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On SL(2)−GL(n) strange duality

By

Takeshi Abe

Abstract

We prove SL(2)-GL(n) strange duality conjecture for a general
smooth projective irreducible curve.

1. Introduction

Let C be a smooth projective irreducible curve of genus g over an alge-
braically closed field k of characteristic zero. Let SU(r, L) be the moduli space
of semistable vector bundles of rank r, whose determinant is isomorphic to a
fixed line bundle L on C. Let U(n, e) be the moduli space of semistable vector
bundles of rank n and degree e on C. Let

τ : SU(r,OC)× U(n, n(g − 1))→ U(rn, rn(g − 1))

be the tensor product map. On U(rn, rn(g − 1)), there is a natural divisor

Θ =
{
F ∈ U(rn, rn(g − 1))

∣∣H0(C,F ) �= 0
}
.

The pull-back τ∗O(Θ) of the line bundle O(Θ) by τ is isomorphic to M�N ,
whereM and N are line bundles on SU(r,OC) and U(n, n(g−1)) respectively.
The pull-back of the canonical section 1 ∈ O(Θ) defines an element of the
vector space H0(SU(r,OC),M)⊗H0(U(n, n(g− 1)),N ), so we obtain a linear
map (up to k×-multiple)

ϑn,r : H0 (U(n, n(g − 1)),N )∨ → H0 (SU(r,OC),M) .

The following conjecture is known as SL(r)-GL(n) strange duality conjecture:

Conjecture 1.0.1. The map ϑn,r is an isomorphism.

It is known that dim H0(U(n, n(g − 1)),N ) = dimH0(SU(r,OC),M) (cf.
[B2, §8]). Thus the above conjecture is equivalent to the following conjecture.
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Conjecture 1.0.2. The vector space H0(SU(r,OC),M) is spanned by
divisors ΘG for G ∈ U(n, n(g − 1)), where ΘG := {E ∈ SU(r,OC)|H0(C,E ⊗
G) �= 0}.

The above equivalent conjectures are known to be true in the following
cases:

• n = 1 ([BNR]),
• r = 2, n = 2 and C has no vanishing thetanull ([B1]),
• r = 2, n = 4 and C has no vanishing thetanull ([vG-P]),
• r = 2, n is even, n ≥ 2g − 4 and C is general ([L]).

(See the last paragraph of this introduction for the recent result.)
In [D-T], Donagi and Tu generalized Conjecture 1.0.1 to bundles of arbi-

trary degree as follows. Let r, n be positive integers and let d, e be integers
such that re + nd + rn(1 − g) = 0. Fix a line bundle L of degree d on C.
Let τ : SU(r, L) × U(n, e) → U(rn, rn(g − 1)) be the tensor product map.
Just as the case L = OC , we have τ∗O(Θ) = M � N for some line bundles
M and N on SU(r, L) and U(n, e) respectively, and we have a linear map
ϑn,r : H0(U(n, e),N )∨ → H0(SU(r, L),M). We have

Conjecture 1.0.3. ϑn,r is an isomorphism.

Now the generalization of Conjecture 1.0.2 to bundles of arbitrary degree
is straightforward.

Conjecture 1.0.4. The vector space H0(SU(r, L),M) is spanned by
divisors ΘG for G ∈ U(n, e), where ΘG := {E ∈ SU(r, L)|H0(C,E ⊗G) �= 0}.

These two conjectures are also equivalent.
The purpose of this paper is to show that Conjecture 1.0.4 holds true for

a general curve C of genus g ≥ 1 if r = 2.
The strategy we employ in this paper is degeneration of C. We degenerate

a smooth projective irreducible curve C to a nodal curve and prove Conjecture
1.0.4 for r = 2 by induction on the genus g. Let us explain how to do this in
more detail. In order to make the induction process work, we first formulate
a generalization of Conjecture 1.0.4 for parabolic bundles on a pointed curve
in Section 2. In Section 3, we deal with the case r = 2. In Subsection 3.2, we
prove the generalization of Conjecture 1.0.4 for an m-pointed curve of genus
one for m ≤ 2. This is the starting step of the induction. In Subsection 3.5,
we degenerate a one-pointed smooth projective irreducible curve C of genus
g ≥ 2 to a reducible one-pointed nodal curve that is a union of a one-pointed
smooth curve C1 of genus one and a smooth curve C2 of genus g − 1. Taking
the intersection point of C1 and C2 into account, we have two-pointed curve
C1 and one-pointed C2. The main theorem (Theorem 3.5.1) in Subsection 3.5
says that if the generalization of Conjecture 1.0.4 holds true for these pointed
curves, then it holds for the one-pointed curve C. In this way we prove the
parabolic generalization of Conjecture 1.0.4 for a general one-pointed curve C
if r = 2. (The pointless case can be regarded as a special case of a pointed
case.)
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In this paper we use stack formulation of moduli of bundles. Our main
reference is [L-M], but for reader’s convenience, we included some (probably
well-known) facts on algebraic stacks in Section 4. In Subsection 4.2 we gath-
ered some facts on a compactification of SL2.

After I finished this work, I learned that Prakash Belkale [Bel] proved
Conjecture 1.0.2 (equivalently Conjecture 1.0.1) for arbitrary r and n for a
general curve. He also uses degeneration argument, but the methods are a
little different from those in this paper.

Notation and Convention.
• If V is a vector bundle on a scheme T , then Grassr(V) denotes the

Grassmannian of rank r quotient bundles of V . P(V) denotes Grass1(V), and
P∗(V) denotes GrassrankV−1(V).

• If T → S is a morphism of schemes (or stacks) and ∗ is an object (for
example, scheme, stack, morphism, sheaf etc.) over S, then the base-change of
∗ over T is denoted by a subscript T like (∗)T or ∗T .

• All rings appearing in this paper are commutative and noetherian. All
schemes appearing in this paper are locally noetherian.

2. Parabolic strange duality conjecture

2.1. Basic definitions
Definition 2.1.1. Let r,n be positive integers.
(1) A Young diagram Λ is said to be of type ≤(r, n) if the number of rows

is less than or equal to r and the number of columns is less than or equal to n.
(2) As in [Ful], the conjugate of a Young diagram Λ (i.e. the Young diagram

obtained by interchanging the rows and columns of Λ) is denoted by Λ̃.
(3) If Λ is a Young diagram, |Λ| denotes the number of the boxes in Λ.

Notation 2.1.2. Let r and n be positive integers and Λ be a Young
diagram of type ≤(r, n).

(1) For 1 ≤ j ≤ r, λi(Λ) denotes the number of the boxes in the i-th row.
Put λ0(Λ) = n.

(2) Put l(Λ) := #{λ0(Λ), λ1(Λ), . . . , λr(Λ)} − 1.
(3) Put in order the distinct numbers in {λ0(Λ), . . . , λr(Λ)} as n = γ0(Λ) >

γ1(Λ) > · · · > γl(Λ)(Λ).
(4) For 1 ≤ i ≤ l(Λ), put di(Λ) := r + 1 −min{j|λj(Λ) = γi(Λ)}. (Then

we have r ≥ d1(Λ) > · · · > dl(Λ)(Λ) > 0.)
(5) Λ∗ denotes the Young diagram of type ≤ (r, n) such that λi(Λ∗) =

n− λr−i(Λ).
(6) If T is a scheme and V is a locally free OT -module of rank r, then

we let F lagΛ denote the contravariant functor from the category of T -schemes
to the category of sets, which associates to a T -scheme f : U → T the set of
filtrations f∗V ⊇ V1 ⊃ · · · ⊃ Vl(Λ) such that Vi is a rank di(Λ) subbundle of
f∗V . (We say that such filtrations are of type Λ.) FlagΛ denotes a projective



660 Takeshi Abe

T -scheme that represents F lagΛ. By convention we understand that V0 = f∗V
and Vl(Λ)+1 = 0.

Remark 2.1.3. If Λ is a Young diagram of type ≤ (r, n), then Λ̃ is
a Young diagram of type ≤ (n, r), and we have l(Λ) = l(Λ̃), di(Λ̃) = n −
γl(Λ)+1−i(Λ) and γi(Λ̃) = r − dl(Λ)+1−i(Λ).

Definition 2.1.4. Let Λ be a Young diagram of type ≤ (r, n). Put
l := l(Λ) = l(Λ̃). Let T be a scheme, and V , W be locally free OT -modules of
rank r and n respectively. The T -morphism µΛ : FlagΛ(V) ×T FlageΛ(W) →
Grass|Λ|(V ⊗ W) is defined as follows. Let f : U → T be a T -scheme. If
F(f∗V) = (f∗V ⊇ V1 ⊃ · · · ⊃ Vl) and F(f∗W) = f∗W ⊇ W1 ⊃ · · · ⊃ Wl) are
filtrations of f∗V and f∗W of type Λ and Λ̃ respectively, then its image by µΛ

is the quotient f∗(V ⊗W)→ f∗(V ⊗W)/
∑l
i=1 Vi ⊗Wl+1−i, where

∑l
i=1 Vi ⊗

Wl+1−i means the subsheaf of f∗(V⊗W) generated by Vi⊗Wl+1−i (1 ≤ i ≤ l),
which one can check is a subbundle of f∗(V ⊗W) of rank rn− |Λ|. We denote
this quotient by µΛ(F(f∗V),F(f∗W)) : f∗(V)⊗ f∗(W)→ Q(F(f∗V),F(f∗W)).

Lemma 2.1.5. Let the notation as in Definition 2.1.4. Let π be the
projections to T from FlagΛ(V), FlageΛ(W) etc. Let π∗(V ⊗ W) → Q be the
universal quotient on Grass|Λ|(V ⊗ W), and let π∗V ⊇ V1 ⊃ · · · ⊃ Vl and
π∗W ⊇W1 ⊃ · · · ⊃ Wl be the universal filtrations on FlagΛ(V) and FlageΛ(W)
respectively. Let LΛ and LeΛ be the line bundles

⊗l
j=0 det(Vj/Vj+1)⊗γj(Λ) and⊗l

j=0 det(Wj/Wj+1)⊗γj(eΛ) on FlagΛ(V) and FlageΛ(W) respectively. Then we
have a natural isomorphism

(2.1) detµ∗
Λ(Q) 
 LΛ � LeΛ.

Proof.

detµ∗
Λ(Q) 
 det

π∗(V ⊗W)/
∑

s+t≥l+1

Vs ⊗Wt





l⊗
i=0

det
(
(Vi/Vi+1)⊗ (π∗W/Wl−i+1)

)



l⊗
i=0

(
(detVi/Vi+1)

⊗n−dl−i+1(eΛ) ⊗ (detπ∗W/Wl−i+1)
⊗di(Λ)−di+1(Λ)

)

 LΛ �

(
l⊗
i=0

(detπ∗W/Wl−i+1)
(−γl+1−i(eΛ)+γl−i(eΛ))

)

 LΛ � LeΛ.

Next we shall define moduli stack of (quasi-)parabolic bundles.



On SL(2) − GL(n) strange duality 661

Definition 2.1.6. Fix positive integers r and n. Let S be a scheme and
π : C → S be a smooth projective morphism such that the geometric fibers are
irreducible curves of genus g. Let si : S → C be a section of π (i = 1, . . . ,m,
possibly m = 0). Let Λ1, . . . ,Λm be Young diagrams of type ≤(r, n). Let d be
an integer. Assume that si(S) ∩ sj(S) = ∅ for i �= j.

(1) The S-stack PU(r, d; C/S; Λ1, . . . ,Λm), or PU for short, is defined as
follows. If f : T → S is an affine scheme over S, an object of the groupoid
PU(T ) is (E , {F((si)∗TE)}mi=1), where E is an r-bundle on C ×S T of degree d on
each fiber and F((si)∗T E) = ((si)∗T E ⊇ F1((si)∗TE) ⊃ · · · ⊃ Fl(Λi)((si)

∗
T E)) is a

filtration of (si)∗TE of type Λi. The isomorphisms in PU(T ) are isomorphisms
of r-bundles compatible with filtrations.

(2) If Pic(C/S) denotes the Picard stack of C/S, we have a morphism
det : PU(r, d; C/S; Λ1, . . . ,Λm)→ Pic(C/S) which sends (E , {F((si)∗TE)}mi=1) to
det E . A line bundle L on C of degree d on each fiber induces σ : S → Pic(C/S).
The S-stack PSU(r,L; C/S; Λ1, . . . ,Λm), or PSU for short, is defined to be the
product stack PU ×Pic S of PU det−−→ Pic and S σ−→ Pic(C/S).

2.1.7. To fix notation, we recall atlases of the stacks PU and
PSU . Let O(1) be a π-ample line bundle on C. For a positive integer N ,
we have the open stack PU (N) (or PSU (N)) of PU (or PSU) such that an
object (E , {F((si)∗TE)}mi=1), (or (E , det E 
 LT , {F((si)∗TE)}mi=1)) is in PU (N)

(or PSU (N)) if and only if H1(Ct, Et(N)) = 0 and Et(N) is globally generated
for each t ∈ T . Let H(N) (or SH(N)) be the scheme such that, for T → S,
T -valued points of H(N) (or SH(N)) are (E ,O⊕h(N)

CT
→ E(N), {F((si)∗TE)}mi=1)

(or (E , det E 
 LT ,O⊕h(N)
CT

→ E(N), {F((si)∗TE)}mi=1)), where h(N) = d +

r(N degO(1)+ 1− g) and O⊕h(N)
CT

→ E(N) is a surjective homomorphism that
induces isomorphisms of vector spaces k(t)⊕h(N) 
 H0(Ct, Et(N)) for all t ∈ T .
Then τ : H(N) → PU (N) (or τ : SH(N) → PSU (N)) gives an atlas. Taking dis-
joint union, we have an atlas τ :

∐
N H

(N) → PU (or τ :
∐
N SH

(N) → PSU).
It is known that there exists N0 depending only on r, d and g such that H(N)

and SH(N) are non-empty, smooth and geometrically irreducible over S for
∀N ≥ N0 (cf. [Le]).

Definition 2.1.8. We use the notation in Definition 2.1.6. If λ1(Λ) −
λr(Λ) < n, then we define an open substack PU(r, d; C/S; Λ1, . . . ,Λm)ss ⊂
PU(r, d; C/S; Λ1, . . . ,Λm) as follows. Let T be an affine S-scheme and E =
(E , {F((si)∗TE)}mi=1) be an object of PU(T ). If λ1(Λi) = n, then (si)∗TE �
F1((si)∗TE). Thus (si)∗TE has l(Λi) filters. We choose

0 < 1− γ1(Λi)
n

< · · · < 1−
γl(Λi)(Λi)

n

as parabolic weights at si. If λ1(Λi) < n, then (si)∗TE = F1((si)∗TE). Thus
(si)∗TE has l(Λi)− 1 filters. We choose

0 <
γ1(Λi)− γ2(Λi)

n
< · · · <

γ1(Λi)− γl(Λi)(Λi)
n
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as parabolic weights at si.
Then we can consider parabolic semistability for E with respect to these

parabolic weights. (See [M-S] for parabolic semistability.) E is an object of
PUss(T ) if and only if it is parabolic semistable on each geometric fiber over
T .

PSUss ⊂ PSU is defined similarly.
Similarly as in the paragraph 2.1.7, for N > 0, PUss(N), PSUss(N) and

their atlases Hss(N), SHss(N) are defined.

Lemma 2.1.9. Let k be an algebraically closed field and C be a smooth
projective irreducible curve over k. Let s1, . . . sm be distinct closed points of C
and Λ1, . . . ,Λm be Young diagrams of type ≤ (r, n). Let L be a line bundle on
C. Then we have an isomorphism

k
∼→ H0 (PSU (r,L;C; Λ1, . . . ,Λm) ,OPSU ) .

Proof. The morphism PSU(r,L;C; Λ1, . . . ,Λm) → PSU(r,L;C), which
associates E to (E , {F(s∗i E)}mi=1), is a

∏m
i=1 FlagΛi

-bundle. Thus the pull-
back morphism H0(PSU(r,L;C; Λ1, . . . ,Λm),O) ← H0(PSU(r,L;C),O) is
an isomorphism. Therefore we only need to prove the lemma for some
m ≥ 0 and Λ1, . . . ,Λm. Let us choose Λ1, . . . ,Λm for some m so that
PSU(r,L;C; Λ1, . . . ,Λm)ss �= 0. Let PSU be the coarse moduli space of
PSU(r,L;C; Λ1, . . . ,Λm)ss. We have

H0(PSU(r,L;C; Λ1, . . . ,Λm)ss,O) 
 H0(PSU,OPSU ) 
 k

because PSU is an irreducible variety. The restriction map

H0(PSU(r,L;C; Λ1, . . . ,Λm),O)→ H0(PSU(r,L;C; Λ1, . . . ,Λm)ss,O)

is injective because PSU(r,L;C; Λ1, . . . ,Λm)ss is open dense in
PSU(r,L;C; Λ1, . . . ,Λm). This proves the lemma.

Definition 2.1.10. We use the notation in Definition 2.1.6. By abuse of
notation, we denote by si the universal section (si)PSU : PSU → C×SPSU . Let
(E , {F(s∗i E)}mi=1) be the universal bundle, where F(s∗i E) = (s∗i E ⊇ F1(s∗i E) ⊃
· · · ⊃ Fl(Λi)(s

∗
i E)). The line bundle Ξ(n)

PSU on PSU is defined to be

(2.2) (det RprPSU∗E)⊗(−n) ⊗
m⊗
i=1

l(Λi)⊗
j=0

det (Fj(s∗i E)/Fj+1(s∗i E))
⊗γj(Λi) .

Remark 2.1.11. Let S = Speck with k an algebraically closed field of
characteristic zero. Let slr(k) ⊃ h be the diagonal Cartan subalgebra. Let ε∗i :
h→ k be the weight given by diag(a1, . . . , ar) �→ ai. (Note that ε∗1 + · · · ε∗r = 0.)
For the Young diagram Λi, put µ(Λi) :=

∑r
j=1 λj(Λi) · ε∗j . By [P] and [B-L,

§9], if 0 ≤ d ≤ r, then we have

dim H0
(
PSU (r,L; Λ1, . . . ,Λm) , Ξ(n)

PSU
)

= Ng(µ0, µ1, . . . µm),
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where µ0 := n
∑r−d
j=1 ε

∗
i and µi := µ(Λi) for 1 ≤ i ≤ m, and Ng(µ0, µ1, . . . , µm)

is the dimension of conformal block (of level n) (See [B3]).
We will use the following important fact known as factorization rules. Let

Λ1, . . . ,Λm1 ,Γ1, . . . ,Γm2 be Young diagrams of type ≤ (r, n). Put µi := µ(Λi)
and γi := µ(Γi). If g = g1 + g2, then we have

Ng(µ1, . . . , µm1 , γ1, . . . , γm2)

=
∑
Λ

Ng1(µ1, . . . , µm1 , µ(Λ))Ng2(γ1, . . . , γm2 , µ(Λ∗)),(2.3)

where Λ runs through Young diagrams of type ≤(r, n) with λr(Λ) = 0.

Remark 2.1.12. Let C,s1, . . . , sm and Λ1, . . . ,Λm be as in Lemma
2.1.9. Let PSU be the coarse moduli space of PSU(r,L;C; Λ1, . . . ,Λm)ss. If
the rational number e defined by the equation (2.4) is an integer, the line bun-
dle Ξ(n)

PSU on PSU descends to a line bundle Ξ(n)
PSU on PSU (see [P, Théorème

3.3]). We have dimH0(PSU , Ξ(n)
PSU ) = dim H0(PSU,Ξ(n)

PSU).
If ζr denotes the r-th root of unity, every object of PSU has ζr-

multiplication as an automorphism, which induces an action on the vector space
H0(PSU ,Ξ(n)

PSU ). If e is not an integer, this action is not trivial. This means
that H0(PSU ,Ξ(n)

PSU ) = 0 if e is not an integer.

Definition 2.1.13. Let S be a scheme and π : C → S be a flat pro-
jective morphism such that geometric fibers are reduced connected curves of
arithmetic genus g and let N be an integer. Let F be the universal bundle on
C ×S U(N,N(g − 1); C/S), where U(N,N(g − 1); C/S) is the moduli stack of
rank N torsion-free sheaves of degree N(g− 1), or equivalently χ = 0, on C/S.

(1) The line bundle ΘU on U(N,N(g − 1); C/S) is defined to be
(det RprU∗F)∨.

(2) The canonical global section σΘ of ΘU is defined as follows. Let T be
an affine scheme over S and let F ′ be an object of U(N,N(g−1), C/S)(T ). We
can find an exact sequence 0→ H→ G → F ′ → 0 of coherent sheaves on C×ST
such that H0(Gt) = 0 for ∀t ∈ T . (In fact, if O(1) is a π-ample line bundle on C,
take G = (π∗π∗(F ′(a)))(−a) for large a > 0.) Then R1prT∗H and R1prT∗G are
vector bundles of the same rank. The homomorphism R1prT∗H → R1prT∗G
induces a section σΘ(F ′) of (detR1prT∗G)⊗ (detR1prT∗H)∨ 
 ΘU (F ′), where
ΘU (F ′) is the pull-back of the line bundle ΘU on U(N,N(g − 1); C/S) by the
object F ′. The global section σΘ of ΘU is defined by the assignment F ′ �→
σΘ(F ′). (Although we made a choice of an exact sequence in the definition, σΘ
is defined well.)

Remark 2.1.14. In Definition 2.1.13 (2), σΘ(F ′) vanishes at t ∈ T if
and only if H0(F ′

t) �= 0.

2.1.15. Fix positive integers r and n. Let π : C → S, si, Λi (1 ≤ i ≤ m)
be as in Definition 2.1.6 and let L be a line bundle on C of degree d on each
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fiber. Let e be the rational number determined by

(2.4) re+ nd+ rn(1− g) =
m∑
i=1

|Λi|.

If e is an integer, then for G = (G, {F(s∗iG)}mi=1), where G is a vector bundle
of rank n on C of degree e on each fiber and F(s∗iG) = (s∗iG ⊇ F1(s∗iG) ⊃
· · · ⊃ F

l(fΛi)
(s∗iG)) is a filtration of s∗iG of type Λ̃i, we define the morphism ϕG :

PSU(r,L; C/S; Λ1, . . . ,Λm)→ U(rn, rn(g− 1); C/S) as follows. Let f : T → S
be an affine S-scheme and E = (E , det E 
 LT , {F((si)∗TE)}mi=1) be an object
of PSU(r,L; C/S; Λ1, . . . ,Λm)(T ). F((si)∗TE) and f∗F(s∗iG) are filtrations of
(si)∗TE and f∗s∗iG(= (si)∗TGT ) of type Λi and Λ̃i, hence by Definition 2.1.4 we
have

µΛi
(F((si)∗TE), f∗F(s∗iG)) : (si)∗T (E ⊗ GT )→ Q(F((si)∗TE), f∗F(s∗iG)).

On C ×S T , we have the surjection

β : E ⊗ GT �
m⊕
i=1

(si)T∗(si)∗TQ(F((si)∗TE), f∗F(s∗iG)).

Then we define ϕG to associate Ker(β) to E .

Now assume that S = Speck with k an algebraically closed field. We have
an isomorphism α : ϕ∗

GΘU
∼→ Ξ

(n)
PSU (See the proof of Lemma 3.5.8). Although

this isomorphism is not canonical, it is determined up to k×-multiple by Lemma
2.1.9. By abuse of notation, the global section α(ϕ∗

GσΘ) of Ξ(n)
PSU is denoted by

ϕ∗
GσΘ, which is, of course, determined up to k×-multiple.

Definition 2.1.16. We say that (SD)r,n holds for
PSU(r,L; C/Speck; Λ1, . . . ,Λm) if e is not an integer, or if e is an integer and
there exist a finite number of objects
Gb = (Gb, {F(s∗iGb)}mi=1) of PU(n, e; C/Speck; Λ̃1, . . . , Λ̃m)(Speck) such that the
set {ϕ∗

G
b
σΘ} spans the vector space H0(PSU , Ξ(n)

PSU ).

Remark 2.1.17. It is easily seen that if |Λ1| = 0 or rn, then (SD)r,n
holds for PSU(r,L; C/Speck; Λ1,Λ2, . . . ,Λm) if and only if (SD)r,n holds for
PSU(r,L; C/Speck; Λ2, . . . ,Λm).

2.2. Invariance of (SD) by field base-change
Fix positive integers r and n. Let π : C → S = Speck with k an alge-

braically closed field, L, si and Λi (1 ≤ i ≤ m) be as in the paragraph 2.1.15.
Let K be an algebraically closed field over k. Put CK := C ×Speck SpecK and
LK := LSpecK .

The following proposition says that the property (SD)r,n does not depend
on the choice of an algebraically closed field.
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Proposition 2.2.1. (SD)r,n holds for PSU(r,L; C; Λ1, . . . ,Λm) if and
only if (SD)r,n holds for PSU(r,LK ; CK ; Λ1, . . . ,Λm).

Proof. We may only consider the case that e is an integer. Take the
atlas τ : H(N) → PU(n, e; C; Λ̃1, . . . , Λ̃m)(N) described in the paragraph 2.1.7.
Let G = (G,F((si)∗H(N)G)) be the n-bundle on C ×Speck H

(N) together with

filtrations of (si)∗H(N)G of type Λ̃i that induces τ . By the paragraph 2.1.15, we

have a morphism of H(N)-stacks

ϕG : PSU(r,LH(N) ; CH(N)/H(N); Λ1, . . . )→ U(rn, rn(g − 1); CH(N)/H(N)).

We can find a finite affine covering SpecB := U (N) :=
∐
b U

(N)
b → H(N) such

that the morphism ϕG
U(N) of U (N)-stacks induces an isomorphism ϕ∗

G
U(N)

ΘU 


Ξ
(n)
PSU . The section ϕ∗

G
U(N)

σΘ induces the B-module homomorphism θ : B →
H0(PSUU(N) , Ξ(n)). For a positive integer A, we put

SpecB′ := U (N,A) :=

Atimes︷ ︸︸ ︷
U (N) ×H(N) · · · ×H(N) U (N),

and let qa : U (N,A) → U (N) be the a-th projection. The pull-back of θ
by qa gives rise to B′-homomorphism θa : B′ → H0(PSUU(N,A) , Ξ(n)). Let

θ(N,A) : B′⊕A → H0(PSUU(N,A) , Ξ(n)) map (x1, . . . , xA) to
∑A
a=1 θa(xa). Let

U (N,A)◦ be the subset of U (N,A) consisting of points u ∈ U (N,A) such that
θ(N,A) ⊗B′ k(u) is surjective. By Proposition 4.1.2 (2), H0-base change the-
orem holds in our situation, so H0(PSUU(N,A) , Ξ(n)) is a finitely generated
B′-algebra. Hence U (N,A)◦ is open in U (N). Moreover (SD)r,n holds for
PSU(r,L; C/Speck; Λ1, . . . ,Λm) if and only if U (N,A)◦ �= ∅ for some N > 0 and
A > 0. This last condition is invariant under the base change SpecK → Speck.
This completes the proof.

2.3. Openness of (SD)
Proposition 2.3.1. Let π : C → S = SpecR, si and Λi (1 ≤ i ≤ m)

be as in Definition 2.1.6, let L be a line bundle of degree d on each fiber.
Let S′ be the subset of S such that x ∈ S is in S′ if and only if (SD)r,n
holds for PSU(r,Lx̄; Cx̄; Λ1, . . . ,Λm), where x̄ := Speck(x). Put PSU :=
PSU(r,L; C/S; Λ1, . . . ,Λm). Assume that the following condition (♠) holds.

(♠) H0(PSU , Ξ(n)
PSU ) is a finitely generated R-module, and for T = SpecR′

with R′ an R-algebra, the natural morphism H0(PSU , Ξ(n)
PSU ) ⊗R R′ →

H0(PSUT , Ξ(n)
PSUT

) is an isomorphism.
Then S′ is an open subset of S.

Proof. This proposition is proved by a similar argument as in the proof
of Proposition 2.2.1. Take the atlas H(N) → PU(n, e; C/S; Λ̃1, . . . , Λ̃m)(N). Let
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G, SpecB = U (N) =
∐
b Ub → H(N),

ϕG : PSU(r,LU(N) ; CU(N)/U (N); Λ1, . . . ,Λm)→ U(rn, rn(g − 1); CU(N)/U (N)),

U (N,A),

θ(N,A) : B′⊕A → H0(PSU(r,LU(N,A) ; CU(N,A)/U (N,A); Λ1, . . . ,Λm), Ξ(n))

and U (N,A)◦ be as in the proof of Proposition 2.2.1. (But this time U (N) →
H(N) is an étale covering.) Let g(N,A) denote the projection U (N,A) → S. Then
g(N,A) is an open map because H(N) → S is smooth and U (N) → H(N) is étale.
By (♠), U (N,A)◦ is open and

S′ =
⋃
N,A

g(N,A)(U (N,A)◦).

This completes the proof.

3. The case r = 2

3.1. Elementary transformation
Let C be a smooth projective irreducible curve over an algebraically closed

field k and let L be a line bundle on C of degree d. Let s1, . . . , sm be distinct
closed points of C and let Λ1, . . . ,Λm be Young diagrams of type ≤(2, n). Let
Aa,b (a ≥ b)be the Young diagram of type ≤ (2, n) having a boxes in the first
row and b boxes in the second row. Let (E , {F((si)∗PSUE)}mi=1) be the universal
bundle with filtrations over PSU(2,L;C; Λ1, . . . ,Λm). Now assume that Λ1 =
An,a with 0 < a < n. Note that the rank of F1((s1)∗PSUE)(⊂ (s1)∗PSUE) is one.
Put

(3.1) E ′ := Ker (E → (s1)PSU∗ ((s1)∗PSUE/F1((s1)∗PSUE))) .

Let F((s1)∗PSUE ′) be the filtration

(s1)∗PSUE ′=F1((s1)∗PSUE ′)⊃F2((s1)∗PSUE ′)=Ker ((s1)∗PSUE ′→(s1)∗PSUE)

of (s1)∗PSUE ′ of type Aa,0. Put F((si)∗PSUE ′) := F((s2)∗PSUE) for i ≥ 2. Then,
by associating (E ′, {F((si)∗PSUE ′)}mi=1) to (E , {F((si)∗PSUE)}mi=1), we have an
isomorphism elm of stacks

(3.2)
PSU (2,L;C;An,a,Λ2, . . . ,Λm) elm−−→ PSU (2,L(−s1);C;Aa,0,Λ2, . . . ,Λm) .

Let G = (G, {F(s∗iG)}mi=1) be an object of PU(n, e;C; Ãn,a, Λ̃2, . . . , Λ̃m)(Speck),
where F(s∗iG) = (s∗iG ⊃ F1(s∗iG)). Then G can be regarded as an object of
PU(n, e;C; Ãa,0, Λ̃2, . . . , Λ̃m)(Speck).
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Lemma 3.1.1. The following diagram is commutative.

(3.3)
PSU (2,L;C;An,a,Λ2, . . . ,Λm)

ϕG−−→ U(2n, 2n(g − 1);C)
�↓ elm ‖

PSU (2,L(−s1);C;Aa,0,Λ2, . . . ,Λm)
ϕG−−→ U(2n, 2n(g − 1);C)

Proof. For simplicity assume that m = 1. We have the commutative
diagram of sheaves on C × PSU (2,L;C;An,a);

(3.4)

E ⊗ (G)PSU
f−→ (s1)∗PSUE ⊗ (s∗1G)PSU/F1((s1)∗PSUE)⊗ (F1(s∗1G))PSU

↑ ↑
E ′ ⊗ (G)PSU

f ′
−→ ((s1)∗PSUE ′/F2((s1)∗PSUE ′))⊗ (s∗1G/F1(s∗1G))PSU .

Then the proposition follows from Ker(f) = Ker(f ′).

Proposition 3.1.2. (SD)2,n holds for PSU(2,L;C;An,a,Λ2, . . . ,Λm)
if and only if (SD)2,n holds for PSU(2,L(−s1);C;Aa,0,Λ2, . . . ,Λm).

Proof. For simplicity we assume that m = 1. If 0 < a < n, then this is
a direct consequence of Lemma 3.1.1. Assume that a = 0. Let E ′ be as in the
equation 3.1. By associating E ′ to (E ,F((s1)∗PSUE)), we have the P1-bundle

PSU(2,L;C;An,0)
h−→ PSU(2,L(−s1);C),

and h∗Ξ(n)
PSU(2,L(−s1)) 
 Ξ

(n)
PSU(2,L). Let G = (G,F(s∗1G)) be an object of

PU(n, e;C; Ãn,0)(Speck), then F(s∗1G) = (s∗1G = F1(s∗1G)). Thus G can be
considered as an object of PU(n, e;C; Ã0,0) and the diagram

(3.5)
PSU(2,L;C;An,0) → U(2n, 2n(g − 1);C)

↓ h ‖
PSU(2,L(−s1);C) → U(2n, 2n(g − 1);C)

is commutative. Hence for a = 0 the proposition is proved. The case a = n is
similar.

By a similar argument as above, we obtain the following proposition whose
proof is left to the reader.

Proposition 3.1.3. Let n ≥ a ≥ b ≥ 0. Then (SD)2,n holds for
PSU(2,L;C;Aa,b; Λ2, . . . ,Λm) if and only if (SD)2,n holds for
PSU(2,L;C;An,n−a+b; Λ2, . . . ,Λm).

3.2. Genus one case
Proposition 3.2.1. Let C be a smooth projective irreducible curve of

genus one over an algebraically closed field k of characteristic zero. Let L be a
line bundle of degree d on C. Then (SD)2,n holds for PSU(2, L;C).
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Proof. It suffices to consider the case that e determined by the equation
2.4 is an integer. We may assume that L = OC or L = OC(x) with x ∈ C. By
[B3], we have

dim H0(PSU(2,L;C), Ξ(n)) =

{
n+ 1 if L = OC
1 if L = OC(x).

Case (1). L = OC .
Let PSU be the coarse moduli space of PSU(2,L;C)ss. We have

(3.6) H0(PSU , Ξ(n))
g
↪→ H0(PSUss, Ξ(n)) 
 H0(PSU,Ξ(n)

PSU).

Let M be a universal bundle on C × Pic◦(C). The 2-bundle M⊕M−1 on
C × Pic◦(C) gives rise to a morphism f : Pic◦(C) → PSU . This factors

as Pic◦(C) f1−→ Pic◦(C)/[−1] f2−→ PSU , and f2 is an isomorphism. Since
prPic◦(C)∗M = 0 and R1prPic◦(C)∗M = k(o), we have f∗Ξ(n)

PSU 
 O(2n · o).
Therefore f∗2Ξ

∗
PSU is isomorphic to the line bundle O(n) on Pic◦(C)/[−1] 
 P1,

hence dim H0(PSU,Ξ(n)
PSU) = n + 1 and g is an isomorphism. If G = M1 ⊕

· · · ⊕Mn with Mi ∈ Pic◦(C), then the pull-back of the section g(ϕ∗
GσΘ) by f

is a section of O(2n · o) whose divisor of zero is
∑n
i=1([Mi] + [M∨

i ]). Thus the
divisor of zero of f∗2 (g(ϕ∗

GσΘ)) is
∑n
i=1 f1([Mi]). Varying Mi, these divisors

span H0(Pic◦(C)/[−1],O(n)).

Case (2). L 
 OC(x).
Note first that in this case n is even because we are assuming that e is

an integer. Let 0 → OC → E → OC(x) → 0 be a non-split exact sequence.
Since dim H0(PSU , Ξ(n)) = 1, we have only to find an n-bundle G of degree
−n/2 such that H0(C, E ⊗ G) = 0 because H0(C, E ⊗ G) = 0 implies ϕ∗

GσΘ �= 0
by Remark 2.1.14. Take N ∈ Pic◦(C) such that N⊗2 � OC . Put G :=
(E∨ ⊗N )⊕(n/2). If H0(C, E ⊗ G) �= 0, then we have a non-zero homomorphism
α : E → E ⊗ N . Since E is stable, α is an isomorphism so that we have
∧2α :

∧2 E ∼→
(∧2 E

)
⊗ N⊗2. This contradicts the choice of N . Therefor

H0(C, E ⊗ G) = 0.

Proposition 3.2.2. Let C and L be as in Proposition 3.2.1. Let s be
a closed point of C and Λ be a Young diagram of type ≤ (2, n). Then (SD)2,n
holds for PSU(2,L;C,Λ).

Proof. By Proposition 3.1.2, we may assume that d is odd. By Propo-
sition 3.1.3, we may assume that Λ = An,a (0 ≤ a ≤ n). If a = n, then the
proposition follows from Remark 2.1.17 and Proposition 3.2.1. If a = 0, the
proposition follows from Proposition 3.1.2 and Remark 2.1.17 and Proposition
3.2.1. Therefore we may assume that 0 < a < n. We may assume that d = 1.
If a is odd, then e = a/2 is not an integer. Thus we may assume that a is
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even. In this case we have dim H0(PSU(2,L;C,Λ), Ξ(n)) = n + 1 − a. Let
PSU be the coarse moduli space of PSUss. Let E be a stable 2-bundle on C
with det E 
 L. For (l ⊂ s∗E) ∈ P(s∗E), (E , s∗E ⊃ l) is parabolic stable. Thus
we have an isomorphism f : P(s∗E) ∼→ PSU and f∗Ξ(n)

PSU 
 OP1(n − a). For
1 ≤ i ≤ n−a, letMi be a line bundle on C of degree zero. For 1 ≤ j ≤ a/2, let
Fj be a stable 2-bundle on C of degree one. Put G :=

⊕n−a
i=1 Mi ⊕

⊕a/2
j=1 Fj .

By letting the first filter F1(s∗G) of s∗G be s∗M1⊕· · ·⊕ s∗Mn−a⊕ 0⊕· · ·⊕ 0,
we obtain the filter F(s∗G) of s∗G of type Ãn,a. Put G := (G,F(s∗G)). We
choose the above F1, . . . ,Fa/2 so general that we have H0(C, E ⊗ Fj(−s)) = 0
for 1 ≤ ∀j ≤ a/2. IfM is a line bundle on C of degree zero, the subset{

(l ⊂ s∗E)
∣∣H0 (Ker(E → s∗E/l)⊗M) �= 0

}
⊂ P(s∗E)

is a one point, which we denote by ΦM. Then the divisor of zero of the section
ϕ∗
GσΘ is

∑n−a
i=1 ΦMi

. Since the morphism Φ : Pic◦(C)→ P(s∗E) that maps M
to ΦM is surjective, the divisors

∑n−a
i=1 ΦMi

span H0(P(s∗E),O(n− a)) when
we varyMi.

Proposition 3.2.3. Let C and L be as in Proposition 3.2.1. For i =
1, 2, let si be a closed point of C and Λi be a Young diagram of type ≤ (2, n).
Then (SD)2,n holds for PSU(2,L;C; Λ1,Λ2).

Proof. By Proposition 3.1.3, we may assume that Λi = An,n−ai
(0 ≤

ai ≤ n). If ai = 0 or n, then using Proposition 3.1.2 and Remark 2.1.17, we
can attribute the proposition to Proposition 3.2.2. Therefore we may assume
that 0 < ai < n. Moreover if d is even, we perform elementary transformation
at s1 so that we may assume that d is odd by Proposition 3.1.2. Moreover, if
a1 + a2 > n, we perform elementary transformation at s1 and s2 so that we
may assume that a1 + a2 ≤ n by Proposition 3.1.2. After all, we may assume
that d is odd and Λi = An,n−ai

with 0 < ai < n and a1 + a2 ≤ n. We may
assume that d = 1 and that e = (3n − a1 − a2)/2 is an integer. We have
dim H0(PSU(2,L;C; Λ1,Λ2), Ξ(n)) = (a1 + 1)(a2 + 1). Let PSU be the coarse
moduli space of PSU(2,L;C; Λ1,Λ2)ss. Let E be a stable 2-bundle on C with
det E 
 L. For ∀(li ⊂ s∗i E) ∈ P(s∗i E), (E , s∗1E ⊃ l1, s

∗
2E ⊃ l2) is parabolic

semistable. Thus we have the morphism f : P(s∗1E)× P(s∗2E)→ PSU . We can
see that f is an isomorphism and f∗Ξ(n) 
 OP1(a1) �OP1(a2). If M is a line
bundle on C of degree one, the subset{

(li ⊂ s∗i Ei)
∣∣H0 (Ker(E → s∗i E/li)⊗M⊗OC(−s3−i)) �= 0

}
⊂ P(s∗i E)

is a one point, which we denote by Φ(i)
M. LetM1, . . . ,Ma1 ,N1, . . . ,Na2 be line

bundles of degree one. For 1 ≤ j ≤ (n− a1− a2)/2, let Fj be a stable 2-bundle
of degree 3. Put

G :=M1 ⊕ · · · ⊕Ma1 ⊕N1 ⊕ · · · ⊕ Na2 ⊕
(n−a1−a2)/2⊕

j=1

Fj .
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If we let F1(s∗1G) and F1(s∗2G) be

F1(s∗1G) =M1 ⊕ · · · ⊕Ma1 ⊕ 0⊕ · · · ⊕ 0
⊕

0 ⊂ s∗1G

F2(s∗2G) = 0⊕ · · · ⊕ 0⊕N1 ⊕ · · · ⊕ Na2

⊕
0 ⊂ s∗2G,

then F(s∗1G) = (s∗1G ⊃ F1(s∗1G)) and F(s∗2G) = (s∗2G ⊃ F1(s∗2G)) are filtrations
of type Ãn,n−a1 and Ãn,n−a2 respectively. Put G := (G,F(s∗1G),F(s∗2G)). We
choose the above Fj generally. Then the divisor of zero of the section ϕ∗

GσΘ is

p∗1(
∑a1
i=1 Φ(1)

Mi
) + p∗2(

∑a2
i=1 Φ(2)

Mi
), where pi is the i-th projection pi : P(s∗1E) ×

P(s∗2E) → P(s∗i E). As varying Mi and Nj , these ϕ∗
GσΘ span H0(P(s∗1E) ×

P(s∗2E),O(a1) �O(a2)).

3.3. Base-change property
Let k be a field of characteristic zero and let R be a finitely generated

reduced k-algebra. Let π : C → S := SpecR be a smooth projective morphism
such that every geometric fiber is an irreducible curve of genus g ≥ 2. Let L
be a line bundle on C of degree d on each fiber. Let s : S → C be a section of
π and Λ be a Young diagram of type ≤(2, n).

Proposition 3.3.1. If PSU is PSU(2,L; C/S) or PSU(2,L; C/S; Λ),
then the property (♠) in Proposition 2.3.1 holds.

Proof. We shall deal with the case PSU = PSU(2,L; C/S; Λ), the other
case is similar and simpler. We may assume that Λ = An,a with 0 < a < n.
Let PSU be the coarse moduli space of PSUss. Put T = SpecR′, R′ being an
R-algebra. Then we have

H0
(
PSU(2,LT ; CT /T ; Λ)ss, Ξ(n)

)

 H0

(
PSU ×S T,Ξ(n)

PSU×ST

)
.

Since dim H0(PSU ×S Speck(x), Ξ(n)) is constant for any x ∈ S, we infer that
the natural homomorphism H0(PSU,Ξ(n))⊗RR′ → H0(PSU×S SpecR′, Ξ(n))
is an isomorphism for any R-algebra R′ by the usual base-change theorem for
schemes (cf. [Mum, Chapter II, §5, Crollary 2]). Therefor in order to complete
the proof, it suffices to prove that the restriction map H0(PSU(2,LT ; CT /T ; Λ),
Ξ(n))→ H0(PSU(2,LT ; CT /T ; Λ)ss, Ξ(n)) is an isomorphism. To prove this we
shall apply Proposition 4.1.5. All we have to prove is the following claim.

Claim. Let C be a smooth projective irreducible curve of genus g ≥ 2
over a field k, L be a line bundle of degree d on C and s be a closed point of
C. Let τ : SH(N) → PSU(2,L;C;An,a) (0 < a < n) be the atlas described in
the paragraph 2.1.7. Then we have

codimSH(N)(SH(N) \ SHss(N)) > g − 1.

Proof of Claim. Put h(N) := d+2(degO(1)+1− g) as in the paragraph
2.1.7. It is easily seen that dimSH(N) = 3g− 2 + h(N)2. If a 2-bundle E on C
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with a 1-dimensional filter l ⊂ s∗E is not parabolic semistable with respect to
the weights (0, (n− a)/n), then we have either (i) there exists a line subbundle
M ⊂ E with degM− (n − a)/2n > d/2, or (ii) there exists a line subbundle
M ⊂ E with s∗M = l and degM + (n − a)/2n > d/2. 2-bundles E with a
1-dimensional filter l ⊂ s∗E satisfying (i) are parameterized by a scheme of
dimension less than or equal to

(3.7) max

{
dim

{⋃
d′

⋃
M

P∗H1(C,M⊗2 ⊗ L∨)

}
+ 1, g

}
,

where d′ > (d/2)+(n−a)/2n andM is a line bundle of degree d′. (E , l ⊂ s∗E)
satisfying (ii) are parameterized by a scheme of dimension less than or equal to

(3.8) max

{
dim

{⋃
d′

⋃
M

P∗H1(C,M⊗2 ⊗ L∨)

}
, g

}
,

where d′ > (d/2)− (n− a)/2n and M is a line bundle of degree d′. Note that

dim

{⋃
M

P∗H1(C,M⊗2 ⊗ L∨)

}
≤ 2g − 2− (2 degM− degL).

Therefore we have

dim
(
SH(N) \ SHss(N)

)
≤ max

{
2g − 1− n− a

n
, 2g − 2 +

n− a
n

, g

}
+ h(N)2

< 2g − 1 + h(N)2.

Hence we have codimSH(N)(SH(N) \ SHss(N)) > g − 1. This completes the
proof of the claim.

3.4. PSU for nodal curves
Let π : C → S be a flat projective morphism such that every geomet-

ric fiber is a connected nodal curve of arithmetic genus g. Let L be a line
bundle on C of degree d on each fiber. Let s1, . . . , sm be sections of π such
that si(S) ⊂ smooth(π) and si(S) ∩ sj(S) = ∅ for i �= j, and Λ1, . . . ,Λm be
Young diagrams of type ≤ (2, n). We shall extend the definition of the stack
PSU(2,L; C/S; Λ1, . . . ,Λm) to families of nodal curves as follows.

If T is an affine scheme and f : T → S is a morphism, an object of
PSU(2,L; C/S; Λ1, . . . ,Λm)(T ) is following data:

(a) T -flat coherent sheaf E on C ×S T such that its restriction to each fiber
is torsion-free and of rank 2 on every irreducible component,

(b) an isomorphism β : E → HomOC×ST
(E ,LT ) of OC×ST -modules such

that tβ = −β,
(c) a filtration F((si)∗TE) = ((si)∗TE ⊇F1((si)∗TE)⊃ . . .⊃Fl(Λi)((si)

∗
TE)) of

type Λi for each 1 ≤ i ≤ m.



672 Takeshi Abe

Isomorphisms of the groupoid PSU(2,L; C/S; Λ1, . . . ,Λm)(T ) are defined ob-
viously.

We denote by PSU(2,L; C/S; Λ1, . . . ,Λm)lf the open substack of
PSU(2,L; C/S; Λ1, . . . ,Λm) consisting of locally free sheaves.

The line bundle Ξ(n)
PSU on PSU(2,L; C/S; Λ1, . . . ,Λm) is defined by (2.2).

3.4.1. Just as in the smooth case, we can describe an atlas of
PSU(2,L; C/S; Λ1, . . . ,Λm) as follows. Fix a π-very-ample line bundle OC(1)
on C. For a positive integer N , we define the open substack
PSU(2,L; C/S; Λ1, . . . ,Λm)(N) of PSU(2,L; C/S; Λ1, . . . ,Λm) as in the para-
graph 2.1.7. Let SH(N) be the S-scheme parameterizing sheaves
E on Ct (t ∈ S) as in (a) such that E(N) is globally generated and H1(Ct, E(N))
= 0, together with a basis of H0(Ct, E(N)), anti-symmetric isomorphism
β as in (b) above and filtrations F(s∗i E) as in (c) above. Then SH(N) →
PSU(2,L; C/S; Λ1, . . . ,Λm)(N) is an atlas. Taking disjoint union, we obtain an
atlas

∐
N SH

(N) → PSU(2,L; C/S; Λ1, . . . ,Λm). We put SH lf(N) := SH(N)

×PSUPSU lf .

3.4.2. Set-up. Now let us restrict ourselves to the following special
situation that will be retained in the rest of this section. Let S := Speck[[t]],
k being an algebraically closed field of characteristic zero. So denotes the
closed point of S, η denotes the generic point of S and η̄ denotes the geometric
point Speck(η) → S of η. π : C → S is smooth over η and C ×S So has two
irreducible component C1 and C2, both being smooth, and C1 and C2 intersects
transversally at one point, which we denote by P . We assume that there is an
isomorphism ÔC,P 
 k[[x1, x2, t]]/(x1x2− tυ) of k[[t]]-algebra, with υ a positive
integer. Let us be given only one section s of π such that s(So) ∈ C1 \ {P},
and let Λ be a Young diagram of type ≤ (2, n). Let di be the degree of L|Ci

and gi be the genus of Ci. We have d = d1 + d2 and g = g1 + g2.

Lemma 3.4.3. Let (E , β : E ∼→ Hom(E ,L|C1∪C2),F((sSo
)∗E)) be an

object of PSU(2,L; C/S; Λ)(So). Then either (i) or (ii) below holds.
(i) E is locally free.
(ii) EP 
 m⊕2

P , where mP is the ideal sheaf of {P} in Co = C1 ∪ C2.

Proof. We know that EP 
 m⊕a
P ⊕ O⊕(2−a)

P with 2 ≥ a ≥ 0. We have
only to exclude the case a = 1. Let fi be the degree of (E|Ci

)/torsion. Then
the degree of Hom(E ,L|C1∪C2)|Ci

/torsion is −fi + 2di − a. By β, we have
fi = −fi + 2di − a. Hence a is even.

Local Structure. We easily see that the morphism SH lf(N) → S is
smooth. By [Fal, §3], we know that if x ∈ SH(N) is So-valued point such that
the corresponding torsion-free sheaf E belongs to the case (ii) in Lemma 3.4.3,
then we have an isomorphism ÔSH(N),x 
 k[[z1, z2, z3, z4, w1, w2, . . . ]]/(z1z2 −
z3z4 − tυ). From these we derive the following lemma.

Lemma 3.4.4. SH(N) → S is (if not empty) flat, geometrically normal
and geometrically irreducible.
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Proof. By the above result cited from [Fal, §3], SH(N) → S is flat and its
every geometric fiber is Cohen-Macaulay and regular in codimension one, thus
it is normal. To prove geometric irreducibility, it suffices to prove that every
geometric fiber of SH lf(N) → S is irreducible. This can be proved exactly the
same argument as the non-singular case.

3.5. Induction step
We retain the notation in the paragraph 3.4.2.

Theorem 3.5.1. If (SD)2,n holds for PSU(2,L|C1 ;C1; Λ,Γ) and
PSU(2,L|C2 ;C2; Γ) for any Young diagram Γ of type ≤ (2, n), then (SD)2,n
holds for PSU(2,Lη̄; Cη̄,Λ). Here the Young diagram Λ is assigned to the point
s(So) on C1, and Γ is assigned to the point P on C1 and C2.

Let e be the rational number determined by

(3.9) 2e+ nd+ 2n(1− g) = |Λ|.

If e is not an integer Theorem 3.5.1 holds automatically. From now on, we
assume that e is an integer. Put PSU1 := PSU(2,L|C1 ;C1; Λ) and PSU2 :=
PSU(2,L|C2 ;C2). Let (Euniv1 , det Euniv1 
 L|C1 ,F((sPSU1)

∗Euniv1 )) and
(Euniv2 , det Euniv2 
 L|C2) be the universal objects over PSU1 and PSU2 re-
spectively. Let φi : PSU1 × PSU2 → PSU i be the i-th projection. Since we
have the isomorphisms of sheaves on PSU1 × PSU2

φ∗1(P )∗PSU1
det Euniv1 
 φ∗1(P )∗PSU1

(L|C1)PSU1


 φ∗2(P )∗PSU2
(L|C2)PSU2


 φ∗2(P )∗PSU2
det Euniv2 ,

we can consider the S-stack SL(φ∗1(P )∗PSU1
Euniv1 , φ∗2(P )∗PSU2

Euniv2 ) over
PSU1 × PSU2. (See the subsection 4.2 for the definition of SL(∗, ∗).)

3.5.2. Explicitly, if T is an affine So-scheme, an object of the groupoid
SL(φ∗1(P )∗PSU1

Euniv1 , φ∗2(P )∗PSU2
Euniv2 )(T ) is following data (♥):

• 2-bundles Ei on Ci × T (i = 1, 2),
• isomorphisms det Ei 
 (L|Ci

)T (i = 1, 2), (or equivalently, anti-
symmetric isomorphisms Ei 
 Hom(Ei, (L|Ci

)T )),
• a filtration F((s)∗TE1) of (s)∗TE1 of type Λ,
• a 2-bundle quotient γ : (P )∗TE1 ⊕ (P )∗TE2 → Q → 0 such that the

diagram

(3.10)
(P )∗T (L|C1)T 
 det(P )∗TE1

∧2γ1−−−→ detQ
�| ‖

(P )∗T (L|C2)T 
 det(P )∗TE2
∧2γ2−−−→ detQ

commutes, where γi := γ|(P )∗T Ei
.
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3.5.3. Let ιi be the inclusion morphism ιi : Ci → C1 ∪ C2. For given
data (♥) as above, the composite of (ι1)T∗E1 ⊕ (ι2)T∗E2 → (P )T∗(P )∗TE1 ⊕
(P )T∗(P )∗TE2 and (P )T∗((P )∗TE1 ⊕ (P )∗TE2) → (P )T∗Q → 0 gives rise to a
surjective homomorphism (ι1)T∗E1⊕(ι2)T∗E2 → (P )T∗Q → 0 on (C1∪C2)×T .
If E denotes its kernel, it is a flat family of torsion-free sheaves on C1 ∪ C2

parameterized by T . Besides, by taking direct sum of the alternate bi-linear
forms Ei ⊗ Ei → (L|Ci

)T (i = 1, 2), we obtain the alternate bilinear form
((ι1)T∗E1 ⊕ (ι2)T∗E2)⊗ ((ι1)T∗E1 ⊕ (ι2)T∗E2)→ (L|C1)T ⊕ (L|C2)T .

Claim 3.5.3.1. There is a unique bilinear form E ⊗ E → (L|C1∪C2)T
such that the diagram

(3.11)
E ⊗ E → (L|C1∪C2)T
↓ ↓

((ι1)T∗E1 ⊕ (ι2)T∗E2)⊗ ((ι1)T∗E1 ⊕ (ι2)T∗E2) → (L|C1)T ⊕ (L|C2)T
commutes.

Proof. Since we have an exact sequence

0→ (L|C1∪C2)T → (L|C1)T ⊕ (L|C2)T → ((P )∗(L⊗ k(P )))T → 0,

it suffices to prove that E⊗E → ((P )∗(L⊗k(P )))T is a zero map. Let (P )∗TEi⊗
(P )∗TEi → ((P )∗(L ⊗ k(P )))T , the pull-back of Ei ⊗ Ei → (P ∗L)T by (P )T , be
denoted by ∧. Put R := Ker(γ : (P )∗TE1 ⊕ (P )∗TE2 � Q). Let gi : R→ (P )∗TEi
be the composite R → (P )∗TE1 ⊕ (P )∗TE2 → (P )∗TEi. To show that E ⊗ E →
((P )∗(L ⊗ k(P )))T is a zero map, we only need to verify that g1(r) ∧ g1(r′) −
g2(r) ∧ g2(r′) is zero for ∀r, r′ ∈ R. This follows from Remark 4.2.2 (2).

One can easily see that this alternate bi-linear form E ⊗ E → (L|C1∪C2)T
gives the isomorphism E 
 Hom(E , (L|C1∪C2)T ). The filtration F((s)∗TE1) in-
duces a filtration of (s)∗TE because (s)∗TE1 
 (s)∗TE .

Summing up, from the data (♥), we obtained an object of
PSU(2,L|C1∪C2 ;C1∪C2; Λ)(T ). For short, let us put SL := SL(φ1(P )∗PSU1

Euniv1 ,

φ2(P )∗PSU2
Euniv2 ) and SL := SL(φ1(P )∗PSU1

Euniv1 , φ2(P )∗PSU2
Euniv2 ). Then the

above procedure induces the following commutative diagram.

(3.12)
SL

f̄−→ PSU(2,L|C1∪C2 ;C1 ∪ C2; Λ)
∪ ∪
SL

f−→ PSU(2,L|C1∪C2 ;C1 ∪ C2; Λ)lf

Here f is an isomorphism.

Lemma 3.5.4. If M is a line bundle on PSU(2,L|C1∪C2 ;C1 ∪ C2; Λ),
then we have the following commutative diagram in which all homomorphisms
are isomorphisms.

(3.13)

H0
(
SL, f̄∗M

) ∼←−̄
f∗

H0 (PSU(2,L|C1∪C2 ;C1 ∪ C2; Λ),M)

� ↓ (a) � ↓ (b)

H0 (SL, f∗M) ∼←−
f∗

H0
(
PSU(2,L|C1∪C2 ;C1 ∪ C2; Λ)lf ,M

)
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Proof. The commutativity is clear. By Lemma 3.4.4 and Proposition
4.1.5, (b) is an isomorphism. Since f is an isomorphism, f∗ is an isomorphism.
Since (a) is injective, we know that (a) and f̄∗ are isomorphisms.

Lemma 3.5.5. Let N be a positive integer such that 2(N − 2)
deg(O(1)|Ci

) ≥ 6gi− 1−di for i = 1, 2. Then codimension of PSU(2,L|C1∪C2 ;
C1 ∪C2; Λ) \PSU(2,L|C1∪C2 ;C1 ∪C2; Λ)(N) in PSU(2,L|C1∪C2 ;C1 ∪C2; Λ) is
greater than or equal to 2.

Proof. Since PSU(2,L|C1∪C2 ;C1 ∪ C2; Λ) → PSU(2,L|C1∪C2 ;C1 ∪ C2)
is a FlagΛ-bundle, in order to prove the lemma we may ignore the filtration.
Since the codimension of PSU(2,L|C1∪C2 ;C1∪C2)\PSU(2,L|C1∪C2 ;C1∪C2)lf

in PSU(2,L|C1∪C2 ;C1 ∪ C2) is greater than or equal to 2, we only need to
prove that the codimension of PSU lf \ PSU lf(N) in PSU lf is greater than
or equal to 2. Let F be an object of PSU lf \ PSU lf(N)(Speck), then either
H1(C1∪C2,F ⊗O(N)) �= 0 or F ⊗O(N) is not globally generated. In any case
we have H1(C1 ∪ C2,F ⊗O(N − 1)) �= 0. Put Fi := F|Ci

.

Claim. We have either H1(C1,F1⊗ (O(N − 2)|C1)) �= 0 or H1(C2,F2⊗
(O(N − 2)|C2)) �= 0.

Proof of Claim. Assume that both are zero. Then for i = 1, 2, H1(Ci,Fi⊗
(O(N − 1)|Ci

)) = 0 and Fi ⊗ (O(N − 1)|Ci
) is globally generated. By the long

exact sequence of

0→ F ⊗O(N − 1)→
2⊕
i=1

Fi ⊗ (O(N − 1)|Ci
)→ F ⊗ k(P )→ 0,

we have H1(C1 ∪ C2,F ⊗O(N − 1)) = 0. This is a contradiction.

For j = 1, 2, let PSU†
j be the open substack of PSU(2,L|Cj

;Cj) such that
F ∈ PSU(2,L|Cj

;Cj) is in PSU†
j if and only if H1(Cj ,F ⊗ (O(N −2)|Cj

)) = 0.
Then by the above claim, we have only to prove that codim(PSU(2,L|Cj

;Cj)\
PSU†

j ,PSU(2,L|Cj
;Cj)) ≥ 2. If F ∈ PSU(2,L|Cj

;Cj) \ PSU†
j(Speck), we

have a non-zero homomorphism α : F⊗(O(N−2)|Cj
)→ KCj

by Serre duality.
Put A := Imα. Then Ker(α) 
 (L|Cj

)⊗A∨ ⊗ (O(2N − 4)|Cj
). We have

deg Ker(α)− degA = dj + 2(N − 2) deg(O(1)|Cj
)− 2 degA

≥ dj + 2(N − 2) deg(O(1)|Cj
)− 2(2gj − 2)

≥ 2gj + 3
> 2gj − 2.

Therefore we have Ext1(A,Ker(α)) = 0. Hence we have F ⊗ (O(N − 2)|Cj
) 


A⊕Ker(α). We have

dim Aut(A⊕Ker(α)) = 2 + h0(Ker(α)⊗A∨)
≥ 2 + 2gj + 3 + 1− gj
= gj + 6.
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Thus if Aut′(A ⊕ Ker(α)) := {f ∈ Aut(A ⊕ Ker(α))| det(f) = id}, then
dim Aut′(A ⊕ Ker(α)) ≥ gj + 5. For N ′ ≥ N , let τ : SH(N ′)

j → PSU(2;L|Cj
;

Cj)(N
′) be the atlas described in the paragraph 2.1.7. We have dimSH

(N ′)
j =

h(N ′)2 + 3gj − 3, where h(N ′) := dj + 2(N ′ deg(O(1)|Cj
) + 1− gj). We have

dim(SH(N ′)
j \ τ−1(PSU†

j)) ≤ dim Pic(Cj) + h(N ′)2 − dim Aut′(A⊕Ker(α))

≤ gj + h(N ′)2 − (gj + 5) = h(N ′)2 − 5

≤ h(N ′)2 + 3gj − 5 ≤ dimSH
(N ′)
j − 2.

This completes the proof.

Corollary 3.5.6. Ler R′ be a flat k[[t]]-algebra and put T := SpecR′.
If M is a line bundle on PSU(2,L; C/S; Λ), then the natural homomorphism

H0 (PSU(2,L; C/S; Λ),M)⊗k[[t]] R′ → H0 (PSU(2,LT ; CT /T ; Λ),MT )

is an isomorphism.

Proof. By Lemma 3.5.5 and Proposition 4.1.5, for a large N , we have the
isomorphisms

H0 (PSU(2,L; C/S; Λ),M) ∼→ H0
(
PSU(2,L; C/S; Λ)(N),M

)
and

H0 (PSU(2,LT ; CT /T ; Λ),MT ) ∼→ H0
(
PSU(2,LT ; CT /T ; Λ)(N),MT

)
.

Now the corollary follows from Proposition 4.1.1.

Let ζ : SL(φ∗1(P )∗PSU1
Euniv1 , φ∗2(P )∗PSU2

Euniv2 ) → PSU1 × PSU2 be the
projection.

Lemma 3.5.7. We have an isomorphism

(3.14) f̄∗Ξ(n) 
 ζ∗
(
φ∗1Ξ

(n)
PSU1

⊗ φ∗2Ξ
(n)
PSU2

)
⊗OSL(nB),

where B = B(φ∗1(P )∗PSU1
Euniv1 , φ∗2(P )∗PSU2

Euniv2 ), which is a divisor of
SL(φ∗1(P )∗PSU1

Euniv1 , φ∗2(P )∗PSU2
Euniv2 ). (See the subsection 4.2 for the defi-

nition of B(∗, ∗).)
Proof. Let us be given the data (♥) in the paragraph 3.5.2, and let e be

as in the equation (3.9). Then we have

(det RprT∗E)⊗(−n) ⊗
l(Λ)⊗
j=0

det (Fj((s)∗TE)/Fj+1((s)∗TE))
⊗γj(Λ)


 (det RprT∗E1)⊗(−n) ⊗ (det RprT∗E2)⊗(−n) ⊗Q⊗n

⊗
l(Λ)⊗
j=0

det
(
Fj((s)∗TE1)/Fj+1((s)∗TE1)

)⊗γj(Λ)
.



On SL(2) − GL(n) strange duality 677

This proves the lemma.

Let e be as in the equation (3.9) (and we are assuming that e is an integer).
Let G be an S-flat coherent sheaf on C that is torsion-free of rank n and χ =
e+ n(1− g) on every fiber. Let F(s∗G) = {s∗G ⊇ F1(s∗G) ⊃ · · · ⊃ Fl(Λ)(s∗G)}
be a filtration of type Λ̃. Put G := (G,F(s∗G)). Then as in the paragraph
2.1.15, we have the morphism of S-stacks

ϕG : PSU(2,L; C/S; Λ)lf → U(2n, 2n(g − 1); C/S).

For a positive integer l, put S(1/l) := Speck[[t1/l]] and C(1/l) := C ×S S(1/l). By
the base-change, we have

(ϕG)S(1/l) : PSU(2,L; C(1/l)/S(1/l); Λ)lf → U(2n, 2n(g − 1); C(1/l)/S(1/l)).

Lemma 3.5.8. There exists a positive integer l such that we have an
isomorphism (ϕG)∗

S(1/l)ΘU 
 Ξ(n)
PSU .

Proof. Let t1, t2 be sections S → C such that ti(S) ⊂ smooth(π), t1(S)∩
t2(S) = ∅ and ti ∩ Ci �= ∅. OC(t1 + t2) is a π-ample line bundle. One can find
a positive integer b and a short exact sequence of coherent OC-modules

(3.15) 0→ G → OC(b(t1 + t2))⊕n → T → 0

such that Supp(T ) → S is a finite morphism. Since G|C1∪C2 is torsion-free, T
is S-flat. Then we can find a positive integer l such that TS(1/l) , the pull-back
of T to C(1/l), has a filtration TS(1/l) = TS(1/l),0 ⊃ TS(1/l),1 ⊃ · · · ⊃ TS(1/l),ξ = 0
with the property that for 1 ≤ j ≤ ξ, TS(1/l),j−1/TS(1/l),j is a vector bundle on
uj(S(1/l)), where uj : S(1/l) → C(1/l) is a section of C(1/l) → S(1/l). Let us fix
isomorphisms

det (Fj(s∗G)/Fj+1(s∗G)) 
 OS , t∗jL 
 OS , u∗jLS(1/l) 
 OS(1/l) ,

t∗jOC(ctj) 
 OS , det
(
TS(1/l),j−1/TS(1/l),j

)

 OS(1/l) .

(3.16)

Let (B, detB 
 LS(1/l) ,F((s)∗TB)) be an object of PSU(2,LS(1/l) ; C(1/l)/
S(1/l)/S(1/l); Λ)lf (T ), T being an affine S(1/l)-scheme. For this object, by
the construction of ϕG explained in the paragraph 2.1.15 and Lemma 2.1.5,
(ϕG)∗

S(1/l)ΘU corresponds to a line bundle on T

det (RprT∗B ⊗ GT )∨ ⊗

l(Λ)⊗
j=0

det (Fj(s∗G)/Fj+1(s∗G))⊗γj(Λ) ⊗OT


⊗
l(Λ)⊗
j=0

det (Fj(s∗B)/Fj+1(s∗B))⊗γj(eΛ) .
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Using the above short exact sequence (3.15), the filtrations of TS(1/l) and the
isomorphisms (3.16), we have

det RprT∗(B⊗GT )
det RprT∗(B⊗OC(b(t1 + t2))T )⊗n⊗det RprT∗(B⊗TT )


 (det RprT∗B)⊗n .

This proves the lemma.

Let ε denote the closed immersion B(φ∗1(P )PSU1Euniv1 , φ∗2(P )PSU2Euniv2 )
↪→ SL, and we put B := B(φ∗1(P )PSU1Euniv1 , φ∗2(P )PSU2Euniv2 ). (See the sub-
section 4.2 for the definition of B(∗, ∗).) Put Vj := H0(SL, ζ∗(Ξ(n)

PSU1
�Ξ(n)

PSU2
)⊗

OSL(jB)). We have the exact sequence of k-vector spaces

(3.17) 0→ Vj−1 → Vj → H0
(
B, (ζ|B)∗(Ξ(n)

PSU1
�Ξ

(n)
PSU2

)⊗ ε∗OSL(jB)
)
,

and let V j ⊂ H0
(
B, (ζ|B)∗(Ξ(n)

PSU1
�Ξ

(n)
PSU2

)⊗ ε∗OSL(jB)
)

be the image of
Vj . If the data (♥) in the paragraph 3.5.2 is a T -valued point of B, then
Q = Q1 ⊕ Q2 with Qi a line bundle and γ is the direct sum of (P )∗TE1 →
Q1 → 0 (P )∗TE2 → Q2 → 0. (See Proposition 4.2.3.) This gives a T -valued
point of PSU(2,L|C1 ;C1; Λ, An,n−j) × PSU(2,L|C2 ;C2;Aj,0). Therefore for
1 ≤ j ≤ n, B 
 PSU(2,L|C1 ;C1; Λ, An,n−j) × PSU(2,L|C2 ;C2;Aj,0), and we
have an isomorphism

(ζ|B)∗
(
Ξ

(n)
PSU1

�Ξ
(n)
PSU2

)
⊗ ε∗OSL(jB)


 Ξ(n)
PSU(2,L|C1 ;C1;Λ,An,n−j) �Ξ

(n)
PSU(2,L|C2 ;C2;Aj,0)

.

For j = 0, we have

H0
(
B, (ζ|B)∗(Ξ(n)

PSU1
�Ξ

(n)
PSU2

)
)

 H0

(
PSU1 × PSU2, Ξ

(n)
PSU1

�Ξ
(n)
PSU2

,
)

and we have isomorphisms

PSU1 × PSU2 
 PSU(2,L|C1 ;C1; Λ, An,n)× PSU(2,L|C2 ;C2, A0,0)

Ξ
(n)
PSU1

�Ξ
(n)
PSU2


 Ξ(n)
PSU(2,L|C1 ;C1;Λ,An,n) �Ξ

(n)
PSU(2,L|C2 ;C2;A0,0)

.

Put PSU�1 := PSU(2,L|C1 ;C1; Λ, An,n−j) and PSU �2 := PSU(2,L|C2 ;C2;
Aj,0). Then in any case for 0 ≤ j ≤ n, we have an isomorphism of k-vector
spaces

(3.18)
H0(B, (ζ|B)∗(Ξ(n)

PSU1
�Ξ(n)

PSU2
)⊗ε∗OSL(jB))
H0(PSU�1×PSU

�
2, Ξ

(n)

PSU�
1
�Ξ(n)

PSU�
2
),

which is determined up to k×.
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Let e1,j and e2,j be the rational numbers satisfying

2e1,j + nd1 + 2n(1− g1) = |Λ|+ 2n− j
2e2,j + nd2 + 2n(1− g2) = j.

(3.19)

Note that e1,j is an integer if and only if so is e2,j , for e = e1,j + e2,j and we
are assuming that e is an integer. By Proposition 4.1.8, the isomorphism (3.18)
and Remark 2.1.12, we have

H0
(
B, (ζ|B)∗(Ξ(n)

PSU1
�Ξ

(n)
PSU2

)⊗ ε∗OSL(jB)
)

= 0

if e1,j and e2,j are not integers. Therefore we have

dimH0
(
PSU(2, C1 ∪ C2;L|C1∪C2 ; Λ), Ξ(n)

PSU
)

= dimVn =
n∑
j=0

dimV j =
∑

0≤j≤n, e1,j :integer

dimV j

≤
∑

0≤j≤n, e1,j :integer

dimH0
(
B, (ζ|B)∗(Ξ(n)

PSU1
�Ξ

(n)
PSU2

)⊗ ε∗OSL(jB)
)
.

(3.20)

Now fix j so that e1,j and e2,j are integers. Let Gi be a vector bundle on
Ci of rank n and of degree ei,j and let F((s)∗So

G1) be a filtration of (s)∗S0
G1

of type Λ̃. Let q : G1|P ⊕ G2|P → U be an n-dimensional quotient of k-
vector spaces such that q|(G1|P ) is an isomorphism and q|(G2|P ) is of rank j.
Put G1 := (G1,F((s)∗So

G1)). For the data (G1,G2, q), we shall define the mor-
phism of stacks ψ(G1,G2,q) : SL → U(2n, 2n(g − 1);C1 ∪ C2) as follows. Let
T be an affine k-scheme and let us be given the data (♥) in the paragraph
3.5.2. Let ρ : SL ((P )∗TE1, (P )∗TE2) → T be the projection, and 0 → Vuniv →
ρ∗ ((P )∗TE1 ⊕ (P )∗TE2)

γuniv

−−−→ Quniv → 0 be the universal quotient. Let ε′ de-
note the closed immersion B ((P )∗TE1, (P )∗TE2) ↪→ SL ((P )∗TE1, (P )∗TE2) . Put
B′ := B ((P )∗TE1, (P )∗TE2). For i = 1, 2 we can find a line subbundle Mi of
(ρ|B′)∗((P )∗TEi) and an isomorphism of the short exact sequences

(3.21)
0 → ε′∗Vuniv → ε′∗ρ∗(

⊕2
i=1(P )∗TEi) → ε′Quniv → 0

�| ‖ �|
0 → M1 ⊕M2 → (ρ|B′)∗(

⊕2
i=1(P )∗TEi) →

⊕2
i=1

(ρ|
B′ )

∗(P )∗T Ei

Mi
→ 0.

Let α′ : ρ∗ (((P )∗TE1 ⊗k (G1|P ))⊕ ((P )∗TE2 ⊗k (G2|P )))→ Quniv ⊗k U be given
by (x1 ⊗ y1, x2 ⊗ y2) �→ γuniv(x1) ⊗ q(y1) − γuniv(x2) ⊗ q(y2). Let K be the
kernel of the composite of morphisms

Quniv ⊗k U � (Q|B′)⊗k U 
 (⊕2
i=1((ρ|B′)∗(P )∗TEi/Mi))⊗k U

→ ((ρ|B′)∗(P )∗TE2/M2)⊗k U � ((ρ|B′)∗(P )∗TE2/M2)⊗ (U/q(G2|P )).
(3.22)
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Lemma 3.5.9. (1) K is a vector bundle of rank 2n on SL((P )∗TE1,
(P )∗TE2).

(2) α′ factors as

ρ∗
(
((P )∗TE1 ⊗k (G1|P ))⊕ ((P )∗TE2 ⊗k (G2|P ))

)
β′
−→ K ⊂ Quniv ⊗k U,

and β′ is surjective.
(3) The subsheaf ε′∗Ker(β′) ⊂

⊕2
i=1((ρ|B′)∗(P )∗TEi ⊗k (Gi|P )) is M1 ⊗

(q|(G1|P ))−1(Im(q|(G2|P )))⊕
(
M2 ⊗k (G2|P ) + (ρ|B′)∗(P )∗TE2 ⊗k Ker(q|(G2|P ))

)
.

(4) The subsheaf
∧2nK ⊂

∧2n(Quniv⊗kU) 
 (
∧2Quniv)⊗n⊗(

∧n
U)⊗2 is

the image of the injective homomorphism (
∧2Quniv)⊗j⊗(

∧n U)⊗2⊗(L|P )⊗(n−j)

↪→ (
∧2Quniv)⊗n ⊗ (

∧n
U)⊗2 given the the (n − j)-th tensor of the canonical

section of (
∧2Quniv)⊗ (L|P )∨.

Proof. We fix an isomorphism L|P 
 k. We choose bases {g1,1, . . .g1,n},
{g2,1, . . .g2,n}, and {u1, . . .un} of the k-vector spaces G1|P , G2|P and U re-
spectively so that q(g1,i) = ui (1 ≤ i ≤ n), q(g2,i) = ui (1 ≤ i ≤ j) and
q(g2,i) = 0 (j < i).

We can check this lemma locally on T , so making T small if necessary, we
may assume that we have an isomorphism (P )∗TEi 
 OTei,1 ⊕ OTei,2 so that
det(P )∗TEi

∼→ (P )∗T (L|Ci
)T = OT , the pull-back by (P )T of the isomorphism in

the data (♥), is given by ei,1 ∧ ei,2 �→ 1. Let T = SpecR.
SL ((P )∗TE1, (P )∗TE2) is covered by five affine open subschemes SL((P )∗TE1,

(P )∗TE2) and Wλ1,λ2 (λi = 1, 2), where Wλ1,λ2 is the open subscheme of
SL ((P )∗TE1, (P )∗TE2) defined by γuniv(ρ∗ei,λi

) �= 0(i = 1, 2). (1), (2) and (4)
are clear over SL ((P )∗TE1, (P )∗TE2). Now we shall check them over W1,2. For
other Wλ1,λ2 , the proofs are quite similar. We can find an isomorphism W1,2 

SpecR[z1, z2, z3] so that over W1,2, we have an isomorphism Quniv|W1,2 

Oq1 ⊕ Oq2 such that γuniv|ρ∗(P )∗T E1 and γuniv|ρ∗(P )∗T E2 are given respectively
by the matrices (

1 z1
0 z2

)
and

(
z2 0
z3 1

)
.

B′ is defined by z2 = 0. The composite of morphisms (3.22) is the projection(
n⊕
i=1

OW1,2q1 ⊗ ui

)
⊕
(

n⊕
i=1

OW1,2q2 ⊗ ui

)
→

n⊕
i=j+1

(OW1,2/(z2))q2 ⊗ ui,

so K is the subsheaf(
n⊕
i=1

OW1,2q1 ⊗ ui

)
⊕

 j⊕
i=1

OW1,2q2 ⊗ ui ⊕
n⊕

i=j+1

OW1,2z2q2 ⊗ ui

 .

This proves (1) and (4).
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Using the above bases, over W1,2, the morphism α′ is expressed as

e1,1 ⊗ g1,i �→ q1 ⊗ ui,

e1,2 ⊗ g1,i �→ (z1q1 + z2q2)⊗ ui,

e2,1 ⊗ g2,i �→ −(z2q1 + z3q2)⊗ ui if 1 ≤ i ≤ j,
e2,2 ⊗ g2,i �→ −q2 ⊗ ui if 1 ≤ i ≤ j,
e2,∗ ⊗ g2,i �→ 0 if j < i.

From this, we know that Imα′ = K. This proves (2).
Now let us proves (3). Note that B′ is covered by four affine open sub-

schemes Wλ1,λ2 ∩ B′. As above, we check (3) only for W1,2. The restriction of
the sections q1 ⊗ ui (1 ≤ i ≤ n), q2 ⊗ ui (1 ≤ i ≤ j), z2q2 ⊗ ui (j < i ≤ n) of
K to B′ forms a basis of K|B′ . Using this basis, over W1,2 ∩B′ = SpecR[z1, z3],
the surjection β′|B′ is expressed as

e1,1 ⊗ g1,i �→ q1 ⊗ ui,

e1,2 ⊗ g1,i �→ z1q1 ⊗ ui if 1 ≤ i ≤ j,
e1,2 ⊗ g1,i �→ z1q1 ⊗ ui + (z2q2 ⊗ ui) if j < i,

e2,1 ⊗ g2,i �→ −z3q2 ⊗ ui if 1 ≤ i ≤ j,
e2,2 ⊗ g2,i �→ −q2 ⊗ ui if 1 ≤ i ≤ j,
e2,∗ ⊗ g2,i �→ 0 if j < i.

From this, we know that the subsheaf Ker(β′|B′)(= ε′∗Ker(β′)) of
⊕2
i=1((ρ|B′)∗(P )∗TEi ⊗k (Gi|P )) is a direct sum of the subsheaf generated by

(z1e1,1−e1,2)⊗g1,i (1 ≤ i ≤ j) and the subsheaf generated by (e2,1−z3e2,2)⊗
g2,i (1 ≤ i ≤ j) and e2,∗ ⊗ g2,i (j < i). Since M1 = O · (z1e1,1 − e1,2) and
M2 = O · (e2,1 − z3e2,2), (3) is proved.

γ : (P )∗TE1 ⊕ (P )∗TE2 � Q in the data (♥) corresponds to a section σ :
T → SL ((P )∗TE1, (P )∗TE2). ψ(G1,G2,q) is defined to associate to the data (♥) the
kernel of the composite of morphisms

ι1∗
(
E1 ⊗ (G1)T

)
⊕ ι2∗

(
E2 ⊗ (G2)T

)
� (s)T∗

(
(s)∗TE1 ⊗k (G1|P )

)
⊕ (P )T∗

(
(P )∗TE1 ⊗k (G1|P )⊕ (P )∗TE2 ⊗k (G2|P )

)
(s)T∗(µΛ)⊕(P )T∗(σ∗(β′))−−−−−−−−−−−−−−−−→ (s)T∗Q (F((s)∗TE1),F((G1|P )T ))⊕ (P )T∗(σ∗K),

where µΛ : (s)∗TE1 ⊗k (G1|P ) → Q (F((s)∗TE1),F((G1|P )T )) is the surjective
morphism defined in Definition 2.1.4.

3.5.10. Let G be the kernel of the composite of morphisms

ι1∗G1 ⊕ ι2∗G2 � (P )∗
(
(G1|P )⊕ (G2|T )

) (P )∗q−−−−→ (P )∗U.

Since s∗G = s∗G1, we can define a filtration of s∗G of type Λ̃ by F(s∗G1). Put
G := (G,F(s∗G)). Then we have the following diagram.
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SL

SL

SL

U(2n, 2n(g − 1), C1 ∪ C2)

U(2n, 2n(g − 1), C1 ∪ C2)

PSU(2,L|C1∪C2 ;C1 ∪ C2; Λ)

PSU(2,L|C1∪C2 ;C1 ∪ C2; Λ)lf

�

�

�

�

ψ(G1,G2,q)

f

f ϕG

Lemma 3.5.11. The above diagram is commutative.

Proof. Let E be the sheaf on (C1 ∪C2)×T constructed in the paragraph
3.5.3. The commutativity of the above diagram is equivalent to the fact that
if γ|(P )∗T Ei

: (P )∗TEi → Q in the data (♥) is an isomorphism for i = 1, 2, then
we have ϕG(E) 
 ψ(G1,G2,q)(E). This is easily checked.

Lemma 3.5.12. We have an isomorphism of line bundles on SL:

(3.23) ψ∗
(G1,G2,q)

ΘU 
 ζ∗
(
Ξ

(n)
PSU1

�Ξ
(n)
PSU2

)
⊗OSL(jB).

Proof. We check this isomorphism for the data (♥) in the paragraph 3.5.2.
We have

ψ∗
(G1,G2,q)

ΘU 
 (det RprT∗E1)⊗(−n) ⊗
l(Λ)⊗
j=0

det (Fj((s)∗TE1)/Fj+1((s)∗TE1))

⊗ (det RprT∗E2)⊗(−n) ⊗ σ∗ detK.

By Lemma 3.5.9 (4), we have detK 

(
∧2Quniv

)⊗j . This proves the lemma.

By the above lemma, the pull-back of the canonical section σU of ΘU by
ψ(G1,G2,q) gives a section (up to k×) of ζ∗(Ξ(n)

PSU1
�Ξ

(n)
PSU2

)⊗OSL(jB), that is,
an element of Vj , which we denote by ψ∗

(G1,G2,q)
σU (∈ Vj). By inclusion Vj ↪→ Vn,

we can regard ψ∗
(G1,G2,q)

σU as a global section of ζ∗(Ξ(n)
PSU1

�Ξ(n)
PSU2

)⊗OSL(nB).

On the other hand, by Lemma 3.5.4, the global section ϕ∗
G(σU ) of Ξ(n)

PSU |PSUlf

extends uniquely to a global section of Ξ(n)
PSU over PSU = PSU(2,L|C1∪C2 ;C1∪

C2; Λ), which we denote again by ϕ∗
G(σU ). f̄∗ϕ∗

G(σU ) gives a global section of

ζ∗(Ξ(n)
PSU1

�Ξ
(n)
PSU2

)⊗OSL(nB) by Lemma 3.5.7.

Lemma 3.5.13. Up to k×−multiple, we have f̄∗ϕ∗
G(σU ) = ψ∗

(G1,G2,q)
σU

in Vn.

Proof. By Lemma 3.5.4, it suffices to prove that f̄∗ϕ∗
G(σU ) = ψ∗

(G1,G2,q)
σU

over SL. By Lemma 3.5.11, over SL, we have an isomorphism (ϕ∗
(G1,G2,q)

ΘU )|SL



On SL(2) − GL(n) strange duality 683


 f∗ϕ∗
GΘU under which the pull-backs of σU on the both sides correspond. Over

SL, we have isomorphisms

(ϕ∗
(G1,G2,q)

ΘU )|SL 
 ζ∗(Ξ(n)
PSU1

�Ξ
(n)
PSU2

)⊗OSL(jB)|SL
∼→ ζ∗(Ξ(n)

PSU1
�Ξ

(n)
PSU2

)⊗OSL(nB)|SL

and

f∗ϕ∗
GΘU 
 ζ∗(Ξ(n)

PSU1
�Ξ

(n)
PSU2

)⊗OSL(nB)|SL.

Thus over SL, f̄∗ϕ∗
G(σU ) and ψ∗

(G1,G2,q)
σU differ up to H0(SL,O)×-multiple.

By Lemma 3.5.4, we have H0(SL,O) 
 k, which completes the proof of the
lemma.

Since dim q|−1
(G1|P )

(
Im(q|(G2|P ))

)
= j, q|−1

(G1|P )

(
Im(q|(G2|P ))

)
gives a filtra-

tion F(G1|P ) of G1|P of type Ãn,n−j . Similarly Ker(q|(G2|P )) gives a filtra-
tion F(G2|P ) of G2|P of type Ãj,0. Put G1

� := (G1,F(s∗G1),F(G1|P )) and
G2
� := (G2,F(G2|P )). Let

h : U(2n, 2n(g1 − 1);C1)× U(2n, 2n(g2 − 1);C2)
→ U(2n, 2n(g − 1), C1 ∪ C2)

be given by (F1,F2) �→ ι1∗F1 ⊕ ι2∗F2.

Lemma 3.5.14. For short, put Ui := U(2n, 2n(gi − 1);Ci) and U(C1 ∪
C2) := U(2n, 2n(g − 1);C1 ∪ C2).

For 0 ≤ j ≤ n, the following diagram is commutative:

(3.24)

PSU �1 × PSU
�
2

ϕG1�×ϕG2�

−−−−−−−→ U1 × U2

↑ ↓ h

B U(C1 ∪ C2)
ε ↓ ‖

SL
ψ(G1,G2,q)
−−−−−−→ U(C1 ∪ C2),

where the morphism B→ PSU�1×PSU
�
2 is an isomorphism for 1 ≤ j ≤ n, and

P1 × P1-bundle for j = 0.

Proof. This follows from (3) of Lemma 3.5.9.

Corollary 3.5.15. The restriction of the section ψ∗
(G1,G2,q)

σU (∈ Vj) to
B corresponds to the section ϕ∗

G1
�σU1 � ϕ∗

G2
�σU2 (up to k×-multiple) by the

isomorphism (3.18).

Proof. This is a direct consequence of Lemma 3.5.14.
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3.5.16. Completion of the proof of Theorem 3.5.1.

Claim 3.5.16.1. There exist a finite number of rank n torsion-free
sheaves Gb (1 ≤ b ≤ B) on C1 ∪ C2 of degree e with a filtration F(s∗Gb)
of s∗Gb of type Λ̃ such that the set {ϕ∗

Gb
σU}Bb=1 spans the vector space H0(

PSU(2,L|C1∪C2 ;C1 ∪ C2; Λ)lf , Ξ(n)
)
.

Proof of Claim 3.5.16.1. By assumption, for 0 ≤ j ≤ n with e1,j and
e2,j integers, we can find a finite number of n-bundles Gj,i,bi

(i = 1, 2 and 1
≤ bi ≤ Bi) with filtrations F(s∗Gj,1,b1) of type Λ̃, F(Gj,1,b1 |P ) of type Ãn,n−j
and F(Gj,2,b2 |P ) of type Ãj,0 such that the set

{
ϕ∗
Gj,1,b1

σU1 � ϕ∗
Gj,2,b2

σU2 |1 ≤ bi
≤ Bi

}
span the vector space H0(PSU�1, Ξ(n))⊗H0(PSU�2, Ξ(n)). Put Gj,1,b1 :=

(Gj,1,b1 ,F(s∗Gj,1,b1)), Gj,1,b1 � := (Gj,1,b1 ,F(s∗Gj,1,b1),F(Gj,1,b1 |P )) and Gj,2,b2 �
:= (Gj,2,b2 ,F(Gj,2,b2 |P )). Take a surjective homomorphism qj,(b1,b2) : (Gj,1,b1 |P )
⊕(Gj,2,b2 |P ) → kn such that qj,(b1,b2)|(Gj,1,b1 |P ) is an isomor-
phism, Ker(qj,(b1,b2)|(Gj,2,b2 |P )) = F2(Gj,2,b2 |P ) and (qj,(b1,b2)|(Gj,1,b1 |P ))−1

(Im(qj,(b1,b2)|(Gj,2,b2 |P ))) = F1(Gj,1,b1 |P ). As G is made from G1 and G2 in the
paragraph 3.5.10, we let Gj,(b1,b2) be the kernel of the composite of

morphisms ι1∗Gj,1,b1 ⊕ ι2∗Gj,2,b2 → P∗(Gj,1,b1 |P ⊕ Gj,2,b2 |P )
(P )∗qj,(b1,b2)−−−−−−−−→

P∗kn. The filtration F(s∗Gj,1,b1) induces a filtration F(s∗Gj,(b1,b2)). Put
Gj,(b1,b2) := (Gj,(b1,b2),F(s∗Gj,(b1,b2))). By Corollary 3.5.15, the image of

ϕ∗
(Gj,1,b1 ,Gj,2,b2 ,qj,(b1,b2))

σU ∈ Vj to Vj ⊂ H0(B, (ζ|B)∗(Ξ(n)
PSU1

� Ξ
(n)
PSU2

)⊗

ε∗OSL(jB)) 
 H0(PSU�1, Ξ
(n)

PSU�
1
)⊗H0(PSU�2, Ξ

(n)

PSU�
2
) is ϕ∗

Gj,1,b1
�σU�ϕ∗

Gj,2,b2
�σU .

From this we know
• Vj = H0(B, (ζ|B)∗(Ξ(n)

PSU1
�Ξ

(n)
PSU2

)⊗ ε∗OSL(jB)),

•
{
ϕ∗

(Gj,1,b1 ,Gj,2,b2 ,qj,(b1,b2))
σU |0 ≤ j ≤ n, 1 ≤ bi ≤ Bi

}
spans the vector

space Vn,
• dimVn =

∑n
j=0 dimH0(PSU �1, Ξ

(n)

PSU�
1
) · dimH0(PSU�2, Ξ

(n)

PSU�
2
).

Now Claim 3.5.16.1 follows from Lemma 3.5.13.

As in the above claim, we choose Gb = (Gb,F(s∗Gb)) (1 ≤ b ≤ B) so that
the set {ϕ∗

Gb
σU} spans H0(PSU(2,L|C1∪C2 ;C1∪C2; Λ)lf , Ξ(n)). There exists a

positive integer M such that for each b, there exists G̃b = (G̃b,F((s)∗
S(1/M) G̃b)),

where G̃b is a S(1/M)-flat coherent sheaf on C(1/M) and F((s)∗
S(1/M) G̃b) is a

filtration of type Λ̃ such that the restriction of G̃b to the central fiber C1 ∪ C2

is Gb. By Lemma 3.5.8, if necessary, we can replace M so that ϕ∗
fGb
ΘU 
 Ξ(n)

PSU
(1 ≤ b ≤ B), where PSU = PSU(2,LS(1/M) ; C(1/M)/S(1/M); Λ)lf . If we restrict
the sections ϕ∗

fGb
σU ∈ H0(PSU(2,LS(1/M) ; C(1/M)/S(1/M); Λ)lf , Ξ(n)) (1 ≤ b ≤

B) to the central fiber, they span the vector space H0(PSU(2,L|C1∪C2 ;C1 ∪
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C2,Λ)lf , Ξ(n)). We also have

dimH0
(
PSU(2, (L)Speck((t1/M )); C ×S Speck((t1/M ))/Speck((t1/M )); Λ), Ξ(n)

)
(∗)
=

n∑
j=0

dimH0
(
PSU(2, L1;C1; Λ, An,n−j), Ξ(n)

)
· dimH0

(
PSU(2, L2;C2;Aj,0), Ξ(n)

)
(∗∗)
= dim H0

(
PSU(2,L|C1∪C2 ;C1 ∪ C2,Λ)lf , Ξ(n)

)
,

where (∗) follows from Remark 2.1.11 and (∗∗) was proved in the proof of Claim
3.5.16.1.

Then applying Proposition 4.1.6 as X = PSU(2,LS(1/M); C(1/M)/

S(1/M); Λ)lf(N) with N � 0 and noting that H0(PSU(2,LS(1/M) ; C(1/M)/
S(1/M); Λ)lf , Ξ(n)) 
 H0(PSU(2,LS(1/M) ; C(1/M)/S(1/M); Λ)lf(N), Ξ(n)) for
N � 0, we know that H0

(
PSU(2,LS(1/M) ; C(1/M)/S(1/M); Λ)lf , Ξ(n)

)
is a fi-

nite free k[[t]]-module and that H0
(
PSU(2,LS(1/M) ; C(1/M)/S(1/M); Λ)lf , Ξ(n)

)
⊗ k 
 H0

(
PSU(2,L|C1∪C2 ;C1 ∪ C2; Λ)lf , Ξ(n)

)
. By Nakayama’s Lemma,

{ϕ∗
fGb
σU} generate H0

(
PSU(2,LS(1/M) ; C(1/M)/S(1/M); Λ)lf , Ξ(n)

)
as a

k[[t1/M ]]-module. Hence they generate the k((t1/M ))-vector space

H0
(
PSU(2,LS(1/M) ; C(1/M)/S(1/M); Λ)lf , Ξ(n)

)
⊗k[[t1/M ]] k((t

1/M )),

which is isomorphic to

H0
(
PSU(2, (L)Speck((t1/M )); C ×S Speck((t1/M ))/Speck((t1/M )); Λ), Ξ(n)

)
again by Proposition 4.1.6. This complete the proof of Theorem 3.5.1.

3.6. SL(2)−GL(n) strange duality conjecture
Theorem 3.6.1. Let C be an irreducible smooth projective curve of

genus g ≥ 1 over an algebraically closed field k of characteristic zero. Let
s be a closed point of C. Fix a positive integer n. Let Λ be a Young diagram
of type ≤ (2, n) and let L be a line bundle of degree d on C. Assume that the
1-pointed curve (C, s) is general. Then (SD)2,n holds for PSU(2,L;C; Λ).

Proof. We proceed by induction on g. If g = 1, then the theorem follows
from Proposition 3.2.2. Assume that the theorem is true for g− 1 ≥ 1. We can
find a family of nodal curves π : C → S = Speck[[t]] with a section s and a line
bundle L on C described in the paragraph 3.4.2 such that g1 = 1, g2 = g−1, and
(SD)2,n holds for PSU(2,L|C2 ;C2; Γ) for any Young diagram Γ of type ≤(2, n),
where Γ is assigned to the point P . By Proposition 3.2.3, (SD)2,n holds for
PSU(2,L|C1 ;C1; Λ,Γ) for any Young diagram Γ of type ≤ (2, n). Theorem
3.5.1 implies that (SD)2,n holds for PSU(2,Lη̄; Cη̄; Λ). By Proposition 3.3.1
and Proposition 2.3.1, we know that (SD)2,n holds for PSU(2,L;C; Λ) for
general (C, s).
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Corollary 3.6.2. Let C be an irreducible smooth projective curve of
genus g ≥ 2 over an algebraically closed field k of characteristic zero, and let
L be a line bundle of degree d on C. Let n be a positive integer such that the
rational number e = n(g − 1)− nd/2 is an integer. Assume that C is general,
then Conjecture 1.0.4 holds for r = 2.

Proof. For a rank n bundle G of degree e on C, put ΘG := {E ∈ SU(2,L)|
H0(C,G ⊗E) �= 0}. Then by Theorem 3.6.1, we can find a finite number of Gb’s
such that the effective divisors ΘGb ’s span the vector space H0(SU(2,L), Ξ⊗n).
We can deform Gb’s a little bit so that they become semistable. The details are
left to the reader.

4. Appendix

4.1. Some propositions on stacks
Proposition 4.1.1. Let X be a quasi-compact algebraic stack over S =

SpecR and F be a quasi-coherent sheaf on X . Let R′ be a flat R-algebra. Then
the natural homomorphism of R′-modules

H0 (X ,F)⊗R R′ → H0 (XR′ ,FR′)

is an isomorphism.

Proof. We can find an affine atlas φ : X → X . Since X ×X X is quasi-
compact, it is covered by finite affine open subschemes Yj . Put Y :=

∐
Yj .

For i = 1, 2, let ψi : Y → X be the composite Y → X ×X X
i-th proj.−−−−−−→ X.

Put M0 := H0(X,φ∗F) and M1 := H0(Y, (φ ◦ ψ1)∗F). There is a natural
isomorphism (φ ◦ ψ1)∗F 
 (φ ◦ ψ2)∗F , and it induces an isomorphism α :
H0(Y, (φ ◦ ψ2)∗F) ∼→ H0(Y, (φ ◦ ψ1)∗F). Put θ := ψ∗

1 − α ◦ ψ∗
2 . Then for any

R-algebra R′, we have

H0(XR′ ,FR′) 
 Ker(M0 ⊗R R′ θ⊗idR′−−−−→M1 ⊗R R′).

If R′ is R-flat, we have

Ker(M0 ⊗R R′ θ⊗idR′−−−−→M1 ⊗R R′) 
 Ker(M0 θ−→M1)⊗R R′.

This proves the proposition.

Proposition 4.1.2. Let X be an algebraic stack over SpecR. Let
(Xn)∞n=0 be an increasing sequence of non-empty open substack of X . Let L
be a quasi-coherent sheaf on X , and let Ln be L|Xn

. Assume that X = ∪∞n=0Xn
(i.e, for any affine R-scheme T and any object a ∈ X (T ), there exists n such
that a ∈ Xn(T )).

(1) The natural morphism of R-modules

H0 (X ,L)→ lim←−H0 (Xn,Ln)

is an isomorphism.
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(2) Assume moreover that R is a field, all Xn are quasi-compact and the
restriction map H0(Xn,Ln) → H0(Xn′ ,Ln′) is injective for any n′ ≤ n. Then
for any R-algebra R′, the natural map

H0 (X ,L)⊗R R′ → H0 (XR′ ,LR′)

is an isomorphism.

Proof. (1) This directly follows from the definition of H0(X ,−).
(2) This follows from (1) and Proposition 4.1.1 together with Lemma 4.1.3.

Lemma 4.1.3. Let R be a commutative ring and N be a free R-module.
Let {fn′ n : Mn → Mn′}n≥n′ be a projective system of R-modules indexed by
non-negative integers. Assume that fn′ n : Mn → Mn′ is injective for any
n ≥ n′. Then the natural morphism(

lim←−Mn

)
⊗R N → lim←− (Mn ⊗R N)

is an isomorphism.

Proof. Easy.

Remark 4.1.4. The injectivity of H0(Xn,Ln) → H0(Xn′ ,Ln′) in
Proposition 4.1.2 (2) is satisfied if each Xn has an irreducible and reduced
atlas, and L is a line bundle.

Proposition 4.1.5. Let X be an algebraic stack over S = SpecR. As-
sume that we have an atlas τ :

∐
n≥0Hn → X such that Hn is flat and of finite

type over S, and Hn ×S Speck(x) is irreducible and normal for any x ∈ S.
Let X ◦ be an open substack of X . Put H◦

n := Hn ×X X ◦. Let L be a line
bundle on X . If the codimension of (Hn ×S Speck(x)) \ (H◦

n ×S Speck(x))
in Hn ×S Speck(x) is greater than or equal to two, then the restriction map
H0(X ,L)→ H0(X ◦,L|X◦) is an isomorphism.

Proof. It suffices to prove that the restriction map

H0(Hn, τ
∗L)→ H0(H◦

n, τ
∗L|H◦

n
)

is an isomorphism, for the gluing condition is satisfied because it is satisfied
generically. To prove this, we have only to prove that, for ∀y ∈ Hn \ H◦

n,
depthOHn,y ≥ 2 by [EGAIV, (5.10.5)]. By [Mat, Theorem 50], we can check
this fiberwisely.

Proposition 4.1.6. Let (R,m) be a discrete valuation ring, X a quasi-
compact Artin-stack over SpecR and L a line bundle on X . Assume that X is
flat over SpecR. Put k := R/m and K := FracR.
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(1) Assume that H0(X ,L)⊗Rk → H0(X×SpecRSpeck,L⊗Rk) is surjective.
Then for any R-algebra S

(4.1) H0(X ,L)⊗R S → H0(X ×SpecR SpecS,L ⊗R S)

is an isomorphism.
(2) Assume moreover that dimK H0(X × SpecK,L⊗R K) = dimk H0(X ×

Speck,L ⊗R k) <∞. Then H0(X ,L) is a free R-module of finite rank.

Proof. Since X is quasi-compact and flat over R, we can find a 2-term
complex M0 α−→M1 of flat R-modules such that, for any R-algebra S, we have
an isomorphism

H0(X × SpecS,L⊗R S) 
 Ker(M0 ⊗R S
α⊗id−−−→M1 ⊗R S),

which is functorial in S.
If S is an R-algebra, we have the exact sequences

0→ Ker(α)⊗R S →M0 ⊗R S → Im(α)⊗R S → 0

and

0→ TorR1 (S,Coker(α))→ Im(α)⊗R S →M1 ⊗R S → Coker(α)⊗R S → 0.

Since (4.1) is an isomorphism, we have TorR1 (k,Coker(α)) = 0. One can easily
check that this implies TorR1 (N,Coker(α)) = 0 for any R-module N . This
completes the proof of (1).

Let us go on to the proof of (2). Put d := dimK H0(X × SpecK,L ⊗R
K) = dimk H0(X × Speck,L ⊗R k). Let γ : R⊕d → Ker(α) be an R-module
homomorphism such that γ⊗Rk : (R⊕d)⊗Rk → Ker(α)⊗Rk is an isomorphism.
Then we have Ker(γ) ⊗R k = 0, Coker(γ) ⊗R k = 0 and TorR1 (Coker(γ), k) =
0. Since Ker(γ) is a finitely generated R-module, we have Ker(γ) = 0 by
Nakayama’s Lemma. By assumption, we have Coker(γ) ⊗R K = 0. Then by
Lemma 4.1.7, we have Coker(γ) = 0 and complete the proof of (2).

Lemma 4.1.7. Let (R,m),k and K be as in Proposition 4.1.6. Let L
be an R-module. If TorR1 (L, k) = 0 and L⊗R K = 0, then L = 0.

Proof. Let t be a generator of m. L ⊗R K = 0 implies that for any
x ∈ L there exists n > 0 such that tn · x = 0. TorR1 (L, k) = 0 implies that

TorR1 (L,R/mn) = 0 for any n > 0. This implies that L tn·−−→ L is injective.
Hence L = 0.

Proposition 4.1.8. Let X (1), X (2) be Artin stacks over a field k, and
let F(1), F (2) be quasi-coherent sheaves on X (1) and X (2) respectively. Let
φ(i) : X (1) × X (2) → X (i) be the projection. Assume that for i = 1, 2 there
exists a quasi-compact open substack X (i)◦ of X (i) such that the restriction
morphisms

H0(X (i),F (i))→ H0(X (i)◦,F (i))

H0(X (1) ×X (2), φ(1)∗F (1) ⊗ φ(2)∗F (2))

→ H0(X (1)◦ ×X (2)◦, φ(1)∗F (1) ⊗ φ(2)∗F (2))
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are isomorphisms. Then the natural k-linear map

H0(X (1),F (1))⊗H0(X (2),F (2))→ H0(X (1) ×X (2), φ(1)∗F (1) ⊗ φ(2)∗F (2))

is an isomorphism.

Proof. We may assume that X (1) and X (2) are quasi-compact. Let τ (i) :
X(i) → X (i) be an affine atlas, and τ

(i)
j : X(i) ×X (i) X(i) → X(i) be the j-th

projection. Note that X(i) ×X (i) X(i) is quasi-compact and separated by the
definition of artin stacks [L-M]. Put ϕ(i)

j := τ (i) ◦ τ (i)
j . Since ϕ(i)

1 and ϕ
(i)
2 are

canonically isomorphic, the two vector spaces H0(X(i)×X (i)X(i), ϕ
(i)∗
1 F (i)) and

H0(X(i)×X (i)X(i), ϕ
(i)∗
2 F (i)) are canonically isomorphic. We denote this vector

space by V (i)
1 . Put V (i)

0 := H0(X(i), τ (i)∗F (i)). Put H(i)
0 :=

{
v ∈ V (i)

0

∣∣∣τ (i)∗
1 (v)

= τ
(i)∗
2 (v) in V (i)

1

}
. and H0 :=

{
v ∈ V (1)

0 ⊗ V (2)
0

∣∣∣(τ (1)∗
1 ⊗ τ (2)∗

1 )(v) = (τ (1)∗
2

⊗ τ (2)∗
2 )(v)

}
. By Künneth theorem for quasi-coherent sheaves on quasi-

compact and separated schemes over a field, we have isomorphisms

H
(i)
0 
 H0

(
X (i),F (i)

)
H0 
 H0

(
X (1) ×X (2), φ(1)∗F (1) ⊗ φ(2)∗F (2)

)
.

Thus we need to prove thatH(1)
0 ⊗H

(2)
0

∼→ H0. It is clear thatH(1)
0 ⊗H

(2)
0 ⊂ H0.

We choose bases {e(1)
λ }λ and {e(2)

µ }µ of V (1)
0 and V (2)

0 so that part {e(1)
λ }λ and

{e(2)
µ }µ forms bases of H(1)

0 and H
(2)
0 respectively. Let v :=

∑
cλµe

(1)
λ ⊗ e

(2)
µ

be in H0. We have

(4.2)
∑

cλµτ
(1)∗
1 (e(1)

λ )⊗ τ (2)∗
1 (e(2)

µ ) =
∑

cλµτ
(1)∗
2 (e(1)

λ )⊗ τ (2)∗
2 (e(2)

µ ).

Let δ(i) : X(i) → X(i)×X (i) X(i) be the diagonal morphism. Applying δ(1)∗⊗ id
to the equation (4.2), we obtain

∑
λ

e
(1)
λ ⊗

{∑
µ

cλµτ
(2)∗
1 e(2)

µ

}
=
∑
λ

e
(1)
λ ⊗

{∑
µ

cλµτ
(2)∗
2 e(2)

µ

}
.

Therefore for ∀λ, we have
∑
µ cλµe

(2)
µ ∈ H

(2)
0 , in other words, cλµ = 0 if

e
(2)
µ /∈ H

(2)
0 . Interchanging the role of H(2)

0 and H
(1)
0 , we have cλµ = 0 if

e
(1)
λ /∈ H(1)

0 . Hence v ∈ H(1)
0 ⊗H(2)

0 .

4.2. A Compactification of SL2

Let S be a scheme, V1 and V2 be locally free OS-modules of rank 2. Let
us be given an isomorphism δ : ∧2V1

∼→ ∧2V2.

Definition 4.2.1. We shall define three functors SL(V1,V2), SL(V1,V2)
and B(V1,V2) from the category of S-schemes to the category of sets as follows.
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(1) For an S-scheme f : T → S, SL(V1,V2)(T ) is the set of isomorphims
α : f∗V1

∼→ f∗V2 such that ∧2α = f∗(δ).
(2) For an S-scheme f : T → S, SL(V1,V2)(T ) is the set of equivalence

classes of rank-2 bundle quotients β : f∗V1 ⊕ f∗V2 → W → 0 such that the
diagram

(4.3)

∧2 f∗V1
f∗(δ)−−−−→

∧2 f∗V2

∧2β1

) )∧2β2∧2W
∧2W

commutes, where βi := β|f∗Vi
.

(3) For an S-scheme f : T → S, B(V1,V2)(T ) is the set of equivalence
classes of rank-2 bundle quotients β : f∗V1 ⊕ f∗V2 → W → 0 such that the
diagram (4.3) commutes and ∧2βi = 0.

Remark 4.2.2. (1) If α : f∗V1
∼→ f∗V2 is a T -valued point of

SL(V1,V2), then f∗V1 ⊕ f∗V2
α⊕id−−−→ f∗V2 is a T -valued point of SL(V1,V2).

(2) In Definition 4.2.1 (2), if we let K := Ker(β), then the commutativity of
the diagram (4.3) is equivalent to the commutativity of the following diagram:∧2K

∧2K) )∧2
f∗V1

f∗(δ)−−−−→
∧2

f∗V2.

(3) We denote the schemes that represent the functors SL(V1,V2),
SL(V1,V2) and B(V1,V2) by SL(V1,V2), SL(V1,V2) and B(V1,V2) respectively.
Then SL(V1,V2) is an open subscheme of SL(V1,V2), and B(V1,V2) is a closed
subscheme of SL(V1,V2). Set-theoretically, SL(V1,V2) is a disjoint union of
SL(V1,V2) and B(V1,V2).

Proposition 4.2.3. We have an isomorphism P(V1) ×S P(V2)
∼→

B(V1,V2) of S-schemes.

Proof. For an S-scheme f : T → S, if (f∗V1 � L1, f
∗V2 � L2) is a

T -valued point of P(V1)×S P(V2), then f∗V1 ⊕ f∗V2 � L1 ⊕ L2 is a T -valued
point of B(V1,V2). One can check that this gives a bijective correspondence
between the sets of T -valued points of P(V1)×S P(V2) and B(V1,V2).
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Note added in proof. In [M-O], Marian and Oprea proved Conjec-
ture 1.0.3. Their method also proves the strange duality for parabolic bundles
formulated in this paper.
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