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Time frequency analysis and multipliers of the
spaces M(p, q)(Rd) and S(p, q)(Rd)

By

A. Turan Gürkanli

Abstract

In the second section of this paper, in analogy to modulation spaces,
we define the space M(p, q)

`
Rd

´
to be the subspace of tempered dis-

tributions f ∈ S′ `
Rd

´
such that the Gabor transform Vg (f) of f is

in the Lorentz space L (p, q)
`
R2d

´
, where the window function g is a

rapidly decreasing function. We endow this space with a suitable norm
and show that the M(p, q)

`
Rd

´
becomes a Banach space and is invari-

ant under time-frequency shifts for 1 ≤ p, q ≤ ∞. We also discuss
the dual space of M(p, q)

`
Rd

´
and the multipliers from L1

`
Rd

´
into

M(p, q)
`
Rd

´
. In the third section we intend to study the intersection

space S (p, q)
`
Rd

´
= L1

`
Rd

´∩M (p, q)
`
Rd

´
for 1 < p < ∞, 1 ≤ q ≤ ∞.

We endow it with the sum norm and show that S (p, q)
`
Rd

´
becomes

a Banach convolution algebra. Further we prove that it is also a Segal
algebra. In the last section we discuss the multipliers of S (p, q)

`
Rd

´

and M (p, q)
`
Rd

´
.

1. Introduction

Through out this paper C0

(
Rd
)

and S
(
Rd
)

denote the space of complex-
valued continuous function on Rd that vanish at infinity, and the space of
complex-valued continuous functions on Rd rapidly decreasing at infinity, re-
spectively. In this paper we will work on Rd with Lebesgue measure dx. Let
f be a measurable complex valued function on Rd. The translation and mod-
ulation operators are defined as Txf (t) = f (t− x) and Mwf (t) = e2πiwtf (t)
for x,w ∈ Rd, respectively. It is easy to see that TxMt = e−2πixtMtTx. For
1 ≤ p ≤ ∞ we write

(
Lp
(
Rd
)
, ‖·‖p

)
for the Lebesgue spaces. It is also easy

to show that ‖TxMtf‖p = ‖f‖p, [13].

Let 〈x, t〉 =
d∑

i=1

xiti be the usual scalar product on Rd. For f ∈ L1
(
Rd
)

Received November 20, 2005
Revised June 12, 2006



596 A. Turan Gürkanli

the Fourier transform f̂ (or Ff ) is given by

f̂ (t) =
∫

Rd

f (x) e−2πi〈x,t〉dx.

It is known that f̂ ∈ C0(Rd).
The subject of Fourier analysis is one of the oldest subjects in mathematical

analysis and in engineering. When f is thought of as an analog signal, then
its domain R is called time-domain. In this case the Fourier transform f̂ of
f describes the spectral behavior of the signal f . Then the domain of f̂ is
called frequency domain. The Fourier transform provides only non-localized
frequency information. For any f ∈ L1

(
Rd
)

its Fourier transform f̂ (t) alone is
not very useful for extracting information of the information of the spectrum
f̂ from local observation of the signal f . Thus the idea of Short-Time Fourier
transform (STFT) or Gabor transform comes up. This transform maps the
time domain signal into the joint time and frequency domain. Given any fix
function g �= 0 (called the window function) the Short-Time Fourier transform
(STFT) or Gabor transform of a function f with respect to g is given by

Vgf (x,w) =
∫

Rd

f (t) g (t− x)e−2πitwdt,

for x,w ∈ Rd. It is known that if f, g ∈ L2
(
Rd
)

then Vgf ∈ L2
(
Rd ×Rd

)
and

Vgf is uniformly continuous. Moreover

Vg (TuMηf) (x,w) = e−2πiuwVgf (x− u,w − η)

for all x,w, u, η ∈ Rd, [13].

Let f be measurable function defined on a measure space (X,µ). For y > 0
we define

λf (y) = µ ( {x ∈ X : | f(x) | > y }) .
The function λf (y) is called the distribution function of f . The rearrangement
of f is defined by

f∗(t) = inf { y > 0 : λ f (y) ≤ t } = sup { y > 0 : λ f (y) > t } , t > 0.

Also, the average function of f is defined by

f∗∗(t) =
1
t

t∫
0

f∗(x) dx.

It is easy to see that λf , f
∗ , f∗∗ are nonincreasing and right continuous func-

tions on (0,∞). The Lorentz space L(p, q)(X, µ) (shortly L(p, q)) is defined to
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be the vector space of all (equivalence classes) of measurable functions f such
that ‖ f ‖∗(p,q) <∞ where

‖ f ‖∗(p,q) =
(
q

p

∫ ∞

0

[
t

1
p f∗ (t)

]q dt
t

) 1
q

, 0 < p <∞, 0 < q <∞,

‖ f ‖∗(p,q) = sup
t>0

t
1
p f∗ (t) , 0 < p ≤ ∞, q = ∞.

It is known that ‖ f ‖∗(p,p) = ‖ f ‖p and so L(p, p) = Lp. If 0 < q1 ≤ q2 ≤ ∞,
0 < p < ∞ then ‖ f ‖∗(p,q2)

≤ ‖ f ‖∗(p,q1)
holds and hence L(p, q1) ⊂ L(p, q2),

[14]. Also L(p, q)(X, µ) is a normed space with the norm

‖ f ‖(p,q) =
(
q

p

∫ ∞

0

[
t

1
p f∗∗ (t)

]q dt
t

) 1
q

, 0 < p <∞, 0 < q <∞,

‖ f ‖(p,q) = sup
t>0

t
1
p f∗∗ (t) , 0 < p ≤ ∞, q = ∞ .

It is also known that if 1 < p <∞, 1 ≤ q ≤ ∞ we have

‖·‖∗(p, q) ≤ ‖·‖(p, q) ≤
p

p− 1
‖·‖∗(p, q).

(see O’Neil [18] and Yap [25])
For two Banach modules B1 and B2 over a Banach algebra A we write

MA (B1,B2) or HomA (B1, B2) for the space of all bounded linear operators
satisfying T (ab) = aT (b) for all a ∈ A, b ∈ B1. This operators are called
multiplier (right) or module homomorphism from B1 into B2 ([20], [21], [15]).
It is known that

HomA (B1, B
∗
2) ∼= (B1 ⊗A B2)

∗ ,

where B∗
2 is dual of B2 and B1 ⊗A B2 is the A-module tensor product of B1

and B2, (See Theorem 1.4 in [21]).
Let G be a locally compact Abelian group. A subalgebra S1(G) of L1(G)

is called a Segal algebra if:
1) S1(G) is dense in L1(G) and if f ∈ S1(G) then Taf ∈ S1(G), where

Taf(x) = f(a−1x);
2) S1(G) is a Banach algebra under some norm ‖.‖S1 which also satisfies

‖f‖S1 = ‖Taf‖S1 for all f ∈ S1(G), a ∈ G;
3) if f ∈ S1(G) then for every ε > 0 there exists a neighbourhood U of

the identity element of G such that ‖Tyf − f‖S1 < ε for all y ∈ U .
Let G be a locally compact Abelian group with dual group Ĝ and Haar

measures dx and dx̂, respectively. For 1 < p < ∞, 1 ≤ q ≤ ∞, A (p, q) (G)
denotes the vector space of all functions f ∈ L1 (G) whose Fourier transforms
f̂ belong to Lorentz space L (p, q)

(
Ĝ
)
. For every f ∈ A (p, q) (G) we supply a
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norm in A (p, q) (G) by

‖f‖A(p,q) = ‖f‖L1 +
∥∥∥f̂∥∥∥

(p,q)
,

where
∥∥∥f̂∥∥∥

(p,q)
is the norm of f̂ in the Lorentz space L (p, q)

(
Ĝ
)
. L. Y. H. Yap

showed that A (p, q) (G) is a Segal algebra [25]. Later a number of authors such
as e.g Y.K. Chen and H.C. Lai [1], T.S. Quek and L.Y.H. Yap [19] worked on
these spaces.

The main purpose of this paper is to define the spaces M (p, q)
(
Rd
)

and
S (p, q)

(
Rd
)

like A (p, q)
(
Rd
)

using the Gabor transform instead of Fourier
transform and study the properties of these spaces. Also to show that some
of the results for A (p, q)

(
Rd
)

are true for S (p, q)
(
Rd
)
, and the spaces

M (p, q)
(
Rd
)

and S (p, q)
(
Rd
)

are a kind of generalization of modulation space
Mp,q

(
Rd
)
, (see, [13]).

2. The space M(p, q)
(
Rd
)

Using the Gabor transform with respect to a rapidly decreasing function
define a space M(p, q)

(
Rd
)

of tempered distributions as follows.

Definition 2.1. Fix a non zero window g ∈ S
(
Rd
)

and 1 ≤ p, q ≤ ∞.
We let M(p, q)

(
Rd
)

denote the subspace of tempered distributions S′ (Rd
)

consisting of f ∈ S′ (Rd
)

such that the Gabor transform Vg (f) of f is in the
Lorentz space L (p, q)

(
R2d

)
. We endow the vector space M(p, q)

(
Rd
)

with the
norm

(2.1) ‖f‖M(p,q) = ‖Vg (f)‖(p,q) ,

where ‖·‖(p,q) is the norm of the Lorentz space [14]. Since if p = q, L (p, q)
(
R2d

)
= Lp

(
R2d

)
, we denote M(p, p)

(
Rd
)

= M(p)
(
Rd
)
.

Before we begin to study the structure ofM(p, q)
(
Rd
)

we recall the adjoint
operator of Vg. Given a non-zero window γ and a function F on R2d we define

(2.2)
〈
V ∗

γ F, f
〉

= 〈F, Vγf〉 .

Lemma 2.1. Let 1 ≤ q ≤ p < ∞. If f ∈ L1
(
Rd
)

is bounded and
continuous then f ∈ L (p, q)

(
Rd
)
.

Proof. If p ≥ q we have

∫ ∞

0

x
q
p−1 [f∗ (x)]q dx =

∫ 1

0

x
q
p−1 [f∗ (x)]q dx+

∫ ∞

1

x
q
p−1 [f∗ (x)]q dx.
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Since f∗ is continuous on [0,1] we write

∫ 1

0

x
q
p−1 [f∗ (x)]q dx ≤

(
supp
x∈[0,1]

f∗ (x)

)q ∫ 1

0

x
q
p−1dx

=
p

q

(
supp
x∈[0,1]

f∗ (x)

)q

<∞.

(2.3)

Also, since f ∈ L1
(
Rd
)

and bounded, we write∫ ∞

1

x
q
p−1 [f∗ (x)]q dx ≤

∫ ∞

1

[f∗ (x)]q dx ≤
∫ ∞

0

[f∗ (x)]q dx

=
∫

Rd

|f (t)|q dt ≤ ‖f‖q−1
∞ ‖f‖1 <∞.

(2.4)

Finally using (2.3) and (2.4) we have∫ ∞

0

x
q
p−1f∗

q

(x) dx <∞.

That means, f ∈ L (p, q)
(
Rd
)
.

Proposition 2.1. If 1 ≤ p, q < ∞ and g ∈ S
(
Rd
)

then S
(
Rd
) ⊂

M (p, q)
(
Rd
)

is dense in M (p, q) (Rd).

Proof. Let f ∈ S
(
Rd
)
. If p ≤ q we write

‖f‖M(p,q) = ‖Vgf‖(p,q) ≤
{

sup
z∈R2d

(1 + |z|)n Vgf (z)
}∥∥∥(1 + |z|)−n

∥∥∥
(p,q)

≤
{

sup
z∈R2d

(1 + |z|)n
Vgf (z)

}∥∥∥(1 + |z|)−n
∥∥∥

p
.

(2.5)

Then the right hand side of this expression is finite for sufficiently large n. If
p ≥ q the right hand side of

‖f‖M(p,q) = ‖Vgf‖(p,q) ≤
{

sup
z∈R2d

(1 + |z|)n
Vgf (z)

}∥∥∥(1 + |z|)−n
∥∥∥

(p,q)

is also finite for sufficiently large n by Lemma 2.1. Hence S
(
Rd
) ⊂M (p, q) (Rd).

If one uses the techniques in the proof of Proposition 11.3.4, [13], one obtains
that S

(
Rd
)

is dense in M (p, q)
(
Rd
)
.

Theorem 2.1. Assume that g, γ ∈ S
(
Rd
)

are non-zero windows and
1 ≤ p, q <∞. Then

1. V ∗
γ maps L (p, q)

(
R2d

)
into M(p, q)

(
Rd
)

and satisfies∥∥V ∗
γ F
∥∥

M(p,q)
≤ ‖Vgγ‖1 ‖F‖(p,q) .
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2. The inversion formula

f =
1

〈γ, g〉
∫∫
R2d

Vg (f) (x,w)MwTxγdxdw

holds in M(p, q)
(
Rd
)
.

Proof.
1. We prove first that V ∗

γ F is a tempered distribution. Let f ∈
S
(
Rd
)
. Then Vγ (f) ∈ L

(
p

′
, q

′
) (
R2d

)
by Proposition 2.1 and Definition of

M
(
p

′
, q

′
) (
R2d

)
, where 1

p + 1
p′ = 1, 1

q + 1
q′ = 1. If p ≥ q

(
hence p

′ ≤ q
′
)
, by

Holder’s inequality for Lorentz space we write

∣∣〈V ∗
γ F, f

〉∣∣ = |〈F, Vγf〉| =

∣∣∣∣∣∣
∫∫
R2d

F (x,w)Vγ (f) (x,w)dxdw

∣∣∣∣∣∣
≤ ‖F‖(p,q) ‖Vγf‖(p′ ,q′) ≤ ‖F‖(p,q) ‖Vγf‖p′ .

(2.6)

for all f ∈ S
(
Rd
)
. Thus from (2.6) we obtain∣∣〈V ∗

γ F, f
〉∣∣ ≤ ‖F‖(p,q) ‖Vγf‖p′

≤ ‖F‖(p,q)

{
sup

z∈R2d

(1 + |z|)n Vγf (z)
}∥∥∥(1 + |z|)−n

∥∥∥
p′ .

(2.7)

This expression is finite for sufficiently large n. Using the equivalence of
seminorms ([13], Corollary 11.2.6) it follows that V ∗

γ F ∈ S′ (Rd
)
. If p ≤

q
(
hence p

′ ≥ q
′
)

then ∥∥∥(1 + |z|)−n
∥∥∥
(p′ ,q′)

is finite for sufficienly large n by Lemma 2.1. Hence∣∣〈V ∗
γ F, f

〉∣∣ ≤ ‖F‖(p,q) ‖Vγf‖p′

≤ ‖F‖(p,q)

{
sup

z∈R2d

(1 + |z|)n Vγf (z)
}∥∥∥(1 + |z|)−n

∥∥∥
(p′ ,q′)

(2.8)

is also finite. This implies that V ∗
γ F ∈ S′ (Rd

)
. Since V ∗

γ F ∈ S′ (Rd
)
, it has

Gabor transform and we have

VgV
∗
γ F (u, η) =

〈
V ∗

γ F,MηTug
〉

= 〈F, Vγ (MηTug)〉
=
∫∫
R2d

F (x,w)Vgγ (u− x, η − w) e−2πix(η−w)dxdw.
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Then

(2.9)
∣∣VgV

∗
γ F (u, η)

∣∣ ≤ (|F | ∗ |Vgγ|) (u, η).

Since Vgγ ∈ S
(
R2d

) ⊂ L1
(
R2d

)
and L (p, q)

(
R2d

)
is L1

(
R2d

)
-module we

obtain ∥∥V ∗
γ F
∥∥

M(p,q)
=
∥∥Vg

(
V ∗

γ F
)∥∥

(p,q)

≤ ‖|F | ∗ |Vgγ|‖(p,q) ≤ ‖F‖(p,q) ‖Vgγ‖1.
(2.10)

2. Since every element of M (p, q)
(
Rd
)

is a tempered distribution, we
complete the proof of this part by Theorem 11.2.3 and Corollary 11.2.7 in [13].

Since L (p, q)
(
R2d

)
is a solid translation invariant Banach Function space

then M (p, q)
(
Rd
)

is a Coorbit space. Hence it is a Banach space for 1 ≤ q ≤ ∞
and the definition of M (p, q)

(
Rd
)

is independed of the choice of the window
function g ∈ S

(
Rd
)
. AlsoM (p, q)

(
Rd
)

is invariant under time-frequency shifts
and ‖TxMwf‖M(p,q) = ‖f‖M(p,q). Different windows yield equivalent norms
(see Theorem 4.2 in [5]).

Proposition 2.2. Let 1 < p < ∞, 1 ≤ q < ∞, and g ∈ S
(
Rd
)
.

Then the mapping z → Tzf of Rd into M (p, q)
(
Rd
)

is continuous for every
f ∈M (p, q)

(
Rd
)
.

Proof. Let f ∈M (p, q)
(
Rd
)

and z ∈ Rd. We write

‖Tzf − f‖M(p,q) = ‖Vg(Tzf − f)‖(p,q) = ‖Vg (Tzf) − Vgf‖(p,q)

=
∥∥e−2πwziT(z,0)(Vgf) − Vgf

∥∥
(p,q)

≤ ∥∥e−2πwziT(z,0)(Vgf) − e−2πwziVgf
∥∥

(p,q)

+
∥∥e−2πwziVgf − Vgf

∥∥
(p,q)

=
∥∥e−2πwzi(T(z,0)(Vgf) − Vgf)

∥∥
(p,q)

+
∥∥(e−2πwzi − 1)Vgf

∥∥
(p,q)

.

(2.11)

Since ∣∣e−2πwzi(T(z,0)(Vgf) − Vgf) (x,w)
∣∣ =

∣∣(T(z,0)(Vgf) − Vgf) (x,w)
∣∣

then

(2.12)
∥∥e−2πwzi(T(z,0)(Vgf) − Vgf)

∥∥
(p,q)

=
∥∥(T(z,0)(Vgf) − Vgf)

∥∥
(p,q)

.

It is known by Proposition 2.3 in [25] that the mapping (z, t) → T(z,t)F is
continuous for every F ∈ L(p, q)(R2d). If we apply the argument to Vgf , the
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mapping (z, t) → T(z,t)(Vgf) is continuous. Hence the right side of (2.12) tends
to zero as z tends to zero. This implies the first term on the right side in (2.11)
tends to zero as z tends to zero. Now let hz (x,w) =

∣∣e−2πzwi − 1
∣∣ |Vgf (x,w)|.

It is easy to see that hz (x,w) → 0 as z → 0 for all (x,w) ∈ R2d. This implies
that the rearrangements of (e−2πzwi − 1)(Vgf (x,w)) tends to zero as z tends
to zero. Since

hz (x,w) =
∣∣e−2πzwi − 1

∣∣ |Vgf (x,w)| ≤ 2 |Vgf (x,w)|

and Vgf ∈ L (p, q)
(
R2d

)
we write (hz (x,w))∗ ≤ (2 |Vgf (x,w)|)∗. Thus by the

Lebesgue dominated convergence theorem

∥∥∣∣e−2πzwi − 1
∣∣ |Vgf(x,w)|∥∥

(p,q)
=
∥∥(e−2πzwi − 1)Vgf

∥∥
(p,q)

tends to zero as z tends to zero. This implies the second term on the right side
in (2.11) tends to zero as z tends to zero. This completes the proof.

Theorem 2.2. M (p, q)
(
Rd
)

is an essential Banach convolution mod-
ule over L1

(
Rd
)
.

Proof. Let f ∈ M (p, q)
(
Rd
)

and h ∈ L1
(
Rd
)
. It is known by Lemma

3.1.1 in [13] that

(2.13) Vg (f ∗ h) (x,w) = e−2πixw (f ∗ h) ∗Mwg
∼

where Mwg
∼ (x) = e2πixwg∼ (x) = e2πixwg (−x). Hence

‖f ∗ h‖M(p,q) = ‖Vg (f ∗ h)‖(p,q) = ‖(f ∗ h) ∗Mwg
∼‖(p,q)

= ‖f ∗ (h ∗Mwg
∼)‖(p,q) =

∥∥∥∥∥∥
∫
Rd

f (u) (h ∗Mwg
∼) (x− u) du

∥∥∥∥∥∥
(p,q)

≤
∫
Rd

‖f (u) (h ∗Mwg
∼) (x− u)‖(p,q) du

=
∫
Rd

|f (u)| ‖(h ∗Mwg
∼) (x− u)‖(p,q) du

=
∫
Rd

|f (u)| ∥∥T(0,u) (h ∗Mwg
∼) (x)

∥∥
(p,q)

du.

(2.14)

Since L (p, q)
(
R2d

)
is strongly translation invariant, by Lemma 3.1 in [1] and
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(2.15) we write

‖f ∗ h‖M(p,q) ≤
∫
Rd

|f (u)| ∥∥T(0,u) (h ∗Mwg
∼) (x)

∥∥
(p,q)

du

=
∫
Rd

|f (u)| ‖(h ∗Mwg
∼)‖(p,q) du = ‖(h ∗Mwg

∼)‖(p,q)

∫
Rd

|f (u)|du

= ‖(h ∗Mwg
∼)‖(p,q) ‖f‖1 = ‖h‖M(p,q) ‖f‖1.

Now let f ∈ M (p, q)
(
Rd
)
. Since the mapping z → Tzf of Rd into

M (p, q)
(
Rd
)

is continuous by Proposition 2.2, then given ε > 0 there exists a
compact neighbourhood U of 0 ∈ Rd such that

‖Tzf − f‖M(p,q) < ε

for all z ∈ U . Assume that g ∈ L1
(
Rd
)

is non-negative continuous function
with compact support suppg ⊂ U and

∫
Rd

g = 1. Then

‖g ∗ f − f‖M(p,q) =

∥∥∥∥∥∥
∫
Rd

g (z) f (y − z) dz −
∫
Rd

g (z) f (y) dz

∥∥∥∥∥∥
M(p,q)

≤
∫
Rd

‖g (z) (f (y − z) − f (y))‖M(p,q)dz

≤
∫
Rd

|g (z)| ‖Tzf − f‖M(p,q) dz ≤ ε

∫
Rd

g (z) dz = ε.

Since M (p, q)
(
Rd
)

is Banach module over L1
(
Rd
)

and g ∗ f ∈ L1
(
Rd
) ∗

M (p, q)
(
Rd
)

then L1
(
Rd
) ∗ M (p, q)

(
Rd
)

is dense in M (p, q)
(
Rd
)
. Hence

M (p, q)
(
Rd
)

= L1
(
Rd
) ∗M (p, q)

(
Rd
)

by Module Factorization Theorem in
[24]. That means M (p, q)

(
Rd
)

is an essential module over L1
(
Rd
)
.

Theorem 2.3. The dual space of M (p, q)
(
Rd
)
, 1 < p, q < ∞ is

M(p′, q′)
(
Rd
)
, where 1

p + 1
p′ = 1, 1

q + 1
q′ = 1 and hence these spaces are

reflexive. Also, the dual pair is of the form

〈f, h〉 = 〈Vgf, Vgh〉
∫
R2d

Vgf (z)Vgh (z) dz

for all f ∈M (p, q)
(
Rd
)
, h ∈M(p′, q′)

(
Rd
)
.

Proof. Let u ∈ M
(
p

′
, q

′
) (
Rd
)
. It is known that the dual space of

L (p, q)
(
R2d

)
is L

(
p

′
, q

′
) (
R2d

)
, where 1

p + 1
p′ = 1, 1

q + 1
q′ = 1 and they are
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reflexive. Also the dual form is of the form

(2.15) 〈s, t〉 =
∫
R2d

s (z) t (z) dz, s ∈ L (p, q)
(
R2d

)
, t ∈ L

(
p

′
, q

′)
(R2d),

(see [17], [3]). Thus

(2.16) lu (f) =
∫
R2d

Vgf (z)Vgu (z) dz

defines a linear functional on M (p, q)
(
Rd
)

and, by Hölder’s inequality for the
Lorentz space, we have

(2.17) |lu (f)| ≤ ‖Vgu‖(p′ ,q′) ‖Vgf‖(p,q)

for all f ∈ M (p, q)
(
Rd
)
. That means lu is a bounded linear functional on

M (p, q)
(
Rd
)
.

Conversely assume that l ∈ (
M (p, q)

(
Rd
))∗. It is easy to see that

M (p, q)
(
Rd
)

is isometrically isomorphic to the closed subspace

(2.18) N =
{
Vgf ∈ L (p, q)

(
R2d

)
: f ∈M (p, q)

(
Rd
)}

of L (p, q)
(
R2d

)
. Hence

∼
l (Vgf) := l (f) defines a continuous linear func-

tional on N and by the Theorem of Hahn-Banach,
∼
l extends continuously

to L (p, q)
(
R2d

)
. Thus by (2.7) in [14] or [1], there exists K ∈ L

(
p

′
, q

′
) (
R2d

)
,

such that

(2.19)
∼
l (Vgf) =

∫
R2d

Vgf (z)K (z) dz = l(f).

Also, since K ∈ L
(
p

′
, q

′
) (
R2d

)
, from Theorem 2.1 there exists k ∈

M
(
p

′
, q

′
) (
Rd
)

such that k = V ∗
g K. Thus every continuous linear functional on

M (p, q)
(
Rd
)

is of the form (2.20) and
(
M (p, q)

(
Rd
))∗ = M

(
p

′
, q

′
) (
Rd
)
.

3. The Space S (p, q)
(
Rd
)
.

Let p, q be real numbers such that 1 < p < ∞, 1 ≤ q < ∞ and g ∈
S
(
Rd
)
, g �= 0. Write L1

(
Rd
) ∩ M (p, q)

(
Rd
)

as S (p, q)
(
Rd
)

and for f ∈
S (p, q)

(
Rd
)

define

(3.1) ‖f‖S = ‖f‖1 + ‖f‖M(p,q) = ‖f‖1 + ‖Vgf‖(p,q).

It is easy to verify that

(3.2) S (p, q)
(
Rd
)

=
{
f ∈ L1

(
Rd
)

: Vgf ∈ L (p, q)
(
R2d

)}
.

In this section we will discuss some properties of this space.
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Theorem 3.1. For 1 < p < ∞, 1 ≤ q < ∞ the space S (p, q) is a
Banach convolution algebra with the norm

‖f‖S = ‖f‖1 + ‖Vgf‖(p,q) .

Proof. Let (fn) be a Cauchy sequence in S (p, q). Then (fn) is a Cauchy
sequence in L1

(
Rd
)

and (Vgfn) is a Cauchy sequence in L (p, q)
(
R2d

)
. Since

L1
(
Rd
)

and L (p, q)
(
R2d

)
are Banach spaces (fn) converges to a function f in

L1
(
Rd
)

and (Vgfn) converges to a function h in L (p, q)
(
R2d

)
. This implies

that (Vgfn) has a subsequence (Vgfnk
) which converges pointwise to h almost

everywhere. Let ε > 0 be given. Since (fn) converges to f in L1
(
Rd
)
, there

exists n0 ∈ N such that

(3.3) ‖fn − f‖1 <
ε

‖ĝ‖1

for all n ≥ n0. If we apply the Lemma 3.1.1 in [13] and the Hölder’s inequality,
we have

|Vgfn (x,w) − Vgf (x,w)| = |Vg (fn − f) (x,w)|
=
∣∣〈(fn − f)∧ , TxM−w ĝ

〉∣∣
≤ ∥∥(fn − f)∧

∥∥
∞ ‖TxM−wĝ‖1

=
∥∥(fn − f)∧

∥∥
∞ ‖ĝ‖1 ≤ ‖fn − f‖1 ‖ĝ‖1.

(3.4)

It follows from (3.3) and (3.4) that

(3.5) |Vgfn (x,w) − Vgf (x,w)| < ε

‖ĝ‖1

. ‖ĝ‖1 = ε.

That means, (Vgfn) converges pointwise to Vgf .
If one uses the inequality

|Vgfnk
(x,w) − Vgf (x,w)|

= |Vgfnk
(x,w) − Vgf (x,w) + Vg (fn) (x,w) − Vg(fn) (x,w)|

≤ |Vgfnk
(x,w) − Vgfn (x,w)| + |Vgfn (x,w) − Vgf (x,w)|

≤ ‖fnk
− fn‖1 ‖ĝ‖1 + ‖fn − f‖1 ‖ĝ‖1

and (3.5), one obtains that (Vgfnk
) also converges pointwise to Vgf . Finally,

using the inequality

|Vgf (x,w) − h (x,w)| ≤ |Vgfnk
(x,w) − Vgf (x,w)| + |Vgfnk

(x,w) − h (x,w)|

we have Vgf (x,w) = h (x,w) a.e. Then, given any ε > 0, there exist n1, n2 ∈ N
such that

‖fn − f‖1 <
ε

2
and ‖Vg (fn − f)‖(p,q) = ‖Vgfn − Vgf‖(p,q) <

ε

2
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for all n > n1 and n > n2 . Hence for all n > n0 = max {n1, n2} we have

(3.6) ‖fn − f‖S = ‖fn − f‖1 + ‖Vg (fn − f)‖(p,q) <
ε

2
+
ε

2
= ε.

Thus S (p, q)
(
Rd
)

is a Banach space.
Now let f, h ∈ S (p, q)

(
Rd
)
. We write

‖Vg (f ∗ h)‖(p,q) = ‖(f ∗ h) ∗Mwg
∼‖(p,q) = ‖f ∗ (h ∗Mwg

∼)‖(p,q)

=

∥∥∥∥∥∥
∫
Rd

f (u) (h ∗Mwg
∼) (x− u) du

∥∥∥∥∥∥
(p,q)

≤
∫
Rd

‖f (u) (h ∗Mwg
∼) (x− u)‖(p,q) du

=
∫
Rd

|f (u)| ‖(h ∗Mwg
∼)‖(p,q) du = ‖f‖1 · ‖Vgh‖(p,q).

(3.7)

Hence

‖f ∗ h‖S = ‖f ∗ h‖1 + ‖Vg (f ∗ h)‖p,q

= ‖f ∗ h‖1 + ‖f ∗ Vgh‖p,q

≤ ‖f‖1 · ‖h‖1 + ‖f‖1 · ‖Vgh‖p,q

= ‖f‖1 ·
(
‖h‖1 + ‖Vgh‖p,q

)
= ‖f‖1 · ‖h‖S ≤ ‖f‖S · ‖h‖S .

(3.8)

It is easy to prove the other conditions for S (p, q)
(
Rd
)

to be a Banach algebra.
This completes the proof.

Proposition 3.1. Let 1 < p <∞, 1 ≤ q <∞ and g ∈ S
(
Rd
)
. Then

a) S (p, q)
(
Rd
)

is strongly translation invariant.
b) The mapping z → Tzf of Rd into S (p, q)

(
Rd
)

is continuous.

Proof. a) Let f ∈ S (p, q)
(
Rd
)

and z ∈ Rd. It is known that ‖Tzf‖1 =
‖f‖1. It is also known by Lemma 3.1 in [1] and Lemma 3.1.3 in [13] that∥∥T(x,w)Vgf

∥∥
(p,q)

= ‖Vgf‖(p,q)

and

|Vg (TxMwf) (u, v)| =
∣∣e−2πixvVgf (u− x, v − w)

∣∣ = ∣∣T(x,w)Vgf (u, v)
∣∣ .

Thus we obtain

(3.9) ‖Vg (TxMwf)‖(p,q) =
∥∥T(x,w)Vgf

∥∥
(p,q)

= ‖Vgf‖(p,q) = ‖f‖M(p,q).
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From (3.9) we write

‖Tzf‖M(p,q) = ‖Vg (Tzf)‖(p,q) =
∥∥T(z,o)Vgf

∥∥
(p,q)

= ‖Vgf‖(p,q) = ‖f‖M(p,q).

This implies

‖Tzf‖S = ‖Tzf‖1 + ‖Tzf‖M(p,q)

= ‖f‖1 + ‖f‖M(p,q) = ‖f‖S .
(3.10)

b) It is known that the function z → Tzf of Rd into L1
(
Rd
)

is continu-
ous. We proved in Proposition 2.2 that z → Tzf is continuous from Rd into
M (p, q)

(
Rd
)
. Then it is easily proved that z → Tzf is continuous from Rd

into S (p, q)
(
Rd
)
.

The following important Theorem follows immediately from Theorem 3.1
and Proposition 3.1.

Theorem 3.2. For 1 < p < ∞, 1 ≤ q < ∞ and g ∈ S
(
Rd
)
, the space

S (p, q)
(
Rd
)

is a Segal algebra.

Proof. We have already proved in Theorem 3.1 and Proposition 3.1 some
of the necessary conditions for Segal algebras. To complete the proof it is
enough to show that S (p, q)

(
Rd
)

is dense in L1
(
Rd
)
. It is known that S

(
Rd
) ⊂

L1
(
Rd
)

is dense in L1
(
Rd
)
. It is also proved in Proposition 2.1 that S

(
Rd
) ⊂

M (p, q)
(
Rd
)
. Hence S

(
Rd
) ⊂ S (p, q)

(
Rd
)
. Since S

(
Rd
)

is dense in L1
(
Rd
)

then S (p, q)
(
Rd
)

is dense in L1
(
Rd
)
.

Theorem 3.3. S (p, q)
(
Rd
)

is an essential Banach ideal in L1
(
Rd
)
.

Proof. Let f ∈ S (p, q)
(
Rd
)

and h ∈ L1
(
Rd
)
. Since, by Theorem 2.2,

M (p, q)
(
Rd
)

is an essential Banach convolution module over L1
(
Rd
)
, we have

f ∗ h ∈M (p, q)
(
Rd
)

and

(3.11) ‖f ∗ h‖M(p,q) ≤ ‖f‖M(p,q) . ‖h‖1 .

Also f ∗ h ∈ L1
(
Rd
)

and

(3.12) ‖f ∗ h‖1 ≤ ‖f‖1 . ‖h‖1 .

This implies f ∗ h ∈ S (p, q)
(
Rd
)

and

‖f ∗ h‖S(p,q) = ‖f ∗ h‖1 + ‖f ∗ h‖M(p,q)

≤ ‖f‖1 ‖h‖1 + ‖f‖M(p,q) ‖h‖1

≤ ‖h‖1

(
‖f‖1 + ‖f‖M(p,q)

)
= ‖h‖1 ‖f‖S(p,q) .

(3.13)
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In order to see that L1
(
Rd
) ∗ S (p, q)

(
Rd
)

is dense in S (p, q)
(
Rd
)
, take

any h ∈ S (p, q)
(
Rd
)
. Hence h ∈ L1

(
Rd
)

and h ∈ M (p, q)
(
Rd
)
. Since the

map z → Tzh of Rd into S (p, q)
(
Rd
)

is continuous, the maps z → Tzh of Rd

into L1
(
Rd
)

and z → Tzh of Rd into M
(
Rd
)

are continuous. Thus given ε > 0
there exists a compact neighbourhood U of 0 ∈ Rd such that

(3.14) ‖Tzh− h‖1 <
ε

2
and

(3.15) ‖Tzh− h‖M(p,q) <
ε

2

for all z ∈ U . Assume that f ∈ L1
(
Rd
)

is non-negative continuous function
with compact support suppf ⊂ U and

∫
Rd

f (t) dt = 1. Then

(3.16) ‖f ∗ h− h‖M(p,q) <
ε

2
by Theorem 2.2. Also,

‖f ∗ h− h‖1 =

∥∥∥∥∥∥
∫
Rd

f (z)h (y − z) dz −
∫
Rd

f (z)h (y) dz

∥∥∥∥∥∥
1

≤
∥∥∥∥∥∥
∫
Rd

f (z) (h (y − z) − h (y))dz

∥∥∥∥∥∥
1

≤
∫
Rd

|f (z)| ‖Tzh− h‖1 dz ≤ ε

2

∫
Rd

f (z) dz =
ε

2
.

(3.17)

Combining (3.16) and (3.17) we see that

‖f ∗ h− h‖S(p,q) ≤ ‖f ∗ h− h‖1 + ‖f ∗ h− h‖M(p,q) ≤
ε

2
+
ε

2
= ε.

Since f ∗h ∈ L1
(
Rd
)

and f ∗h ∈M (p, q)
(
Rd
)

then f ∗h ∈ S (p, q)
(
Rd
)
. This

shows that L1
(
Rd
) ∗ S (p, q)

(
Rd
)

is dense in S (p, q)
(
Rd
)
. Hence L1

(
Rd
) ∗

S (p, q)
(
Rd
)

= S (p, q)
(
Rd
)

by Module Factorization Theorem (see [24]). This
completes the proof.

Consider for each p, q (1 ≤ p, q <∞) the mapping Φ from S (p, q)
(
Rd
)

into
L1
(
Rd
) × L (p, q)

(
Rd
)

defined by Φ (f) = (f, Vgf). This is a linear isometry
of S (p, q)

(
Rd
)

into L1
(
Rd
)× L (p, q)

(
Rd
)

with the norm

(3.18) |‖f‖| = ‖f‖1 + ‖Vgf‖(p,q) , (f ∈ S(p, q)(Rd)).

Hence we consider S (p, q)
(
Rd
)

as a closed subspace of the Banach space
L1
(
Rd
)× L (p, q)

(
Rd
)
. Let

H =
{
(f, Vgf) : f ∈ S (p, q)

(
Rd
)}
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and

(3.19) K =




(ϕ, ψ) : (ϕ, ψ) ∈ L∞ (Rd
)× L

(
p

′
, q

′
) (
R2d

)
,∫

Rd

f (y)ϕ (y) dy +
∫∫
R2d

Vgf (x,w)ψ (x,w) dxdw = 0, for

all (f, Vgf) ∈ H


 ,

where 1
p + 1

p′ = 1 and 1
q + 1

q′ = 1.
The following Proposition is easily proved by Duality Theorem 1.7 in [17].

Proposition 3.2. For each p, q (1 ≤ p, q <∞) the dual space
S (p, q)

(
Rd
)∗ of S (p, q)

(
Rd
)

is isomorphic to L∞ (Rd
) × L (p′, q′)

(
Rd
)
/K,

where 1
p + 1

p′ = 1 and 1
q + 1

q′ = 1.

4. Multipliers of S (p, q)
(
Rd
)

and M (p, q)
(
Rd
)

Proposition 4.1. If g ∈ S
(
Rd
)

and 1 ≤ p, q < ∞ then the multiplier
space M

(
L1
(
Rd
)
,M (p′, q′)

(
Rd
))

is isomorphic to M (p′, q′)
(
Rd
)
.

Proof. By Theorem 2.2 and Corollary 2 in [21] we write

M
(
L1
(
Rd
)
,M (p′, q′)

(
Rd
))

= (L1
(
Rd
) ∗M (p, q)

(
Rd
)
)∗

= (M (p, q)
(
Rd
)
)∗ = M (p′, q′) (Rd).

Let (eα)α∈I be a bounded approximate identity with compactly supported
Fourier transforms (band limited functions) in L1

(
Rd
)
. Define the vector space

MS

(
Rd
)

=
{
µ ∈M

(
Rd
)

: ‖µ ∗ eα‖S < C (µ) for all α ∈ I
}
,

where M
(
Rd
)

is the space of bounded regular Borel measure on Rd and C (µ)
is a constant depending on the measure µ. Since S (p, q)

(
Rd
)

is a Segal algebra
then it is an essential ideal in L1

(
Rd
)

and hence MS

(
Rd
)

is uniquely defined
as independent of approximate identity by Proposition 3, in [3].

Let 1 < p < ∞, 1 ≤ q < ∞ and g ∈ S
(
Rd
)
. The space S (p, q)

(
Rd
)

is
a Segal algebra by Theorem 3.2, and the following Proposition is proved by
Theorem 4 in [3].

Proposition 4.2. The following are equivalent:
1. T ∈M

(
L1
(
Rd
)
, S (p, q)

(
Rd
))

.
2. There exists a unique µ ∈ MS

(
Rd
)

such that Tf = µ ∗ f for all
f ∈ L1

(
Rd
)
. Moreover, the spaces M

(
L1
(
Rd
)
, S (p, q)

(
Rd
))

and MS

(
Rd
)

are homeomorphic.

Proposition 4.3. If g ∈ S
(
Rd
)

and 1 ≤ p, q < ∞ then the multiplier
space M

(
L1
(
Rd
)
, S∗ (p, q)

(
Rd
))

is isomorphic to L∞ (Rd
)×L (p′, q′)

(
Rd
)
/K

where 1
p + 1

p′ = 1 and 1
q + 1

q′ = 1 and S∗ (p, q)
(
Rd
)

is the dual of S
(
Rd
)
.
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Proof. By Theorem 3.3 we write

(4.1) L1(Rd) ∗ S(p, q)(Rd) = S(p, q)(Rd).

Hence by Corollary 2.13 in [21] and Proposition 3.2 we have

M
(
L1
(
Rd
)
, S∗ (p, q)

(
Rd
))

= M(L1
(
Rd
)
, L∞ (Rd

)× L (p′, q′)
(
Rd
)
/K)

= L∞ (Rd
)× L (p′, q′)

(
Rd
)
/K.

(4.2)

Lemma 4.1. Let G be a non-compact locally compact abelian group
and 1 ≤ p <∞, 1 < q <∞. If f ∈ L (p, q) (G) then

lim
s→∞ ‖f + Tsf‖(p,q) = 2

1
p ‖f‖(p,q).

Proof. Suppose that g is a simple function, that is

g =
∑n

j=1
c
′
jχEj

where each Ej is measurable and compact with µ (Ej) > 0 and Ej ∩ Ek = φ
for j �= k. Let dj = µ (E1) + µ (E2) + ...+ µ (Ej), 1 ≤ j ≤ n and d0 = 0. Then

if we set cj =
∣∣∣c′j∣∣∣ , for 1 ≤ j ≤ n and c1 ≥ c2 ≥ ... ≥ cn ≥ 0 then

g∗(t) =




c1, if 0 ≤ t < d1

cj , if dj−1 ≤ t < dj

0, if dn ≤ t

for 1 ≤ j ≤ n, [14]. Also we write(
‖g‖∗(p,q)

)q

=
q

p

∫ ∞

0

(
t

1
p g∗ (t)

)q dt

t

= (cq1 − cq2) d
q
p

1 + (cq2 − cq3) d
q
p

2 + · · · + (cqn−1 − cqn
)
d

q
p

n−1 + cqnd
q
p
n .

If s /∈ ∪n
j,k=1EjE

−1
k then the supports of g and Tsg are disjoint and that means

g + Tsg =
∑n

j=1
c
′
jχEj∪sEj

and (Ej ∪ sEj) ∩ (Ek ∪ sEk) = φ for k �= j.

Also we obtain
∼
dj = µ (E1 ∪ sEj) + µ (E2 ∪ sEj) + · · · + µ (Ej ∪ sEj)

= 2 (µ (E1) + µ (E2) + · · · + µ (Ej)) = 2dj .

Then

(g + Tsg)∗(t) =




c1, if 0 ≤ t <
∼
d1

cj , if
∼

dj−1 ≤ t <
∼
dj

0, if
∼
dn ≤ t
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where cj =
∣∣∣c′j∣∣∣ , for 1 ≤ j ≤ n and c1 ≥ c2 ≥ · · · ≥ cn ≥ 0. Hence

(
‖g + Tsg‖∗(p,q)

)q

= (cq1 − cq2)
∼
d

q
p

1 + (cq2 − cq3)
∼
d

q
p

2 + · · · + (cqn−1 − cqn
)∼
d

q
p

n−1 + cqn
∼
d

q
p

n

= 2
q
p

(
(cq1 − cq2) d

q
p

1 + (cq2 − cq3) d
q
p

2 + · · · + (cqn−1 − cqn
)
d

q
p

n−1 + cqnd
q
p
n

)
= 2

q
p

(
‖g‖∗(p,q)

)q

This implies

(4.3) ‖g + Tsg‖∗(p,q) = 2
1
p ‖g‖∗(p,q).

Now let f ∈ L (p, q) (G) and ε > 0 be given. By the density of simple function
in L (p, q) (G), [14] we can choose a simple function g =

∑n
j=1 cjχEj

such that

(4.4) ‖f − g‖∗(p,q) <
ε

4
.

Let the support of g be ∪n
j=1Ej . Then if s /∈ ∪n

j,k=1EjE
−1
k by using (4.3) and

(4.4) we have∣∣∣‖f + Tsf‖∗(p,q) − 2
1
p ‖f‖∗(p,q)

∣∣∣
≤
∣∣∣‖f + Tsf‖∗(p,q) − ‖g + Tsg‖∗(p,q)

∣∣∣
+
∣∣∣‖g + Tsg‖∗(p,q) − 2

1
p ‖g‖∗(p,q)

∣∣∣+ ∣∣∣2 1
p ‖f‖∗(p,q) − 2

1
p ‖g‖∗(p,q)

∣∣∣
≤ ‖f − g‖∗(p,q) + ‖Tsf − Tsg‖∗(p,q) + 2

1
p ‖f − g‖∗(p,q)

≤ ε

4
+
ε

4
+ 2

1
p ε ≤ ε.

This completes the proof.

Lemma 4.2. Let G be a non-compact locally compact abelian group
and 1 ≤ p < ∞, 1 < q < ∞. For any continuous complex valued function
s→ c (s) on G with |c (s)| = 1 and f ∈ L (p, q) (G) we have

lim
s→∞ ‖f + c(s)Tsf‖∗(p,q) = lim

s→∞ ‖f + Tsf‖∗(p,q).

Proof. Let g ∈ Cc (G). Assume that suppg =K. If s ∈ KK−1 then the
supports of g and Tsg are disjoint. This implies that the supports of g and
c (s)Tsg are disjoint. Thus the distribution function of g + Tsg is

λg+Tsg (y) = µ {x ∈ G : |g + Tsg| (t) > y}
= µ {x ∈ G : |g| (t) + |Tsg| (t) > y} , y > 0.

(4.5)
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Also since the supports of g and c (s)Tsg are disjoint and |c (s)| = 1 then from
(4.5) we have

λg+c(s)Tsg (y) = µ {x ∈ G : |g + c (s)Tsg| (t) > y}
= µ {x ∈ G : |g| (t) + |c (s)Tsg| (t) > y}
= µ {x ∈ G : |g| (t) + |c (s)| |Tsg| (t) > y}
= µ {x ∈ G : |g| (t) + |Tsg| (t) > y} = λg+Tsg (t) , y > 0.

This implies (g + c (s)Tsg)
∗ = (g + Tsg)

∗ and hence

(4.6) ‖g + c (s)Tsg‖∗(p,q) = ‖g + Tsg‖∗(p,q).

Now let f ∈ L (p, q) (G) and ε > 0 be given. Since Cc (G) is dense in
L (p, q) (G), [26], there exists g ∈ L (p, q) (G) such that

(4.7) ‖f − g‖∗(p,q) <
ε

4
.

By using (4.6) and (4.7) we obtain∣∣∣‖f + c (s)Tsf‖∗(p,q) − ‖f + Tsf‖∗(p,q)

∣∣∣
≤
∣∣∣‖f + c (s)Tsf‖∗(p,q) − ‖g + c (s)Tsg‖∗(p,q)

∣∣∣
+
∣∣∣‖g + c (s)Tsg‖∗(p,q) − ‖g + Tsg‖∗(p,q)

∣∣∣
+
∣∣∣‖f + Tsf‖∗(p,q) − ‖g + Tsg‖∗(p,q)

∣∣∣
≤ ‖(f − g) + c (s) (Tsf − Tsg)‖∗(p,q)

+
∣∣∣‖f + Tsf‖∗(p,q) − ‖g + Tsg‖∗(p,q)

∣∣∣
≤ ‖f − g‖∗(p,q) + |c (s)| ‖Ts (f − g)‖∗(p,q)

+ ‖f − g‖∗(p,q) + ‖Ts (f − g)‖∗(p,q)

= 4 ‖f − g‖∗(p,q) .

(4.8)

Then combining (4.7) and (4.8) we have∣∣∣‖f + c (s)Tsf‖∗(p,q) − ‖f + Tsf‖∗(p,q)

∣∣∣ ≤ 4 ‖f − g‖∗(p,q) < 4
ε

4
= ε.

This completes the proof.

Theorem 4.1. Let T : S (p, q)
(
Rd
)→ L1

(
Rd
)

be a linear transforma-
tion and 1 < p, q <∞, g ∈ S

(
Rd
)
. Then the following are equivalent:

1. T ∈M
(
S (p, q)

(
Rd
)
, L1

(
Rd
))

.
2. There exists a unique µ ∈ M

(
Rd
)

such that Tf = µ ∗ f for each
f ∈ S (p, q)

(
Rd
)
, where M

(
Rd
)

is the space of bounded regular Borel measures
on Rd .
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Proof. 1. Let µ ∈M
(
Rd
)

and f ∈ S (p, q)
(
Rd
)
. Then

‖Tf‖1 = ‖µ ∗ f‖1 ≤ ‖µ‖ ‖f‖1 ≤ ‖µ‖ ‖f‖S .

It is easy to prove the other conditions to be multiplier from S (p, q)
(
Rd
)

into
L1
(
Rd
)
. Hence T ∈M

(
S (p, q)

(
Rd
)
, L1

(
Rd
))

.
Conversely assume that T ∈M

(
S (p, q)

(
Rd
)
, L1

(
Rd
))

. Then

(4.9) ‖Tf‖1 ≤ ‖T‖ ‖f‖S = ‖T‖
(
‖f‖1 + ‖Vgf‖(p,q)

)
.

By using Lemma 3.5.1 in [15], Lemma 4.1 , Lemma 4.2 and (4.9) we deduce
that

2 ‖Tf‖1 = lim
s→∞ ‖Tf + TsTf‖1 ≤ lim

s→∞ ‖T‖
(
‖f + Tsf‖1 + ‖f + Tsf‖M(p,q)

)
≤ lim

s→∞ ‖T‖
(
2 ‖f‖1 + ‖Vg (f + Tsf)‖(p,q)

)
= lim

s→∞ ‖T‖
(
2 ‖f‖1 + ‖Vgf + Vg(Tsf)‖(p,q)

)
= lim

s→∞ ‖T‖
(
2 ‖f‖1 +

∥∥Vgf + e−2πswiT(s,0)Vgf
∥∥

(p,q)

)
= lim

s→∞ ‖T‖
(
2 ‖f‖1 +

∥∥Vgf + T(s,0)Vgf
∥∥

(p,q)

)
= ‖T‖

(
2 ‖f‖1 + lim

s→∞
∥∥Vgf + (T(s,0)Vgf)

∥∥
(p,q)

)
= ‖T‖ (2 ‖f‖1 + 2

1
p ‖Vgf‖(p,q))

(4.10)

for all f ∈ S (p, q)
(
Rd
)
. This implies

‖Tf‖1 ≤ ‖T‖
(
‖f‖1 + 2

1
p−1 ‖Vgf‖(p,q)

)
.

Repeating this process n times we see that

‖Tf‖1 ≤ ‖T‖
(
‖f‖1 + 2n( 1

p−1) ‖Vgf‖(p,q)

)
.

Since p > 1 then we have lim
n→∞2n( 1

p−1) = 0 and so we conclude that

(4.11) ‖Tf‖1 ≤ ‖T‖ ‖f‖1 .

Also since S (p, q)
(
Rd
)

is dense in L1
(
Rd
)

then T ∈ M
(
L1
(
Rd
))

. Hence by
Theorem 0.1 in [10], there exists unique µ ∈ M

(
Rd
)

such that Tf = µ ∗ f for
all f ∈ S (p, q)

(
Rd
)
.

Theorem 4.2. Let 1 < p, q <∞ and g ∈ S
(
Rd
)
. Then the multipliers

M
(
S (p, q)

((
Rd
))
, S (p, q)

((
Rd
)))

is isometrically isomorphic to M
(
Rd
)
.
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Proof. By Theorem 4.1 we write

M
(
S (p, q)

((
Rd
))
, S (p, q)

((
Rd
))) ⊂M(S (p, q)

(
Rd
)
, L1

(
Rd
)
)

= M
(
Rd
)
.

(4.12)

Conversely let µ ∈ M
(
Rd
)
. It is known by Theorem 3.3 that S (p, q)

(
Rd
)

is an essential Banach ideal in L1
(
Rd
)
. Also for each µ ∈ M

(
Rd
)

and f ∈
S (p, q)

(
Rd
)

we write µ ∗ f ∈ S (p, q)
(
Rd
)

and there exists a constant C > 0
such that

‖Tf‖S = ‖µ ∗ f‖S ≤ C. ‖µ‖ ‖f‖S ,

(see Lemma 2 in [3], and Proposition 2.1 in [11]). Then we conclude that
T ∈M

(
S (p, q)

((
Rd
))
, S (p, q)

((
Rd
)))

. Thus

(4.13)
M
(
S (p, q)

(
Rd
)
, L1

(
Rd
))

= M
(
Rd
) ⊂M(S (p, q)

(
Rd
)
, S (p, q)

(
Rd
)
).

Hence combining (4.12) and (4.13) we obtain

M(S (p, q)
(
Rd
)
, S (p, q)

(
Rd
)
) = M

(
Rd
)
.

For the case p = q = 1 the Theorem 4.1. and Theorem 4.2. are not true.
As an example if p = q = 1 then S (p, q)

(
Rd
)

= S0

(
Rd
)
, where the Segal

algebra S0

(
Rd
)

is known Feichtinger algebra [13]. It is also known that the
multiplier space of S0

(
Rd
)

is bigger than M(Rd).
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