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On the diffeomorphism groups of rational and
ruled 4-manifolds∗
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Abstract

Let A(M) be the automorphism group of the middle homology of
a smooth 4-manifold M and D(M) be the subgroup induced by diffeo-
morphisms of M . In this paper we give explicit generators of D(M) for
rational and ruled 4-manifolds. We also prove the uniqueness of reduced
forms for classes with minimal genus 0 and non-negative square.

1. Introduction

On a smooth 4-manifold M , each diffeomorphism induces an automor-
phism of the lattice of the second integral cohomology. Hence there is a natural
map from the group of diffeomorphisms Diff(M) to the automorphism group
of the lattice A(M). Let D(M) be the image of this natural map. In other
words, an automorphism is in D(M) if it is realized by an orientation-preserving
diffeomorphism.

Let M =CP 2#nCP 2. If n ≤ 9, there is the classical result of Wall ([10])
that D(M) coincides with A(M). While for n > 9, Friedman and Morgan
([1]) showed that D(M) is a subgroup of A(M) with infinite index via the
Donaldson theory. To characterize D(M), Friedman and Morgan introduced
the complex concepts of P-cell and super P-cell. In [7], another characterization
of D(M) was given via K-symplectic cones. However it is still rather abstract.
In particular, there is neither description of a generating set of D(M), nor the
coset space when n > 9. Thus the structure of D(M) with n > 9 still remains
mysterious.

Based on results on the minimal genus of a class with square −1 or −2 in
[7], in this note we use a very simple argument to present an explicit and finite
generating set of D(M) for any n. The knowledge of minimal genus is also
used to explicitly write down infinitely many cosets of D(M) in A(M) when
n > 9. We are also able to determine the uniqueness of reduced representatives
of spherical classes of nonnegative squares.
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For irrational ruled 4-manifolds, we give a similar presentation of D(M).
We would like to thank the referee for a very careful reading and nice

suggestions.

2. Spherical reflections, reduced classes and minimal genus

For any oriented, closed 4-manifold M and γ ∈ H2(M,Z) with γ2 = γ ·γ =
±1 or ±2, there is an automorphism R(γ) of the lattice called the reflection
along γ,

R(γ)β = β − 2(γ · β)
γ · γ γ.

Notice that R(γ) = R(−γ). The following is Lemma 2.5 in [7].

Lemma 2.1. Suppose ψ ∈ A(M) and γ = ψ(γ0). Then R(γ) = ψ ◦
R(γ0) ◦ ψ−1.

Now suppose that M is smooth and γ is represented by a smoothly embed-
ded sphere. Proposition 2.4 in Chapter III in [1] then says that R(γ) ∈ D(M)
when γ · γ = −1 or −2. Notice that, simply by looking at the opposite orien-
tation of M , we still have R(γ) ∈ D(M) when γ · γ = 1 or 2.

Let M =CP 2#nCP 2. Let H be a generator of H2(CP 2; Z) and Ei, 1 ≤
i ≤ n, be a generator of the H2 of each of the CP

2
. H,E1, . . . , En are naturally

considered as classes in H2(CP 2#nCP
2
; Z) and form a basis. We will call such

a basis a standard basis and always assume such a basis is chosen.
Given such a basis, we introduce the following notations:

R0 = R(H),
Ri = R(Ei), 1 ≤ i ≤ n,

Rij = R(Ei − Ej), 1 ≤ i < j ≤ n, Rii = id,
R123 = R(H − E1 − E2 − E3).

According to Wall ([10]), an automorphism is called trivial if it is of the form
Ri, 1 ≤ i ≤ n, or Rij . It was shown in [10] that trivial automorphisms are in
D(M). In fact, Ri, Rij , R123 are all in D(M) as H,Ei, Ei−Ej , H−E1−E2−Ej

are all represented by embedded spheres.

Definition 2.2. For CP 2#nCP 2, a class ξ = aH −∑n
i=1 biEi is called

reduced if

b1 ≥ b2 ≥ · · · ≥ bn ≥ 0, , a ≥ b1 + b2 + b3.

If n ≤ 2, it is understood that bi = 0 for i ≥ n in the last condition.

Definition 2.3. For M = CP 2#nCP 2, let D1(M) be the group gener-
ated by

R0, R123, Ri, 1 ≤ i ≤ n, R1j , 2 ≤ j ≤ n.
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Since R1i(Ei − Ej) = E1 − Ej , by Lemma 2.1, we have

Lemma 2.4. Rij is generated by R1i and R1j.

Consequently, D1(M) is actually the subgroup of D(M) generated by triv-
ial automorphisms, R0 and R123.

Definition 2.5. We say a class has a reduced form if it is equivalent to
a reduced class under the action of D1(CP 2#nCP 2).

It is proved in [6] that for any n, each class with nonnegative square has a
reduced form. The following result in [7] concerning the existence of a reduced
form for a class with square −1 or −2 is crucial.

Proposition 2.6. Let M = CP 2#nCP 2. Let C be a class with square
−1 or −2.

1. If C has a reduced form, then C has positive minimal genus.
2. If C does not have a reduced form, then C has minimal genus 0.

2(a). If C has square −1, C is equivalent to E1 if b−(M) �= 2; when b−(M) =
2, another possibility is that it is characteristic, and equivalent to H−E1−E2.

2(b). If C has square −2, C is equivalent to E1 − E2 if b−(M) �= 3; when
b−(M) = 3, another possibility is that it is characteristic, and equivalent to
H − E1 − E2 − E3.

3. Rational manifolds

We call a smooth, closed, orientable 4-manifold M a rational manifold if
it is diffeomorphic to S2 × S2 or CP 2#nCP 2.

It is well known that D(CP 2#2CP 2) is generated by R(H−E1−E2), R0,
R1, R2 and R12; D(CP 2#CP 2) is generated by R0 and R1; and D(CP 2) is
generated by R0. For S2 × S2, let x = [S2 × pt] and y = [pt × S2] be the
generators of H2(S2 × S2,Z). Then A(S2 × S2) = D(S2 × S2) ∼= Z2 ⊕ Z2 is
generated by the reflections along x + y and x − y. Our first main result says
that the same phenomenon is valid for all rational manifolds.

Theorem 3.1. For M = CP 2#nCP 2 with n ≥ 3, we have D(M) =
D1(M). Consequently, for any rational 4-manifold M,D(M) is finitely gener-
ated by reflections along minimal genus 0 classes with squares ±1 or ±2.

Proof. For any σ ∈ D(CP 2#nCP 2), by Proposition 2.6, there exists an
element σ1 inD1(CP 2#nCP 2) such that σ1σEn = En or a reduced class. If the
latter would happen, then the minimal genus of σ1σEn is positive by Proposi-
tion 2.6, a contradiction to the fact that it should be zero. Hence σ1σEn = En,
and En−1 ·En = 0 implies σ1σEn−1 = aH − b1E1 − · · · − bn−1En−1. The same
argument shows that there is an element σ2 ∈ D1(CP 2#(n−1)CP 2) such that
σ2σ1σEn−1 = En−1. Continuing in this way, we will have σ1, σ2, . . . , σn−3 such
that σi ∈ D1(CP 2#(n− i+ 1)CP 2), and

σiσi−1 · · ·σ1σEn−i+1 = En−i+1
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Obviously

σn−3σn−4 · · ·σ1σEi = Ei, for i = 4, 5, . . . , n

Hence, σn−3σn−4 · · ·σ1σ is in A(CP 2#3CP 2). By [11], A(CP 2#3CP 2) =
D1(CP 2#3CP 2). Thus σ ∈ D1(CP 2#nCP 2) and the proof is complete.

Remark 3.2. Notice that the proof of Theorem 3.1 does not rely on
the previous characterizations of D(M) in [1] and [7].

Remark 3.3. For n ≤ 9, Wall [11] showed that the full automorphism
group A(M) has the same description and that enabled him to identify D(M)
with A(M) in this case.

For the infiniteness of index of D(CP 2#nCP 2) in A(CP 2#nCP 2) with
n > 9, the following result tell us how easy it is to find elements in
A(CP 2#nCP 2) but not in D(CP 2#nCP 2), and how “big” the index is.

Theorem 3.4. Let M = CP 2#nCP 2 and γ be a reduced class with
square −1 or −2. Then the reflection R(γ) is not in D(CP 2#nCP 2). More-
over, For a a positive integer, let

ξa = a

(
3H −

9∑
i=1

Ei

)
− E10, ηa = a

(
3H −

9∑
i=1

Ei

)
− E10 − E11.

Then, if a �= a′,
1. ξa and ξa′ are in different cosets if n ≥ 10;
2. ηa, ηa′ , ξa and ξa′ are in different cosets if n ≥ 11.

Proof. Observe that if an automorphism takes ±Ei to a reduced class,
then it cannot be in D(M) by Proposition 2.6.

If γ is reduced and has square −1 or −2, and bl > 0 and bl+1 = 0, then

R(γ)El = El +
2bl
|γ2|γ

is still reduced. Therefore R(γ) is not in D(M).
Notice that this applies to the classes ξa which have square −1 and ηa

which have square −2. Now we further show the corresponding reflections are
in different cosets. This follows from

R(ξa′)R(ξa)(−E10) = ξ2(a′−a),

R(ηa′)R(ηa)(−E11) = (a′ − a)

(
3H −

9∑
i=1

Ei

)
− E11,

R(ηa′)R(ξa)(E11) = ξa′ .

For classes with square 1 or 2, we have,
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Proposition 3.5. Let M = CP 2#nCP 2 with n ≥ 9 and γ be a reduced
class with square 1 or 2. Then R(γ) is not in D(M) if b3 > 0.

Proof. We use the same observation as above.
Since b3 is assumed to be positive, so b1 > 0. If a > b1 + b2 + b3, then

R(γ)(−E1) is reduced.
Now assume that a = b1 + b2 + b3. First of all, it is impossible to have

b1 = b2 = · · · = bn as n is assumed to be as least 9.
Suppose there is an k with 3 ≤ k < n such that bk > bk+1 > 0. Then

R(γ)(−Ek+1) is reduced.
Suppose there is an k with 3 ≤ k < n such that b1 ≥ b2 > b3 = · · · = bk

and bk+1 = 0, then R(γ)(−E3) can be written as

a′H − b′1E1 − b′2E2 − (b′3 + 1)E3 − b′3
k∑

i=4

Ei,

where b′1 ≥ b′2 > b′3 and a′ = b′1 + b′2 + b′3. Hence

R(H − E1 − E2 − E3)R(γ)(−E3) = a”H − b”1E1 − b”2E2 − b”3E3 − b′3
k∑

i=4

Ei

satisfies:

a” = b′1 + b′2 + b′3 − 1,

b”1 = b′1 − 1,

b”2 = b′2 − 1,

b”3 = b′3.

Therefore

R(H − E1 − E2 − E3)R(γ)(−E3)

is reduced.
Similarly, if there is an k with 3 ≤ k < n such that b1 ≥ b2 > b3 = · · · = bk

and bk+1 = 0, then

R(H − E1 − E2 − E3)R(γ)(−E2)

is reduced.

The uniqueness of reduced form is an interesting and difficult question*1.
The only known result is Theorem 2.3 in [11]: any class with positive square in
H2(CP 2#2CP 2; Z) has a unique reduced form.

*1This has recently been answered affirmatively in [4].
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The result of Wall can be generalized to include the classes with square
zero by the following argument. If aH−b1E1−b2E2 is reduced with a2 = b21+b22,
then there are integers t ≥ s ≥ 0 and k > 0 such that

a = k(t2 + s2), b1 = max{k(t2 − s2), 2kts}, b2 = min{k(t2 − s2), 2kts}

a ≥ b1 + b2 implies 2s2 ≥ 2ts. This, together with t ≥ s ≥ 0, implies s = 0 or
s = t. Therefore, reducedness implies b2 = 0 and a = b1.

We prove the following general result concerning uniqueness.

Theorem 3.6. For M = CP 2#nCP 2, a minimal genus 0 class with
nonnegative square has a unique reduced form in the following list:

1. 2H,
2. (k + 1)H − kE1, k ≥ 0,
3. (k + 1)H − kE1 − E2, k ≥ 1,
4. kH − kE1, k ≥ 0.

Proof. Let ξ = aH−b1E1−· · ·−bnEn be a reduced minimal genus 0 class
with ξ2 ≥ 0 and bn > 0. Let ξ′ = aH − b1E1 − · · · − bnEn −En+1 − · · · −En+s

with s = ξ2 + 2. Then ξ′ is a minimal genus 0 class with square −2. In
particular, R(ξ′) is defined and lies in D(CP 2#(n+ s)CP 2). Now we calculate
that

R(ξ′)En+s = ξ′ + En+s.

If n > 2, ξ′ + En+s would be reduced with square −1. Then, by Proposi-
tion 2.6, its minimal genus would be positive. This contradiction leads to the
conclusion that n ≤ 2.

By [3], [5] and [6], the reduced minimal genus 0 classes in CP 2#2CP 2 with
nonzero squares are just the following classes: 1). 2H, 2). (k+1)H−kE1, k ≥ 0,
3). (k + 1)H − kE1 − E2, k ≥ 1, 4). kH − kE1, k ≥ 0. By just looking at the
squares and divisibility, we see that all the classes listed in 1)–4) are in different
orbits under the action of D(CP 2#2CP 2). So, for minimal genus 0 classes with
nonnegative square, its reduced from is unique.

Remark 3.7. Theorem 3.6 immediately implies many things about
minimal genus 0 classes, e.g. it implies Theorem 4.2 and part of Theorem
D in [7].

4. Irrational ruled manifolds

Let Σ be a Riemann surface of positive genus, and N be the nontrivial
S2-bundle over Σ. Then, up to diffeomorphisms, Σ × S2 and N are the only
minimal irrational 4-manifold. Any non-minimal irrational ruled 4-manifold is
diffeomorphic to N#nCP 2 with n ≥ 1. Let U, T,E1, . . . , En be the standard
basis of H2(N#nCP 2; Z), where U is represented by a section with U2 = 1,
and T is represented by a fiber of N as an S2-bundle.
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Notice that for all irrational ruled 4-manifolds: Σ×S2 and N#nCP 2, n =
0, 1, . . ., there is, up to sign, a unique primitive minimal genus 0 class f with
square zero, i.e. the class [pt × S2] or T respectively. Let Af (M) ⊂ A(M) be
the subgroup preserving f up to sign. Then D(M) ⊂ Af (M), as minimal genus
are preserved under diffeomorphisms*2.

It is easy to see that, for M = Σ × S2 or N , A(M) ∼= Z2 ⊕ Z2, and
D(M) = Af (M) ∼= Z2 is generated by -id (see e.g. [8]). Since the only spherical
classs for S × S2 and N have square zero, -id cannot be a reflection along
spherical class with squares equal to ±1 or ±2.

ForM = N#nCP 2, let -IdN ∈ A(M) such that -IdN (U) = −U , -IdN (T ) =
−T but -IdN (Ei) = Ei , i = 1, . . . , n. Then, since -id∈ D(N), it follows from
Lemma 2 in [10] that -IdN ∈ D(M).

Proposition 4.1. For n ≥ 2, the group D(N#nCP 2) is generated by

-IdN , R(T − E1 − E2), Ri, 1 ≤ i ≤ n, R1j , 1 < j ≤ n.

While, D(N#CP 2) ∼= Z2 × (Z2 ∗ Z2) is generated by -IdN , R1 and R(T −E1),
where × and ∗ means direct and free product respectively.

Proof. First observe that the only minimal genus 0 classes with square
−1 are of the form bT ± Ei for some i. To further proceed we willneed two
lemmas.

Lemma 4.2. Let M = N#nCP 2. Let D′(M) be the subgroup of D(M)
generated by R(bT − E1), R1 if n = 1, and

R(bT − Ej), Ri, R(T + Ei − Ej), R1j , i ≥ 1, j > 1,

if n ≥ 2. Then for any σ ∈ D(M), there exists a σ′ ∈ D′(M) such that σ′σ
preserves each Ei.

Proof. We first look at the case n = 1. In this case we have σE1 = bT±E1.
Since E1 is not characteristic, and bT ± E1 is characteristic if and only if b is
odd, we have b = 2b1 for some b1 ∈ Z; let σ1 = id, if c1 = 1, and σ1 = R(E1),
if c1 = −1, then R(b1T − E)σ1 maps bT − c1E1 to E1.

For n ≥ 2, σEn = bT − ciEi, there are two possibilities for b: odd and
even. Let σ1 =id, if ci = 1, and σ1 = R(Ei), if ci = −1;σ2 = id, if i = 1,
and σ2 = R1i, if i > 1. Then if b is even, R1nR((b/2)T − E1)σ2σ1 maps
σEn to En. If b is odd, R(T + E1 − En)R([b/2]T − E1)σ2σ1 maps σEn to
En. Therefore, we can find an automorphism σ3 in the group generated by
R(bT − E1), Ri, R(T + E1 − Ej), R1j , i ≥ 1, j > 1, such that

σ3σEi = Ei, for i ≥ 2
σ3σE1 = cT − E1

*2This can be also seen if we observe that f corresponds to a generator of the image of the
cup product on H1 in H2.
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Since E1 +E2 + · · ·+En is not characteristic, and σ3σ(E1 +E2 + · · ·+En) =
cT − E1 + E2 + · · · + En is characteristic if and only if c is odd, we see that c
must be even. Thus

R((c/2)T − E1)σ3σEi = Ei, for i = 1, . . . , n.

Lemma 4.3. For n ≥ 1, if σ ∈ Af (N#nCP 2) takes Ei to Ei, for
i = 1, . . . , n. Then σ = id or -IdN .

Proof. Write σ(U) = cU + dT and σ(T ) = εT with ε = ±1. We have
d = 0 and c = ε, since

1 = U · T = σ(U) · σ(T ) = cb, 1 = σ(U) · σ(U) = c2 + 2cd.

Hence σ =id or -IdN .

By direct calculations, we find that R(bT − E1) sends (U, T,E1) to

(U + 2b2T − 2bE1, T, 2bT − E1),

and R(aT − E1)R1R(bT − E1) sends (U, T,E1) to

(U + 2(a+ b)2T − 2(a+ b)E1, T, 2(a+ b)T − E1).

Since they both preserve Ei, i ≥ 2, we have

R(aT − E1)R1R(bT − E1) = R((a+ b)T − E1).

From this, we have, for m ≥ 2,

R(mT − E1) = R(T − E1)R1R(T − E1)R1 · · ·R(T − E1)R1R(T − E1),

with R(T − E1) appearing on the right side m times. And, for m ≤ −1, we
have

R(mT − E1) = R1R(T − E1)R1R(T − E1) · · ·R1R(T − E1)R1,

with R(T − E1) appearing on the right side −m times.
Therefore R(bT − E1) is generated by R(T − E1) and R1. Since a �= b

implies R(aT −E1) �= R(bT −E1), the group generated by R(T −E1) and R1

is the free product of Z2 and Z2. Since -IdN is in the center of D(N#CP 2),
we have

D(N#CP 2) ∼= Z2 × (Z2 ∗ Z2).

For n ≥ 2, we have

R(T − E1 − E2)(T − E1) = E2.
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Thus by Lemma 2.1, R(T −E1) is generated by R(T −E1 −E2) and R2. Thus
R(bT − E1) is generated by R1, R2 and R(T − E1 − E2).

Now, look at R(T + E1 − Ej) with j > 1. Observe that

R1R2j(T + E1 − Ej) = T − E1 − E2.

Thus by Lemma 2.1, R(T + E1 − Ej) is generated by R(T − E1 − E2) and
R2j , j > 1. The proof of the proposition is now complete by Lemma 2.2.

Notice that the proof is rather elementary. It does not use the deep result
Proposition 2.6.

It is remarked in [2] that D(M) = Af (M). This result was not used in the
proof of Proposition 4.1. In fact we can also directly derive this.

Proposition 4.4 ([2]). For M = N#nCP 2, σ ∈ A(M) is in D(M) if
and only if σT = ±T , i.e. D(M) = Af (M).

Proof. We have remarked that D(M) ⊂ Af (M). Now if σ ∈ A(M) and
σT = ±T . By Lemma 4.2, there is an element σ′ in D(N#nCP 2) such that
σ′σEi = Ei, 1 ≤ i ≤ n. Then. since σ′σ(T ) = σ′(±T ) = ±T , we have that σ′σ
is either id or -IdN by Lemma 4.3.

Remark 4.5. It is interesting to compare D(N#CP 2) with
D(CP 2#2CP 2). In [11], it is proved that the following automorphisms:

α β γ δ
E1 → E2 −2E1 − E2 − 2H E2 −E1

E2 → −E1 −E1 − 2E2 − 2H E1 −E2

H → H 2E1 + 2E2 + 3H H −H

generate D(CP 2#2CP 2) with defining relations:

α4 = β2 = γ2 = δ2 = 1, γαγ = α−1, γβγ = β,
δαδ = α, δβδ = β, δγδ = γ.

We can restate this result of Wall in the following form:

D(CP 2#2CP 2) ∼= Z2 × (Z2 � (Z2 ∗ Z4)),

where the generators from left to right are δ, γ, β, α, and the semidirect product
� is given by the homomorphism h : Z2 → Auto(Z2 ∗ Z4) with

γh(β) = β, γh(α) = α−1

Results similar to Theorem 3.4 for N#nCP 2 are easy to obtain. We are
satisfied with the following statement.

Theorem 4.6. For M = N#nCP 2, n ≥ 1, D(M) = Af (M) is a sub-
group of A(M) with infinite index.
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Proof. Let H ′ = U,E′
0 = U − T . Then in the basis H ′, E′

0, E1, . . . , En,
for ξ = aH ′− bE′

0− b1E1−· · ·− bnEn, ξ
2 = a2− b2− b21 −· · ·− b2n. So there is a

natural isomorphism of A(N#nCP 2) and A(CP 2#(n+1)CP 2) in virtue of this
basis and the standard basis of CP 2#(n + 1)CP 2. Thus, by the uniqueness
of the reduced class in an orbit of classes with square zero under the action
of A(CP 2#2CP 2) which we proved in the introduction, any primitive class
ξ = aH ′ − bE′

0 − b1E1, with a2 = b2 + b21 is equivalent to H ′ − E′
0 = T via the

action of A(N#CP 2). There are infinite coprime pairs (s, t) ∈ Z with s ≥ t > 0.
For any such a pair, let ξ(s, t) = (s2 + t2)H ′ − (s2 − t2)E′

0 − 2stE1. Then there
is an element A(s, t) in A(N#CP 2) which sends T to ξ(s, t). Suppose A(s1, t1)
and A(s2, t2) are in the same right coset of D(N#nCP 2) in A(N#nCP 2),
i. e. there are B1, B2 ∈ D(N#nCP 2) such that

A(s1, t1)B1 = A(s2, t2)B2

Since BiT = ±T , we have then A(s1, t1)T = ±A(s2, t2)T , i.e.

ξ(s1, t1) = ±ξ(s2, t2)
Therefore, (s1, t1) = (s2, t2). This shows that (s1, t1) �= (s2, t2) implies A(s1, t1)
and A(s2, t2) are in the different right cosets.
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