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Relative isoperimetric inequality
on a curved surface

By

Keomkyo Seo∗

Abstract

Let C be a closed convex set on a complete simply connected surface
S whose Gaussian curvature is bounded above by a nonpositive constant
K. For a relatively compact subset Ω ⊂ S ∼ C, we obtain the sharp
relative isoperimeric inequality 2πArea(Ω)−KArea(Ω)2 ≤ Length(∂Ω ∼
∂C)2. And we also have a similar partial result with positive Gaussian
curvature bound.

1. Introduction

The classical isoperimetric inequality says that 4πArea(Ω) ≤ Length(∂Ω)2

for a compact subset Ω ⊂ R
2. Equality holds if and only if Ω is a disk. Many

mathematicians have generalized this inequality. For example, the following
isoperimetric inequality is well-known. For a domain Ω in a complete surface
S of Gaussian curvature bounded above by a constant K,

(1.1) 4πArea(Ω) − KArea(Ω)2 ≤ Length(∂Ω)2.

Equality holds if and only if Ω is a geodesic disk of constant Gaussian curvature
K ([1], [2], [3], [5], [9], [11], see [10] for more references.).

Now we consider the relative isoperimetric problem. It is to find an isoperi-
metric region outside a closed convex set C in a Euclidean space or in a Rie-
mannian manifold M . We study this problem in a smooth category. On that
account we assume ∂C and ∂Ω are smooth for a closed convex set C and a
subset Ω ⊂ S ∼ C. One may then ask if the relative isoperimetric inequality
similar to (1.1) holds. That is, given a complete simply connected surface S of
Gaussian curvature bounded above by a constant K, a closed convex set C in
S, and a relatively compact subset Ω of S ∼ C, does the inequality

(1.2) 2πArea(Ω) − KArea(Ω)2 ≤ Length(∂Ω ∼ ∂C)2
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hold? And does equality hold if and only if Ω is a geodesic half disk with
constant Gaussian curvature K and ∂Ω ∼ ∂C is a geodesic semicircle?

Choe ([6]) proved (1.2) for a disk type domain Ω ⊂ S ∼ C with nonpositive
Gaussian curvature, i.e. K = 0. In this article we will show that the inequality
(1.2) holds for a relatively compact subset Ω ⊂ S ∼ C of Gaussian curvature
bounded above by a nonpositive constant K. And we also prove a similar
partial result with positive Gaussian curvature bound.

The author would like to thank Professor J. Choe for bringing this problem
to his attention.

2. The case of constant Gaussian curvature

In this section we prove the relative isoperiemtric inequality on a complete
simply connected surface with constant Gaussian curvature K, for complete-
ness. First we consider the case of K ≤ 0.

Theorem 2.1. Let C be a closed convex set in a complete simply con-
nected surface S with constant Gaussian curvature K ≤ 0. Then, for a rela-
tively compact subset Ω in S ∼ C we have

(2.1) 2πArea(Ω) − KArea(Ω)2 ≤ Length(∂Ω ∼ ∂C)2,

where equality holds if and only if Ω is a geodesic half disk and ∂Ω ∼ ∂C is a
geodesic semicircle.

Proof. If each connected component D of Ω is not a disk topologically,
we fill it to get a disk type domain D̂ ⊂ S ∼ C, using the simple connectivity
of S. One can easily see that Area(D) ≤ Area(D̂) and Length(∂D̂i ∼ ∂C) ≤
Length(∂D ∼ ∂C). Once we have the inequality (2.1) for D̂, we can prove (2.1)
for a relatively compact subset D ⊂ S ∼ C, since we have

2πArea(D) − KArea(D)2 ≤ 2πArea(D̂) − KArea(D̂)2

≤ Length(∂D̂ ∼ ∂C)2

≤ Length(∂D ∼ ∂C)2.

(2.2)

And if D is an annular domain surrounding C, then D ∪ C satisfies the
isoperimetric inequality (1.1) which automatically satisfies (2.1). Hence it is
enough to show that the inequality (2.1) holds for a domain Ω which is a disjoint
union of disk type D’s. We assume that each D is a disk type domain. For
each D ⊂ S ∼ C, we obtain a new domain D̃ ⊂ S by reflecting the convex hull
of D about its geodesic boundary inside C. Let

Ω̃ = ∪(D̃ ∪ the convex hull of D).

Then from the classical isoperimetric inequality for a constantly curved
surface Ω̃, we have

(2.3) 4πArea(Ω̃) − KArea(Ω̃)2 ≤ Length(∂Ω̃)2.
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Furthermore we know

2Area(Ω) ≤ Area(Ω̃) and 2Length(∂Ω ∼ ∂C) ≥ Length(∂Ω̃).

Applying these equalities to (2.3), we can see that a domain Ω which is a
disjoint union of disk type D satisfies the inequality (2.1). Equality occurs if
and only if Ω̃ satisfies equality in (2.3). Hence Ω is a geodesic half disk and
∂Ω ∼ ∂C is a geodesic semicircle. Therefore we obtain the above theorem.

For K > 0, the proof of Theorem 2.1 doesn’t work because the inequality
(2.2) doesn’t hold in this case. However, with more assumptions, we have a
similar partial result as follows.

Theorem 2.2. Let C be a closed convex set in a two dimensional sphere
S2( 1√

K
) ⊂ R

3 of radius 1√
K

with constant Gaussian curvature K > 0. Sup-
pose that Ω is a disk type domain in S2( 1√

K
) ∼ C and Ω is contained in a

hemisphere. Then we have

2πArea(Ω) − KArea(Ω)2 ≤ Length(∂Ω ∼ ∂C)2,

where equality holds if and only if Ω is a geodesic half disk and ∂Ω ∼ ∂C
is a geodesic semicircle.

Proof. Use the reflection arguments as in the proof of the Theorem 2.1.

3. The case of Gaussian curvature bounded above by a nonpositive
constant

In 1933, Beckenbach and Radó [4] gave a proof of (1.1) by using subhar-
monic functions. This method was employed by Choe [6] to prove the relative
isoperimetric inequality (1.2) holds for K = 0. We also apply this method to
prove the following.

Theorem 3.1. Let C be a closed convex set in a complete simply con-
nected surface S with Gaussian curvature KS bounded above by a nonpositive
constant K. Then, for a relatively compact subset Ω in S ∼ C we have

(3.1) 2πArea(Ω) − KArea(Ω)2 ≤ Length(∂Ω ∼ ∂C)2

and equality holds if and only if Ω is a geodesic half disk with constant Gaussian
curvature K and ∂Ω ∼ ∂C is a geodesic semicircle.

Proof. As the same arguments of proof of Theorem 2.1, it is enough to
show that the inequality (3.1) holds for a disk type Ω ⊂ S ∼ C. And we
may assume that ∂Ω meets ∂C perpendicularly, otherwise for sufficiently small
ε > 0, we approximate Ω with Ωε satisfying that ∂Ωε meets ∂C perpendicularly,
Area(Ωε) → Area(Ω) and Length(Ωε) → Length(Ω) as ε → 0. (In fact, we only
approximate Ω with Ωε in an ε-ball B(p, ε) for each point p ∈ ∂(∂Ω ∩ ∂C).)



528 Keomkyo Seo

Now let D ⊂ R
2 be a half disk with the diameter C1 = {(x, y) : x =

0,−1 ≤ y ≤ 1} and the semicircle C2 = {(x, y) : x ≥ 0, x2 + y2 = 1} such
that ∂D = C1 ∪ C2. We consider the isothermal coordinates (x, y) of Ω with
a conformal map ϕ : D → Ω such that ϕ(C1) = ∂Ω ∩ ∂C. Then the metric
of Ω is g = e2f (dx2 + dy2) for some smooth function f on Ω. Note that the
Gaussian curvature KΩ = −e−2f∆f ≤ K by assumption.

Let h be the solution of the mixed boundary value problem on D satisfying

∆h + Ke2h = 0 in the interior of D
h = f on C2

∂h

∂ν
= 0 on C1,

where ν is the outward unit normal to C1. We know the existence and regularity
of the solution h of the above problem [7]. The convexity of C implies

(3.2)
∂f

∂ν
≤ 0 on C1.

(See [6] for the proof.) It should be mentioned that the inequality (3.2) does
not depend on the Gaussian curvature of the surface Ω.

Thus by invoking the maximum principle, we obtain

(3.3) h ≥ f on D.

Let D̃ be D equipped with the metric g = e2h(dx2 + dy2). Denote by C̃1

and C̃2 the parts of ∂D̃ corresponding to C1, C2, respectively. Hence by the
above inequality (3.3),

Area(Ω) ≤ Area(D̃).

And Length(∂Ω ∼ ∂C) = Length(C̃2). On the other hands, by Theorem
2.1,

2πArea(D̃) − KArea(D̃)2 ≤ Length(C̃2)2

Using the above relations and the assumption K ≤ 0, we have

2πArea(Ω) ≤ 2πArea(D̃) ≤ Length(C̃2)2 + KArea(D̃)2

≤ Length(∂Ω ∼ ∂C)2 + KArea(Ω)2

To have equality in (3.1), we notice that h = f on D. In other words, D
has constant Gaussian curvature K. Hence by Theorem 2.1, equality holds if
and only if Ω is a geodesic half disk with the constant Gaussian curvature K
and ∂Ω ∼ ∂C is a geodesic semicircle.

4. The case of Gaussian curvature bounded above by positive con-
stant

For a nonnegatively curved surface S, we cannot get the inequality (1.2)
in general. For example, we consider a flat cylinder S1 × [0,∞) glued with a
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lower hemisphere S2
− along its boundary S1 in R

3. If we take S2
− as a convex

set C and Ω = S1 × [0, t] for t > 0 satisfying Ω ∩ C = S1. Then it is easy
to see that Gauss curvature K = 1 but (1.2) does not hold. However, under
additional conditions, we have the following theorem.

Theorem 4.1. Let C be a closed convex set in a complete simply con-
nected surface S with its Gaussian curvature KS bounded above by a positive
constant K. Suppose that for a disk type domain Ω ⊂ S ∼ C. Then we have

2πArea(Ω) − KArea(Ω)2 ≤ Length(∂Ω ∼ ∂C)2

and equality holds if and only if Ω is a geodesic half disk with constant Gaussian
curvature K and ∂Ω ∼ ∂C is a geodesic semicircle.

Proof. We will use Bandle’s method ([3]).
As in the proof of Theorem 3.1, we consider the isothermal coordinate of Ω
with a conformal map ϕ : D → Ω such that ϕ(C1) is contained in ∂C. The
curvature assumption is

KS = −e−2f∆f ≤ K.

Thus we have

∆f + Ke2f ≥ 0.

Put k = f−h, where h is the solution of the mixed boundary value problem
on D:

∆h = 0 in the interior of D

h = f on C2

∂h

∂ν
= 0 on C1.

(4.1)

We know the existence and smoothness of the solution h of the above
problem ([7]). Then by the definition of k and (3.2) we get

∆k + Ke2ke2h ≥ 0 in the interior of D(4.2)
k = 0 on C2

∂k

∂ν
≤ 0 on C1.(4.3)

Now let D be D equipped with the metric ds2 = e2h(dx2 + dy2). Recall
that D is flat by (4.1).

Let D(t) = {x ∈ D : k(x) > t}. Define

t1 = inf
x∈D

k(x), t2 = sup
x∈D

k(x), a(t) =
∫

D(t)

e2hdv, and A =
∫

D

e2hdv ,

where dv is an area form in D.
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Notice that a(t) is a decreasing function with a(t1) = A and a(t2) = 0.
Since k is a smooth function and e2h is a positive function, we have the function
t(a) which is the inverse function of a(t). Then we define

H(a) = K

∫
D(t(a))

e2fdv = K

∫ a

0

e2t(l)dl.

By the co-area formula for D(t) ⊂ D,

da

dt
= −

∫
∂D(t)∼C1

e2h

|∇k|ds for almost all t > t1.

Applying the Schwarz inequality, we obtain

(4.4)

(∫
∂D(t)∼C1

ehds

)2

≤
∫

∂D(t)∼C1

e2h

|∇k|ds

∫
∂D(t)∼C1

|∇k|ds.

By (4) and (4.4) we have

(4.5) −da

dt
≥

(
∫

∂D(t)∼C1
ehds)2∫

∂D(t)∼C1
|∇k|ds

.

Now we use the divergence theorem to get∫
D(t)

∆kdv =
∫

∂D(t)

∂k

∂ν
ds =

∫
C1(t)

∂k

∂ν
ds +

∫
C2(t)

∂k

∂ν
ds ≤

∫
C2(t)

∂k

∂ν
ds,

where C1(t) = C1 ∩ ∂D(t), C2(t) = ∂D(t) ∼ C1(t) and ν is the outward unit
normal to ∂D(t). In the last inequality we applied the inequality (4.3). Note

that
∂k

∂ν
= 〈∇k, ν〉 and ν =

−∇k

|∇k| on ∂D(t). Therefore,

∫
D(t)

∆kdv ≤
∫

C2(t)

∂k

∂ν
ds = −

∫
C2(t)

|∇k|ds,∫
∂D(t)∼∂C

|∇k|ds =
∫

C2(t)

|∇k|ds

≤ −
∫

D(t)

∆kdv ≤ H(a(t)) using (4.2).

(4.6)

Furthermore we know the classical relative isoperimetric inequality on a
complete simply connected flat surface So, i.e., for any domain ϕ(D(t)) ⊂ So,

(4.7) 2π

∫
D(t)

e2h ≤
(∫

∂D(t)∼∂C1

ehds

)2

By the inequalities (4.5), (4.6), and (4.7),

(4.8) −da

dt
≥ 2πa

H(a)
for t1 < t < t2.
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Note that in the above equalities, t(a) is locally Lipschitz on (0, a(t1))([3],
Lemma 4). Therefore H(a) is differentiable for almost all a in (0, a(t1)). Since

dH(a)
da

= H ′(a) =
d

da

(
K

∫
D(t(a))

e2fdv

)
=

d

da

(
K

∫ a

0

e2t(l)dl

)
= Ke2t(a)

and H ′′(a) = 2Ke2t(a) dt

da
≤ 0,

we get
H ′

H ′′ =
1
2

da

dt
. Thus by (4.8),

H ′H ≥ −πaH ′′.

In other words(
aH ′(a) − H(a) +

H2(a)
2π

)′
≥ 0 for 0 < a < a(t1).

We integrate above inequality between a = 0 and a = a(0) to give

a(0)H ′(a(0)) − H(a(0)) +
H2(a(0))

2π
+ H(0) − H2(0)

2π
≥ 0.

Moreover we have H ′(a(0)) = K and H(0) = 0. Therefore,

a(0) − M0 +
KM2

0

2π
≥ 0, where M0 =

H(a(0))
K

.

On the other hands, in the domain D ∼ D(0) where k is nonpositive we
have the following inequality:∫

D∼D(0)

e2hdv ≥
∫

D∼D(0)

e2fdv

i.e.,

A − a(0) ≥ M − M0,

where M =
∫

D

e2fdv = Area(Ω) and we recall A =
∫

D

e2hdv = Area(D).

We obtain

A − M +
KM2

2π
≥ 0.

Hence

2πA − 2πM + KM2 ≥ 0.

And by the relative isoperimetric inequality in flat surfaces, we obtain

2πArea(D̄) ≤ Length(∂Ω ∼ ∂C)2.
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Thus we have

2πArea(Ω) ≤ Length(∂Ω ∼ ∂C)2 + KArea(Ω)2.

Equality occurs only if k satisfies equality in (4.2). It follows that ∆f +
Ke2f = 0. Hence Ω has constant Gaussian curvature K. By Theorem 2.2,
equality holds if and only if Ω is a geodesic half disk with constant Gaussian
curvature K and ∂Ω ∼ ∂C is a geodesic semicircle.

5. Remarks

Howard ([8]) proved the Sobolev inequality

(5.1) 4π

∫
S

f2 +
(∫

S

|f |2dA

)2

≤
(∫

S

‖∇f‖dA

)2

,

where S is a complete simply connected surface with Gaussian curvature KS ≤
−1 and f is a compactly supported function of bounded variation on S. By
the coarea formula ([8]) for functions of bounded variation on a surface S, the
last term of (5.1) can be written as follows,∫

S

‖∇f‖dA =
∫ ∞

0

H1(∂{x ∈ S : |f(x)| ≥ t})dt,

where H1 is the one dimensional Hausdorff measure. We say that a function f
on S ∼ C has a relatively compact support if the support of f is a compact
subset in the relative topology on S ∼ C. Using Howard’s argument ([8]), we
get the relative Sobolev inequality corresponding to the relative isoperimetric
inequality (3.1) as follows.

Theorem 5.1. Let S be a complete two dimensional simply connected
Riemannian manifold with Gaussian curvature KS ≤ K ≤ 0, and C its closed
convex subset. Then

2π

∫
S∼C

f2dA − K

(∫
S∼C

|f |dA

)2

≤
(∫

S∼C

‖�f‖dA

)2

for every relatively compactly supported function f of bounded variation on
S ∼ C. Equality holds if and only if up to a set of measure zero, f is cχD

where c is a constant and D is a geodesic half disk with constant Gaussian
curvature K and ∂D ∼ ∂C is a geodesic semicircle.

Howard showed the inequality (5.1) for a compactly supported function f
of bounded variation on S, but in our Theorem 5.1, the function f may not
vanish on ∂C. It is sufficient that f is compactly supported in the relative
topology on S ∼ C for a closed convex set C ⊂ S.
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[4] E. Beckenbach and T. Radó, Subharmonic functions and surfaces of neg-
ative curvature, Trans. Amer. Math. Soc. 35 (1933), 662–674.

[5] G. Bol, Isoperimetrische Ungleichung für Bereiche auf Flächen, Jber.
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