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Abstract

In this paper, we consider the Cauchy problem of Schrödinger-IMBq
equations in R

n, n ≥ 1. We first show the global existence and blowup
criterion of solutions in the energy space for the 3 and 4 dimensional
system without power nonlinearity under suitable smallness assumption.
Secondly the global existence is established to the system with p-powered
nonlinearity in Hs(R

n), n = 1, 2 for some n
2

< s < min(2, p) and some
p > n

2
. We also provide a blowup criterion for n = 3 in Triebel-Lizorkin

space containing BMO space naturally.

1. Introduction

We consider the Cauchy problem to the following system of equations
(nonlinear Schrödinger-IMBq equations):

i∂tu+
1
2
∆u = vu in R

n × R,

∂2
t v − ∆v − ∆∂2

t v = ∆(f(v) + |u|2) in R
n × R,

u(0) = u0, (v(0), ∂tv(0)) = (v0, v1) in R
n,

(1.1)

where u is a complex-valued function of (x, t) ∈ R
n × R, v is a real-valued

function of (x, t) ∈ R
n × R, and f(v) = λ|v|p−1v for a fixed real number λ.

In this paper, we restrict our attention to positive time for simplicity since
the case of negative time is treated analogously. The system is regarded as a
substitute for the Zakharov system:i∂tu+

1
2
∆u = vu,

∂2
t v − ∆v = ∆|u|2.
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See [17], [18] for further details. Concerning the Zakharov system, see [10], [11],
[23]–[25] for instance.

The local existence of system (1.1) was studied in [5] in Hk, k ≥ 5 setting
in multidimensional space and recently the global existence has been studied
in [31] in H2 setting in one space dimension.

The case λ = 0 for 1 ≤ n ≤ 4 has been studied in [22], where the local
well-posedness is proved in L2 setting in space dimension n ≤ 4 and global
well-posedness is also proved in the energy class in space dimensions n ≤ 2.
Here the energy class stands for H1 ⊕L2 ⊕ ωL2 for (u, v, ∂tv), where v1 ∈ ωL2

means ω−1v1 ∈ L2 and Hs = (1 − ∆)−
s
2L2 is the usual Sobolev space with

the norm ‖ψ‖Hs = ‖(1−∆)
s
2ψ‖L2 . We use similar notation v ∈ ωαX to mean

ω−αv ∈ X for a function space X and a nonnegative number α.
In this paper, we study the global existence of solutions to the system

(1.1), extending results in [22], [31]. By Duhamel’s principle, (1.1) is rewritten
as

u(t) = U(t)u0 − i

∫ t

0

U(t− t′)(vu)(t′) dt′,

v(t) = (∂tK)(t)v0 +K(t)v1 +
∫ t

0

K(t− t′)ω2(f(v) + |u|2)(t′) dt′,
(1.2)

where U(t) = ei(t/2)∆, K(t) = ω−1 sin tω, ∂tK(t) = cosωt and ω = (−∆)
1
2 (1−

∆)−
1
2 . The second integral equation of (1.2) is also written as(

v(t)
ω−1∂tv(t)

)
= V (t)

(
v0

ω−1v1

)
+

∫ t

0

V (t− t′)
(

0
ω(f(v) + |u|2)(t′)

)
dt′,

(1.3)

where

V (t) = exp
(
t

(
0 ω
−ω 0

))
=

(
cos tω sin tω
− sin tω cos tω

)
.

The local and global existence results for IMBq equation, namely, u = 0,
can be found in [6]–[8], [16], [28]–[30] and the references therein.

In [22], the Strichartz estimates for Schrödinger evolution group U for (1.2)
and conservation laws were the basic tools for the local or global well-posedness
in case that λ = 0.

The Strichartz estimate on U can be stated as follows: For any admissible
pairs (q, r) and (q̃, r̃),

(1.4)

‖U(·)φ‖Lq
TL

r ≤ C‖φ‖L2 ,∥∥∥∥∫ t

0

U(t− t′)F (t′) dt′
∥∥∥∥
Lq

TL
r

≤ C‖F‖
Leq′

T L
er′ ,

where C is independent of T > 0 and ‖G‖Lq
TL

r = ‖G‖Lq
t (0,T ;Lr

x). Here we say
the pair (q, r) is admissible, if 1

q + n
2r = n

4 , 2 ≤ q, r ≤ ∞ and (q, r, n) �= (2,∞, 2).
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The estimate (1.4) hold even when T = ∞. We use the notation ‖u‖LqLr =
‖u‖Lq

t (0,∞;Lr) when T = ∞. For the details of Strichartz estimates for U , see
[14], [1].

The solution (u, v) with sufficient regularity for the system (1.1) or (1.2)
satisfies the basic physical laws, L2 and energy conservations. Let [0, T ] be a
existence time interval. Then for all t ∈ [0, T ]

‖u(t)‖L2 = ‖u(0)‖L2 ,(1.5)

E(t) ≡ 1
2
(‖∇u(t)‖2

L2 + ‖v(t)‖2
L2 + ‖ω−1∂tv(t)‖L2)

+ (v(t), |u(t)|2) +
λ

p+ 1
‖v(t)‖p+1

Lp+1

= E(0).

(1.6)

Using the standard regularizing argument for f(v), the conservation laws can
be shown with (u0, v0, v1) ∈ H1 ⊕ L2 ⊕ ωL2 for λ = 0 and H1 ⊕H1 ⊕H1 for
λ �= 0. See for instance [3], [11]. See also [21].

The first two results are extensions of the global existence in [22] for the
case of n = 1, 2 to the case n = 3, 4.

Theorem 1.1. Let n = 3. Assume that λ = 0. Then
(i) There exists a constant ε0 such that for any (u0, v0, v1) ∈ H1⊕L2⊕ωL2

with

(‖∇u0‖L2 + ‖v0‖L2 + ‖ω−1‖L2)‖u0‖L2 ≤ ε0

the system (1.1) has a unique global solution (u, v) such that for any admissible
pair (q, r)

(1.7)
u ∈ Cb([0,∞);H1) ∩ Lqloc([0,∞);Lr),

v ∈ C2
b ([0,∞);L2), ∂tv ∈ Cb([0,∞);ωL2).

(ii) Let T ∗ be the maximal existence time to the Cauchy problem (1.1) with
general initial data and it be finite. Then we have∫ T∗

0

(T ∗ − t)‖u(t)‖2
L4 dt = ∞.(1.8)

Here, we denote Ckb ([0,∞)), k ≥ 0 by the space of bounded Ck functions
on [0,∞).

Remark 1. The smallness condition in (i) of Theorem 1.1 is satisfied
for data for the following forms:

(1) (u0, v0, v1) = (εφ, εψ0, εψ1) with (φ, ψ0, ψ1) ∈ H1⊕L2⊕ωL2 and ε > 0
sufficiently small.

(2) (u0, v0, v1) = (φε, ψ0, ψ1), where φε(x) = ε−
1
2φ(ε−1x), (φ, ψ1, ψ1) ∈

H1 ⊕ L2 ⊕ ωL2, and ε > 0 sufficiently small.
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Theorem 1.2. Let n = 4. Assume that λ = 0. Then
(i) There exists a constant ε0 > 0 such that for any (u0, v0, v1) ∈ H1 ⊕

L2 ⊕ ωL2 with

‖∇u0‖L2 + ‖v0‖L2 + ‖ω−1v1‖L2 ≤ ε0

the system (1.1) has a unique global solution (u, v) satisfying (1.7) replaced by
LqLr.

(ii) There exist a pair of functions (u+
0 , v

+
0 , v

+
1 ) ∈ L2 ⊕L2 ⊕ωL2 such that

(1.9)

‖u(t) − U(t)u+
0 ‖L2 → 0,

‖v(t) − ∂tK(t)v+
0 −K(t)v+

1 ‖L2 → 0,

‖ω−1
(
∂tv(t) + ω2K(t)v+

0 − ∂tK(t)v+
1

) ‖L2 → 0

as t→ +∞.

Remark 2. The smallness condition in Theorem 1.2 is satisfied for data
of the following forms:

(1) (u0, v0, v1) = (εφ, εψ0, εψ1) with (φ, ψ0, ψ1) ∈ H1⊕L2⊕ωL2 and ε > 0
sufficiently small.

(2) (u0, v0, v1) = (φε, εψ0, εψ1), where φε(x) = ε2φ(εx), (φ, ψ0, ψ1) ∈ H1⊕
L2 ⊕ωL2, and ε > 0 sufficiently small. Note that ‖φε‖L2 = ‖φ‖L2 and that the
size of the L2 norm may not be small.

(3) (u0, v0, v1) = (φε, ψε0, ψε1), where φε(x) = ε−aφ(ε−1x), ψεj (x) =
ε−bψj(ε−1x), j = 0, 1, (φ, ψ0, ψ1) ∈ H1 ⊕ L2 ⊕ ωL2, 0 < a < 1, 0 < b < 2, and
ε > 0 sufficiently small.

Remark 3. There is no general result on the global existence for Za-
kharov system for n = 3, 4, except special problem (see [10], [12], [23]–[25]).

Now we consider the case of nonzero nonlinearity. For the simplicity of
presentation, we assume that for some positive number s

(u0, v0, v1) ∈ Hs ⊕Hs ⊕ ωHs, 1 ≤ n ≤ 3, λ > 0, 1 < p <∞.(1.10)

The second result is the following.

Theorem 1.3. (i) If n = 1, 1 < p < ∞ and 1 ≤ s < min(2, p), then
there exists a unique global solution (u, v) satisfying

u ∈ C([0,∞);Hs), v ∈ C2([0,∞);Hs), ∂tv ∈ C([0,∞);ωHs).(1.11)

(ii) If n = 2, 1 < p ≤ 3 and 1 < s < min(2, p), then there exists a unique
global solution (u, v) satisfying (1.11).

Remark 4. Part (i) is an extension of result in [31], where the global
existence of solutions in H2 is studied for odd integer p ≥ 3.
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Remark 5. In the case n = 1, we use the conservation laws for the
control of L∞ through the Sobolev embedding. But when n = 2, we cannot use
such embedding any more. Instead, we use a version of Brezis-Gallouet-Wainger
inequality in Sobolev space (see [20]). In view of these Sobolev inequalities, we
can obtain a global existence in Hs(Rn) even for all s > 1, if n = 1 and p is
odd integer, and if n = 2 and p = 3.

The next result is on the local existence and blowup criterion for n = 3.

Theorem 1.4. (i) If n = 3, 1 < p < ∞ and 3
2 < s < min(2, p), then

there exists a positive time T∗ and unique solution (u, v) such that

u ∈ C([0, T∗];Hs), v ∈ C2([0, T∗];Hs), ∂tv ∈ C([0, T∗];ωHs).(1.12)

(ii) Let T ∗ be the maximal existence time of solution (u, v) to Cauchy
problem (1.1) and it be finite. Then∫ T∗

0

(
‖u(t)‖Ḟ 0∞, ∞

+ ‖v(t)‖Ḟ 0∞, ∞

)p−1

dt = ∞

for 3
2 < p ≤ 2. Furthermore, if

(‖∇u0‖L2 + ‖v0‖L2 + ‖ω−1v1‖L2)‖u0‖L2

is sufficiently small, then ∫ T∗

0

‖u(t)‖
4(p−1)

p+1

Ḟ 0∞, ∞
dt = ∞

for 3
2 < p ≤ 5

3 .

Here, Ḟ 0
∞,∞ is the Triebel-Lizorkin space defined as follows. Let ϕ be a

Littlewood-Paley function such that
∑
j∈Z

ϕ
(
ξ
2j

)
= 1, if ξ �= 0. Let ∆j be a

frequency projection operator such that ∆̂jψ(ξ) = ϕ(ξ/2j)ψ̂(ξ), where ψ̂ is the
Fourier transform of ψ.

Ḟ 0
∞,∞ =

{
ψ ∈ S ′ : ‖ψ‖Ḟ 0∞, ∞

≡
∥∥∥∥sup
j∈Z

|∆jψ|
∥∥∥∥
L∞

<∞
}
.

It should be noted that BMO = Ḟ 0
∞, 2 ↪→ Ḟ 0

∞,∞ (for the details, see [26],
[27]).

Remark 6. The blowup criterion in Theorem 1.4 can be extended to
some value of p such that 2 < p ≤ 3 for large data and 5

3 < p ≤ 5 for small
data. For the details, see Remark 9 below.
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Remark 7. For the local existence in Theorems 1.3 and 1.4, the Hs-
regularity on data for s > n

2 is used to control the L∞ norm of u and v
for estimation of the bilinear term vu and of the nonlinear term λ|v|p−1v via
Sobolev embedding. But by deriving dispersive estimates on K and ∂tK, we
can control L∞ without resort to the Sobolev embedding. For one-dimensional
and multi-dimensional arguments, see for instance the papers [7] and [8], re-
spectively.

If not specified, throughout this paper, we denote C by a generic constant
varying line by line and depending only on the norms of initial data, s, λ, p,
admissible pair (q, r) and absolute constant.

2. Case λ = 0: Proof of Theorems 1.1 and 1.2

In this section, we consider the global existence of the system with n = 3, 4
in case that λ = 0 based on the conservation laws (1.5) and (1.6). Since the
local existence was studied in [22], we have only to consider global a priori
estimates of solutions in the 3 and 4 dimensional energy space. That is to say,
it suffices to show that for all T > 0

‖u‖L∞
T H1 + ‖v‖L∞

T L2 + ‖ω−1∂tv‖L∞
T L2 ≤ C.(2.1)

2.1. Proof of Theorem 1.1
2.1.1. Global existence By the Hölder inequality, the standard Sobolev
inequality ‖u‖L6 ≤ C0‖∇u‖L2 , and the L2 conservation (1.5), we have

|(v, |u|2)| ≤ ‖v‖L2‖u‖ 1
2
L2‖u‖

3
2
L6 ≤ C

3
2
0 ‖u0‖

1
2
L2‖v‖L2‖∇u‖ 3

2
L2 .(2.2)

This implies upper and lower bounds on E(0) in terms of Cauchy data in the
energy space. Regarding lower bounds, we have

E(0) =
1
2

(‖∇u0‖2
L2 + ‖v0‖2

L2 + ‖ω−1v1‖2
L2

)
+ (v0, |u0|2)

≥ 1
2

(‖∇u0‖2
L2 + ‖v0‖2

L2 + ‖ω−1v1‖2
L2

)
− 1

2
‖v0‖2

L2 − C3
0

2
‖u0‖L2‖∇u0‖3

L2

≥ 1
2
(1 − C3

0‖u0‖L2‖∇u0‖L2)‖∇u0‖2
L2 +

1
2
‖ω−1v1‖2

L2

≥ 0,

(2.3)

provided ‖u0‖L2‖∇u0‖L2 ≤ C−3
0 . Now we set

M(t) =
1
2

(‖∇u‖2
L2 + ‖v‖2

L2 + ‖ω−1∂tv‖2
L2

)
.

Then the RHS of the last inequality in (2.2) is bounded by

C
3
2
0 ‖u0‖

1
2
L2M(t)‖∇u‖ 1

2
L2 ≤ 2

1
4C

3
2
0 ‖u0‖

1
2
L2M(t)

5
4 .
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By the energy conservation (1.6), this implies

(2.4)

M(t) = E(t) − (v, |u|2)
= E(0) − (v, |u|2)
≤ E(0) + 2

1
4C

3
2
0 ‖u0‖

1
2
L2M(t)

5
4 .

We see from (2.4) that

M(t) ≤ 5E(0),(2.5)

provided

E(0)(2C6
0‖u0‖2

L2) <
1
5

(
4
5

)4

.(2.6)

The required a priori estimate (2.1) follows from (2.5) under smallness condition
given by (2.3), (2.4) and (2.6).

An application of (2.5) is the Strichartz estimate of u. For any admissible
pair (q, r), using (1.4), we have

‖u‖Lq
TL

r ≤ CT
1
q ‖u‖L∞

T H1 ≤ C(T ),

where C(T ) is a constant depending only on C and T . Therefore, we deduce
that u ∈ LqlocL

r.

2.1.2. Blow-up criterion Assume that∫ T∗

0

(T ∗ − t)‖u(t)‖2
L4 dt <∞.(2.7)

Then let us observe from the equation (1.2) that

‖∂tv(t)‖L2 ≤ C(‖v0‖L2 + ‖v1‖L2) + C

∫ t

0

‖u(t′)‖2
L4 dt′.

and hence that the finiteness of (2.7) implies that of ‖∂tv‖L1(0,T∗;L2).
Now we assume that ∫ T∗

0

‖∂tv‖L2 dt ≡M <∞.(2.8)

Then taking L2 norm of v(t) = v0 +
∫ t
0
∂tv(t′) dt′, we have

sup
0≤t<T∗

‖v(t)‖L2 ≤ ‖v0‖L2 +M.(2.9)

By conservation laws (1.5), (1.6), and the estimates (2.2) and (2.9),

(2.10)

1
2
‖∇u‖2

L2 = E(t) − 1
2

(‖v‖2
L2 + ‖ω−1∂tv‖2

L2

) − (v, |u|2)
≤ E(0) + ‖v‖L2‖u‖2

L4

≤ E(0) + (‖v0‖L2 +M)‖u0‖
1
2
L2‖∇u‖

3
2
L2 .
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This implies

sup
0≤t<T∗

‖∇u(t)‖2
L2 ≤ CE(0) + CE(‖v0‖L2 +M)4‖u0‖2

L2(2.11)

Moreover, we obtain

‖v‖2
L2 + ‖ω−1∂tv‖2

L2 = 2E(0) − ‖∇u‖2
L2 − 2(v, |u|2)

≤ 2E(0) − ‖∇u‖2
L2 +

1
2
‖v‖2

L2 + 8‖u‖4
L4

≤ 2E(0) − ‖∇u‖2
L2 +

1
2
‖v‖2

L2 + 8C3
0‖u0‖L2‖∇u‖3

L2 .

This implies

sup
0≤t<T∗

(‖v(t)‖2
L2 + ‖ω−1∂tv‖2

L2

)
≤ 4E(0) + 16C3

0‖u0‖L2

(
sup

0≤t<T∗
‖∇u(t)‖L2

)3

.
(2.12)

Estimates (2.11) and (2.12) contradict the maximality of T ∗.

2.2. Proof of Theorem 1.2
2.2.1. Global existence By the Hölder inequality and the standard Sobolev
inequality ‖u‖L4 ≤ C0‖∇u‖L2 , we have

|(v, |u|2)| ≤ ‖v‖L2‖u‖2
L4 ≤ C2

0‖v‖L2‖∇u‖2
L2 .

Therefore,

E(0) =
1
2

(‖∇u0‖2
L2 + ‖v0‖2

L2 + ‖ω−1v1‖2
L2

)
+ (v, |u|2)

≤ 1
2

(‖∇u0‖2
L2 + ‖v0‖2

L2 + ‖ω−1v1‖2
L2

)
+ C2

0‖v0‖L2‖∇u0‖2
L2

and

E(0) ≥ 1
2

(‖∇u0‖2
L2 + ‖v0‖2

L2

) − εC2
0‖v0‖L2‖∇u0‖L2

≥ 1 − εC2
0

2
(‖∇u0‖2

L2 + ‖v0‖2
L2

)
,

provided ‖∇u0‖L2 ≤ ε < C−2
0 . Now we set

M(t) =
1
2

(‖∇u(t)‖2
L2 + ‖v(t)‖2

L2 + ‖ω−1∂tv(t)‖2
L2

)
.

Then

M(t) = E(0) − (v, |u|2)
≤ E(0) + C2

0‖v‖L2‖∇u‖2
L2

≤ E(0) + C2
0M(t)‖∇u‖L2

≤ E(0) + 2
1
2C2

0M(t)
3
2 ,



Nonlinear Schrödinger-IMBq equations 543

from which the required a priori estimate on M follows, provided ‖∇u0‖L2 +
‖v0‖L2 + ‖ω−1v1‖L2 is sufficiently small.

By the endpoint estimate (q, r) = (2, 4) of (1.4), we have

‖u‖L2
TL

4 ≤ C‖u0‖L2 + C‖vu‖
L2

TL
4
3

≤ C‖u0‖L2 + C‖v‖L∞
T L2‖u‖L2

TL
4 ,

where C is independent of T > 0. Since M may be taken sufficiently small by
the smallness assumption on the data,

‖u‖L2
TL

2 ≤ C‖u0‖L2 ,

where C is independent of T > 0. By Fatou’s lemma, u ∈ L2L4. Since
u ∈ L∞L2, for any admissible pair (q, r), ‖u‖LqLr ≤ C‖u0‖L2 .

2.2.2. Scattering By the integral equation, we have

U(−t)u(t) − U(−s)u(s) = −i
∫ t

s

U(−t′)(vu)(t′) dt′.

By the endpoint Strichartz estimate, we have

‖U(−t)u(t) − U(−s)u(s)‖L2 =
∥∥∥∥∫ t

s

U(−t′)(vu)(t′) dt′
∥∥∥∥
L2

≤ C‖vu‖
L2(s,t;L

4
3 )

≤ C‖v‖L∞L2‖u‖L2(s,t;L4)

→ 0

as t > s→ +∞. This gives a unique asymptotic state u+
0 ∈ L2.

Similarly, the existence of unique asymptotic sates (v+
0 , v

+
1 ) ∈ L2 ⊕ ωL2

follows by the integral equation (1.3).

3. Case λ �= 0: Proof of Theorems 1.3 and 1.4

3.1. Local existence
In this section, we discuss the local existence theory of the system (1.1)

with general nonlinear term f(v). To do this, let us first introduce a lemma for
the nonlinear estimates (see [7], [9], [13], [19] for instance).

Lemma 3.1. (i) Let f ∈ C1(R,R) with f(0) = f ′(0) = 0 and assume
that

|f ′(t1) − f ′(t2)| ≤ C

{ |t1 − t2|p−1, if 1 ≤ p ≤ 2

(|t1|p−2 + |t2|p−2)|t1 − t2|, if p > 2

}
(3.1)



544 Yonggeun Cho and Tohru Ozawa

for all t1, t2 ∈ R. Let 0 ≤ s < min(2, p). Then f satisfies the estimate

‖f(v)‖Ḣs ≤ C‖v‖p−1
L∞ ‖v‖Ḣs(3.2)

for any v ∈ L∞ ∩ Ḣs.
(ii) Let f ∈ Ck(R,R)(k ≥ 2) with

|f (j)(t)| ≤ C|t|p−j(3.3)

for all 0 ≤ j ≤ k ≤ p and t ∈ R. Then f satisfies the estimate

‖f(v)‖Ḣs ≤ C‖v‖p−1
L∞ ‖v‖Ḣs(3.4)

for any s with 0 ≤ s ≤ k and any v ∈ L∞ ∩ Ḣs.
(iii) For any s ≥ 0, we have

‖uv‖Ḣs ≤ C(‖u‖L∞‖v‖Ḣs + ‖v‖L∞‖u‖Ḣs)(3.5)

for any v ∈ L∞ ∩ Ḣs

Using the lemma above, we obtain the following.

Proposition 3.1. Let f ∈ Ck(R,R) satisfy (3.1) for k = 1 and (3.3)
for k ≥ 2. Suppose that (u0, v0, v1) ∈ Hs ⊕Hs ⊕ ωHs for s < p, if k = 1 and
s ≤ k, if k ≥ 2. Then there exists a positive time T∗ and unique solution (u, v)
satisfying the regularity (1.12).

Proof of Proposition 3.1. Let us define nonlinear functionals N1 and N2

by

N1(u, v)(x, t) = U(t)u0 − i

∫ t

0

U(t− t′)(vu)(t′) dt′,

N2(u, v)(x, t) = (∂tK)(t)v0 +K(t)v1 +
∫ t

0

K(t− t′)ω2(f(v) + |u|2)(t′) dt′.

We also define a complete metric space XR(T ) with metric dT by

XR(T ) = {(u, v) : ‖(u, v)‖X(T ) ≡ ‖u‖L∞
T Hs + ‖v‖L∞

T Hs ≤ R},
dT ((u, v), (ũ, ṽ)) = ‖(u, v) − (ũ, ṽ)‖L∞

T L2 .

Then from Sobolev embedding Hs ↪→ L∞ for s > n
2 and Lemma 3.1, we have

for any (u, v) ∈ XR(T )

‖N1(t)‖Hs ≤ ‖u0‖Hs + C

∫ t

0

‖v(t′)‖Hs‖u(t′)‖Hs dt′ ≤ C + CR2T,

‖N2(t)‖Hs ≤ ‖v0‖Hs + ‖ω−1v1‖Hs + C

∫ t

0

(‖v‖pHs + ‖u‖2
Hs

)
dt′

≤ C + C(M(R)R+R2)T.
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If R ≥ 3C and T < T1 for some small T1 such that

CR2T1 + C(M(R)R+R2)T1 ≤ C,

then (N1(u, v), N2(u, v)) ∈ XR(T ).
On the other hand, if (u, v), (ũ, ṽ) ∈ XR(T ) and T < T2 for some small T2,

then from Lemma 3.1

dT ((N1(u, v), N2(u, v)), (N1(ũ, ṽ), N2(ũ, ṽ)))

≤ C

∫ T

0

(‖(u, v)‖X(t′) + ‖(ũ, ṽ)‖X(t′))dt′((u, v), (ũ, ṽ)) dt′

+
∫ T

0

(
‖v‖p−1

Hs + ‖ṽ‖p−1
Hs + ‖u‖Hs + ‖ũ‖Hs

)
dt′((u, v), (ũ, ṽ)) dt′

≤ (2CRT + 2M(R)T )dT ((u, v), (ũ, ṽ))

≤ 1
2
dT ((u, v), (ũ, ṽ)).

Therefore by contraction mapping theorem, there exists a solution (u, v) ∈
XR(T∗) of (1.2), where T∗ = min(T1, T2). The uniqueness follows immediately
from the above argument. Using the original equation, the time regularity is
readily obtainable. So we leave them to the readers. This completes the proof
of proposition.

Remark 8. (1) Since s can be chosen to be greater than equal to 1,
as stated in the introduction, the L2 norm of the solution u and the energy of
(u, v) are conserved up to the existence time of solution.

(2) If f(v) = λ|v|p−1v with p > 1, then f satisfies the condition (3.1).
(3) If f(v) = λvk for some fixed λ ∈ R and integer k ≥ 2, then we do not

need the restriction on n, s and p for the local existence of solutions.

3.2. Proof of Theorem 1.3
Now we prove the first and second parts of main theorem. Since λ > 0,

from the L2 and energy conservation, we can get

‖u‖L∞
T H1 + ‖v‖L∞

T Lp+1 ≤ C for n = 1,

‖u‖L∞
T H1 + ‖v‖L∞

T Lp+1 ≤ C(T ) for n = 2.

These estimate follow from the observation that

|(v, |u|2)| ≤ 1
4
‖v‖2

L2 +
1
4
‖∇u‖2

L2 + C‖u‖6
L2 , if n = 1,

|(v, |u|2)| ≤ 1
4
‖∇u‖2

L2 + C‖u‖2
L2‖v‖2

L2 if n = 2

and the estimate ‖v(t)‖L2 ≤ ‖v0‖L2 +
∫ t
0
‖∂tv(t′)‖L2 dt′. For the details, see

Section 4 of [22].
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As in [29], from the regularity of the local solution we can observe that

∂t

(
|∂tv|2 + v2 +

2λ
p+ 1

|v|p+1

)
=

(
(1 − ∆)−1(v + f(v)) + ω2(|u|2)) ∂tv.(3.6)

Here we note that (1−∆)−1 is bounded from Lr to L∞ for 1 ≤ r ≤ ∞ if n = 1,
for 1 < r ≤ ∞ if n = 2, and for n

2 < r ≤ ∞ if n ≥ 3 and that ω2 is bounded in
Lr for any r with 1 ≤ r ≤ ∞. Thus if n = 1, 2, then we have

‖∂tv(t)‖2
L∞ + ‖v(t)‖2

L∞ + λ‖v(t)‖p+1
L∞

≤ C + C

∫ t

0

‖u‖4
L∞ dt′ + C

∫ t

0

‖(1 − ∆)−1f(v)‖2
L∞ dt′

+ C

∫ t

0

(‖∂tv‖2
L∞ + ‖v‖2

L∞) dt′

≤ C + C

∫ t

0

‖u‖4
L∞ dt′ + C

∫ t

0

‖v‖2p
Lp+1 dt

′ + C

∫ t

0

(‖∂tv‖2
L∞ + ‖v‖2

L∞) dt′

≤ C + C

∫ t

0

‖u‖4
L∞ dt′ + CT‖v‖2p

L∞
T Lp+1 + C

∫ t

0

(‖∂tv‖2
L∞ + ‖v‖2

L∞) dt′.

Hence Gronwall’s inequality yields

sup
0≤t≤T

(
‖∂tv(t)‖2

L∞ + ‖v(t)‖2
L∞ + ‖v‖p+1

L∞

)
≤ C(T )

∫ T

0

‖u‖4
L∞ dt.(3.7)

To obtain the global existence, we have only to prove that

‖u(t)‖Hs + ‖v(t)‖Hs + ‖ω−1∂tv(t)‖Hs ≤ C(T )(3.8)

for all t ∈ [0, T ] and any T > 0.
If n = 1, then by Sobolev embedding and energy conservation (1.6), we see

that ‖u‖L∞([0,T ]×R) ≤ C and hence by (3.7), ‖v‖L∞([0,T ]×R) ≤ C(T ). Therefore
we have

(3.9)

‖u(t)‖Hs ≤ C + C

∫ t

0

(‖v‖L∞‖u‖Hs + ‖v‖Hs‖u‖L∞) dt′

≤ C + C(T )
∫ t

0

(‖v‖Hs + ‖u‖Hs) dt′,

‖v(t)‖Hs ≤ C + C

∫ t

0

(‖v‖p−1
L∞ ‖v‖Hs + ‖u‖L∞‖u‖Hs) dt′

≤ C + C(T )
∫ t

0

(‖v‖Hs + ‖u‖Hs) dt′,

‖ω−1∂tv(t)‖Hs ≤ C + C(T )
∫ t

0

(‖v‖Hs + ‖u‖Hs) dt′.

Combining above three inequalities and using Gronwall’s inequality, we get
(3.8) for all t ∈ [0, T ].
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Since the embedding H1 ↪→ L∞ does not hold for n = 2, instead we use
the Brezis-Gallouet-Wainger inequality (for instance see [2] and [20]). More
precisely, we use the following inequality

‖u(t)‖L∞ ≤ C‖u(t)‖H1

(
1 + log

(
1 +

‖u(t)‖Hs

‖u(t)‖H1

)) 1
2

.(3.10)

Since ‖u(t)‖H1 ≤ C(T ) for all t ∈ [0, T ], from (3.10) we have

‖u(t)‖L∞ ≤ C(T )(1 + log(1 + ‖u(t)‖Hs))
1
2 .(3.11)

Now using (3.7), (3.9) and the fact that 2(p−1)
p+1 ≤ 1 for p ≤ 3, we have

‖u‖Hs + ‖v‖Hs

≤ C + C(T )
∫ t

0

(1 + log(1 + ‖u‖Hs + ‖v‖Hs))(‖v‖Hs + ‖u‖Hs) dt′.

Thus by Gronwall’s inequality, we finally get the bound (3.8) for all t ∈ [0, T ].
This completes the proof of (i) and (ii) of Theorem 1.3.

3.3. Proof of Theorem 1.4
Since the local existence was already established in the previous section,

we consider only blowup criterion in this section.
Using (3.7), we first have for 1 < p ≤ 2

‖u(t)‖Hs + ‖v(t)‖Hs

≤ C +
∫ t

0

(1 + ‖u‖L∞ + ‖v‖L∞)p−1(‖u‖Hs + ‖v‖Hs) dt′.
(3.12)

Let us invoke the Brezis-Gallouet-Wainger inequality in Triebel-Lizorkin space.
For any s > 3

2 ,

‖ψ‖L∞ ≤ C(1 + ‖ψ‖Ḟ 0∞, ∞
(1 + log(1 + ‖ψ‖Hs))).(3.13)

For the proof, see [4] and Remark 8 below. Now we set

M(t) = ‖u(t)‖Ḟ 0∞, ∞
+ ‖v(t)‖Ḟ 0∞, ∞

.

Then by (3.13), we obtain for all t ∈ [0, T ∗)

‖u(t)‖Hs + ‖v(t)‖Hs ≤ C(T ∗)

+
∫ t

0

(1 +M(t′))p−1(1 + log(1 + ‖u‖Hs + ‖v‖Hs))p−1(‖u‖Hs + ‖v‖Hs) dt′.

Hence by Gronwall’s inequality we have

‖u(t)‖Hs + ‖v(t)‖Hs ≤ C(T ∗) exp
[
C(T ∗) exp

(
C(T ∗)

∫ t

0

M(t′)p−1 dt′
)]

.
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Since left had side of the above inequality tend to infinity as t → T ∗, we can
obtain the first part of blowup criterion.

On the other hand, if (‖∇u0‖L2 + ‖v0‖L2 + ‖ω−1v1‖L2)‖u0‖L2 is small,
then by the same argument as in the proof of part (i) of Theorem 1.1, we can
obtain that

‖u‖L∞
T H1 + ‖v‖L∞

T Lp+1 ≤ C(T )
for all T < T ∗. Hence using (3.6), we have

‖∂tv‖2
L∞ + ‖v‖2

L∞ + λ‖v‖p+1
L∞

≤ C + C

∫ t

0

‖u‖4
L∞ dt′ + C

∫ t

0

‖v‖2p
Lpr dt

′ + C

∫ t

0

(‖∂tv‖2
L∞ + ‖v‖2

L∞) dt′.

For the third term, we use the estimate ‖(1 − ∆)−1f(v)‖L∞ ≤ C‖f(v)‖Lr for
3
2 < r ≤ ∞. If p < 2, then we take r = p+1

p . If 2 ≤ p ≤ 5, then we choose r
such that p+1

p < r < p+1
p−1 and hence

p r > p+ 1, p

(
1 − p+ 1

p r

)
< 1.(3.14)

Since p+ 1 < p r <∞,

‖v‖Lpr ≤ ‖v‖θLp+1‖v‖1−θ
L∞ ,

where θ = p+1
pr . Thus by (3.14) and Young’s inequality, we get

‖∂tv‖2
L∞ + ‖v‖2

L∞ + λ‖v‖p+1
L∞

≤ C(T ) + CT‖u‖4
L∞ + C

∫ t

0

(‖∂tv‖2
L∞ + ‖v‖2

L∞) dt′.

By Gronwall’s inequality, we obtain the estimate (3.7) and substituting this
into (3.12), we can deduce from the fact 4(p−1)

p+1 ≤ 1 for p ≤ 5
3 that

‖u(t)‖Hs + ‖v(t)‖Hs ≤ C(T ∗)

+
∫ t

0

(1 + ‖u‖Ḟ 0∞,∞
)

4(p−1)
p+1 (1 + log(1 + ‖u‖Hs + ‖v‖Hs))(‖u‖Hs + ‖v‖Hs) dt′.

Hence the Gronwall’s inequality yields the second blowup criterion. For the
case that 5

3 < p ≤ 5, see Remark 9 below.

Remark 9. Concerning the Brezis-Gallouet-Wainger inequality in
Triebel-Lizorkin space, let us introduce a slightly modified version. We first
define a homogeneous Triebel-Lizorkin type space Ḟ0

∞, q(0 < q <∞) as follows.

Ḟ0
∞, q ≡

ψ : ψ =
∑
j∈Z

∆jψj in S ′ for some ψj ∈ S ′

with {∆jψj}j∈Z ∈ L∞�q

 ,
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‖ψ‖Ḟ0∞, q
≡ inf
ψ=

P
∆jψj

‖{∆jψj}‖L∞�q .(3.15)

If q = ∞, then we define Ḟ0
∞,∞ by Ḟ 0

∞,∞. The usual Triebel-Lizorkin space
Ḟ 0
∞,q(0 < q <∞) is defined by

Ḟ 0
∞, q ≡ {ψ : ψ =

∑
j∈Z

∆jψj for some {ψj} ∈ L∞�q},

‖ψ‖Ḟ 0∞, q
≡ inf
ψ=

P
∆jψj

‖{ψj}‖L∞�q .

One can easily see that Ḃ0
∞,q ↪→ Ḟ0

∞, q ↪→ Ḟ 0
∞, q for q < ∞, while in general

it is likely that the converse inclusion Ḟ 0
∞, q ↪→ Ḟ0

∞, q is an open question. If
ψ ∈ Hs(Rn) for s > n

2 , then

ψ =
∑
j<−N

∆jψ +
∑

−N≤j≤N
∆jψ +

∑
j>N

∆jψ

≡ ψ− + ψ0 + ψ+.

Revisiting the proof in [4], for the first and second terms, we obtain

|ψ−(x)| + |ψ+(x)| ≤ C2−N‖ψ‖Hs .(3.16)

On the other hand, as for ψ0, we can find ψj ∈ S ′ such that ψ =
∑
j ∆jψj

and {∆jψj} ∈ L∞�q, and hence

|ψ0(x)| ≤ |ψ̃N (x)| +
∑

−N+1≤j≤N−1

|∆jψj(x)|,

where

ψ̃N =
∑

−N≤j≤N

∑
k∈Z

∆j∆kψk −
∑

−N+1≤j≤N−1

|∆jψj |.

Since the number of sum consisting of ψ̃N is finite, independently of N , and
hence ‖ψ̃N‖L∞ ≤ C‖ψ‖Ḟ0∞,∞

, we deduce from the definition (3.15) that

|ψ0(x)| ≤ C‖ψ‖Ḟ0∞,∞
+N

1
q′ ‖ψ‖Ḟ0∞, q

.(3.17)

Combining (3.16) and (3.17), we obtain

‖ψ‖L∞ ≤ C2−N‖ψ‖Hs +N
1
q′ ‖ψ‖Ḟ0∞, q

.

Thus choosing the optimal N , we can obtain

‖ψ‖L∞ ≤ C(1 + ‖ψ‖Ḟ0∞, q
(1 + log(1 + ‖ψ‖Hs))

1
q′ ).(3.18)
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Applying the estimate (3.18) to (3.7) and (3.12), we see that for 2 < p ≤ 3 and
q = p−1

p−2

‖u(t)‖Hs + ‖v(t)‖Hs

≤ C(T ∗) +
∫ t

0

(1 + ‖u‖Ḟ0∞,q
+ ‖v‖Ḟ0∞,q

)p−1

× (1 + log(1 + ‖u‖Hs + ‖v‖Hs))(‖u‖Hs + ‖v‖Hs) dt′

and hence ∫ T∗

0

(‖u‖Ḟ0∞,q
+ ‖v‖Ḟ0∞,q

)p−1 dt = ∞.

Similarly, for 5
3 < p ≤ 5 and q = 4p−4

3p−5

‖u(t)‖Hs + ‖v(t)‖Hs

≤ C(T ∗) +
∫ t

0

(1 + ‖u‖Ḟ0∞,q
)

4(p−1)
p+1 (1 + log(1 + ‖u‖Hs + ‖v‖Hs))

× (‖u‖Hs + ‖v‖Hs) dt′.

Hence Gronwall’s inequality yields the blowup criterion∫ T∗

0

‖u‖
4(p−1)

p+1

Ḟ0∞,q

dt = ∞,

provided the maximal existence time T ∗ is finite and

(‖∇u0‖L2 + ‖v0‖L2 + ‖ω−1v1‖L2)‖u0‖L2

is sufficiently small.
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