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On the annihilation of local cohomology
modules

By
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Abstract

Let R be a (not necessary finite dimensional) commutative noethe-
rian ring and let C be a semi-dualizing module over R. There is a gen-
eralized Gorenstein dimension with respect to C, namely GC-dimension,
sharing the nice properties of Auslander’s Gorenstein dimension. In this
paper, we establish the Faltings’ Annihilator Theorem and it’s uniform
version (in the sense of Raghavan) for local cohomology modules over the
class of finitely generated R-modules of finite GC-dimension, provided
R is Cohen-Macaulay. Our version contains variations of results already
known on the Annihilator Theorem.

1. Introduction

In this paper, we contribute to the study of the annihilation theorem of
local cohomology modules. If R is noetherian and M is a finitely generated
(henceforth finite) R-module, then the 0th local cohomology module of M with
support in an ideal a, H0

a(M), is always finite, simply because it is a submodule
of M . But what about the following question: what is the largest integer n
such that all the modules Hi

a(M) (i < n) are finite ? This question is closely
related to the question of which ideals annihilate the local cohomology modules,
and the classical theorem on this subject is Faltings’ Annihilator Theorem
[F]. The original Annihilator Theorem holds when the underlying ring R is
regular or, by independence of base, a homomorphic image of such a ring. The
present paper relies on the observation that the following is key in Faltings’
proof of the Annihilator Theorem: A finite module M over a regular ring
has finite projective dimension, pdR M < ∞, and so satisfies the Auslander-
Buchsbaum equality, depthR = depth M + pdR M . With this observation the
second author and K. Khashyarmanesh (in [KS1]) extended the Annihilator
Theorem to Gorenstein rings (where all finite modules have finite Gorenstein
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dimension in the sense of [AB]), and the present paper takes yet another step:
Over a Cohen-Macaulay ring the Annihilator Theorem is established for finite
modules of finite (generalized) Gorenstein dimension with respect to a semi-
dualizing module C (in the sense of [Gol]).

Let us explain the results of the paper more precisely. Let C be a finite
R-module. We say that C is a semi-dualizing module for R if HomR(C, C) is
canonically isomorphic to R and Exti

R(C, C) = 0 for all i > 0. There is a gen-
eralized Gorenstein dimension with respect to C, denoted GC -dim, sharing the
nice properties of Auslander’s classical G-dimension [C]. It is finer than pro-
jective dimension, i.e. GC -dimR M ≤ pdR M for all finite R-modules M , and
equality holds if pdR M < ∞. Moreover, over local rings it satisfies a version
of the Auslander-Buchsbaum depth formula, that is for any finite module M
with GC-dimR M < ∞, depthR = depth M + GC -dimR M.

Using this fact we establish Faltings’ Theorem over the class of modules of
finite generalized Gorenstein dimension over a Cohen-Macaulay ring. Next, we
extends a theorem due to Raghavan [R] known as the ‘Uniform annihilation of
local cohomology’ to the finite GC-dimension arena.

Our results, as we will see in some corollaries, contains variations of results
from [BRS], [BS], [KS1], [KS2] and [R] and provide a generalization of the
previously known results related to the Faltings’ famous theorem.

2. Main Theorem

Throughout the paper R denotes a commutative noetherian ring (with
non-zero identity), C is a semi-dualizing module for R, and M is a finite R-
module. R is not assumed to be of finite dimensional, unless it is specified. We
begin by a brief review of the notions we use throughout the paper.

2.1. GC-dimension
Let C be a semi-dualizing module over R. A finite module M is said

to belong to the GC -class, GC(R), of R if the canonical map δM : M →
HomR(HomR(M, C), C) is isomorphism and

Exti
R(M, C) = 0 = Exti

R(HomR(M, C), C)

for all i > 0. It is clear that always R ∈ GC(R).
Now let M be a non-zero finite R-module. We say that M is of finite GC -

dimension, if there exists an exact sequence (which we call it GC -resolution of
M)

0 → Gn → · · · → G1 → G0 → M → 0,

in which for any integer i, Gi ∈ GC(R). We denote this by GC -dimR M < ∞.
Otherwise we set GC-dimR M = ∞. By convention, GC -dimR 0 = −∞. When
M is of finite GC -dimension, we define it to be the infimum of the length of
its GC-resolutions. It is clear that with C = R, we get the classical Auslander
G-dimension. For more details see [C, Sec. 3].

We need the following properties of GC-dimension.
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Proposition 2.1. With the above notations, we have the following.
(i) In any exact sequence 0 → L → G → M → 0, with G ∈ GC(R), if

GC-dimR M is finite, then so is GC-dimR L. Moreover, if GC-dimR M > 0,
then GC-dimR L = GC-dimR M − 1.

(ii) If M ∈ GC(R), then there exists a short exact sequence 0 → M →
Ck → N → 0, for some integer k, such that N ∈ GC(R).

Proof. (i) This statement, can be obtained by a slight modification of the
proof of similar result for G-dimension, see for example [AM, 2.3 and 2.5].

(ii) Apply the functor ( )∗ = HomR( , C), on a finite presentation of M∗,

0 → K → Rk → M∗ → 0,

to deduce the exact sequence

0 → M → Ck → K∗ → 0.

We show that GC -dimR K∗ = 0. It follows from the above exact sequence that
GC-dimR K∗ ≤ 1. Moreover, the exact sequence of ‘Ext’ modules which results
from application of the functor HomR( , C) to this exact sequence, in view of the
facts that HomR(Ck, C) is canonically isomorphic to Rk and Ext1R(Ck, C) =
0, implies that Ext1R(K∗, C) = 0. The result now follows from the fact that
when GC -dimR K∗ is finite, it is equal to the number GC -dimR K∗ = sup{i :
Exti

R(K∗, C) �= 0}.

2.2. Annihilator Theorem
Using the terminology of [BS, Sec.9], we define the b-finiteness dimension

fb
a (M) of M relative to a by

fb
a (M) = inf{i ∈ N0 : bnHi

a(M) �= 0 for all n ∈ N},
where, by convention, the infimum of the empty set of integers is interpreted
as ∞. Moreover the b-minimum a-adjusted depth λb

a(M) of M is defined by
Faltings by the formula

λb
a(M) = inf{depthMp + ht((a + p)/p) : p ∈ Spec(A)\V (b)},

where V (b) denotes the set of prime ideals containing b.
Faltings’ Annihilator Theorem [F] states that, if R is a homomorphic image

of a regular ring or if R has a dualizing complex, then for every choice of the
ideals a and b of R, λb

a(M) = fb
a (M). There are some refinements of the

conditions of the theorem, see [B], [BRS] and [KS1].

2.3. Main Theorem
Our main aim in this paper is to prove the following extension of the

Faltings’ Annihilator Theorem.

Theorem. Let R be a Cohen-Macaulay ring, let C be a semi-dualizing
module over R and let M be a finite R-module of finite GC-dimension.
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(α) For any ideals a and b of R, there exists an integer k such that

bkHi
a(M) = 0 for all i < λb

a(M).

(β) If R is of finite dimension, then there exists an integer k, such that for
every ideals a and b of R,

bkHi
a(M) = 0 for all i < λb

a(M).

Part (α) of the theorem extends Faltings’ Annihilator Theorem to the finite
GC-dimension arena, while part (β) provides an extension of the main theorem
of [R, 3.1].

By [R, 2.2], an ordered pair (a, b) of ideals of R is called an ideal pair for
M if 0 :R M ⊆ a and b �

⋃
p∈Ass(M) p. We shall need the following lemma.

Lemma 2.1 ([R, 2.3]). Let R be a commutative ring, M be a finitely
generated R-module and (a, b) be an ideal pair for M . Then λb

a(M) ≤ ht(a).

3. Proof of the Theorem

The approach we shall take for the proof of the theorem is modelled very
closely on [BS, Chapter 9] and [KS1] (for part (α)) and [R] (for part (β)). So
we try to give detailed references to those sources and explain only the new
parts of the arguments.

In the following lemma, we adopt the convention that the intersection of
an empty set of submodules of M is to be taken as M .

Lemma 3.1 (Compare [BS, 9.4.3]). Let M be a finite R-module and C
be a semi-dualizing module over R. Let n ∈ N and p ∈ SpecR be such that
GCp

-dimRp
Mp = 0. Then there exists s ∈ R \ p such that for any proper ideal

a of R, sHi
a(M) = 0 for all i < min{grade(a, R), n}.

Proof. Let 0 =
⋂s

i=1 Ni be a primary decomposition of 0 in M . So for
any ideal b of R,

H0
b(M) =

⋂
{Ni : H0

b(M/Ni) = 0}.
Hence {H0

b(M) : b is an ideal of R} is a finite set, say {L1, L2, . . . , Lu}. Let
Li, i = 1, . . . , k be such that (Li)p = 0. So there exists s′ ∈ R \ p such that
s′Li = 0, for i = 1, 2, . . . , k. But since GCp

-dimRp
Mp = 0, by 2.2 (ii), there

exists an exact sequence

0 → Mp → Ct
p (∗).

So for any ideal a with grade(a, R) > 0, by applying the functor ΓaRp
on (∗),

we get that there exists s′′ ∈ R \ p such that s′′Li = 0 for i = k +1, . . . , u. This
implies that there exists s ∈ R \ p, such that sH0

a(M) = 0, for all ideal a with
min{grade(a, R), 1} > 0. Now suppose inductively that n > 1 and the result
has been proved for smaller values of n. By this assumption, it is only remains
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for us to prove that there exists s ∈ R \ p such that sHn−1
a (M) = 0, for every

ideal a with grade(a, R) > n − 1. Consider the exact sequence 0 → K → M →
M∗∗ → L → 0, where as usual ( )∗ denotes the functor HomR( , C). The proof
can be completed by a slight modification of the proof of [KS1, 2.9] and so we
omit it.

Notation (Compare [BS, 9.4.8]). Let M be a finite R-module. Set

U(M) := {p ∈ Spec(R) : GCp
- dimRp

Mp ≤ 0}.
Let C(M) = Spec(R) \ U(M), and let c(M) =

⋂
p∈C(M) p.

Let GC -dimR M be finite. It is of important to decide whether U(M) is
an open subset of Spec(R) (in the Zariski topology). We here mention that,
by modifying the argument of the proof of [BS, 9.4.7], one can see that the set
U(M) = {p ∈ Spec(R) : GCp

-dimRp
Mp ≤ 0} is an open subset of Spec(R).

The proof of the following proposition parallels that of [BS, 9.4.10] and so
is omitted.

Proposition 3.1. Let n ∈ N. Then there exists t ∈ N such that for any
proper ideal a of R and any integer i < min{grade(a, R), n}, c(M)tHi

a(M) = 0.

Next result is the first place that we need the Cohen-Macaulayness of the
underlying ring.

Proposition 3.2. Let C be a semi-dualizing module over a Cohen-
Macaulay ring R, let a and b be ideals of R and let M be a non-zero finite
module of finite GC-dimension. Consider the short exact sequence

0 → L → Rn → M → 0.

If λb
a(M) < hta, then λb

a(L) = λb
a(M) + 1.

Proof. Let λb
a(M) = t. So there exists a prime p ∈ Spec(R) \ V (b) such

that depthMp + ht a+p
p = t. Note that GCp

-dimRp
Mp > 0, because otherwise

depth Rp = depthMp and hence since R is Cohen-Macaulay, depthRp = htp,
and so we have

λb
a(M) = htp + ht

a + p

p
≥ hta,

which contradicts with our assumption. Therefore by 2.2 (i), GCp
-dimRp

Lp =
GCp

-dimRp
Mp − 1. Hence Auslander-Buchsbaum formula for GC -dimension,

in view of the definition of λb
a, implies that

λb
a(L) ≤ λb

a(M) + 1.

Moreover, since depthLp ≥ depth Mp, we always have λb
a(M) ≤ λb

a(L). So
λb

a(M) ≤ λb
a(L) ≤ λb

a(M)+1. Now if λb
a(L) = hta, the result follows. Otherwise

pick p ∈ Spec(R) \ V (b) such that λb
a(L) = depthLp + ht a+p

p and follow the
above procedure, to deduce the inequality λb

a(L) ≥ λb
a(M)+1. The result hence

follows.
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Remark 1. Let R be Cohen-Macaulay, C be a semi-dualizing module
over R, a and b be ideals of R and M be a non-zero finite module of finite GC -
dimension, say s. Let ΩiM be the ith syzygy module of M in a minimal free
resolution. It follows from the above proposition that when λb

a(M) < hta, there
exists a non-negative integer j, less than or equal to s such that λb

a(ΩjM) = hta.
Let j be the smallest one. Then it is easy to see that λb

a(ΩjM) = fb
a (ΩjM) if

and only if λb
a(M) = fb

a (M). So in the study of Faltings’ Annihilator Theorem
we may assume that λb

a(M) = hta. Moreover, with the above notations, suppose
that for some integer t, with 0 ≤ t ≤ s, there exists a fixed integer k, such that
for any choice of ideals a and b of R, bkHi

a(ΩtM) = 0 for all i < λb
a(ΩtM).

Then in view of the above proposition, it follows that for all ideals a and b
of R, such that λb

a(ΩjM) < hta, for all j < t, we have bkHi
a(M) = 0 for all

i < λb
a(M).

Now we are able to prove part (α) of the Theorem.

Proof of Theorem (α). Suppose contrary that there exist ideals a and b
of R such that λb

a(M) > fb
a (M). By [BS, 9.2.6], we can assume, in our search

for a contradiction, that 0 :R M ⊆ a. Fix b. Using noetherian property of R,
choose a to be maximal among such counterexamples. Similar to the proof of
[BRS, 3.2] one see that in this situation a will be a prime ideal. By replacing
M by M/H0

b(M), we may assume that (a, b) is an ideal pair for M . So by
Lemma 2.5, λb

a(M) ≤ ht(a). In view of Remark 3.4, we can (and do) assume
that λb

a(M) = ht(a). If b ⊆ c(M), by Proposition 3.2, there is nothing to prove.
So assume that b � c(M) and let p1, p2, . . . , pt be the minimal primes over
c(M) not containing b. But now, by the aid of an argument similar to that
used in the proof of the case 1 of [KS1, 2.10], one can deduce that λb

a(M) < hta.
This contradiction completes the proof.

The following lemma is needed for the proof of part (β) of the Theorem.

Lemma 3.2. Let R be a Cohen-Macaulay ring, C be a semi-dualizing
module over R, m be a maximal ideal of R and M be a finite R-module of finite
GC-dimension. Assume that t is the integer obtained in Proposition 3.2, such
that c(M)tHi

a(M) = 0, for all ideals a of R and all i < min{grade(a, R), htm}.
Then, for any ideal b of R with λb

m(M) = htm, btHi
m(M) = 0, for all i < htm.

Proof. First assume that R is local and m is the unique maximal ideal
of R. We show that b ⊆ c(M). Suppose contrary that b � c(M). Since c(M)
is a radical ideal, there exists p ∈ min c(M) that does not contain b. Since
p ⊇ c(M), GCp

-dimRp
Mp > 0, and so htp = depth Rp > depthMp. Hence

λb
m(M) ≤ depth Mp + ht

m + p

p
< depth Rp + ht

m + p

p
≤ htm,

which is the desired contradiction. Hence the result is complete, when R is
assumed to be local. Now let R be a (not necessarily local) Cohen-Macaulay
ring and m be a maximal ideal of R. If b � m, we deduce that htm = λb

m(M) ≤
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depth Mm and hence for all i < htm, we have Hi
m(M) = 0. So we assume that

b ⊆ m. By the previous paragraph, we have bRm ⊆ c(M)m. Using this fact, it
is easy to see that for all i < htm, SuppR(btHi

m(M)) = ∅. The proof hence is
complete.

Proof of Theorem (β). As it is showed in the second paragraph of the
proof of [R, 3.1], it is enough to prove the result for all ideal pairs for M . This
we do. Let (a, b) be an ideal pair for M . Set dimR := d. For any integer n, set

In := {a | a is an ideal of R and hta = n}.
We argue by a descending induction on n. First assume that n = d. Let
a ∈ In and m1, m2, · · · , mh be all the maximal ideals that contain a. The
Mayer-Vietoris sequence on local cohomology modules, implies that

Hi
a(M) ∼=

h⊕

j=1

Hi
mj

(M).

Hence it is enough to prove the assertion just for maximal ideals of In. So
let m ∈ In. Since we assumed that (m, b) is an ideal pair for M , we may
assume that λb

m(M) ≤ htm. But in view of Remark 3.4, we may assume that
λb

m(M) = htm. Hence the result follows in this case from the above lemma. Now
suppose inductively that n < d and the result is proved for n+1. Let a ∈ In and
(a, b) be an be an ideal pair for M . If b ⊆ c(M), there is nothing to do anymore.
So let b � c(M). Again by Remark 3.4, we can assume that λb

a(M) = hta. Let
p1, . . . , pv be the minimal primes over c(M) not containing b. Let q1, . . . , qr

be the minimal prime over a of hight n. Now, by using the same argument as
in the proof of the Case 1 of [KS1, 2.10], we may deduce that there exists an
element x ∈ ∩v

i=1pi\∪r
j=1 qj . Hence hta + Rx ≥ t + 1 and bx ⊆ (c(M))x. Now,

by inductive hypothesis, there exists an integer k′ such that bk′
Hi

a′(M) = 0 for
all ideal a′ with hta′ ≥ t + 1 and all i < λb

a′(M). In particular, for a′ = a + Rx.
(Note that λb

a+Rx(M) > λb
a(M)). Set k = k′ + l, where l is an integer such

that for every ideal c of R, (c(M))lHi
c(M) = 0 for all i < min{htc, dim R}. The

exact sequence · · · → Hi
a+Rx(M) → Hi

a(M) → Hi
aRx

(Mx) → · · · , now implies
the result.

Corollary 3.1. Let S be a homomorphic image of a Cohen-Macaulay
ring R, C be a semi-dualizing module over R and M be a finite S-module such
that GC-dimR M < ∞. Then for any ideals a and b of S, λb

a(M) = fb
a (M).

Proof. In view of [BS, 9.1.7] and [BS, 9.2.6], we may assume that S itself
is a Cohen-Macaulay ring with a semi-dualizing module. The result now follows
from the part (α).

Corollary 3.2. The Local-Global principle for the annihilation of local
cohomology modules holds for all finite modules of finite GC-dimension over a
Cohen-Macaulay ring.
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Proof. The result follows using [BRS, 3.4] and part (α) of the Theorem.

Corollary 3.3. Faltings’ Annihilator Theorem holds over a homomor-
phic image of a (not necessarily finite dimensional) commutative noetherian
Gorenstein ring.

Proof. As before we may assume that ring itself is Gorenstein. So by
[Got] Gorenstein dimension of all finite modules is finite. Hence if in part
(α) of the Theorem we let C to be R itself the result follows, because in this
case GC -dimension will be equal to G-dimension and so all modules have finite
GC-dimension.

By putting C = R in part (β) of the Theorem, we get the following version
of the uniform annihilation of local cohomology modules.

Corollary 3.4 (compare [KS2]). Let R be a finite dimensional Goren-
stein ring and M be a finite R-module. Then there exists an integer k, such
that for every ideals a and b of R, bkHi

a(M) = 0, for all i < λb
a(M).
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de Lefschetz locaux et globaux, (SGA 2), Séminaire de Géométrie
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