Relative isoperimetric inequality on a curved surface

By
Keomkyo SEO*

Abstract

Let C be a closed convex set on a complete simply connected surface S whose Gaussian curvature is bounded above by a nonpositive constant K. For a relatively compact subset $\Omega \subset S \sim C$, we obtain the sharp relative isoperimeric inequality $2 \pi \operatorname{Area}(\Omega)-K \operatorname{Area}(\Omega)^{2} \leq \operatorname{Length}(\partial \Omega \sim$ $\partial C)^{2}$. And we also have a similar partial result with positive Gaussian curvature bound.

1. Introduction

The classical isoperimetric inequality says that $4 \pi \operatorname{Area}(\Omega) \leq \operatorname{Length}(\partial \Omega)^{2}$ for a compact subset $\Omega \subset \mathbb{R}^{2}$. Equality holds if and only if Ω is a disk. Many mathematicians have generalized this inequality. For example, the following isoperimetric inequality is well-known. For a domain Ω in a complete surface S of Gaussian curvature bounded above by a constant K,

$$
\begin{equation*}
4 \pi \operatorname{Area}(\Omega)-K \operatorname{Area}(\Omega)^{2} \leq \operatorname{Length}(\partial \Omega)^{2} \tag{1.1}
\end{equation*}
$$

Equality holds if and only if Ω is a geodesic disk of constant Gaussian curvature K ([1], [2], [3], [5], [9], [11], see [10] for more references.).

Now we consider the relative isoperimetric problem. It is to find an isoperimetric region outside a closed convex set C in a Euclidean space or in a Riemannian manifold M. We study this problem in a smooth category. On that account we assume ∂C and $\partial \Omega$ are smooth for a closed convex set C and a subset $\Omega \subset S \sim C$. One may then ask if the relative isoperimetric inequality similar to (1.1) holds. That is, given a complete simply connected surface S of Gaussian curvature bounded above by a constant K, a closed convex set C in S, and a relatively compact subset Ω of $S \sim C$, does the inequality

$$
\begin{equation*}
2 \pi \operatorname{Area}(\Omega)-K \operatorname{Area}(\Omega)^{2} \leq \operatorname{Length}(\partial \Omega \sim \partial C)^{2} \tag{1.2}
\end{equation*}
$$

Received January 6, 2005
Revised July 18, 2006
*Supported in part by KOSEF R01-2000-000-00007-0.
hold? And does equality hold if and only if Ω is a geodesic half disk with constant Gaussian curvature K and $\partial \Omega \sim \partial C$ is a geodesic semicircle?

Choe ([6]) proved (1.2) for a disk type domain $\Omega \subset S \sim C$ with nonpositive Gaussian curvature, i.e. $K=0$. In this article we will show that the inequality (1.2) holds for a relatively compact subset $\Omega \subset S \sim C$ of Gaussian curvature bounded above by a nonpositive constant K. And we also prove a similar partial result with positive Gaussian curvature bound.

The author would like to thank Professor J. Choe for bringing this problem to his attention.

2. The case of constant Gaussian curvature

In this section we prove the relative isoperiemtric inequality on a complete simply connected surface with constant Gaussian curvature K, for completeness. First we consider the case of $K \leq 0$.

Theorem 2.1. Let C be a closed convex set in a complete simply connected surface S with constant Gaussian curvature $K \leq 0$. Then, for a relatively compact subset Ω in $S \sim C$ we have

$$
\begin{equation*}
2 \pi \operatorname{Area}(\Omega)-K \operatorname{Area}(\Omega)^{2} \leq \operatorname{Length}(\partial \Omega \sim \partial C)^{2} \tag{2.1}
\end{equation*}
$$

where equality holds if and only if Ω is a geodesic half disk and $\partial \Omega \sim \partial C$ is a geodesic semicircle.

Proof. If each connected component D of Ω is not a disk topologically, we fill it to get a disk type domain $\hat{D} \subset S \sim C$, using the simple connectivity of S. One can easily see that $\operatorname{Area}(D) \leq \operatorname{Area}(\hat{D})$ and Length $\left(\partial \hat{D}_{i} \sim \partial C\right) \leq$ Length $(\partial D \sim \partial C)$. Once we have the inequality (2.1) for \hat{D}, we can prove (2.1) for a relatively compact subset $D \subset S \sim C$, since we have

$$
\begin{align*}
2 \pi \operatorname{Area}(D)-K \operatorname{Area}(D)^{2} & \leq 2 \pi \operatorname{Area}(\hat{D})-K \operatorname{Area}(\hat{D})^{2} \\
& \leq \operatorname{Length}(\partial \hat{D} \sim \partial C)^{2} \tag{2.2}\\
& \leq \operatorname{Length}(\partial D \sim \partial C)^{2}
\end{align*}
$$

And if D is an annular domain surrounding C, then $D \cup C$ satisfies the isoperimetric inequality (1.1) which automatically satisfies (2.1). Hence it is enough to show that the inequality (2.1) holds for a domain Ω which is a disjoint union of disk type D 's. We assume that each D is a disk type domain. For each $D \subset S \sim C$, we obtain a new domain $\tilde{D} \subset S$ by reflecting the convex hull of D about its geodesic boundary inside C. Let

$$
\tilde{\Omega}=\cup(\tilde{D} \cup \text { the convex hull of } D)
$$

Then from the classical isoperimetric inequality for a constantly curved surface $\tilde{\Omega}$, we have

$$
\begin{equation*}
4 \pi \operatorname{Area}(\tilde{\Omega})-K \operatorname{Area}(\tilde{\Omega})^{2} \leq \operatorname{Length}(\partial \tilde{\Omega})^{2} \tag{2.3}
\end{equation*}
$$

Furthermore we know

$$
2 \operatorname{Area}(\Omega) \leq \operatorname{Area}(\tilde{\Omega}) \text { and } 2 \operatorname{Length}(\partial \Omega \sim \partial C) \geq \operatorname{Length}(\partial \tilde{\Omega})
$$

Applying these equalities to (2.3), we can see that a domain Ω which is a disjoint union of disk type D satisfies the inequality (2.1). Equality occurs if and only if $\tilde{\Omega}$ satisfies equality in (2.3). Hence Ω is a geodesic half disk and $\partial \Omega \sim \partial C$ is a geodesic semicircle. Therefore we obtain the above theorem.

For $K>0$, the proof of Theorem 2.1 doesn't work because the inequality (2.2) doesn't hold in this case. However, with more assumptions, we have a similar partial result as follows.

Theorem 2.2. Let C be a closed convex set in a two dimensional sphere $S^{2}\left(\frac{1}{\sqrt{K}}\right) \subset \mathbb{R}^{3}$ of radius $\frac{1}{\sqrt{K}}$ with constant Gaussian curvature $K>0$. Suppose that Ω is a disk type domain in $S^{2}\left(\frac{1}{\sqrt{K}}\right) \sim C$ and Ω is contained in a hemisphere. Then we have

$$
2 \pi \operatorname{Area}(\Omega)-K \operatorname{Area}(\Omega)^{2} \leq \operatorname{Length}(\partial \Omega \sim \partial C)^{2}
$$

where equality holds if and only if Ω is a geodesic half disk and $\partial \Omega \sim \partial C$ is a geodesic semicircle.

Proof. Use the reflection arguments as in the proof of the Theorem 2.1.

3. The case of Gaussian curvature bounded above by a nonpositive constant

In 1933, Beckenbach and Radó [4] gave a proof of (1.1) by using subharmonic functions. This method was employed by Choe [6] to prove the relative isoperimetric inequality (1.2) holds for $K=0$. We also apply this method to prove the following.

Theorem 3.1. Let C be a closed convex set in a complete simply connected surface S with Gaussian curvature K_{S} bounded above by a nonpositive constant K. Then, for a relatively compact subset Ω in $S \sim C$ we have

$$
\begin{equation*}
2 \pi \operatorname{Area}(\Omega)-K \operatorname{Area}(\Omega)^{2} \leq \operatorname{Length}(\partial \Omega \sim \partial C)^{2} \tag{3.1}
\end{equation*}
$$

and equality holds if and only if Ω is a geodesic half disk with constant Gaussian curvature K and $\partial \Omega \sim \partial C$ is a geodesic semicircle.

Proof. As the same arguments of proof of Theorem 2.1, it is enough to show that the inequality (3.1) holds for a disk type $\Omega \subset S \sim C$. And we may assume that $\partial \Omega$ meets ∂C perpendicularly, otherwise for sufficiently small $\varepsilon>0$, we approximate Ω with Ω_{ε} satisfying that $\partial \Omega_{\varepsilon}$ meets ∂C perpendicularly, $\operatorname{Area}\left(\Omega_{\varepsilon}\right) \rightarrow \operatorname{Area}(\Omega)$ and Length $\left(\Omega_{\varepsilon}\right) \rightarrow \operatorname{Length}(\Omega)$ as $\varepsilon \rightarrow 0$. (In fact, we only approximate Ω with Ω_{ε} in an ε-ball $B(p, \varepsilon)$ for each point $p \in \partial(\partial \Omega \cap \partial C)$.)

Now let $D \subset \mathbb{R}^{2}$ be a half disk with the diameter $C_{1}=\{(x, y): x=$ $0,-1 \leq y \leq 1\}$ and the semicircle $C_{2}=\left\{(x, y): x \geq 0, x^{2}+y^{2}=1\right\}$ such that $\partial D=C_{1} \cup C_{2}$. We consider the isothermal coordinates (x, y) of Ω with a conformal map $\varphi: D \rightarrow \Omega$ such that $\varphi\left(C_{1}\right)=\partial \Omega \cap \partial C$. Then the metric of Ω is $g=e^{2 f}\left(d x^{2}+d y^{2}\right)$ for some smooth function f on Ω. Note that the Gaussian curvature $K_{\Omega}=-e^{-2 f} \Delta f \leq K$ by assumption.

Let h be the solution of the mixed boundary value problem on D satisfying

$$
\begin{aligned}
\Delta h+K e^{2 h} & =0 \quad
\end{aligned} \quad \begin{array}{ll}
\text { in the interior of } \mathrm{D} \\
h & =f
\end{array} \quad \begin{aligned}
& \text { on } \quad C_{2} \\
& \frac{\partial h}{\partial \nu}
\end{aligned}=0 \quad \text { on } \quad C_{1}, ~ l
$$

where ν is the outward unit normal to C_{1}. We know the existence and regularity of the solution h of the above problem [7]. The convexity of C implies

$$
\begin{equation*}
\frac{\partial f}{\partial \nu} \leq 0 \quad \text { on } \quad C_{1} \tag{3.2}
\end{equation*}
$$

(See [6] for the proof.) It should be mentioned that the inequality (3.2) does not depend on the Gaussian curvature of the surface Ω.

Thus by invoking the maximum principle, we obtain

$$
\begin{equation*}
h \geq f \quad \text { on } \quad D \tag{3.3}
\end{equation*}
$$

Let \tilde{D} be D equipped with the metric $g=e^{2 h}\left(d x^{2}+d y^{2}\right)$. Denote by \tilde{C}_{1} and \tilde{C}_{2} the parts of $\partial \tilde{D}$ corresponding to C_{1}, C_{2}, respectively. Hence by the above inequality (3.3),

$$
\operatorname{Area}(\Omega) \leq \operatorname{Area}(\tilde{D})
$$

And Length $(\partial \Omega \sim \partial C)=\operatorname{Length}\left(\tilde{C}_{2}\right)$. On the other hands, by Theorem 2.1,

$$
2 \pi \operatorname{Area}(\tilde{D})-K \operatorname{Area}(\tilde{D})^{2} \leq \operatorname{Length}\left(\tilde{C}_{2}\right)^{2}
$$

Using the above relations and the assumption $K \leq 0$, we have

$$
\begin{aligned}
2 \pi \operatorname{Area}(\Omega) \leq 2 \pi \operatorname{Area}(\tilde{D}) & \leq \text { Length }\left(\tilde{C}_{2}\right)^{2}+K \operatorname{Area}(\tilde{D})^{2} \\
& \leq \operatorname{Length}(\partial \Omega \sim \partial C)^{2}+K \operatorname{Area}(\Omega)^{2}
\end{aligned}
$$

To have equality in (3.1), we notice that $h=f$ on D. In other words, D has constant Gaussian curvature K. Hence by Theorem 2.1, equality holds if and only if Ω is a geodesic half disk with the constant Gaussian curvature K and $\partial \Omega \sim \partial C$ is a geodesic semicircle.

4. The case of Gaussian curvature bounded above by positive constant

For a nonnegatively curved surface S, we cannot get the inequality (1.2) in general. For example, we consider a flat cylinder $S^{1} \times[0, \infty)$ glued with a
lower hemisphere S_{-}^{2} along its boundary S^{1} in \mathbb{R}^{3}. If we take S_{-}^{2} as a convex set C and $\Omega=S^{1} \times[0, t]$ for $t>0$ satisfying $\Omega \cap C=S^{1}$. Then it is easy to see that Gauss curvature $K=1$ but (1.2) does not hold. However, under additional conditions, we have the following theorem.

Theorem 4.1. Let C be a closed convex set in a complete simply connected surface S with its Gaussian curvature K_{S} bounded above by a positive constant K. Suppose that for a disk type domain $\Omega \subset S \sim C$. Then we have

$$
2 \pi \operatorname{Area}(\Omega)-K \operatorname{Area}(\Omega)^{2} \leq \operatorname{Length}(\partial \Omega \sim \partial C)^{2}
$$

and equality holds if and only if Ω is a geodesic half disk with constant Gaussian curvature K and $\partial \Omega \sim \partial C$ is a geodesic semicircle.

Proof. We will use Bandle's method ([3]).
As in the proof of Theorem 3.1, we consider the isothermal coordinate of Ω with a conformal map $\varphi: D \rightarrow \Omega$ such that $\varphi\left(C_{1}\right)$ is contained in ∂C. The curvature assumption is

$$
K_{S}=-e^{-2 f} \Delta f \leq K
$$

Thus we have

$$
\Delta f+K e^{2 f} \geq 0
$$

Put $k=f-h$, where h is the solution of the mixed boundary value problem on D :

$$
\begin{align*}
\Delta h & =0 & & \text { in the interior of } \quad D \\
h & =f & & \text { on } \quad C_{2} \tag{4.1}\\
\frac{\partial h}{\partial \nu} & =0 & & \text { on } \quad C_{1} .
\end{align*}
$$

We know the existence and smoothness of the solution h of the above problem ([7]). Then by the definition of k and (3.2) we get

$$
\begin{align*}
& \Delta k+K e^{2 k} e^{2 h} \geq 0 \quad \text { in the interior of } \quad D \tag{4.2}\\
& k=0 \quad \text { on } \quad C_{2} \\
& \frac{\partial k}{\partial \nu} \leq 0 \quad \text { on } \quad C_{1} . \tag{4.3}
\end{align*}
$$

Now let \bar{D} be D equipped with the metric $d s^{2}=e^{2 h}\left(d x^{2}+d y^{2}\right)$. Recall that \bar{D} is flat by (4.1).

Let $D(t)=\{x \in D: k(x)>t\}$. Define

$$
t_{1}=\inf _{x \in D} k(x), t_{2}=\sup _{x \in D} k(x), a(t)=\int_{D(t)} e^{2 h} d v, \text { and } A=\int_{D} e^{2 h} d v
$$

where $d v$ is an area form in D.

Notice that $a(t)$ is a decreasing function with $a\left(t_{1}\right)=A$ and $a\left(t_{2}\right)=0$. Since k is a smooth function and $e^{2 h}$ is a positive function, we have the function $t(a)$ which is the inverse function of $a(t)$. Then we define

$$
H(a)=K \int_{D(t(a))} e^{2 f} d v=K \int_{0}^{a} e^{2 t(l)} d l .
$$

By the co-area formula for $D(t) \subset D$,

$$
\frac{d a}{d t}=-\int_{\partial D(t) \sim C_{1}} \frac{e^{2 h}}{|\nabla k|} d s \quad \text { for almost all } \quad t>t_{1} .
$$

Applying the Schwarz inequality, we obtain

$$
\begin{equation*}
\left(\int_{\partial D(t) \sim C_{1}} e^{h} d s\right)^{2} \leq \int_{\partial D(t) \sim C_{1}} \frac{e^{2 h}}{|\nabla k|} d s \int_{\partial D(t) \sim C_{1}}|\nabla k| d s \tag{4.4}
\end{equation*}
$$

By (4) and (4.4) we have

$$
\begin{equation*}
-\frac{d a}{d t} \geq \frac{\left(\int_{\partial D(t) \sim C_{1}} e^{h} d s\right)^{2}}{\int_{\partial D(t) \sim C_{1}}|\nabla k| d s} \tag{4.5}
\end{equation*}
$$

Now we use the divergence theorem to get

$$
\int_{D(t)} \Delta k d v=\int_{\partial D(t)} \frac{\partial k}{\partial \nu} d s=\int_{C_{1}(t)} \frac{\partial k}{\partial \nu} d s+\int_{C_{2}(t)} \frac{\partial k}{\partial \nu} d s \leq \int_{C_{2}(t)} \frac{\partial k}{\partial \nu} d s
$$

where $C_{1}(t)=C_{1} \cap \partial D(t), C_{2}(t)=\partial D(t) \sim C_{1}(t)$ and ν is the outward unit normal to $\partial D(t)$. In the last inequality we applied the inequality (4.3). Note that $\frac{\partial k}{\partial \nu}=\langle\nabla k, \nu\rangle$ and $\nu=\frac{-\nabla k}{|\nabla k|}$ on $\partial D(t)$. Therefore,

$$
\begin{align*}
\int_{D(t)} \Delta k d v & \leq \int_{C_{2}(t)} \frac{\partial k}{\partial \nu} d s=-\int_{C_{2}(t)}|\nabla k| d s \\
\int_{\partial D(t) \sim \partial C}|\nabla k| d s & =\int_{C_{2}(t)}|\nabla k| d s \tag{4.6}\\
& \leq-\int_{D(t)} \Delta k d v \leq H(a(t)) \text { using (4.2). }
\end{align*}
$$

Furthermore we know the classical relative isoperimetric inequality on a complete simply connected flat surface S_{o}, i.e., for any domain $\varphi(D(t)) \subset S_{o}$,

$$
\begin{equation*}
2 \pi \int_{D(t)} e^{2 h} \leq\left(\int_{\partial D(t) \sim \partial C_{1}} e^{h} d s\right)^{2} \tag{4.7}
\end{equation*}
$$

By the inequalities (4.5), (4.6), and (4.7),

$$
\begin{equation*}
-\frac{d a}{d t} \geq \frac{2 \pi a}{H(a)} \quad \text { for } \quad t_{1}<t<t_{2} \tag{4.8}
\end{equation*}
$$

Note that in the above equalities, $t(a)$ is locally Lipschitz on $\left(0, a\left(t_{1}\right)\right)([3]$, Lemma 4). Therefore $H(a)$ is differentiable for almost all a in $\left(0, a\left(t_{1}\right)\right)$. Since

$$
\begin{aligned}
\frac{d H(a)}{d a}=H^{\prime}(a) & =\frac{d}{d a}\left(K \int_{D(t(a))} e^{2 f} d v\right)=\frac{d}{d a}\left(K \int_{0}^{a} e^{2 t(l)} d l\right)=K e^{2 t(a)} \\
\quad \text { and } H^{\prime \prime}(a) & =2 K e^{2 t(a)} \frac{d t}{d a} \leq 0
\end{aligned}
$$

we get $\frac{H^{\prime}}{H^{\prime \prime}}=\frac{1}{2} \frac{d a}{d t}$. Thus by (4.8),

$$
H^{\prime} H \geq-\pi a H^{\prime \prime}
$$

In other words

$$
\left(a H^{\prime}(a)-H(a)+\frac{H^{2}(a)}{2 \pi}\right)^{\prime} \geq 0 \quad \text { for } \quad 0<a<a\left(t_{1}\right)
$$

We integrate above inequality between $a=0$ and $a=a(0)$ to give

$$
a(0) H^{\prime}(a(0))-H(a(0))+\frac{H^{2}(a(0))}{2 \pi}+H(0)-\frac{H^{2}(0)}{2 \pi} \geq 0
$$

Moreover we have $H^{\prime}(a(0))=K$ and $H(0)=0$. Therefore,

$$
a(0)-M_{0}+\frac{K M_{0}^{2}}{2 \pi} \geq 0, \text { where } M_{0}=\frac{H(a(0))}{K}
$$

On the other hands, in the domain $D \sim D(0)$ where k is nonpositive we have the following inequality:

$$
\int_{D \sim D(0)} e^{2 h} d v \geq \int_{D \sim D(0)} e^{2 f} d v
$$

i.e.,

$$
A-a(0) \geq M-M_{0}
$$

where $M=\int_{D} e^{2 f} d v=\operatorname{Area}(\Omega)$ and we recall $A=\int_{D} e^{2 h} d v=\operatorname{Area}(\bar{D})$.
We obtain

$$
A-M+\frac{K M^{2}}{2 \pi} \geq 0
$$

Hence

$$
2 \pi A-2 \pi M+K M^{2} \geq 0
$$

And by the relative isoperimetric inequality in flat surfaces, we obtain

$$
2 \pi \operatorname{Area}(\bar{D}) \leq \text { Length }(\partial \Omega \sim \partial C)^{2}
$$

Thus we have

$$
2 \pi \operatorname{Area}(\Omega) \leq \operatorname{Length}(\partial \Omega \sim \partial C)^{2}+K \operatorname{Area}(\Omega)^{2}
$$

Equality occurs only if k satisfies equality in (4.2). It follows that $\Delta f+$ $K e^{2 f}=0$. Hence Ω has constant Gaussian curvature K. By Theorem 2.2, equality holds if and only if Ω is a geodesic half disk with constant Gaussian curvature K and $\partial \Omega \sim \partial C$ is a geodesic semicircle.

5. Remarks

Howard ([8]) proved the Sobolev inequality

$$
\begin{equation*}
4 \pi \int_{S} f^{2}+\left(\int_{S}|f|^{2} d A\right)^{2} \leq\left(\int_{S}\|\nabla f\| d A\right)^{2} \tag{5.1}
\end{equation*}
$$

where S is a complete simply connected surface with Gaussian curvature $K_{S} \leq$ -1 and f is a compactly supported function of bounded variation on S. By the coarea formula ([8]) for functions of bounded variation on a surface S, the last term of (5.1) can be written as follows,

$$
\int_{S}\|\nabla f\| d A=\int_{0}^{\infty} \mathcal{H}^{1}(\partial\{x \in S:|f(x)| \geq t\}) d t
$$

where \mathcal{H}^{1} is the one dimensional Hausdorff measure. We say that a function f on $S \sim C$ has a relatively compact support if the support of f is a compact subset in the relative topology on $S \sim C$. Using Howard's argument ([8]), we get the relative Sobolev inequality corresponding to the relative isoperimetric inequality (3.1) as follows.

Theorem 5.1. Let S be a complete two dimensional simply connected Riemannian manifold with Gaussian curvature $K_{S} \leq K \leq 0$, and C its closed convex subset. Then

$$
2 \pi \int_{S \sim C} f^{2} d A-K\left(\int_{S \sim C}|f| d A\right)^{2} \leq\left(\int_{S \sim C}\|\nabla f\| d A\right)^{2}
$$

for every relatively compactly supported function f of bounded variation on $S \sim C$. Equality holds if and only if up to a set of measure zero, f is $c \chi_{D}$ where c is a constant and D is a geodesic half disk with constant Gaussian curvature K and $\partial D \sim \partial C$ is a geodesic semicircle.

Howard showed the inequality (5.1) for a compactly supported function f of bounded variation on S, but in our Theorem 5.1, the function f may not vanish on ∂C. It is sufficient that f is compactly supported in the relative topology on $S \sim C$ for a closed convex set $C \subset S$.

Department of Mathematical Sciences Seoul National University
San56-1 Shinrim-dong Kwanak-gu
Seoul 151-747, Korea
e-mail: heretin@math.snu.ac.kr

References

[1] A. D. Aleksandrov, Isoperimetric inequalities for curved surfaces, Dokl. Akad. Nauk USSR. 47 (1945), 235-238.
[2] T. Aubin, Problèmes isopérimétriques et espaces de Sobolev, J. Differential Geom. 11 (1976), 573-598.
[3] C. Bandle, On a differential inequality and its applications to geometry, Math. Z. 147 (1976), 253-261.
[4] E. Beckenbach and T. Radó, Subharmonic functions and surfaces of negative curvature, Trans. Amer. Math. Soc. 35 (1933), 662-674.
[5] G. Bol, Isoperimetrische Ungleichung für Bereiche auf Flächen, Jber. Deutsch. Math. -Verein. 51 (1941), 219-257.
[6] J. Choe, Relative isoperimetric inequality for domains outside a convex set, Archives Inequalities Appl. 1 (2003), 241-250.
[7] D. Gilbarg and N. Trudinger, Elliptic Partial Differential Equations of Second Order, Springer-Verlag, 1977.
[8] R. Howard, The sharp Sobolev inequality and the Banchoff-Pohl inequality on surfaces, Proc. Amer. Math. Soc. 126 (1998), 2779-2787.
[9] H. Karcher, Auwendungen der Alexandrowschen Winkelvergleichssätze, Manuscripta Math. 2 (1970), 77-102.
[10] R. Osserman, The isoperimetric inequality, Bull. Amer. Math. Soc. 84 (1978), 1182-1238.
[11] E. Schmidt, Über eine neue Methode zur Behandlung einer Klasse isoperimetricher Aufgaben im Grossen, Math. Z. 47 (1942), 489-642.

