_{G \times\{e\}}$. Assume T has a unit $\Delta(G)$-invariant vector $v_{0} \in V(T)$. Then π is a factor representation of G of finite type, and v_{0} is a trace-element of π, or $f(g)=\left\langle\pi(g) v_{0}, v_{0}\right\rangle$ is the normalized character of π. Moreover, Theorem 24.5 in [Ols] says:

The functor $T \rightarrow \pi$ establishes a bijection between the set of equivalence classes of spherical representations T of the pair $(\mathbb{G}, \Delta(G))$ and the set of quasiequivalence classes of factor representations of finite type of the group G.

From this standpoint, we can look back our construction of factor representations of finite type π^{A} of $G=\mathfrak{S}_{\infty}(T)$.
(See also [Far], for spherical functions for several spherical pairs (G, K) of infinite classical type, and for characters of factor representations of such G.)

Acknowledgements. We express deep appreciation to Professor Marek Bożejko for having suggested us the problem treated in this paper on the occasion of the 25th QP Conference held at Będlewo in Poland in June 2004. We thank also the referee for valuable comments.

22-8 Nakazaichi-Cho, Iwakura, Sakyo-Ku, Kyoto 606-0027, Japan e-mail: hirai.takeshi@math.mbox.media.kyoto-u.ac.jp
Department of Mathematics, Faculty of Sciences, Kyoto Sangyo University, Kita-Ku, Kyoto 603-8555, Japan e-mail: hiraietu@cc.kyoto-su.ac.jp
Graduate School of Natural Science and Technology, Okayama University, Okayama 700-8530, Japan e-mail: hora@ems.okayama-u.ac.jp

References

[AK] S. Ariki and K. Koike, A Hecke algebra of $(\mathbb{Z} / r \mathbb{Z})$ 2 S_{n} and construction of its irreducible representations, Adv. in Math. 106 (1994), 216-243.
[Bia] P. Biane, Approximate factorization and concentration for characters of symmetric groups, Internat. Math. Res. Notices 2001-4 (2001), 179192.
[BG] M. Bożejko and M. Guţă, Functors of white noise associated to characters of the infinite symmetric group, Comm. Math. Phys. 229 (2002), 209-227.
[BL] E. Bishop and K. de Leeuw, The representation of linear functionals by measures on sets of extreme points, Ann. Inst. Fourier 9 (1959), 305-331.
[Dix] J. Dixmier, Von Neumann Algebras, North-Holland Mathmatical Library, 27, 1981.
[Far] J. Faraut, Infinite Dimensional Harmonic Analysis and Probability, in Proceedings of the CIMPA-TIFR on Probability Measures on Groups, 2002, TIFR, Mumbai, to appear.
[GR] I. M. Gelfand and D. A. Raikov, Irreducible unitary representations of locally bicompact groups, Amer. Math. Transl. 36 (1964), 1-15 (Original Russian paper in Mat. Sb. 13(55) (1943), 301-315).
[Hir] T. Hirai, Centralization of positive definite functions, weak containment of representations and Thoma characters for the infinite symmetric group, J. Math. Kyoto Univ. 44 (2004), 685-713.
[HH1] T. Hirai and E. Hirai, Characters for the infinite Weyl groups of type B_{∞} / C_{∞} and D_{∞}, and for analogous groups, in Non-Commutativity, Infinite-Dimensionality and Probability at the Crossroad, World Scientific, 2002, pp. 296-317.
[HH2] , Character formula for wreath products of finite groups with the infinite symmetric group, in the Proceedings of Japanese-German Seminar on Infinite-Dimensional Harmanic Analysis III, World Scientific, 2005, pp. 119-139.
[HH3] —, Positive definite class functions on a topological group and characters of factor representations, J. Math. Kyoto Univ. 45 (2005), 355-379.
[HH4] , Character formula for wreath products of compact groups with the infinite symmetric group, in the Proceedings of 25 th QP Conference Quantum Probability and Related Topics 2004 in Będlewo, Banach Center Publications, Institute of Mathematics, Polish Academy of Sciences, to appear.
[HH5] , Characters of wreath products of finite groups with the infinite symmetric group, J. Math. Kyoto Univ. 45 (2005), in press.
[HH6] , Characters of wreath products of compact groups with the infinite symmetric group and characters of their canonical subgroups, preprint.
[Hor] A. Hora, Representations of symmetric groups and asymptotic combinatorics (in Japanese), Sûgaku, 57 (2005), 242-254, Math. Soc. of Japan.
[Kaw] N. Kawanaka, A q-Cauchy identity for Schur functions and imprimitive complex reflexion groups, Osaka J. Math. 38 (2001), 775-810.
[Oba] N. Obata, Integral expression of some indecomposable characters of the infinite symmetric group in terms of irreducible representations, Math. Ann. 287 (1990), 369-375.
[Ols] G. I. Ol'shanskii, Unitary representations of infinite-dimensional pairs (G, K) and the formalism of R. Howe, in Representations of Lie groups and related topics, (Advanced Studies in Comtemporary Mathematics 7), Gordon \& Breach, 1990, pp. 269-463.
[Sho] T. Shoji, A Frobenius formula for the characters of Ariki-Koike algebras, J. Algebra 226 (2000), 818-856.
[Tho1] E. Thoma, Über unitäre Darstellungen abzählbarer, diskreter Gruppen, Math. Ann. 153 (1964), 111-138.
[Tho2] _, Die unzerlegbaren positiv-definiten Klassenfunktionen der abzählbar unendlichen, symmetrischen Gruppe, Math. Z. 85 (1964), 40-61.
[TSH] N. Tatsuuma, H. Shimomura and T. Hirai, On group topologies and unitary representations of inductive limits of topological groups and the case of the group of diffeomorphisms, J. Math. Kyoto Univ. 38 (1998), 551-578.
[VK1] A. Vershik and S. Kerov, Asymptotic theory of characters of the symmetric group, Funct. Anal. Appl. 15 (1981), 246-255.
[VK2] , Characters and factor representations of the infinite symmetric groups, Soviet Math. Doklady 23 (1981), 389-392.

[^0]: 2000 Mathematics Subject Classification(s). Primary 20C32; Secondary 20C15, 20E22, 43A35, 43A90, 46H15.
 Received June 9, 2005
 Revised December 13, 2005

