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Realizations of factor representations
of finite type with emphasis on their characters

for wreath products of compact groups
with the infinite symmetric group

By

Takeshi Hirai, Etsuko Hirai and Akihito Hora

Abstract
Characters of factor representations of finite type of the wreath

products G = S∞(T ) of any compact groups T with the infinite sym-
metric group S∞ were explicitly given in [HH4]–[HH6], as the extremal
continuous positive definite class functions fA on G determined by a
parameter A. In this paper, we give a special kind of realization of a fac-
tor representation πA associated to fA. This realization is better than
the Gelfand-Raikov realization πf , f = fA, in [GR] at least at the point
where a matrix element 〈πA(g)v0, v0〉 of πA for a cyclic vector v0 can be
calculated explicitly, which is exactly equal to the character fA (and so
πA has a trace-element v0). So the positive-definiteness of class functions
fA given in [HH4]–[HH6] is automatically guaranteed, a proof of which
occupies the first half of [HH6] in the case of T infinite. The case where
T is abelian contains the cases of infinite Weyl groups and the limits
S∞(Zr) = limn→∞ G(r, 1, n) of complex reflexion groups.

Introduction

Let A be a datum which determines a character fA of the wreath product
group S∞(T ) of compact group T with the infinite symmetric group S∞. We
mean by a character an extremal continuous positive definite class function on
the group. The precise parametrization through A is recalled in Section 2. The
aim of this paper is to construct a nice realization of a factor representation of
finite type of S∞(T ) for any A which yields fA as its matrix element.

The character formula for S∞ was established by Thoma in [Tho2]. Later
in [VK1], Vershik-Kerov characterized the Thoma parameters as asymptotic
frequencies of growing Young diagrams and showed that the characters of S∞
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are expressed as pointwise limits of the normalized irreducible characters of
Sn, the symmetric group of degree n. Hirai captured the Thoma characters in
[Hir] by using a different kind of approximation procedure. This method has an
advantage that it is applicable to general wreath product groups including the
infinite Weyl groups of other types. In a series of works [HH1]–[HH6], Hirai-
Hirai obtained a complete character formula for the wreath product S∞(T ) of
any compact group T with the infinite symmetric group S∞.

On the other hand, Vershik-Kerov constructed in [VK2] a factor represen-
tation of finite type of S∞ which realizes the Thoma character as its matrix
element. It is useful to give such a nice realization of the factor representation.
Among its applications, let us mention here two cases. In [BG], Bożejko-Guţă
obtained a class of generalized Brownian motions associated with the Thoma
characters. A positive definite function on P2(∞), the set of the pair partitions,
is needed to introduce a Gaussian state of the algebra generated by the field
operators on a certain Fock space. They used the realization due to Vershik-
Kerov to extend the Thoma character on S∞ to P2(∞). Another example is
due to Biane in [Bia] concerning asymptotic concentration which is observed
in irreducible decomposition of some representations of Sn as n → ∞. For
example, in irreducible decomposition of the regular representation of Sn, we
see that a typical irreducible component occupies a dominant size (the so-called
limit shape of Young diagrams) under appropriate scaling limit. Biane showed
in [Bia] that such a concentration phenomenon is observed in a sequence of
the Vershik-Kerov factor representations and that the typical irreducible com-
ponent is characterized by using free probability theory. See also [Hor] for a
survey on this concentration phenomenon and free probability.

Motivated by these facts in the above paragraphs, we are led to construct
those realizations analogous to Vershik-Kerov’s for the explicitly given charac-
ters of S∞(T ). Apart from expected similar applications to the case of S∞,
we note that our realization gives an alternative simpler proof of the positive-
definiteness for fA in [HH4]–[HH6], which is given at first as a class function
on the group by a formula (cf. the right hand side of (2.6) below), and which
should be proved to be positive definite and extremal, and then to cover all
characters of factor representations of finite type of the group.

The paper is organized as the table of contents. After reviewing the charac-
ter formula for S∞(T ), we construct our realization of the factor representation
step by step.

1. Wreath product S∞(T ) of a compact group T with the infinite
symmetric group S∞

1.1. Wreath product S∞(T ) of a compact group T with S∞
A permutation σ on a set J is called finite if its support supp(σ) := { j ∈

J ; σ(j) �= j } is finite, and we denote by SJ the group of all finite permutations
on J . The infinite symmetric group S∞ is the permutation group SN on the
set of natural numbers N .
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Let T be a compact group. We consider a wreath product group SJ (T )
of T with a permutation group SJ as follows:

SJ(T ) = DJ (T ) � SJ , DJ (T ) =
∏′

j∈JTj , Tj = T (j ∈ J),(1.1)

where the symbol
∏′ means the restricted direct product or, for d = (tj)j∈J ∈

DJ (T ), ti = eT the identity element of T , except a finite number of i ∈ J . An
element σ ∈ SJ acts on DJ (T ) as

DJ (T ) � d = (tj)j∈J
σ�−→ σ(d) = (t′j)j∈J ∈ DJ (T ),(1.2)

where t′j = tσ−1(j) (j ∈ J). Identifying groups DJ (T ) and SJ with their im-
ages in the semidirect product SJ(T ), we have σ d σ−1 = σ(d). The groups
SIn

, DIn
(T ) and SIn

(T ) for In = {1, 2, . . . , n} ⊂ N are denoted by Sn, Dn(T )
and Sn(T ) respectively, then G := S∞(T ) is an inductive limit of compact
groups Gn := Sn(T ) = Dn(T ) � Sn. An inductive system (Hn)n≥1 is called
in [TSH] a countable LCG inductive system if each Hn is locally compact and
each homomorphism Hn → Hn+1 is homeomorphic. Introducing in the in-
ductive limit H := limn→∞ Hn the inductive limit topology τind, we get a
topological group [TSH, Theorem 5.7], and it has sufficiently many continu-
ous positive definite functions and so continuous unitary representations [TSH,
Section 5]. The present system (Gn)n≥1 is an example of a countable LCG
inductive system.

When T is a non-trivial finite group, the topology τind on G = S∞(T )
is discrete, and all the characters of factor representations of finite type were
given in [HH1]–[HH2].

When T is infinite, τind is neither discrete nor locally compact, and all
such characters for G were given in [HH4] and [HH6].

A natural subgroup of G = S∞(T ) is given as a wreath product of T with
the alternating group A∞ as G′ := A∞(T ) = D∞(T ) � A∞.

In the case where T is abelian, let S ⊂ T be a subgroup, and assume
that S is open in T or equivalently the index [T : S] is finite. We define a
subgroup GS := SS

∞(T ) = DS
∞(T ) � S∞ as follows: put P (d) =

∏
j∈N tj for

d = (tj)j∈N ∈ D∞(T ), and

SS
∞(T ) := DS

∞(T ) � S∞(1.3)

with DS
∞(T ) := { d = (tj)j∈N ; P (d) ∈ S }. Then GS is a normal subgroup

with a finite index [G : GS ] = [T : S].
For the groups G′, GS and G′S := AS

∞(T ) := DS
∞(T )�A∞, there hold also

the similar character formulas for factor representations of finite type.
This kind of groups S∞(T ) and S

{eT }
∞ (T ) with T abelian, contain the

infinite Weyl groups of classical types, WA∞ = S∞ of type A∞, WB∞ =
S∞(Z2) of type B∞/C∞, and WD∞ = Se

∞(Z2) of type D∞, and moreover
the inductive limits S∞(Zr) = limn→∞ G(r, 1, n) of complex reflexion groups
G(r, 1, n) = Sn(Zr) (cf. [AK], [Kaw], [Sho]).
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1.2. Standard decomposition of elements and conjugacy classes
An element g = (d, σ) ∈ G = S∞(T ) is called basic in the following two

cases:

Case 1: σ is cyclic and supp(d) := {j ∈ N ; tj �= eT } ⊂ supp(σ);
Case 2: σ = 1 and for d = (ti)i∈N , tq �= eT only for one q ∈ N .

The element (d,1) in Case 2 is denoted by ξq, and put supp(ξq) := supp(d) =
{ q }.

For a cyclic permutation σ of � integers, we define its length as �(σ) = �,
and for the identity permutation 1, put �(1) = 1 for convenience. In this
connection, ξq is also denoted by (tq, (q)) with a trivial cyclic permutation (q)
of length 1. In Cases 1 and 2, put �(g) = �(σ) for g = (d, σ), and �(ξq) = 1.

An arbitrary element g = (d, σ) ∈ G, is expressed as a product of basic
elements as

g = ξq1ξq2 · · · ξqr
g1g2 · · · gm(1.4)

with gj = (dj , σj) in Case 1, in such a way that the supports of these com-
ponents, q1, q2, . . . , qr, and supp(gj) = supp(σj) (1 ≤ j ≤ m), are mutu-
ally disjoint. This expression of g is unique up to the orders of ξqk

’s and
gj ’s , and is called standard decomposition of g. Note that �(ξqk

) = 1 for
1 ≤ k ≤ r and �(gj) = �(σj) ≥ 2 for 1 ≤ j ≤ m, and that, for S∞-components,
σ = σ1σ2 · · ·σm gives the cycle decomposition of σ.

To write down conjugacy class of g, we introduce some notations. Denote
by [t] the conjugacy class of t ∈ T , and by T/∼ the set of all conjugacy classes
of T , and t ∼ t′ denotes that t, t′ ∈ T are mutually conjugate in T . For a
basic component gj = (dj , σj) of g, let σj = (ij,1 ij,2 . . . ij,�j

) and put
Kj := supp(σj) = { ij,1, ij,2, . . . , ij,�j

} with �j = �(σj). For dj = (ti)i∈Kj
, we

put

Pσj
(dj) :=

[
t′�j

t′�j−1 · · · t′2t′1
] ∈ T/∼ with t′k = tij,k

(1 ≤ k ≤ �j).(1.5)

Lemma 1.1. Let σ ∈ S∞ be a cycle, and put K = supp(σ) and GK =
SK(T ).

(i) An element g = (d, σ) ∈ GK is conjugate in it to g′ = (d′, σ) ∈ GK

with d′ = (t′i)i∈K , t′i = eT (i �= i0), [t′i0 ] = Pσ(d) for any i0 ∈ K arbitrarily fixed.
(ii) Identify τ ∈ S∞ with its image in G = S∞(T ). Then we have, for

g = (d, σ),

τ gτ−1 = (τ (d), τστ−1) (=: (d′, σ′) (put) ),

and Pσ′(d′) = Pσ(d).

Theorem 1.2. For an element g ∈ G = S∞(T ), let its standard de-
composition into basic elements be g = ξq1ξq2 · · · ξqr

g1g2 · · · gm in (1.4), with
ξqk

= (tqk
, (qk) ) and gj = (dj , σj), σj cyclic, supp(dj) ⊂ supp(σj). Then the

conjugacy class of g is determined by

[tqk
] ∈ T/∼ (1 ≤ k ≤ r) and (Pσj

(dj), �(σj) ) (1 ≤ j ≤ m),(1.6)

where Pσj
(dj) ∈ T/∼ and �(σj) ≥ 2.
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1.3. The case where T is abelian
Assume T be abelian. Then the set T/∼ of conjugacy classes is equal to T

itself. Take a g ∈ G and take its standard decompositon (1.4). For gj = (dj , σj),
put g′j := (d′j , σj), where d′j = (t′i)i∈N with t′i0 = P (dj) =

∏
i∈Kj

ti for some
i0 ∈ Kj := supp(σj), and t′i = eT elsewhere.

Lemma 1.3. Let T be abelian. For a g ∈ G = S∞(T ), let its standard
decomposition be g = ξq1ξq2 · · · ξqr

g1g2 · · · gm in (1.4). Define g′j (1 ≤ j ≤ m)
as above and put g′ = ξq1ξq2 · · · ξqr

g′1g
′
2 · · · g′m. Then, g and g′ are mutually

conjugate in G.

Corollary 1.4. A complete set of parameters of the conjugacy classes
of non-trivial elements g ∈ G = S∞(T ) is given by

{ t′1, t
′
2, . . . , t

′
r } and { (uj , �j) ; 1 ≤ j ≤ m },(1.7)

where t′k = tqk
∈ T ∗ := T \ { eT }, uj = P (dj) ∈ T , �j ≥ 2, and r + m > 0.

2. Characters of S∞(T ) with T compact and of SS
∞(T ) with S ⊂ T

abelian compact

2.1. Character formula for factor representations of finite type of
S∞(T )

Let T̂ be the dual of T consisting of all equivalence classes of continuous
irreducible unitary representations (= IURs). We identify every equivalence
class with one of its representative. Thus ζ ∈ T̂ is an IUR and denote by χζ

its character: χζ(t) = tr(ζ(t)) (t ∈ T ), then dim ζ = χζ(eT ).
For a g ∈ G = S∞(T ), let its standard decomposition into basic compo-

nents be

g = ξq1ξq2 · · · ξqr
g1g2 · · · gm,(2.1)

where the supports of components, q1, q2, . . . , qr, and supp(gj) := supp(σj)
(1 ≤ j ≤ m), are mutually disjoint. Furthermore, ξqk

= (tqk
, (qk)), tqk

�= eT ,
with �(ξqk

) = 1 for 1 ≤ k ≤ r, and σj is a cycle of length �(σj) ≥ 2 and
supp(dj) ⊂ Kj = supp(σj) . For dj = (ti)i∈Kj

∈ DKj
(T ) ↪→ D∞(T ), put

Pσj
(dj) as in (1.5).
For one-dimensional charcters of S∞, we introduce simple notation as

χε(σ) := sgnS(σ)ε (σ ∈ S∞ ; ε = 0, 1).(2.2)

As a parameter for characters of G, we prepare a set

αζ,ε (ζ ∈ T̂ , ε ∈ {0, 1}) and µ = (µζ)ζ∈bT ,(2.3)

of decreasing sequences of non-negative real numbers αζ,ε = (αζ,ε,p)p∈N ,

αζ,ε,1 ≥ αζ,ε,2 ≥ αζ,ε,3 ≥ · · · ≥ 0 ,



80 Takeshi Hirai, Etsuko Hirai and Akihito Hora

and a set of non-negative µζ ≥ 0 (ζ ∈ T̂ ), which altogether satisfy the condition

(2.4)

∑
ζ∈bT

∑
ε∈{0,1}

‖αζ,ε‖ + ‖µ‖ = 1,

with ‖αζ,ε‖ =
∑
p∈N

αζ,ε,p, ‖µ‖ =
∑
ζ∈bT

µζ .

Theorem 2.1 ([HH4]–[HH6]). Let G = S∞(T ) be a wreath product
group of a compact group T with S∞. Then, for a parameter

A :=
(
(αζ,ε)(ζ,ε)∈bT×{0,1} ; µ

)
,(2.5)

in (2.3)–(2.4), the following formula determines a character fA of G: for an
element g ∈ G, let (2.1) be its standard decomposition, then

fA(g) =
∏

1≤k≤r

∑
ζ∈bT

 ∑
ε∈{0,1}

∑
p∈N

αζ,ε,p

dim ζ
+

µζ

dim ζ

χζ(tqk
)


×

∏
1≤j≤m

∑
ζ∈bT

 ∑
ε∈{0,1}

∑
p∈N

(
αζ,ε,p

dim ζ

)�(σj)

χε(σj)

χζ

(
Pσj

(dj)
) ,

(2.6)

where χε(σj) = sgnS(σj)ε = (−1)ε(�(σj)−1).
Conversely any character of G is given in the form of fA.

Remark 2.1. The case of S∞ itself can be considered as a special case
of S∞(T ) with the trivial T = { eT }. In this case, we have in [Tho2] a pa-
rameter (α, β) with decreasing sequences of non-negative real numbers α =
(αp)p∈N , β = (βp)p∈N satisfying ‖α‖ + ‖β‖ ≤ 1. Take the trivial representa-
tion 1T of T = {eT } superfluously and put µ = (µ1T

) with µ1T
= 1−‖α‖−‖β‖.

Then we have the corresponding parameter A =
(
(αζ,ε)(ζ,ε)∈bT×{0,1} ; µ

)
, sat-

isfying the equality condition (2.4).

Remark 2.2. Assume T be finite. Put T̂ ∗ := T̂ \ {1T } with the triv-
ial representation 1T of T and T ∗ = T \ {eT }. Then,

∑
ζ∈bT (dim ζ) χζ = 0

and 1 = χ1T
= −∑

ζ∈bT∗(dim ζ) χζ on T ∗. By this linear dependence be-
tween characters χζ , we may accept the parameter A for fA not necessarily
under the equality condition (2.4) but under the weaker inequality condition∑

ζ∈bT

∑
ε∈{0,1} ‖αζ,ε‖ + ‖µ‖ ≤ 1, loosing the validity of the formula of fA for

tqk
= eT and accordingly for g = e (cf. [HH2]). However we insist here to keep

the condition (2.4), called (MAX) condition, and keep the uniqueness of the
parameter A and the validity of the character formula even for tqk

= eT and
g = e.



Realizations of factor representations for wreath products 81

Remark 2.3. For a g = (d, σ) ∈ G = D∞(T ) � S∞, put supp(g) :=
supp(σ) ⊂ N . Let K(G) denote the set of continuous positive definite class
functions on G and K1(G) the normalized ones in K(G). An f ∈ K(G) is
called factorizable if f(g1g2) = f(g1)f(g2) for any g1, g2 such that supp(g1) ∩
supp(g2) = ∅. The set of all factorizable f ∈ K1(G) is denoted by F (G), and
that of all extremal f ∈ K1(G) or characters of G is denoted by E(G). It
is proved in [HH6, Section 4] that f ∈ K1(G) is extremal if and only if it is
factorizable, that is, E(G) = F (G). This important fact helps us to analyse
situations and to calculate matrix elements in the succeeding sections.

Note that, in the first half of [HH6], it is proved that the class function
fA given by the formula (2.6) is positive definite if the parameter A in (2.5)
is given by (2.3)–(2.4), and that, in the second half of [HH6], it is proved
that the set E′(G) of such functions fA is exactly equal to the set F (G) of
normalized factorizable positive definite class functions: E′(G) = F (G). Since
E(G) = F (G), we have E′(G) = F (G) = E(G).

2.2. Characters of S∞(T ) = D∞(T ) � S∞, T abelian
When T is abelian, the general character formula (2.6) for G = S∞(T ) =

D∞(T )�S∞ with a compact group T has a simplified form. In this abelian case,
T̂ is nothing but the dual group consisting of all one-dimensional characters of
T , and for each ζ ∈ T̂ , its character χζ is identified with ζ itself.

For a g ∈ G, let its standard decomposition be as in (2.1),

g = ξq1ξq2 · · · ξqr
g1g2 · · · gm,

with ξqk
= (tqk

, (qk)), tqk
�= eT , for 1 ≤ k ≤ r, and gj = (dj , σj) for 1 ≤ j ≤ m.

Put Kj = supp(σj), and for dj = (ti)i∈Kj
∈ DKj

(T ) ↪→ D∞(T ), put

(2.7) PKj
(dj) =

∏
i∈Kj

ti, ζ(dj) := ζ(PKj
(dj)) =

∏
i∈Kj

ζ(ti).

As a parameter for characters of G, we prepare a set

(2.8) αζ,ε (ζ ∈ T̂ , ε ∈ {0, 1}) and µ = (µζ)ζ∈bT ,

of decreasing sequences of non-negative real numbers αζ,ε = (αζ,ε,p)p∈N , and
a set of non-negative µζ ≥ 0 (ζ ∈ T̂ ), which satisfy the condition

(2.9)
∑
ζ∈bT

∑
ε∈{0,1}

‖αζ,ε‖ + ‖µ‖ = 1.

Theorem 2.2 ([HH1], [HH4]–[HH6]). Let G = S∞(T ) be a wreath
product group of a compact abelian group T with S∞. Then, for a parameter
A :=

(
(αζ,ε)(ζ,ε)∈bT×{0,1} ; µ

)
in (2.8)–(2.9), the following formula determines

a character fA of G: for an element g ∈ G, let its standard decomposition be
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as above, then

fA(g) =
∏

1≤k≤r

∑
ζ∈bT

 ∑
ε∈{0,1}

∑
p∈N

αζ,ε,p + µζ

 ζ(tqk
)


×

∏
1≤j≤m

∑
ζ∈bT

 ∑
ε∈{0,1}

∑
p∈N

(αζ,ε,p)
�(σj) · χε(σj)

 ζ(dj)

 ,

(2.10)

where χε(σj) = sgnS(σj)ε = (−1)ε(�(σj)−1), and ζ(dj) as in (2.7).
Conversely any character of G is given in the form of fA.

2.3. Characters of the subgroup SS
∞(T ) ⊂ S∞(T ) with S ⊂ T abelian

Let T be abelian and S ⊂ T an open subgroup. Let GS = SS
∞(T ) =

DS
∞(T ) � S∞ be the natural subgroup defined in (1.3). Then it has a general

character formula similar to that for G = S∞(T ).
Take an element g ∈ GS = SS

∞(T ) and let its standard decomposition as
an element of G ⊃ GS be g = ξq1ξq2 · · · ξqr

g1g2 · · · gm with ξqk
= (tqk

, (qk)) and
gj = (dj , σj), dj = (ti)i∈Kj

, Kj = supp(σj). Note that each component ξqk
does

not necessarily belong to GS , and that the component gj = (dj , σj) belongs
to GS if and only if P (dj) =

∏
i∈Kj

ti ∈ S. Even so, we have the following
character formula for the subgroup GS , deduced from Theorem 2.2.

Theorem 2.3 ([HH5], [HH6]). Let GS = SS
∞(T ) be the subgroup of

G = S∞(T ) given by (1.3) with T abelian and compact and S ⊂ T an open
subgroup. Then, for a parameter A =

(
(αζ,ε)(ζ,ε)∈bT×{0,1} ; µ

)
in (2.8)–(2.9),

the following formula determines a character fS
A of GS: for an element g ∈ GS,

let its standard decomposition be as above, then

fS
A(g) =

∏
1≤k≤r

∑
ζ∈bT

 ∑
ε∈{0,1}

∑
p∈N

αζ,ε,p + µζ

 ζ(tqk
)


×

∏
1≤j≤m

∑
ζ∈bT

 ∑
ε∈{0,1}

∑
p∈N

(αζ,ε,p)
�(σj) · χε(σj)

 ζ(dj)

 ,

(2.11)

where χε(σj) = sgnS(σj)ε = (−1)ε(�(σj)−1), and ζ(dj) as in (2.7).
Conversely any character of GS is given in the form of fS

A.

For the proofs, see [HH5, Section 17] and [HH6, Section 14].

The parameter A =
(
(αζ,ε)(ζ,ε)∈bT×{0,1} ; µ

)
for fS

A is not unique even
under the normalization condition (2.9). Define a translation R(ζ0) on A by
an element ζ0 ∈ T̂ as

R(ζ0)A :=
(
(α′

ζ,ε)(ζ,ε)∈bT×{0,1} ; R(ζ0)µ
)

(2.12)

with α′
ζ,ε=αζζ −1

0 ,ε

(
(ζ, ε) ∈ T̂ × {0, 1}); R(ζ0)µ = (µ′

ζ)ζ∈bT , µ′
ζ = µζζ −1

0
.
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Proposition 2.4. Assume that two parameters for characters

A =
(
(αζ,ε)(ζ,ε)∈bT×{0,1} ; µ

)
and A′ =

(
(α′

ζ,ε)(ζ,ε)∈bT×{0,1} ; µ′
)

both satisfy the normalization condition (2.9). Then, they determine the same
character on GS, or fS

A = fS
A′ , if and only if A′ = R(ζ0)A for some ζ0 ∈ T̂

which is trivial on S.
In this case, as characters on the bigger group G ⊃ GS, we have fA′(g) =

πζ0(g) ·fA(g) (g ∈ G), where πζ0 is a one-dimensional character of G defined as
πζ0(g) := ζ0(P (d)) for g = (d, σ) ∈ G. Thus each character of finite type on GS

has at most and in general |T/S| number of different extensions as characters
on G.

3. Special realization of factor representations of S∞(T ), T abelian
compact

Let T be abelian compact. Take a parameter A =
(
(αζ,ε)(ζ,ε)∈bT×{0,1} ; µ

)
in (2.8)–(2.9), and consider the character fA in (2.10) of G = S∞(T ) corre-
sponding to it. In this section, we construct a factor representation of finite
type πA of G = S∞(T ) such that in its representation space HA there exists
a cyclic unit vector w0 such that 〈πA(g)w0, w0〉 = fA(g) (g ∈ G). So w0 is a
trace-element of πA.

First put

(3.1) X =

 ⊔
(ζ,ε)∈bT×{0,1}

Nζ,ε

⊔⊔
ζ∈bT

Ξζ

 ,

where Nζ,ε = {(ζ, ε, p); p ∈ N} ∼= N , Ξζ = {(ζ, ξ); ξ ∈ [0, µζ ]} ∼= [0, µζ ] (ζ ∈
T̂ ), and put Xdisc =

⊔
(ζ,ε)∈bT×{0,1} Nζ,ε and Xcont =

⊔
ζ∈bT Ξζ , then X =

Xdisc

⊔Xcont.
Let ν be a probability measure on X given by A through

ν({(ζ, ε, p)}) = αζ,ε,p (p ∈ N), dν((ζ, ξ)) = dξ (ξ ∈ [0, µζ ]),(3.2)

where dξ denotes the Lebesgues measure on the interval [0, µζ ].
Put I = IN for N = 1, 2, . . . ,∞, where IN = {1, 2, . . . , N} for N < ∞ and

I∞ = N , and further put GI = SI(T ) = DI(T ) � SI as in Section 1. Then
GI = SN (T ) for I = IN . We put X I = {x = (xi)i∈I , xi ∈ Xi = X (i ∈ I)}
and take the product measure νI =

∏
i∈I νi with νi = ν on Xi = X . Then the

permutation group SI acts on X I =
∏

i∈I Xi as σ(x) = (xσ−1(i)) for σ ∈ SI ,
and leaves invariant νI .

3.1. Fundamental representations of GI = SI(T )
3.1.1. Representation Π′

X
For each x ∈ X , we prepare a T -module as follows. For x = (ζ, ε, p) ∈ Xdisc

with (ζ, ε) ∈ T̂ ×{0, 1}, p ∈ N , put V (x) = V (ζ, ε, p) = V (ζ, ε) and Zx = Zζ,ε,
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ΞζNζ,ε

ε = 1 ε = 0
0 µζp ξ

Xdisc =
⊔

(ζ,ε) Nζ,ε Xcont =
⊔

ζ Ξζ

ζ

Figure 1. Image of X = Xdisc � Xcont

where V (ζ, ε) ∼= C is a one-dimensional T -module indexed by ε = 0, 1 such
that

Zζ,ε(t)v = ζ(t)v (v ∈ V (ζ, ε), t ∈ T )(3.3)

For x = (ζ, ξ) ∈ Xcont with ζ ∈ T̂ , put V (x) = V (ζ, ξ) = V (ζ) and Zx = ζ,
where V (ζ) ∼= C is a one-dimensional T -module such that

Zζ(t)v = ζ(t)v (v ∈ V (ζ), t ∈ T ).(3.4)

Denote by V (X ) the sum of a direct sum and a direct integral of V (x)’s
as

V (X ) =
∑

x∈Xdisc

⊕
V (x)

⊕∫ ⊕

Xcont

V (x) dν(x) =
∫ ⊕

X
V (x) dν(x).

For a measurable vector field v = (v(x))x∈X , v(x) ∈ V (x), on X , define its
norm as

‖v‖2 =
∫
X
‖v(x)‖2 dν(x).

Then the vector field 1X = (1x) with 1x = 1 ∈ V (x) ∼= C is a unit vector since
‖1X ‖2 =

∫
X dν(x) = 1. The Hilbert space V (X ) consists of measurable vector

fields v with ‖v‖ < ∞, and on it we have a T -module structure as(
ZX (t)v

)
(x) := Zx(t)v(x) (x ∈ X ).(3.5)

Take copies V (X )i = V (Xi) = V (X ) for i ∈ I and make tensor product

W (X ) = ⊗i∈I V (X )i = ⊗i∈I V (Xi)

with respect to a reference vector (1Xi
)i∈I . This means that the space is

spanned by the set of decomposable elements ⊗i∈Ivi such that vi = 1Xi
for

sufficiently large i ∈ I.
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We give a unitary representation Π′
X of GI = DI(T ) � SI on W (X ) as

follows. First we put for d = (ti)i∈I ∈ DI(T ) as

Π′
X (d)

(⊗i∈I vi

)
:= ⊗i∈I

(
ZXi

(ti)vi

)
for w = ⊗i∈Ivi ∈ W (X ) = ⊗i∈I V (Xi) with vi ∈ V (Xi), and put for σ ∈ SI ,
κ(σ)w := ⊗i∈Ivσ−1(i). Then we have κ(σ) · Π′(d) · κ(σ−1) = Π′(σ(d)) with
σ(d) = (tσ−1(i))i∈I . From this we get the following result.

Lemma 3.1. For g = (d, σ) ∈ GI = DI(T ) � SI , put

Π′
X (g)w := Π′

X (d)κ(σ)w

for w ∈ W (X ) = ⊗i∈I V (Xi). Then Π′
X is a unitary representation of GI .

3.1.2. Representation ΠX
Let us rewrite the above representation using vector fields on X I =

∏
i∈I Xi

and intoduce a multiplier coming from 1-cocycle for (SI ,X I). A decomposable
element w = ⊗i∈Ivi ∈ W (X ) = ⊗i∈I V (Xi) can be considered as a measurable
vector field on X I with values w(x) = ⊗i∈Ivi(xi) ∈ ⊗i∈IV (xi) at x = (xi)i∈I ∈
X I , where the last tensor product is taken with respcet to the reference vector
(1xi

)i∈I , 1xi
= 1 ∈ V (xi) ∼= C when I = N .

For the action of σ ∈ SI , the value of κ(σ)w at x = (xi)i∈I ∈ X I is(
κ(σ)w

)
(x) = ⊗i∈Ivσ−1(i)(xi) = κ′(σ)

(⊗i∈I vi(xσ(i))
)

=(3.6)

= κ′(σ)
(
w(σ−1(x))

)
,

where κ′(σ) at the right hand sides denotes an action similar to κ(σ) on the
spaces of values given as

κ′(σ) : ⊗i∈IV (xi) � ⊗i∈Ivi �−→ ⊗i∈Ivσ−1(i) ∈ ⊗i∈IV (xσ−1(i)).

We remark that in the present case dim V (xi) = 1 for all i ∈ I, and so we can
omit κ′(σ) if we identify canonically each ⊗i∈IV (xi) with C. However we treat
in Section 4 the case where dim V (xi) > 1, and for I = IN , N < ∞, κ′(σ) is a
linear map from V1 ⊗ V2 ⊗ · · · ⊗ VN to Vσ−1(1) ⊗ Vσ−1(2) ⊗ · · · ⊗ Vσ−1(N) with
Vi = V (xi).

Now we can define an operator ΠX (g) for g = (d, σ) ∈ GI . Denote by H(X )
the Hilbert space of measurable vector fields w = (w(x))x∈X I , x = (xi)i∈I ∈
X I with norm ‖w‖2 :=

∫
X I ‖w(x)‖2 dνI(x), then we put(

ΠX (g)w
)
(x) = (−1)j(σ, x) Zx(d)κ′(σ)

(
w(σ−1(x))

)
,(3.7)

where Zx(d) =
∏

i∈I Zxi
(ti) for d = (ti)i∈I , and j(σ, x) is the number of

inversions in (σ−1(i))i∈J1(x) with J1(x) = {i ∈ I; xi ∈
⊔

ζ∈bT Nζ,1}.

Proposition 3.2. The formula (3.7) gives a unitary representation of
GI on H(X ).
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Proof. For the factor (−1)j(σ, x), the 1-cocycle condition

(−1)j(τσ, x) = (−1)j(τ, x)(−1)j(σ, τ−1(x))(3.8)

should be guranteed. Put J = J1(x) for simplicity, then J1(τ−1(x)) = τ−1J,
since τ−1(x) = (xτ(i))i∈I . Let zi (i ∈ I) be independent variables and put
z = (zi)i∈I , σ(z) = (zσ−1(i))i∈I , and for a subset K ⊂ I, put ∇K(z) =∏

j<k;j,k∈K(zj − zk). Then,

∇K(σ(z)) =
∏

j<k;j,k∈K

(zσ−1(j) − zσ−1(k)) = (−1)m ∇σ−1K(z),

where m is the number of inversions in {σ−1(k); k ∈ K}. Hence,

∇J (τ (z)) = (−1)j(τ,x)∇τ−1J (z), ∇J ((τσ)(z)) = (−1)j(τσ,x)∇(τσ)−1J(z).

On the ther hand, the latter can be calculated in another way as

∇J ((τσ)(z)) =
∏

j<k;j,k∈J

(zσ−1(τ−1(j)) − zσ−1(τ−1(k)))

= (−1)j(τ,x)
∏

j′<k′;j′,k′∈τ−1J

(zσ−1(j′) − zσ−1(k′))

= (−1)j(τ,x)(−1)j(σ,τ−1(x))∇(τσ)−1J (z),

where we put j′ = τ−1(j) etc. and take into account τ−1J = J1(τ−1(x)).
Therefore we get the 1-cocycle condition (3.8).

Since d → ΠX (d) and σ → ΠX (σ) are unitary representations of DI(T ) and
SI respectively, it is enough for us to verify the relation ΠX (σ−1)ΠX (d)ΠX (σ)
= ΠX (σ−1(d)). From the formula (3.7) we have(

ΠX (σ−1)ΠX (d)ΠX (σ)w
)
(x) = (−1)j(σ, x)(−1)j(σ−1, σ(x)) · Zσ(x)(d)w(x)

=
(
ΠX (σ−1(d))w

)
(x).

In fact, we have (−1)j(σ, x)(−1)j(σ−1, σ(x)) = (−1)j(σ−1σ, x) = 1 from (3.8) and
Zσ(x)(d) =

∏
i∈I Zxσ−1(i)

(ti) =
∏

i∈I Zxi
(tσ(i)) = Zx(σ−1(d)).

Remark 3.1. For the symmetric group SI , a unitary representation of
it is defined in [VK2] by h(x, y) → sign(σ, x) h(σx, y), where x = (xi)i∈I and
sign(σ, x) := (−1)r with r = i(σ, x) the number of inversions in {σ(j); j ∈
J := J1(x)}. Here we have i(σ, x) = j(σ−1, x) with x := x, and the action of
σ ∈ SI on x = (xi)i∈I in [VK2] should be understood as σx := (xσ(i))i∈I and so
(τσ)x = σ(τx). On the other hand, in the formula (3.13) in [BG], the unitary
representation of SI is translated from [VK2] as h(x, y) → (−1)i(σ,x)h(σ−1x, y).
However, the multiplier (−1)i(σ,x) should be (−1)i(σ−1,x) = (−1)j(σ, x) with
x := x, because the action σx := (xσ−1(i))i∈I here is different from that in
[VK2].
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3.2. Calculation of matrix elements of ΠX
Let us compute a matrix element of the representation ΠX with the pa-

rameter A. Take a g = (d, σ) ∈ GI = SI(T ) and let its standard decompo-
sition into basic components be g = ξq1ξq2 · · · ξqr

g1g2 · · · gm as in (2.1) with
ξqk

= (tqk
, (qk)), tqk

�= eT , gj = (dj , σj), σj a cycle. Put Q = {q1, q2, . . . , qr},
Kj = supp(σj) and K = supp(σ) =

⊔
1≤j≤m Kj . For the parameter A, we put

pζ = ‖αζ,0‖ + µζ , qζ = ‖αζ,1‖ (ζ ∈ T̂ ) with ‖αζ,ε‖ =
∑
p∈N

αζ,ε,p.

Let w0 = ⊗i∈I1Xi
∈ H(X ) and let us compute the matrix element φ(g) =

〈ΠX (g)w0, w0〉. This is not so simple but we get a summation formula for φ(g)
in general. The calculations here give us helpful indications for our later task
to obtain the character fA as a matrix element of a cyclic representation πA

corresponding to a unit cyclic vector 1∆. From the formula (3.7) we get

φ(g) =
∫
X I

(−1)j(σ, x)

(∏
i∈I

Zxi
(ti)

)
dνI(x).(3.9)

Let [Kj ] be the smallest interval in N containing Kj , and put K =⋃
1≤j≤m[Kj ], xK = (xi)i∈K , and xK = (xi)i∈K . Let j(σ, xK) be the num-

ber of inversions in (σ−1(i)) for i ∈ J1(xK) := {i ∈ K; xi ∈ ⊔
ζ∈bT Nζ,1},

and similarly for j(σ, xK). Then we have (−1)j(σ, x) = (−1)j(σ, xK), but not
necessarily (−1)j(σ, x) = (−1)j(σ, xK). This complicates our calculations.

Lemma 3.3. Let g = (d, σ) ∈ GI = SI(T ) be with standard decomposi-
tion as above. Put for d = (ti)i∈I , dK = (ti)i∈K and ZxK

(dK) :=
∏

i∈K Zxi
(di)

and νK the product of νi = ν on Xi = X , i ∈ K. Assume Q ∩ K = ∅ for g,
then,

φ(g) =
∏
q∈Q

(∑
ζ∈bT

(pζ + qζ) ζ(tq)
)∫

XK

(−1)j(σ, xK) ZxK
(dK) dνK(xK).

Further assume for σ that the multiplicative factor (−1)j(σ, x) has the prop-
erty

(−1)j(σ, x) =
∏

1≤j≤m

(−1)j(σj , xKj
) (x ∈ X I).(3.10)

Then, with F (dj , σj) =
∫
XKj

(−1)j(σj, xKj
) ZxKj

(dj) dνKj (xKj
),

φ(g) =
∏
q∈Q

(∑
ζ∈bT

(pζ + qζ) ζ(tq)
)
×

∏
1≤j≤m

F (dj , σj),

where ZxKj
(dKj

) =
∏

i∈Kj
Zxi

(ti), and νKj is the product of νi = ν on Xi =
X , i ∈ Kj.
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Proof. If Q ∩ K = ∅, then for any q ∈ Q the variable xq in x does not
change the value j(σ, x), and so we can perform independently the integration
with respect to dν(xq) in the integral expression (3.9) of φ(g). Then we get∫

Xq

Zxq
(tq) dν(xq) =

∑
ζ∈bT

(‖αζ,0‖ + µζ + ‖αζ,1‖) ζ(tq) =
∑
ζ∈bT

(pζ + qζ)ζ(tq).

The second assertion is straightforward from the assumption.

Note that the assumptions in Lemma 3.3 are satisfied if all Kj = supp(σj)
are intervals in N . For the integration F (dj , σj) on XKj , we examine two cases
here.

Case 1: σj = (1 2 3 . . . �)−1 = (� �−1 . . . 2 1) with � = �j the length
of σj .

In this case, Kj = {1, 2, . . . , �}. If J1(xKj
) does not contain �, then

j(σj , xKj
) = 0, and the partial integration corresponding to this case gives

us ∏
1≤i<�

( ∑
ζi∈bT

(pζi
+ qζi

) ζi(ti)
)
×
( ∑

ζ�∈bT

pζ�
ζ�(t�)

)
.

If J1(xKj
) contains �, then j(σj , xKj

) = |J1(xKj
)|−1. Therefore the partial

integration corresponding to this case is∏
1≤i<�

( ∑
ζi∈bT

(pζi
− qζi

) ζi(ti)
)
×
( ∑

ζ�∈bT

qζ�
ζ�(t�)

)
.

Therefore we get

F (dj , σj)

=
∑

ζ1,ζ2,...,ζ�∈bT

 ∏
1≤i<�

(pζi
+ qζi

) · pζ�
+

∏
1≤i<�

(pζi
− qζi

) · qζ�

 ∏
1≤i≤�

ζi(ti).

Case 2: σj = (1 2 3 . . . �) with � = �j = �(σj).
In this case, Kj = {1, 2, . . . , �}. If J1(xKj

) does not contain 1, then
j(σj , xKj

) = 0, and if J1(xKj
) contains 1, then j(σj , xKj

) = |J1(xKj
)| − 1.

Therefore similar calculations as above give us

F (dj , σj)

=
∑

ζ1,ζ2,...,ζ�∈bT

pζ1 ·
∏

2≤i≤�

(pζi
+ qζi

) + qζ1 ·
∏

2≤i≤�

(pζi
− qζi

)

 ∏
1≤i≤�

ζi(ti).

Example 3.1. Let σ1 = (1 3), σ2 = (2 4). For x ∈ X I , assume that
J1(x) = {1, 4}, {2, 3}, then j(σ1, xK1) = j(σ2, xK2) = 0, j(σ, x) = 1, whence
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the equality (3.10) does not hold. Moreover if J1(x) = {1, 2, 4}, {3, 2, 4} (resp.
{1, 3, 2}, {1, 3, 4}), then j(σ1, xK1) = 0 (resp. 1), j(σ2, xK2) = 1 (resp. 0),
j(σ, x) = 2, and (3.10) does not hold. Otherwise (3.10) holds for J1(x) ⊂
{1, 2, 3, 4}. From this, we can write down the matrix element φ(g) for g = (d, σ)
with d = (t1, t2, t3, t4, eT , eT , . . .) in a certain sum.

Suggested by this example, we can give a general summation formula for
φ(g) as follows. Devide X as

X = X 0 � X 1 with X 0 :=
⊔
ζ∈bT

(Nζ,0 � Ξζ), X 1 :=
⊔
ζ∈bT

Nζ,1,

and accordingly for Xi = X (i ∈ I), Xi = X 0
i �X 1

i with X 0
i = X 0,X 1

i = X 1. For
a subset I ⊂ K, let j(σ, I) be the number of inversions in σ−1(i), i ∈ I, and put
XK,I :=

(∏
i∈K\I X 0

i

)×(∏
i∈I X 1

i

)
, Then (−1)j(σ,x) = (−1)j(σ,I) (x ∈ XK,I)

and XK =
⊔

I⊂K XK,I , and∫
XK,I

ZxK
(dK) dνK(xK) =

∑
ζi∈bT (i∈K)

( ∏
i∈K\I

pζi

)(∏
i∈I

qζi

) ∏
i∈(Q∩K)∪K

ζi(ti).

Proposition 3.4. For g ∈ G = S∞(T ), put K =
⋃

1≤j≤m[Kj ]. Then

φ(g) =
∏

q∈Q\K

(∑
ζ∈bT

(pζ + qζ) ζ(tq)
)∫

XK

(−1)j(σ,xK) ZxK
(dK) dνK(xK)

(3.11)

=
∏

q∈Q\K

(∑
ζ∈bT

(pζ + qζ) ζ(tq)
)
×

×
∑
I⊂K

(−1)j(σ,I)
∑

ζi∈bT (i∈K)

( ∏
i∈K\I

pζi

)(∏
i∈I

qζi

) ∏
i∈(Q∩K)∪K

ζi(ti).

3.3. Construction of factor representations of finite type πA of GI

Starting formally from the fundamental representation ΠX given above, we
construct bigger representation of GI . For that, we introduce a new variable
y ∈ X I controling multiplicities of representations and construct a unitary rep-
resentation Π whose certain subrepresentation πA gives a factor representation
corresponding to fA.

For x = (xi)i∈I ∈ X I , take a tensor product W (x) = ⊗i∈IV (xi) with
respect to a reference vector (1xi

)i∈I with 1xi
= 1 ∈ V (xi) ∼= C, and take a

measurable vector field w on X I ×X I such that w(x, y) ∈ W (x) for (x, y) ∈
X I × X I . We define x ∼ y if x = τ (y) for some τ ∈ SI . The norm of w is
defined by

‖w‖2 =
∫
X I

∑
y∼x

‖w(x, y)‖2 dνI(x),(3.12)
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and this gives us a Hilbert space H. The action of g = (d, σ) ∈ GI is defined
through ΠX (g) acting on x-side as(

Π(g)w
)
(x, y) = (−1)j(σ, x)Zx(d) κ′(σ)

(
w(σ−1(x), y)

)
.(3.13)

Similarly as Proposition 3.2, we can prove that (Π,H) is a unitary representa-
tion of GI .

Let ∆ be the diagonal subset of X I×X I and 1∆ its characteristic function,
then ‖1∆‖2 =

∫
X I dνI(x) = 1. Let HA be the closed linear span of Π(GI)1∆

and πA be the restriction of Π on the subspace HA. Summarizing these results,
we have the following.

Proposition 3.5. The set of measurable vector fields w(x, y), (x, y) ∈
X I ×X I , with norm (3.12) gives a Hilbert space H, and Π(g) (g ∈ GI) in (3.13)
is a unitary representation of GI on H. Its subrepresentation πA on HA has a
cyclic unit vector 1∆.

3.4. Calculation of a matrix element for πA

We calculate the matrix element for 1∆ using integral expression

(3.14) 〈πA(g)1∆,1∆〉 =

=
∫
X I

∑
y∼x

(−1)j(σ,x)〈Zx(d)κ′(σ)
(
1∆(σ−1(x), y)

)
,1∆(x, y)〉 dνI(x),

and get a factorizable positive definite class function on GI .

Theorem 3.6. (i) The matrix element 〈πA(g)1∆,1∆〉 is given by the
same formula as that for the function fA in Theorem 2.2. In particular, as-
sume I = N . Then the matrix element 〈πA(g)1∆,1∆〉 is equal to the extremal
positive definite class function fA on GI = S∞(T ) in Theorem 2.2 correspond-
ing to a parameter A =

(
(αζ,ε)(ζ,ε)∈bT×{0,1} ; µ

)
.

(ii) The cyclic representation πA generated by 1∆ is a factor representation
of finite type with normalized character fA.

Proof. Denote by Φ(g) the matrix element in (3.14). For g = (d, σ) ∈ GI ,
the integrand in (3.14) is not zero only when σ−1(x) = y = x.

For a general element g ∈ GI , take its standard decomposition as in (2.1),
g = ξq1ξq2 · · · ξqr

g1g2 · · · gm, with ξqk
= (tqk

, (qk)), tqk
�= eT , for 1 ≤ k ≤ r, and

gj = (dj , σj) for 1 ≤ j ≤ m. Put Q = {q1, q2, . . . , qr}, Kj = supp(σj), and for
dj = (ti)i∈Kj

∈ DKj
(T ), ζ(dj) =

∏
i∈Kj

ζ(ti). The condition σ−1(x) = x says
that, for each j, all xi (i ∈ Kj) coincide with each other. So the set of such
elements, taking from XKj , is equal to the set of xKj

= (xi)i∈Kj
given as

ZKj
:=

⊔
(ζ,ε)

⊔
p∈N

{
xKj

; (∀i) xi = (ζ, ε, p)
}

⊔ ⊔
ζ∈bT

{
xKj

; (∀i) xi = (ζ, ξ), ξ ∈ [0, µζ ]
}

,
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where (ζ, ε) runs over T̂ × {0, 1}. The point mass of {xKj
; (∀i) xi = (ζ, ε, p)}

with respect to the product measure νKj is equal to (αζ,ε,p)|Kj | = (αζ,ε,p)�(σj).
The integral in (3.14) can be carried out independently on each component

Xqk
and XKj because, if σ−1(x) = x, either J1(x) ⊃ Kj or J1(x) ∩ Kj = ∅

holds and the sign (−1)j(σ, x) is decomposed into a product as

(−1)j(σ, x) =
∏

1≤j≤m

χεj
(σj) =

∏
1≤j≤m

(−1)εj(�(σj)−1),

if, for 1 ≤ j ≤ m, the component of xKj
is given by (ζj , εj , pj) ∈ Xdisc. Thus

Φ(g) is expressed as a product of integrals as∏
q∈Q

∫
X

Zx(tq) dν(x)×

×
∏

1≤j≤m

∫
ZKj

(⊂XKj )

(−1)j(σj , xKj
)
∏

i∈Kj

Zxi
(ti) dνKj (xKj

).
(3.15)

For each factor of the first term, we get∫
X

Zx(tq) dν(x) =
∑

(ζ,ε)∈bT×{0,1}

∑
p∈N

αζ,ε,p ζ(tq) +
∑
ζ∈bT

µζ ζ(tq).

For each factor of the second term, the integral for the integration subdo-
main

⊔
ζ∈bT {xKj

; (∀i) xi = (ζ, ξ), ξ ∈ [0, µζ ]} ⊂ ZKj
⊂ XKj is zero because for

each ζ ∈ T̂ the domain is a one-dimensional subset in [0, µζ ]|Kj | of dimension
�j = |Kj | ≥ 2. On the other hand, the value of the integrand for the subdomain⊔

p∈N{xKj
; (∀i) xi = (ζ, ε, p)} is ζ(dj)χε(σj), and so we have∫

ZKj

(−1)j(σj, xKj
)
∏

i∈Kj

Zxi
(ti) dνKj (xKj

) =

=
∑

(ζ,ε)∈bT×{0,1}

∑
p∈N

(αζ,ε,p)�(σj)χε(σj) ζ(dj).

By calculations above, we get the product formula for Φ(g) as for fA in
(2.10), and in case I = N we get Φ = fA, and the first assertion of the theorem
is proved.

For the second assertion, note that the matrix element corresponding to
the cyclic vector 1∆ is equal to fA, whence πA is equivalent to the Gelfand-
Raikov representation πf associated to f = fA. On the other hand, fA is known
in Theorem 2.2 as a normalized character of a factor representation of finite
type. Therefore the Gelfand-Raikov representation πfA

is known to be factorial
of finite type and its character is equal to fA, according to a general theory for
the representation of topological groups (Theorem 1.6.2 in [HH3]).

Remark 3.2. In the paper [HH6], the positive-definiteness of the class
functions fA is proved in the first half. Theorem 3.6 above and Theorem 4.7
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below give another proof of the positive-definiteness of the functions fA. See
also Remark 2.3.

Remark 3.3. For I = N , the cyclic representation πA has

〈πA(g)1∆,1∆〉 = fA(g)

as its character, and so the factor πA(GI)′′ has 1∆ as its trace-element in the
sense of Definition 3 in [Dix, I.6.3].

3.5. Special cases of Theorem 3.6
Here we expose some details in certain special cases. This is to explain

how we could arrive from the study of special cases to Theorem 3.6 in the most
general case, and also to become more familiar to the method of constructing
factor representations.

3.5.1. Special case:
∑

ε∈{0,1} ‖αζ,ε‖ = 1 for a cetain ζ ∈ T̂ for A

We fix ζ ∈ T̂ . Let us examine first the simplest case where αζ,ε =
(1, 0, 0, . . .) for some ε ∈ {0, 1}. For each i ∈ I, let V (ζ, ε)i be a copy of
V (ζ, ε) in (3.3), and consider a tensor product ⊗i∈IV (ζ, ε)i and make it a GI -
module by an action of g = (d, σ) ∈ GI with d = (ti)i∈I , ti ∈ Ti = T, given
as

Pζ,ε((d, σ))(⊗i∈Ivi) = χε(σ)ζ(d)(⊗i∈Ivσ−1(i)),

where ζ(d) =
∏

i∈I ζ(ti) = ζ(
∏

i∈I ti).

Lemma 3.7. The above formula gives a one-dimensional unitary rep-
resentation (unitary character) of GI . If I = N , the parameter

A =
(
(αζ,ε)(ζ,ε)∈bT×{0,1} ; µ

)
corresponding to this factor representation of type II1 is an extreme case where
αζ,ε = (1, 0, 0, . . .) for a (ζ, ε) ∈ T̂ ×{0, 1} and accordingly all other parameters
are zero.

Starting from this simplest case, we examine more general case where
‖αζ,0‖ + ‖αζ,1‖ = 1 for a fixed ζ ∈ T̂ in A =

(
(αζ,ε)(ζ,ε)∈bT×{0,1} ; µ

)
, and

accordingly all other parameters in A are zero. In this case the measure space
(X , ν) is given as X =

⊔
ε∈{0,1} Nζ,ε with pointwise measure ν({(ζ, ε, p)}) =

αζ,ε,p.

(I) Take copies of T -module V (ζ, ε) as V (x) = V (ζ, ε) for x = (ζ, ε, p), p ∈
N , and consider its direct integral or weighted direct sum as follows. For a vec-
tor field v = (v(x))x∈X , v(x) ∈ V (x), on X , we put ‖v‖2 =

∫
X |v(x)|2 dν(x) =∑

x∈X αx|v(x)|2, and denote the space of such vector fields by

V (X ) =
∫ ⊕

X
V (x) dν(x) =

∑
x∈X

⊕
V (x).
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Take copies V (X )i = V (Xi), i ∈ I, and make tensor product W (X ) =
⊗i∈I V (Xi) with respect to the reference vector (1Xi

)i∈I . On W (X ), we have
a unitary representation Π′

X as in Lemma 3.1.

(II) Consider a Hilbert space H(X ) of vector fields w(x), x = (xi) ∈
X I =

∏
i∈I Xi with norm ‖w‖2 :=

∫
X I ‖w(x)‖2 dνI(x), then we have a unitay

representation ΠX on it given for g = (d, σ) ∈ GI as(
ΠX (g)w

)
(x) = (−1)j(σ, x) ζ(d) κ′(σ)

(
w(σ−1(x)

)
(w ∈ H(X )).

(III) Now introduce a new parameter y which controls the multiplicities of
representations, and construct a new representation Π. For x = (xi)i∈I ∈ X I ,
take a tensor product W (x) = ⊗i∈IV (xi) with respect to a reference vector
(1xi

)i∈I , and take a measurable vector field w on X I ×X I such that w(x, y) ∈
W (x) for (x, y) ∈ X I × X I . The norm of w is defined by (3.12), and the
Hilbert space consisting of such w that ‖w‖ < ∞ is denoted by H. The action
of g = (d, σ) ∈ GI on H is defined as(

Π(g)w
)
(x, y) = (−1)j(σ, x) ζ(d) κ′(σ)

(
w(σ−1(x), y)

)
.

Let ∆ be the diagonal subset of X I×X I and 1∆ its characteristic function,
then ‖1∆‖ = 1. Let (πA,HA) be the cyclic representation generated by 1∆

under Π. We calculate the matrix element Φ(g) = 〈πA(g)1∆,1∆〉 for 1∆ as

Φ(g) =

=
∫
X I

∑
y∼x

〈(−1)j(σ, x) ζ(d) κ′(σ)
(
1∆(σ−1(x), y)

)
,1∆(x, y)〉 dνI(x),(3.16)

and get the following result:
Assume I = N . The matrix element 〈πA(g)1∆,1∆〉 is equal to the ex-

tremal positive definite class function fA corresponding to a parameter A =(
(αζ,ε)(ζ,ε)∈bT×{0,1}; µ

)
with ‖αζ,0‖ + ‖αζ,1‖ = 1.

3.5.2. Special case: ‖µ‖ = 1 for A

Fix a ζ ∈ T̂ . Define a character of the subgroup DI(T ) ⊂ GI(T ) by
ζD(d) = ζ(

∏
i∈I ti) for d = (ti)i∈I , and consider the induced representation

πζ = IndGI(T )
DI(T ) ζD realized naturally on the space �2(SI).

Lemma 3.8. The vector v0 = δ1 ∈ �2(SI) is cyclic, where 1 denotes
the identity element in SI . The matrix element 〈πζ(g)v0, v0〉 is equal to ζ(d)
for g = (d,1), and vanishes outside of DI(T ) ⊂ GI(T ). Assume I = N . Then
the induced representation πζ is factorial of type II1, and the corresponding
parameter A =

(
(αζ,ε)(ζ,ε)∈bT×{0,1} ; µ

)
is an extreme case where µζ = 1 and

accordingly all other parameters are zero.

We give another realization of this factor representation. To be more gen-
eral, we treat the case where ‖µ‖ =

∑
ζ∈bT µζ = 1 in A =

(
(αζ,ε)(ζ,ε)∈bT×{0,1} ;
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µ
)

. In this case the measure space (X , ν) is given as X =
⊔

ζ∈bT Ξζ , Ξζ =
{(ζ, ξζ), ξζ ∈ [0, µζ ]} with the Lebesgue measure dξζ on the interval [0, µζ ]. Let
V (ζ) be a one-dimensional T -module given in (3.4), and take copies of it as
V (ζ, ξζ) = V (ζ), ξζ ∈ Ξζ .

(I) For a measurable vector field v = (v(x))x∈X , v(x) ∈ V (x), we put
‖v‖2 =

∫
X |v(x)|2 dν(x), and denote by

V (X ) =
∫ ⊕

X
V (x) dν(x) =

∑
ζ∈bT

⊕ ∫ ⊕

Ξζ

V (ζ, ξζ) dξζ

the space of such vector fields that ‖v‖ < ∞. Take copies V (X )i = V (Xi)
and make tensor product W (X ) = ⊗i∈I V (Xi) with respect to the reference
vector (1Xi

)i∈I . On the space W (X ) we have a unitary representation Π′
X as

in Lemma 3.1.

(II) Going to the form of vector fields, we have another but similar unitary
representation (ΠX ,H(X )) given as follows: for g = (d, σ) ∈ GI(

ΠX (g)w
)
(x) = Zx(d)κ′(σ)

(
w(σ−1(x))

)
(w ∈ H(X )),

where x = (xi)i∈I ∈ X I , Zxi
= ζ for xi = (ζ, ξζ) ∈ Xi.

(III) Now introduce a new parameter y which controls the multiplicities
of representations and construct a new representation. For x = (xi)i∈I ∈ X I ,
take a tensor product W (x) = ⊗i∈IV (xi) with respect to a reference vector
(1xi

)i∈I , and take a vector field w on X I × X I such that w(x, y) ∈ W (x)
for (x, y) ∈ X I × X I . The norm of w is given by (3.12). The action of
g = (d, σ) ∈ GI is defined as(

Π(g)w
)
(x, y) = Zx(d)κ′(σ)

(
w(σ−1(x), y)

)
,(3.17)

where Zx(d) =
∏

i∈I Zxi
(ti).

Let ∆ be the diagonal subset of X I×X I and 1∆ its characteristic function,
then ‖1∆‖ = 1. For the cyclic representation πA generated by 1∆, we calculate
a matrix element and get the following result: In the case I = N , the matrix
element 〈πA(g)1∆,1∆〉 is equal to the extremal positive definite class function
fA corresponding to a parameter A =

(
(αζ,ε)(ζ,ε)∈bT×{0,1} ; µ

)
with ‖µ‖ = 1.

3.6. The case of the subgroup GS
I = SS

I (T ) with S ⊂ T abelian com-
pact

The natural subgroup GS
I = SS

I (T ) of GI = SI(T ) is defined in (1.3) for
T abelian and compact, and it is normal and the index [G : GS ] is finite under
the assumption that S is open in T . For I = N , characters of GS

I = SS
∞(T )

are given in Theorem 2.3. Note that, for S = {eT } ⊂ T = Z2, we have
SS

∞(Z2) = WD∞ .
The group GI is decomposed into GS

I -cosets as GI =
⊔

t∈T/S t̃ GS
I =⊔

t∈T/S GS
I t̃ with t̃ = (t, eT , eT , . . .) ∈ DI(T ), where “ t ∈ T/S ” means that
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t runs over a complete system of representatives of T/S. The restriction
of inner automorphism g �→ t̃ g t̃−1 on GS

I is denoted by θt. Let HA
0 be

the closed span of πA(GS
I )1∆, then the representation space HA of πA is a

sum of πA( t̃ )HA
0 , t ∈ T/S, and is generated under GS

I by a set of vectors
{w0

t := πA( t̃ )1∆; t ∈ T/S}.
Denote by πA

t the representation of GS
I obtained by restricting πA onto

πA( t̃ )HA
0 . Then it has a cyclic vector w0

t and the matrix element is given
as 〈πA

t (g)w0
t , w

0
t 〉 = fS

A(θt−1(g)) = fS
A(g) with fS

A = fA|GS
I , because fA is

invariant under inner automorphisms.
In the case I = N , we know by Theorem 2.3 that fS

A is the normalized
character of a factor representation of finite type of GS

I . Therefore we see that
each πA

t is a factor representation of finite type having the same fS
A as its

character, and so they are all quasi-equivalent to each other. Thus we get the
following result.

Theorem 3.9. Assume that T be abelian compact and S ⊂ T be an
open subgroup. Then, for the group GS

I = SS
∞(T ) with I = N , a factor

representation of finite type with character fS
A is realised by πA

t with t = eT ∈ T
on the space HA

0 generated by 1∆.

4. Special realization of factor representations of S∞(T ), T any com-
pact

Let T be a compact group and we study the wreath products GI =
SI(T ) = DI(T ) � SI for I = IN with N = 1, 2, . . . ,∞ with I∞ = N . Put
GN = SIN

(T ), G = S∞(T ).

4.1. Factor representations of a compact group T
Denote by T̂ the set of all equivalence classes of irreducible unitary rep-

resentations of T , and for each ζ ∈ T̂ we fix a representative of the class and
denote it again by the same symbol ζ. Denote by V (ζ) the representation space
of ζ and by χζ its trace character.

4.1.1. A realization of cyclic factor representations of T
Fix a unit vector v0 ∈ V (ζ). Take a complete orthonormal basis {ej ; 1 ≤

j ≤ dim ζ} in V (ζ) such that e1 = v0, and let ζjk(t) = 〈ζ(t)ek, ej〉 be matrix
elements with respect to it, then ζ11(t) = 〈ζ(t)v0, v0〉. Put

v0
ζ (s) = ζ(s)v0 = ζ(s)e1 (s ∈ T ).(4.1)

Lemma 4.1. (i) The elements v0 and v0
ζ (s) are both cyclic in V (ζ), and

〈ζ(t)v0
ζ (s1), v0

ζ (s2)〉 = ζ11(s −1
2 ts1). Denote by ds (s ∈ T ) the normalized Haar

measure on T , then ∫
T

ζ11(s−1ts) ds =
1

dim ζ
χζ(t).
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(ii) There holds the following integral relation:∫
T �

ζ11(s −1
1 t1s�) ζ11(s −1

2 t2s1) · · · ζ11(s −1
� t�s�−1) ds1 ds2 · · · ds� =

=
χζ(t�t�−1 · · · t2t1)

(dim ζ)�
.

(4.2)

Proof. It is sufficient for us to note the following two equalities:∫
T

ζ11(s−1ts) ds =
dim ζ∑
k,�=1

∫
T

ζ1k(s−1) ζk�(t) ζ�1(s) ds

=
dim ζ∑
k,�=1

(dim ζ)−1 δk� ζk�(t) = (dim ζ)−1 χζ(t).∫
T

ζ11(s −1
1 t1s�) ζ11(s −1

2 t2s1) ds1

=
dim ζ∑
j,k=1

∫
T

ζ1j(s −1
1 ) ζj1(t1s�) ζ1k(s −1

2 t2) ζk1(s1) ds1

= (dim ζ)−1

dim ζ∑
k=1

ζ1k(s −1
2 t2) ζk1(t1s�) = (dim ζ)−1 ζ11(s −1

2 t2t1s�).

For later use we define a continuous direct integral of the same irreducible
representation ζ as follows. For s ∈ T , put V (ζ; s) = V (ζ), and the representa-
tion space U(ζ), the operator of representation ζU (t) and a special unit vector
u0

ζ are defined as follows:

U(ζ) =
∫ ⊕

T

V (ζ; s) ds, ζU (t) =
∫ ⊕

T

ζ(t) ds, u0
ζ =

∫ ⊕

T

v0
ζ (s) ds.(4.3)

Note that the above space U(ζ) is nothing but the V (ζ)-valued L2-space on
(T, ds), denoted by L2(T, ds; V (ζ)), and the representation ζU acts on the space
of values V (ζ). For this representation (ζU , U(ζ)), the unit vector u0

ζ is a trace-
element for ζ. In fact, we get the normalized character of ζ as a matrix element
for u0

ζ thanks to Lemma 4.1:

〈ζU (t)u0
ζ , u

0
ζ〉 =

∫
T

〈ζ(t)v0
ζ (s), v0

ζ (s)〉 ds =

=
∫

T

ζ11(s−1ts) ds =
1

dim ζ
χζ(t).

(4.4)
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4.1.2. Another realization of cyclic factor representations of T
We also prepare another type of a factor representation ζU1 for ζ. On the

dual space V (ζ)′ of V (ζ), the adjoint representation ζ ′ acts as (ζ(t)v, v′) =
(v, ζ ′(t−1)v′) (t ∈ T ) for v ∈ V (ζ), v′ ∈ V (ζ)′, where (v, v′) := v′(v) denotes
the natural pairing between these two spaces. Consider the tensor product
U1(ζ) = V (ζ)⊗V (ζ)′ as a T -module through the action ζU1 = ζ ⊗1T with the
trivial representation 1T of T , that is,

ζU1(t)(v ⊗ v′) = (ζ(t)v) ⊗ v′ (t ∈ T, v ∈ V (ζ), v′ ∈ V (ζ)′).(4.5)

Note that (ζU1 , U1(ζ)) is canonically equivalent to the part corresponding to
ζ ∈ T̂ of the right regular representation (RT , L2(T )), which is spanned by the
matrix elements of ζ. Take a complete orhtonormal basis {ej ; 1 ≤ j ≤ dim ζ}
in V (ζ) and its dual basis {e′k; 1 ≤ k ≤ dim ζ} in V (ζ)′ such as (ej , e

′
k) = δjk,

and define a unit vector in U1(ζ) as

u1 =
1√

dim ζ

∑
1≤j≤dim ζ

ej ⊗ e′j .(4.6)

Lemma 4.2. (i) The element u1 is independent of the orthonormal ba-
sis used to define it. In particular, u1 = (1/

√
dim ζ)

∑
1≤j≤dim ζ(ζ(s)ej) ⊗

(ζ ′(s)e′j) for any s ∈ T . Any element of U1(ζ) = V (ζ)⊗ V (ζ)′ invariant under
ζ ⊗ ζ ′ is a scalar multiple of u1.

(ii) The unit vectors u1 is cyclic under ζU1 , and

〈ζU1(t)u1, u1〉U1 =
1

dim ζ
χζ(t),

where 〈· , ·〉U1 denotes the inner product in U1(ζ).

Proof. (i) By calculation, we can prove that u1 is independent of the
choice of {ej}. An element u =

∑
1≤j,k≤dim ζ bjk(ej ⊗e′k) of U1(ζ) is invariant if

and only if the matrix B = (bjk) satisfies ζ(s)B t(ζ ′(s)) = B or ζ(s)B = Bζ(s)
for any s ∈ T . So the irreducibility of ζ guarantees that B is a scalar matrix,
and so u is a scalar multiple of u1.

We omit the proof of (ii).

Lemma 4.3.

(4.7)
∫

T �

χζ(s −1
1 t1s�) χζ(s −1

2 t2s1) · · · χζ(s −1
� t�s�−1) ds1 ds2 · · · ds� =

=
χζ(t�t�−1 · · · t2t1)

(dim ζ)�−1
.

Remark 4.1. As a representation of T ×T , the representation T ×T �
(t, s) → ζ(t) ⊗ ζ ′(s) on U1(ζ) = V (ζ) ⊗ V (ζ)′ gives a Hilbert algebra in the
sense of [Dix, I.5], and concerning Lemma 4.2, we refer to Proposition 3 in [Dix,
I.6.3].
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4.2. Fundamental representations of GI

Let X = Xdisc

⊔Xcont, where

Xdisc =
⊔

(ζ,ε)∈bT×{0,1}
Nζ,ε, Nζ,ε = {(ζ, ε, p); p ∈ N} ∼= N ,

Xcont =
⊔
ζ∈bT

Ξζ , Ξζ = {(ζ, ξ); ξ ∈ [0, µζ ]} ∼= [0, µζ ],

and ν the probability measure on X given by A as follows:

ν({(ζ, ε, p)}) = αζ,ε,p (p ∈ N), dν((ζ, ξ)) = dξ (ξ ∈ [0, µζ ]).(4.8)

We put for I = IN with N = 1, 2, . . . ,∞, X I =
∏

i∈I Xi with Xi = X (i ∈
I)} and νI =

∏
i∈I νi with νi = ν. Then, the permutation group SI acts on

X I as σ(x) = (xσ−1(i))i∈I for σ ∈ SI and x = (xi)i∈I , xi ∈ Xi.
For each x ∈ X , we prepare a T -module as follows.

I. First choice: For a discrete parameter x = (ζ, ε, p) ∈ Xdisc and also
for a continuous parameter x = (ζ, ξ) ∈ Xcont, we put

U(x) = U(ζ) =
∫ ⊕

T

V (ζ; s) ds

with the distinguished unit vector u0
x := u0

ζ =
∫ ⊕

T
v0

ζ (s) ds, and the action
of t ∈ T is given as follows. We denote an element u =

∫ ⊕
T

u(s) ds with
u(s) ∈ V (ζ; s) = V (ζ) simply by u = (u(s)) in the form of a vector field, then

(Zx(t)u)(s) := (ζU (t)u)(s) = ζ(t)
(
u(s)

)
,(4.9)

II. Second choice: For a discrete parameter x = (ζ, ε, p) ∈ Xdisc, we
put U(x) = U(ζ) =

∫ ⊕
T

V (ζ; s) ds, as above (cf. Remark 4.2). For a continuous
parameter x = (ζ, ξ) ∈ Xcont, put

U(x) = U1(ζ) = V (ζ) ⊗ V (ζ)′, Zx(t) = ζU1(t) (t ∈ T ),(4.10)

and u0
x := u1

ζ the distinguished cyclic unit vector.

4.2.1. Unitary representation Π′
X of GI

Denote by U(X ) the sum of a direct sum and a direct integral of U(x)’s
as

U(X ) =
∑

x∈Xdisc

⊕
U(x)

⊕∫ ⊕

Xcont

U(x) dν(x) =
∫ ⊕

X
U(x) dν(x).

For a measurable vector field u = (u(x))x∈X , u(x) ∈ U(x), on X , define its
norm as ‖u‖2 =

∫
X ‖u(x)‖2 dν(x). Then the vector field u0

X = (u0
x)x∈X with

the distinguished unit vector u0
x ∈ U(x) has norm 1, that is, ‖u0

X‖ = 1. The
Hilbert space U(X ) consists of measurable vector fields u with ‖u‖ < ∞, and
the T -action on it is given by

(
ZX (t)u

)
(x) = Zx(t)

(
u(x)

)
(x ∈ X )
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Take copies U(X )i = U(Xi) = U(X ) for i ∈ I and make tensor product
W (X ) = ⊗i∈I U(X )i with respect to a reference vector (u0

Xi
)i∈I . Then, on a

decomposable elements w = ⊗i∈Iui ∈ W (X ), elements d = (ti)i∈I ∈ DI(T )
with ti ∈ Ti = T and σ ∈ SI act respectively as

Π′
X (d)w := ⊗i∈I

(
ZXi

(ti)ui

)
, κ(σ)w := ⊗i∈Iuσ−1(i),

and we get a unitary representation Π′
X of GI as follows.

Lemma 4.4. For g = (d, σ) ∈ GI = DI(T ) � SI , put

Π′
X (g)w := Π′

X (d)κ(σ)w (w ∈ W (X )).

Then this gives a unitary representation of GI .

4.2.2. Unitary representation ΠX of GI

We rewrite Π′
X using vector fields on X I with values in W (x) := ⊗i∈IU(xi)

at x = (xi)i∈I , xi ∈ Xi, and introduce a multiplier coming from a 1-cocycle for
(SI ,X I). Let H(X ) be the Hilbert space of measurable vector fields w(x) ∈
W (x), x ∈ X I , such that ‖w‖ < ∞, where ‖w‖2 :=

∫
X I ‖w(x)‖2 dνI(x).

Recall that each space U(xi) is isomorphic to L2(T, ds; V (ζi)) for xi =
(ζi, εi, pi) or (ζi, ξi) in the first choice. Therefore, in turn, the value v =
w(x) ∈ ⊗i∈IU(xi) can be considered as an L2-function v(s) of s = (si)i∈I ∈
T I =

∏
i∈I Ti with values in ⊗i∈IV (ζi), where the measure dm(s) on T I is the

product of normalized Haar measures dsi on Ti. Here the permutation group
SI acts in two ways.

(i) The one is the action on the space of values ⊗i∈IV (ζi) as

κ′(σ) : ⊗i∈IV (ζi) � ⊗i∈Ivi �−→ ⊗i∈Ivσ−1(i) ∈ ⊗i∈IV (ζσ−1(i)).

(ii) The other is the action on the variable s = (si)i∈I ∈ T I as σ(s) =
(sσ−1(i))i∈I .

We denote by κ′′(σ) the simultaneous action of σ of type (i) and (ii).
The action κ′′(σ) is natural in the following point of view. Take a decom-

posable element w := ⊗i∈Ivi with vi ∈ L2(Ti, dsi; Vi), where vi is given as a
function in si ∈ Ti with values in Vi. By σ ∈ SI , we permute the components
of w as ⊗i∈Ivσ−1(i), then this is a function of s = (si)i∈I ∈ T I =

∏
i∈I Ti given

as ⊗i∈Ivσ−1(i)(sσ−1(i)), and the last expression gives nothing but κ′′(σ)(w).
For our present case, take a decomposable element w = ⊗i∈Iui with ui ∈

U(X )i = U(Xi), and consider ⊗i∈Iui as a vector field on X I . Then its value at
a point x = (xi)i∈I , xi ∈ Xi, is given by ⊗i∈Iui(xi), and then by ⊗i∈Iui(xi)(si)
as a function of s. A permutation σ ∈ SI acts as w = ⊗i∈Iui �→ ⊗i∈Iuσ−1(i).
Its value at x is ⊗i∈Iuσ−1(i)(xi) and further is ⊗i∈Iuσ−1(i)(xi)(sσ−1(i)) as a
function in s, which is expressed as κ′′(σ)

(⊗i∈Iui(xσ(i))
)

= κ′′(σ)
(
w(σ−1(x))

)
,

that is,(⊗i∈I uσ−1(i)

)
(x) = ⊗i∈Iuσ−1(i)(xi) = κ′′(σ)

(⊗i∈I ui(xσ(i))
)

=

= κ′′(σ)
(
w(σ−1(x))

)
.
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Proposition 4.5. For g = (d, σ) ∈ GI and w ∈ H(X ), put

(4.11)
(
ΠX (g)w

)
(x) = (−1)j(σ, x) Zx(d) κ′′(σ)

(
w(σ−1(x))

)
,

where w = (w(x)), x = (xi)i∈I ∈ X I , and Zx(d) =
∏

i∈I Zxi
(ti) with Zxi

in
(4.9) in the case of the first choice, and j(σ, x) is the number of inversions in
(σ−1(i))i∈J1(x) with J1(x) = {i ∈ I; xi ∈

⊔
ζ∈bT Nζ,1} for ε = 1. Then ΠX is a

unitary representation of GI on H(X ).

The proof is a word for word repetition of that for Proposition 3.2.
Furthermore in the case of the second choice, Zxi

for xi = (ζi, ξi) ∈ Xcont is
chosen as in (4.10), and accordingly the transformation κ′′(σ) : W (σ−1(x)) →
W (x) should be defined to realize the transformation w = ⊗i∈Iui �→
⊗i∈Iuσ−1(i) for decomposable elements w ∈ W (X ) = ⊗i∈IU(Xi) with ui ∈
U(Xi). Hence κ′′(σ) : ⊗i∈Iui(xσ(i)) �→ ⊗i∈Iuσ−1(i)(xi). Then the assertion in
Proposition 4.5 holds in this case too.

4.3. Construction of factor representations of finite type of GI

Now we introduce a new variable y ∈ X I controling multiplicities of rep-
resentations and construct a unitary representation Π whose certain subrep-
resentation πA gives a factor representation corresponding to fA. For x =
(xi)i∈I ∈ X I , take a tensor product W (x) = ⊗i∈IU(xi) with respect to a ref-
erence vector (u0

xi
)i∈I , and take a measurable vector field w on X I ×X I such

that w(x, y) ∈ W (x) for (x, y) ∈ X I × X I . We define x ∼ y if x = τ (y) for
some τ ∈ SI as before, and the norm of w is defined by

‖w‖2 =
∫
X I

∑
y∼x

‖w(x, y)‖ 2
W (x) dνI(x).(4.12)

Denoted by H the Hilbert space of measurable vector fields w with finite norms
in (4.12).

The action on H of g = (d, σ) ∈ GI is defined through ΠX (g) acting on
x-side as (

Π(g)w
)
(x, y) = (−1)j(σ, x)Zx(d)κ′′(σ)

(
w(σ−1(x), y)

)
.(4.13)

Proposition 4.6. The formula (4.13) gives a unitary representation of
GI on the space H.

Let ∆ be the diagonal subset of X I × X I and u∆(x, y) is a vector field
supported by ∆ such that u∆(x, y) = 0 if x �= y, and u∆(x, x) = u0(x) =
⊗i∈Iu

0
xi

∈ W (x) = ⊗i∈IU(xi), then ‖u∆‖ = 1. Denote by HA the closed linear
span of Π(GI)u∆ and by πA the restriction of Π on the subspace HA. As will
be proved in the following, the cyclic representation (πA,HA) is factorial of
finite type with normalized character fA.
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4.4. Calculation of a matrix element for πA

We calculate the matrix element of πA for the cyclic vector u∆ as

〈πA(g)u∆, u∆〉 =

=
∫
X I

∑
y∼x

(−1)j(σ, x)〈Zx(d)κ′′(σ)
(
u∆(σ−1(x), y)

)
, u∆(x, y)〉W (x) dνI(x),

(4.14)

and get the following result.

Theorem 4.7. (i) The matrix element 〈πA(g)u∆, u∆〉 is given by the
same formula as for the function fA in Theorem 2.1. In particular, in the
case I = N , it is equal to the extremal positive definite class function fA in
Theorem 2.1 corresponding to a parameter A =

(
(αζ,ε)(ζ,ε)∈bT×{0,1} ; µ

)
.

(ii) The cyclic representation πA generated by u∆ is a factor representation
of finite type with normalized character fA.

Proof. Denote by Φ(g) the matrix element in (4.14). For g = (d, σ) ∈ GI ,
the integrand in (4.14) is not zero only when σ−1(x) = y = x.

For a general element g ∈ GI , take its standard decomposition as in (2.1),
g = ξq1ξq2 · · · ξqr

g1g2 · · · gm, with ξqk
= (tqk

, (qk)), tqk
�= eT , for 1 ≤ k ≤ r, and

gj = (dj , σj) for 1 ≤ j ≤ m. Put Q = {q1, q2, . . . , qr}, Kj = supp(σj), and for
dj = (ti)i∈Kj

∈ DKj
(T ), let Pσj

(dj) be as in (1.5).
The condition σ−1(x) = x says that, for each j, all xi (i ∈ Kj) coincide

with each other. So the set of such elements, cut off in XKj , is equal to the set
of xKj

= (xi)i∈Kj
given as

ZKj
:=

⊔
(ζ,ε)

⊔
p∈N

{
xKj

; (∀i) xi = (ζ, ε, p)
}

⊔ ⊔
ζ∈bT

{
xKj

; (∀i) xi = (ζ, ξ), ξ ∈ [0, µζ ]
}

,

where (ζ, ε) runs over T̂ × {0, 1}. The point mass of {xKj
; (∀i) xi = (ζ, ε, p)}

with respect to the product measure νKj is equal to (αζ,ε,p)|Kj | = (αζ,ε,p)�(σj).
The mass of the set of continuous parameters

{xKj
; (∀i) xi = (ζ, ξ), ξ ∈ [0, µζ ]} ⊂ (Ξζ)Kj

with respect to the |Kj |-dimensional Lebesgues measure is zero, since it is a one-
dimensional subregion of (Ξζ)Kj ∼= [0, µζ ]|Kj | of dimension |Kj | = �(σj) ≥ 2,
where Ξζ = {(ζ, ξ); ξ ∈ [0, µζ ]} ⊂ Xcont.

The integral in (4.14) can be carried out independently on each component
Xqk

and XKj because, if σ−1(x) = x, either J1(x) ⊃ Kj or J1(x) ∩ Kj = ∅
holds and the sign (−1)j(σ, x) is decomposed into a product as

(−1)j(σ, x) =
∏

1≤j≤m

χεj
(σj) =

∏
1≤j≤m

(−1)εj(�(σj)−1),
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if the component of xKj
is given by (ζj , εj , pj) ∈ Xdisc. Thus Φ(g) is expressed

as a product as

Φ(g) =
∏
q∈Q

fq(tq) ×
∏

1≤j≤m

fKj
((dj , σj)),(4.15)

fq(tq) =
∫
X
〈Zx(tq)u0

x, u0
x〉U(x) dν(x),(4.16)

fKj
((dj , σj)) =

=
∫
ZKj

(−1)j(σj, xKj
)
〈
⊗i∈Kj

(
Zxi

(ti)u0
x

σ
−1
j

(i)

)
,⊗i∈Kj

u0
xi

〉
W (xKj

)
dνKj (xKj

).

(4.17)

For the last formula (4.17), we note that for σj = (i1 i2 · · · i�j
), Kj =

supp(σj) = {i1, i2, . . . , i�j
}. An element in W (xKj

) is regarded as a vector field
on T �j , hence a function in s1, s2, . . . , s�j

, in such a manner as is indicated just
before Proposition 4.5 (where �j denotes �(σj)). Namely, on the first argument
of the inner product in (4.17), σj acted as follows:(

κ′′(σj)(⊗i∈Kj
u0

xi
)
)
(s1, s2, . . . , s�j

) = κ′(σj)
(
(⊗i∈Kj

u0
xi

)(s1, s2, . . . , s�j
)
)

= κ′(σj)
(⊗i∈Kj

u0
xi

(si)
)

= ⊗i∈Kj
u0

x
σ

−1
j

(i)
(sσ −1

j (i)).

This remark is essential in the computation of (4.18).
For the factor (4.16), we took (Zx(t)u)(s) = (ζU (t)u)(s) = ζ(t)

(
u(s)

)
for a

discrete parameter x = (ζ, ε, p), and the same for a continuous parameter x =
(ζ, ξ) ∈ Xcont in the first choice, whereas Zx(t) = ζU1(t) for x = (ζ, ξ) ∈ Xcont

in the second choice. Then we get in any choice∫
X
〈Zx(tq)u0

x, u0
x〉 dν(x) =

∑
(ζ,ε)∈bT×{0,1}

∑
p∈N

αζ,ε,p
χζ(tq)
dim ζ

+
∑
ζ∈bT

µζ
χζ(tq)
dim ζ

.

For the factor (4.17), the integral on the region of continuous parameters⊔
ζ∈bT {xKj

; (∀i) xi = (ζ, ξ), ξ ∈ [0, µζ ]} is zero, since each of the subregion
corresponding to Ξζ ⊂ Xcont is a one-dimensional subset in [0, µζ ]|Kj | and of
measure 0.

Put �(σj) = |Kj | = �j , and t′1 = ti1 , t
′
2 = ti2 , . . . , t′�j

= ti�j
for σj =

(i1 i2 · · · i�j
). Then the value of the integrand for the region of discrete

parameters
⊔

p∈N{xKj
; (∀i) xi = (ζ, ε, p)} is

(−1)j(σj , xKj
)

〈
⊗i∈Kj

(
Zxi

(ti)u0
x

σ
−1
j

(i)

)
, ⊗i∈Kj

u0
xi

〉
=

= (−1)ε(�j−1)

∫
T �j

∏
1≤k≤�j

〈ζ(tik
)u0

ζ(sk−1), u0
ζ(sk)〉 ds1 ds2 · · · ds�j

,
(4.18)
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where we put s�j+1 = s1. By Lemmas 4.1 and 4.2, the above integral is equal
to

(−1)ε(�j−1)

∫
T �j

ζ11(s −1
1 t′1s�j

) ζ11(s −1
2 t′2s1) · · ·

· · · ζ11(s −1
�j

t′�j
s�j−1) ds1 ds2 · · · ds�j

=

= (−1)ε(�j−1)
χζ(t′�j

t′�j−1 · · · t′2t′1)
(dim ζ)�j

= χε(σj)
χζ(Pσj

(dj))
(dim ζ)�j

,

(4.19)

where Pσj
(dj) is defined in (1.5). Hence we have∫

ZKj

(−1)j(σj , xKj
)
〈
⊗i∈Kj

(
Zxi

(ti)u0
xσj(i)

)
, ⊗i∈Kj

u0
xi

〉
dνKj (xKj

)

=
∑

(ζ,ε)∈bT×{0,1}

∑
p∈N

(
αζ,ε,p

dim ζ

)�(σj)

χε(σj) χζ(Pσj
(dj)).

By the calculations above, we get the product formula for Φ(g) as for fA

in (2.5), and in the case I = N , Φ = fA as is asserted in the theorem.
For the last assertion in (ii), the proof is similar as in the proof of Theo-

rem 3.6.

Remark 4.2. From the computation of the integration (4.17) on the
region of discrete parameters

⊔
(ζ,ε)

⊔
p∈N

{
xKj

; (∀i) xi = (ζ, ε, p)
}
, it can be

seen that Lemma 4.3 is an obstacle why we cannot choose Zx(t) = ζU1(t) in the
second choice II in 4.2 for discrete parameters x = (ζ, ε, p) ∈ Xdisc, whereas
we could choose it for continuous parameters x = (ζ, ξ) which appears actually
only in the one-dimensional integration (4.16) on X .

Remark 4.3. Let G be a topological group and K a closed subgroup of
G. Then the pair (G, K) is called spherical if for any IUR T of G, the subspace
V (T )K of all K-invariant vectors in the space V (T ) of T has dimension ≤ 1
[Ols, Definition 23.1]. An IUR T of G is said to be a spherical representation
of a pair (G, K) if dim V (T )K = 1.

For a topological group G, put G = G × G and let ∆(G) (∼= G) be the
subgroup of diagonal elements of G. Then the pair (G, ∆(G)) is always spherical
[Ols, Corollary 24.4]. For an IUR T of G, put π = T |G×{e}. Assume T has
a unit ∆(G)-invariant vector v0 ∈ V (T ). Then π is a factor representation of
G of finite type, and v0 is a trace-element of π, or f(g) = 〈π(g)v0, v0〉 is the
normalized character of π. Moreover, Theorem 24.5 in [Ols] says:

The functor T → π establishes a bijection between the set of equivalence
classes of spherical representations T of the pair (G, ∆(G)) and the set of quasi-
equivalence classes of factor representations of finite type of the group G.

From this standpoint, we can look back our construction of factor repre-
sentations of finite type πA of G = S∞(T ).

(See also [Far], for spherical functions for several spherical pairs (G, K) of
infinite classical type, and for characters of factor representations of such G.)
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