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On the geometry of Wiman’s sextic

By

Naoki Inoue and Fumiharu Kato

Abstract

We give a new version of W. L. Edge’s construction of the linear
system of plane sextics containing Wiman’s sextic, by means of config-
uration space of 5 points on projective line. This construction reveals
out more of the inner beauty of the hidden geometry of Wiman’s sex-
tic. Furthermore, it allows one to give a friendly proof for the fact that
the linear system is actually a pencil, the fact that is important in both
Edge’s and our constructions.

1. Introduction

Consider the action of the symmetric group S5 of five letters on the pro-
jective 5-space P

5 defined over an algebraically closed field K of characteristic
not equal to 2, 3, 5, induced from the 6-dimensional irreducible representation.
Calculating the symmetric square of the representation, one sees that there
exists a quadratic form in H0(P5, OP5(2)), unique up to scalar, that is invariant
by any element of S5. This gives rise to the unique quadratic hypersurface in
P

5, which is stable under the action of S5.
There is, on the other hand, the famous surface embedded in P

5, the
Del Pezzo quintic surface, on which the group S5 acts equivariantly with the
action on P

5 as above. The intersection of the hypersurface with the Del Pezzo
quintic surface defines a curve, denoted by W̃ . By the 4-point blow-up map,
it is mapped to a certain curve on P

2, which is stable under the S5-action by
Cremona transformations. This curve is actually an irreducible 4-nodal sextic,
which we denote by W . The actual equation for W with respect to a suitably
chosen homogeneous coordinate is given as follows:

x6 + y6 + z6 + (x2 + y2 + z2)(x4 + y4 + z4) − 12x2y2z2 = 0.

The curve W is first discovered by Wiman in the end of 19th century
[5]. This curve is, needless to say, interesting in its own light, for it has a
lot of symmetries; the normalization of W is actually isomorphic to W̃ as
above, which is, therefore, a non-singular projective curve of genus 6 having
the automorphism group isomorphic to S5. But more attractive is the inner
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beauty of the rich geometry hidden behind the curve W . In his 1981 papers [2],
[3] W. L. Edge, unsatisfied with Wiman’s original description of the curve, gave
projective geometric characterization of the Wiman’s sextic, which reveals out
rich geometric background and several nice properties. In the first work Edge
constructed in a purely projective geometric manner a pencil L of plane sextics
on which the group S5 acts by Cremona transformations. As the non-trivial
action of S5 on projective line is only possible by the signature action, there
are precisely two members in L that are stable under the action. One of them is
a union of 6 lines, and the other is the Wiman’s sextic. Notice that, in order to
find the Wiman’s sextic in L, it was important to know that his linear system
L is actually a pencil.

In this note we are going to recast Edge’s construction in a slightly dif-
ferent manner. The main points of our method are that we regard the Del
Pezzo quintic surface as the configuration space of 5 points on P

1, and that we
consider the so-called pentagonal coordinates (studied by M. Yoshida [1]) on
the surface, which has 6 variables X, Y, Z, U, V, W together with 6 dummy ones
X∗, Y ∗, Z∗, U∗, V ∗, W ∗, and gives the anti-canonical embedding into P

5. There
are several benefits arising from these points. First, by means of the configu-
ration space of 5 points, the natural S5-action becomes visible; moreover, the
action can be quite explicitly described in terms of the pentagonal coordinates.
This allows one to understand the construction more transparently. Secondly,
our method allows to give a friendly proof of the fact that the linear system L
is a pencil, the fact for which Edge only gives a short explanation. Finally, as
the reader will find soon, the pentagonal coordinates turns out to be the most
optimal coordinate system in the sense that, in terms of it, the Wiman’s sextic
has the very beautiful and simple defining equation; indeed, it is

X2 + X∗2 + Y 2 + Y ∗2 + Z2 + Z∗2 + U2 + U∗2 + V 2 + V ∗2 + W 2 + W ∗2 = 0

(cf. 3.19 below). Note that our coordinate system is different from Edge’s one
in [3].

The composition of this note is as follows: In the next section, we will
briefly recall Edge’s construction of the linear system L and the Wiman’s sextic
W . In Section 3 we will perform our way of the construction. In the last section
(Section 4) we give the proof of the fact that the linear system is a pencil.

2. Review of Edge’s construction

In this section we will briefly review Edge’s construction of Wiman’s sextic
[2].

General Convention
2.1. Throughout this paper, K denotes an algebraically closed field with

char(K) �= 2, 3, 5. By V = Kn+1 we denote the vector space consisting of all
column vectors t(a0, . . . , an) of height n+1. Set P

n = Proj SymK V ∗. The set of
K-rational points P

n(K) thus consists of homothecy classes of column vectors;
such a point will be written as t(a0 : · · · : an), or more simply, (a0 : · · · : an),
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if there is no danger of confusion. The group PGLn+1(K) naturally acts on
P

n from the left. On K-rational points, the action is described as follows:
For A = (aij) and x = (x0 : · · · : xn), we have Ax = (y0 : · · · : yn), where
t(y0, . . . , yn) = A · t(x0, . . . , xn).

2.2. In the sequel, simply by a point of a K-scheme we always mean a
K-rational point. Accordingly, for a K-scheme X, writing x ∈ X means that
x is a K-rational point of X, that is, x ∈ X(K).

2.3. We will be concerned with some elementary projective plane ge-
ometry. For two distinct points p0, p1 ∈ P

2, we denote by p0 ∗ p1, the so-called
join, the line spanned by these points. For two different lines �0, �1 on P

2, we
likewise denote by �0∗�1 the join, that is, the unique intersection point of them.

Cremona transformation
2.4. Recall that a Cremona transformation on P

n is a rational selfmap
of P

n that has the rational inverse. They evidently form a group by compo-
sition, which contains Aut(Pn) = PGLn+1(K) as a subgroup. The Cremona
transformations of the following kind will be of particular importance: Let
p0, p1, p2, q ∈ P

2 be four points in general position (i.e., no three of them sit on
a line), and Q the blow-up of P

2 at the three points p0, p1, p2. Let Ei (i = 0, 1, 2)
be the resulting exceptional line over pi, and Ci the strict transform of the line
pj ∗ pk, where {i, j, k} = {0, 1, 2}. Blow-down the (−1)-curves C0, C1, C2, and
coordinate the resulting P

2 in such a way that the image of Ci is pi and that q
is mapped to q. Thus we get a Cremona tramsformation, which we denote by
J{p0,p1,p2},q. Note that J{p0,p1,p2},q is involutive, i.e., (J{p0,p1,p2},q)2 = id. The
following proposition is easy to verify, and the proof is left to the reader:

Proposition 2.5. The Cremona transformation J{p0,p1,p2},q maps the
pencil of all lines passing through pi linearly isomorphically onto itself for each
i = 0, 1, 2, and maps the pencil of all lines passing through q linearly isomor-
phically onto the pencil of all conics passing through p0, p1, p2, q and vise versa.

Hessian duad and Hessian pair
2.6. Consider a set of three distinct points {p0, p1, p2} of P

1. The Hes-
sian duad of the set {p0, p1, p2} is the set of two points {q+, q−} of P

1 charac-
terized by one of the following equivalent conditions:

(1) The points q+ and q− are the fixed points of the linear transformation
of P

1 induced from a cyclic permutation of {p0, p1, p2}.
(2) q = q+ and q = q− are the solutions for the equation cr(p0, p1, p2, q) =

−ω,−ω2, where ω is the primitive cubic root of unity.
(3) If we choose ϕ ∈ Aut(P1) such that ϕ({p0, p1, p2}) = {1, ω, ω2}, then

ϕ({q+, q−}) = {0,∞}.
Here, cr(p0, p1, p2, q) denotes the cross ratio defined by

cr(p0, p1, p2, q) =
q − p1

q − p2
· p0 − p2

p0 − p1
,
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where, now, the points are given in terms of inhomogeneous coordinate.
Note that the definition of Hessian duad depends only on the set

{p0, p1, p2}. One can similarly define Hessian duad of three distinct points
on a line in P

2. In duality, one defines likewise the notion of Hessian pair of
the set of three distinct lines sitting in a pencil. The following proposition is
easy to see, and the proof is left to the reader:

Proposition 2.7. Let p be a point of P
2, and {�0, �1, �2} a set of distinct

three lines passing through p. Let � be a line that does not contain p, and set
qi = �i ∗ � for i = 0, 1, 2. Then the following conditions for two lines �± passing
through p are equivalent:

(1) {�+, �−} is the Hessian pair of {�0, �1, �2}.
(2) {�+ ∗ �, �− ∗ �} is the Hessian duad of {q0, q1, q2} on the line �.

The line configuration (Π + H)
2.8. Now we begin with the construction. The first step of the con-

struction is to give a certain line configuration, which we denote symbolically
by (Π + H), on P

2 that is determined by a set of 4 points in general position;
since the construction is entirely linear, change of the set of the points only gives
rise to the linear change of the configuration, and hence, (Π + H) is unique up
to linear transformation.

Let {p1, p2, p3, p4} be a set of 4 points of P
2 in general position. This

set gives rise to the so-called quadrangle on P
2, which is the line configuration

consisting of 6 lines Lij = Lji = pk ∗ pl for {i, j, k, l} = {1, 2, 3, 4}. It has the
points pi’s as its vertices, and the 3 diagonal points pij = pkl = Lij ∗ Lkl for
{i, j, k, l} = {1, 2, 3, 4}. Note that, on the line Lij , there are 3 distinguished
points pk, pl, pkl ({i, j, k, l} = {1, 2, 3, 4}), where the first two are triple points,
and the last one is a double point. We denote by Π the line configuration
consisting of the 6 lines Lij .

2.9. Let {i, j, k, l} = {1, 2, 3, 4}. The 3 lines Lkl, Ljl, Ljk pass through
the vertex pi, and one can consider the Hessian pair {H+

i , H−
i } of them. We

have in total 8 lines of the form H±
i , which we call the Hessian lines of the

quadrangle. The line configuration consisting of the 8 lines H±
i is denoted by

H.
On the line Lij , one can consider the Hessian duad {q+

ij , q
−
ij} of {pk, pl, pkl}.

By 2.7, it coincides with the pair {H+
i ∗ Lij , H

−
i ∗ Lij}, and furthermore, with

the pair {H+
j ∗ Lij , H

−
j ∗ Lij}. In this way, we get 12 points of the form q±ij .

We call them the Hessian points of the quadrangle Π.

Definition 2.10. The line configuration (Π + H) is the collection of 6
lines Lij (edges of the quadrangle) and the 8 lines H±

i (hessian lines), hence in
total 14 lines. It has in total the 19 distinguished points, viz., 4 vertices pi, 3
diagonal points pij , and 12 Hessian points q+

ij .
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Cremona action by S5 on P
2

2.11. Let H be the group of the linear transformations induced by per-
mutations of four points p1, p2, p3, p4. Thus, H is a subgroup of Aut(P2) iso-
morphic to S4. Moreover, it is obvious that the line configuration (Π + H) is
stable under the action by H.

To understand the symmetry more in detail, let us introduce the following
5 pencils:

• α0: the pencil of conics passing through p1, p2, p3, p4.
• αi (i = 1, 2, 3, 4): the pencil of lines passing through pi.

The group H acts on the set {α0, α1, α2, α3, α4} as the permutations of the last
four elements.

Set Ji = J{pj ,pk,pl},pi
for {i, j, k, l} = {1, 2, 3, 4}. By 2.5, we readily see the

following:

Proposition 2.12. The Cremona transformation Ji gives rise to the
transposition (α0αi) on the set {α0, α1, α2, α3, α4}.

2.13. Now set G = 〈H, J1〉 as a subgroup of the group of all Cremona
transformations. Since G acts on the set {α0, α1, α2, α3, α4}, there exists a map
G → S5. As the image contains all transpositions, this map is surjective; one
can check, moreover, without so much pain that it is injective, and thus that
the group G is isomorphic to S5. Hence we get the Cremona action of S5 on
P

2. Note that the group G contains all Ji (i = 1, 2, 3, 4) as conjugates of J1

by suitable elements in H. By the construction of Ji’s (as in 2.4), we see the
following:

Proposition 2.14. The line configuration (Π + H) is stable under the
action of G.

The linear system L
Definition 2.15. Define L to be the linear system of curves on P

2

spanned by general 4-nodal sextics C having the nodes at the vertices p1, p2, p3,
p4 such that the following conditions are satisfied:

(1) For each i = 1, 2, 3, 4, the nodal tangents at pi coincide with H±
i .

(2) For each i, j = 1, 2, 3, 4 (i �= j), C passes through the points q±ij .
Note that, due to 2.14, the linear system L is acted on by the group G ∼= S5.

Wiman’s sextic W
2.16. Edge claims in [2], with a short explanation, that the linear system

L is a pencil. We will give an algebro-geometric proof for this fact in Section
4. Assuming this fact, as well as that the action of G on L is not the trivial
one, one can characterize the Wiman’s sextic curve W as the unique irreducible
member of L that is stable under the action of the whole group G. In fact,
since the action of G on L is non-trivial, G acts on L ∼= P

1 via the map

G ∼= S5 −→ S5/A5
∼= {±1},

namely;
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(1) general member of L is stable under the action of A5;
(2) there exist exactly 2 members (corresponding to the fixed point in P

1

of the action z 	→ −z) which are stable under the whole group G = S5.
As we will see in the next section that, in fact, one of the members as in (2)
is Π, and the other one is an irreducible one, which is nothing but Wiman’s
sextic.

3. Construction by configuration space

Configuration space
3.1. We denote by X(2, n) the K-scheme representing the set of all

configurations of n rational points on the projective line P
1, that is,

X(2, n) = PGL2 \[(P1)n − ∆],

where ∆ is the locus of coincidence of at least two points. Here, (P1)n is acted
on by PGL2 diagonally, and hence, the natural Sn-action that permutes the
factors descends to that on X(2, n). It is known that X(2, n) is an (n − 3)-
dimensional non-singular quasi-projective scheme on K. This space comes more
visible when one describes it in terms of coordinates: Let Mat2,n be the affine
scheme of all 2× n matrices. It has the n-tuples of column vectors of the form
t(xi, yi) (i = 0, . . . , n − 1) as the coordinate system. Let D(ij) denotes the
determinant of the (i, j)-minor:

D(ij) = xiyj − xjyi.

Then we have

X(2, n) ∼= PGL2 \[Mat2,n −∆̃]/(Gm)n,

where ∆̃ is the closed subscheme defined by
∏

i<j D(ij), and (Gm)n acts on
Mat2,n −∆̃ columnwise. The Sn-action is simply given by the permutation of
indices {0, 1, . . . , n − 1}.

3.2. The space X(2, n) has the nice projective compactification X(2, n),
which is the K-scheme classifying all stable configurations; see [4, Def. 3.7/Prop.
3.4] for the definition of stable configuration. Denote the open subscheme of
(P1)n of stable configurations by (P1)n

stable. Then the scheme X(2, n) is given
by

X(2, n) = PGL2 \(P1)n
stable.

It is well-known that X(2, n) is a non-singular projective K-scheme of dimen-
sion n − 3, which contains X(2, n) as a dense open subscheme.

Example 3.3. We will be only concerned with the configuration spaces
X(2, n) with n = 4 and n = 5.

(1) If n = 4, then X(2, 4) is the projective line deprived of three points.
Given a rational point of X(2, 4), or what amounts to the same, a 4-tuple
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(p0, p1, p2, p3) of rational points of P
1 (given in terms of inhomogeneous coordi-

nate), one considers the cross ratio cr(p0, p1, p2, p3), which gives rise to the open
immersion X(2, 4) ↪→ P

1. The compactification X(2, 4) is simply a projective
line that fills in the three missing points of X(2, 4).

Another realization is given by the immersion X(2, 4) ↪→ P
2 by the map

p 	−→ (D(01)(p)D(23)(p) : D(02)(p)D(13)(p) : D(03)(p)D(12)(p)).

It maps X(2, 4) isomorphically onto the locally closed subset consisting of points
(x : y : z) such that none of x, y, z vanishes and that the Plücker relation

x − y + z = 0

is satisfied.
(2) If n = 5, it is known that X(2, 5) is the Del Pezzo quintic surface. A

configuration of 5 points (p0, p1, p2, p3, p4) is stable if and only if there exists
no subset I ⊂ {0, 1, 2, 3, 4} with |I| = 3 such that pi = pj = pk. This allows
one to describe the boundary X(2, 5)−X(2, 5). In fact, the boundary consists
of 10 lines �ij defined by the equation D(ij) = 0. The line �ij is, therefore, the
locus of the points representing the configurations of 5 points (p0, p1, p2, p3, p4)
with pi = pj ; it is thus isomorphic to X(2, 4), hence to P

1 (3.3 (1)). Each �ij

intersects exactly 3 other such lines transversally; indeed, the lines �ij and �kl

intersect if and only if {i, j} ∩ {k, l} = ∅.

The linear system L̃
3.4. We are going to define a linear system L̃ on the non-singular projec-

tive surface S = X(2, 5). Consider the natural S5-action on X(2, 5) introduced
in 3.1. By σ ∈ S, the line �ij is mapped linearly to �σ(i)σ(j). Hence, in partic-
ular, the divisor

Π̃ =
∑
i<j

�ij

is stable under the S5-action.

3.5. Let {i, j, k, l, m} = {0, 1, 2, 3, 4}. Then the line �ij intersects �kl,
�lm, and �mk, and these intersection points gives rise to the Hessian duad
{q̃+

ij , q̃
−
ij} (2.6). We have 20 such points on Π̃ in total. Since the divisor Π̃ is

stable under the action by S5, so is the set of all those points q̃±ij .

Definition 3.6. Define the linear system L̃ on X(2, 5) by

L̃ =

∣∣∣∣∣∣Π̃ −
∑
i<j

(q̃+
ij + q̃−ij)

∣∣∣∣∣∣
=

{
effective divisors linearly equivalent to eΠ which
pass through all the points eq±ij

}
.

As the divisor Π̃ and the set {q̃+
ij , q̃

−
ij}i<j are stable under the action by

S5, the linear system L̃ is acted on by S5.
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Pentagonal coordinates
3.7. We are going to study the linear system L̃ in more detail. To do

this, we are to introduce a useful coordinates on the surface X(2, 5) following
[1].

Given an ordered set (a, b, c, d, e) of indices such that {a, b, c, d, e} =
{0, 1, 2, 3, 4}, we put

〈abcde〉 = D(ab)D(bc)D(cd)D(de)D(ea).

Clearly, we have 〈abcde〉 = 〈bcdea〉 and 〈abcde〉 = −〈edcba〉. One 〈abcde〉 is,
therefore, fixed up to sign by the subgroup of S5 isomorphic to D5, and hence,
there exist precisely 12 such symbols.

3.8. There are several relations among 〈abcde〉’s. We first find linear
ones as follows: Consider the Kleinian subgroup K4 = {1, (ab), (cd), (ab)(cd)}
in S4 acting on the set {a, b, c, d}. Then we have

(L)
∑

σ∈K4

〈abcde〉σ = 〈abcde〉 + 〈bacde〉 + 〈abdce〉 + 〈badce〉 = 0,

which follows from Plücker’s identity D(ab)D(cd)−D(ac)D(bd)+D(ad)D(bc) =
0. There are precisely 6 linearly independent such relations.

3.9. For a given 〈abcde〉, its dual is defined to be 〈acebd〉, that is, the
unique one such that any couple of adjacent indices in the former are not
adjacent in the latter. We denote it by 〈abcde〉∗. Observe that we have
(〈abcde〉∗)∗ = −〈abcde〉, hence, despite the name, the formation of taking dual
is involutive only up to sign. Note that the product 〈abcde〉〈abcde〉∗ is the
product of all 10 D(ij)’s up to sign, and hence, they are all equal up to sign;
checking the sign, we easily see

(Q) 〈abcde〉〈abcde〉∗ + 〈abced〉〈abced〉∗ = 0.

This gives rise to 5 linearly independent quadratic relations.

3.10. There is yet another series of relations, which is actually given
by cubics of 〈abcde〉’s. They are generated, by the S5-action, by the one that
looks like

(C) 〈abcde〉〈abecd〉〈abdec〉 − 〈abdce〉〈abedc〉〈abced〉 = 0.

We have, thus, 10 such cubic relations.

Definition 3.11. We set

X∗ = 〈01234〉, X = 〈03142〉,
Y ∗ = 〈01423〉, Y = 〈02134〉,
Z∗ = 〈01342〉, Z = 〈04123〉,
U∗ = 〈10234〉, U = 〈13042〉,
V ∗ = 〈10423〉, V = 〈12034〉,
W ∗ = 〈10342〉, W = 〈14023〉.
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These gives rise to a homogeneous coordinate (X : Y : Z : U : V : W ) on
X(2, 5). In terms of this, the relations (L), (Q), and (C) are now read off as
follows:

(L)




X∗ = −U − Y − Z

Y ∗ = −V − Z − X

Z∗ = −W − X − Y

U∗ = −X − V − W

V ∗ = −Y − W − U

W ∗ = −Z − U − V,

(Q) XX∗ = Y Y ∗ = ZZ∗ = −UU∗ = −V V ∗ = −WW ∗,

(C)




X∗Y ∗Z∗ = −U∗V ∗W ∗, XY V ∗ = −Z∗UW ,
XY U∗ = Z∗V W , Y ∗V W = −XZU∗,
Y ∗UV = −XZW ∗, X∗Y ∗W = ZU∗V ∗,
Y ZV ∗ = −X∗UW , XV ∗W ∗ = Y ∗Z∗U ,
X∗UV = −Y ZW ∗, X∗Z∗V = Y U∗W ∗.

Theorem 3.12. (1) The homogeneous coordinate (X : Y : Z : U : V :
W ) on S = X(2, 5) gives rise to a closed immersion Φ: S = X(2, 5) ↪→ P

5

onto the closed subvariety defined by the relations (L), (Q), and (C), which is
nothing but the embedding by the anti-canonical class −KS.

(2) Consider the homogeneous coordinate (x′ : y′ : z′) given by

x′ = D(12)D(03)D(04),
y′ = D(13)D(04)D(02),
z′ = D(14)D(02)D(03).

Then it gives rise to the proper birational morphism Ψ: S = X(2, 5) → P
2 that

blows down the 4 lines �0i (i = 1, 2, 3, 4).

Proof. We first show (2). Due to the definition of the stable configuration
(as in 3.3 (2)), one sees immediately that the values x′, y′, z′ cannot be all zero
at the same time. Hence it gives the morphism Ψ as above. To understand it,
we may limit ourselves to the locus of p = (p0, p1, p2, p3, p4) with z′(p) �= 0.

If D(01)(p) �= 0 and D(04)(p) �= 0, then one can normalize p as p =
(∞, 0, u, v, 1), where (u, v) �= (1, 1), (0, 0). Then the map Ψ on this locus looks
like Ψ(p) = (u : v : 1), hence is one-to-one. In particular, it is a birational
morphism. Since S is proper, Φ is a proper mapping.

If in turn D(04)(p) = 0 (the case D(01)(p) = 0 is similar), then p can be
normalized as p = (∞, 0, u, 1,∞), by which we get Ψ(p) = (0 : 0 : 1). The
inverse image of (0 : 0 : 1) on this locus us an affine line. Actually, this gives
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one affine patch in the blow-up at (0 : 0 : 1); indeed, by the affine coordinate
(x′/z′, y′/z′) on P

2, one gets (x′/z′) = u(y′/z′). By this, one easily deduces
(2).

For (1), we refer to [1] for the proof that the rational map Φ actually gives
a closed immersion onto the prescribed closed subvariety. To show that the
other statement of (1), one calculates (due to (2)) KS ∼ Ψ∗KP2 +

∑4
i=1 �0i,

whence deducing that −KS is the divisor of

D(12)D(13)D(14)D(02)2D(03)2D(04)2

D(01)D(02)D(03)D(04)

(where the numerator stands for x′y′z′), that is, in view of Plücker relation
(cf. 3.3 (1)), equal to ZW/(Z + W ). Hence we see that −KS ∼ OS(1) as
desired.

3.13. Since the surface S = X(2, 5) is acted on by the group S5, it
is to be checked whether the action is equivalent, through the mapping Φ, to
the Cremona action on P

2 as in 2.13. Set p1 = (1 : 1 : 1), p2 = (1 : 0 : 0),
p3 = (0 : 1 : 0), p4 = (0 : 0 : 1). Then the map Ψ in 3.12 (2) maps the line �0i

(i = 1, 2, 3, 4) to the point pi and the line �ij (i, j �= 0) linearly onto the line
Lij .

Proposition 3.14. The natural S5-action on S = X(2, 5) is, through
the map Ψ, equivalent to the Cremona S5-action on P

2; that is, for any σ ∈ S5,
we have Ψ ◦ σ = σ ◦ Ψ.

Proof. The desired equality Ψ ◦ σ = σ ◦ Ψ are to be checked for the
transpositions (01), (12), (23), and (34), which suffices to show the proposi-
tion. Let us first check the case σ = (01). In this case, we have Ψ ◦ σ(p) =
(D(02)D(13)D(14) : D(03)D(14)D(12) : D(04)D(12)D(13)). Dividing out the
entries by D(12)D(03)D(04)D(02)D(13)D(14), one gets Φ ◦ σ(p) = ( 1

x′ : 1
y′ :

1
z′ ), which is nothing but J1(x′ : y′ : z′) as in 2.11. In case σ = (12), one
calculates Ψ ◦ σ(p) = (−x′ : y′ − x′ : z′ − x′); as the linear transformation
(x′ : y′ : z′) 	→ (−x′ : y′ − x′ : z′ − x′) is the unique one that exchanges p1 and
p2 and fixes the other two, we get the desired equality in this case. The other
cases are similar.

The linear system L̃ as conic section
Proposition 3.15. The divisor Π̃ is a conic-cut in P

5 with respect to
the embedding Φ; i.e., there exists a quadratic hypersurface C in P

5 such that
Φ(Π̃) = C · Φ(S). In particular, we have Π̃ ∼ OS(2).

Proof. It suffices to invoke the fact that Π̃ is the zero set of XX∗ =
−X(U + Y + Z).

3.16. It is, therefore, natural to ask whether all members of L̃ could be
obtained in this way. To check this, we look at the exact sequence

0 −→ IS(2) −→ OP5(2) −→ OS(2) −→ 0,
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where IS is the defining ideal of Φ(S). The associated cohomology exact
sequence begins with

(∗) 0 −→ H0(P5, IS(2)) −→ H0(P5, OP5(2)) −→ H0(S, OS(2)).

Since OS(2) ∼= OS(Π), what to prove is the following

Proposition 3.17. The map H0(P5, OP5(2)) → H0(S, OS(2)) is surjec-
tive. Hence, in particular, every member of L̃ is a conic-cut in P

5.

Proof. In the exact sequence (∗) in 3.16, the cohomology group in the
middle is the space of all quadratic forms, whence having dimension 21, while
the first one is the subspace of the quadratic forms whose zero sets contain
Φ(S). Such a quadratic form should belong to IS , and hence is a linear combi-
nation of the known quadratic relations in (Q) in 3.11. As there are exactly 5
linearly independent such quadratic relations, we have dim H0(P5, IS(2)) = 5.
Therefore, it suffices to show that the dimension of H0(S, OS(2)) is 16. Since
OS(2) ∼ −2KS , we deduce by Riemann-Roch Theorem

χ(OS(2)) =
1
2
(−2KS · (−3KS)) + ξ(OS)

=
1
2
· 30 + 1 = 16.

On the other hand, since −KS is ample, we have

dim H2(S, OS(2)) = dim H0(S, 3KS) = 0.

Moreover, by Kodaira-Deligne-Illusie vanishing theorem, we have

dim H1(S, OS(2)) = dim H1(S, 3KS) = 0

(for, when K is of positive characteristic, S is liftable to the Witt ring of K).
Hence dim H0(S, OS(2)) = 16 as desired.

3.18. Consider the subspace V of the quadratic forms in H0(P5, OP5(2))
defined as follows:

V =
{

quadratic forms Q such that the conic

Q = 0 passes through the 20 points eq±ij

}
⊂ H0(P5, OP5(2)).

Clearly, V contains H0(P5, IS(2)) as the 5-dimensional subspace. The following
theorem completely determines the structure of V :

Theorem 3.19. Set

F = X2 + Y 2 + Z2 + U2 + V 2 + W 2

+X∗2 + Y ∗2 + Z∗2 + U∗2 + V ∗2 + W ∗2,
G = XX∗ + Y Y ∗ + ZZ∗ − UU∗ − V V ∗ − WW ∗.

Then F and G sit in V , spanning an S5-stable 2-dimensional subspace V0 such
that V = V0 ⊕ H0(P5, IS(2)).
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The proof of the theorem will be done in the next section.

Corollary 3.20. (1) The birational morphism Ψ (as in 3.12 (2)) gives
rise to the linear isomorphism L̃

∼→ L of linear systems, where L is the linear
system defined in 2.15 with {p1, p2, p3, p4} = {(0 : 0 : 1), (0 : 1 : 0), (1 : 0 :
0), (1 : 1 : 1)}.

(2) The linear system L̃ (and hence L also) is a pencil. Moreover, it is
spanned by the two members Π̃ = {G = 0} and W̃ = {F = 0}.

(3) General members of L̃ are stable under the action of A5, while only Π̃
and W̃ are the members that are stable under the action of the whole S5.

Proof. In view of 3.17, we see that L̃ is isomorphic to P(V0), and hence
is a pencil. Moreover, it is spanned by Π̃ and W̃ . By the birational morphism
Ψ, the divisor Π̃ is obviously mapped to the union Π of the 6 lines of the
quadrangle spanned by the 4 points {p1, p2, p3, p4} = {(0 : 0 : 1), (0 : 1 : 0), (1 :
0 : 0), (1 : 1 : 1)}. By 3.12 (2) and the S5 action, we see that each line �ij is a
(−1)-curve. Hence one calculates the self-intersection number

Π̃2 = 10 · (−1) + 10 · 3 = 20,

which is exactly the number of the points q̃±ij . Hence, in particular, these points
are the only base points for the general members of the linear system L̃. As
it is easily checked that W̃ does not contain any of the lines �ij , one deduces
that all intersections of general members of L̃ with Π̃ are transversal. Hence
they are mapped by Ψ to curves having nodes at the 4 points pi (i = 1, 2, 3, 4).
Moreover, their degree is 2 · 5 − 4 = 6, and hence, they are sextics. By the
definition of L̃, these curves satisfy the conditions (1) (2) in 2.15, and hence
belong to L. Thus we get a linear map L̃ → L. One can construct (by taking
the strict transforms) the inverse mapping L → L̃. This proves (1) and (2).

To show (3), it suffices to observe that F and G are invariant up to sign
under the S5-action and that the action on the pencil L̃ is non-trivial (cf. 2.16).
But these assertions are clear, for, while F is fixed by any element of S5, G is
fixed only by even permutations and mapped to −G by transpositions.

Wiman’s sextic: Conclusion
3.21. As in 3.20 we have two particular members Π̃ and W̃ of the linear

system L̃, now known to be a pencil. By the linear isomorphism L̃
∼→ L, Π̃ is

mapped to the union of 6 lines Π. It then follows that the image W of W̃ must
be the Wiman’s sextic.

It is an easy but tedious job to recover the defining equation of the curve
W . Let (x′ : y′ : z′) be the homogeneous coordinate of P

2 defined as in 3.12,
and then consider the linear change

x = −x′ − y′ + z′, y = x′ − y′ + z′, z = −x′ + y′ + z′

of coordinates (so that the set {p1, p2, p3, p4} coincides with the set of points
(±1 : ±1 : ±1). Then we see that the polynomial F is transformed into the
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following one:

2[x6 + y6 + z6 + (x2 + y2 + z2)(x4 + y4 + z4) − 12x2y2z2].

3.22. One sees easily, by means of the coordinates X, Y, . . . , W , that
the 6-dimensional representaion H0(P5, OP5(1)) of S5 is the unique irreducible
one. The induced action on the space of quadratic forms H0(P5, OP5(2)) is
isomorphic to the second symmetric product of the first one, and hence the
irreducible decomposition can be easily calculated:

H0(P5, OP5(2)) = (triv) ⊕ (sgn) ⊕ (4+) ⊕ (5+)2 ⊕ (5−),

where ((triv) (resp. (sgn)) is the trivial (resp. signature) representation, and
(n+) denotes the n-dimensional irreducible representation such that the sig-
nature of the trace of transpositions is ±. By a slightly more calculation one
sees that the component (5−) is the subspace H0(P5, IS(2)) (having the basis
XX∗ − Y Y ∗, Y Y ∗ − ZZ∗, ZZ∗ + UU∗, UU∗ − V V ∗, V V ∗ − WW ∗). The
subspace V0 is the direct sum of the first two components; F is a basis of the
trivial part, and G of the signature part.

4. Proof of Theorem 3.19

In this section, we prove Theorem 3.19. The proof is divided into several
steps.

4.1. First we write the equation in P
5 of lines, which can be easily done

by the fact �ij = {D(ij) = 0}. For the later use, we divide these equations into
3 types:

(1)




�04 : Y = Z = U = W = 0,
�13 : X = Y = U = W = 0,
�02 : X = Y = V = W = 0,
�14 : X = Z = V = W = 0,
�03 : X = Z = U = V = 0,
�12 : Y = Z = U = V = 0.

(2)




�24 : X = U = Y + W = Z + V = 0,
�34 : Y = V = X + W = Z + U = 0,
�23 : Z = W = X + V = Y + U = 0.

(3) �01 : X − U = Y − V = Z − W = X + Y + Z = 0.

Let Q be a quadratic polynomial in H0(P5, OP5(2)). For a monomial, say XY ,
we denote the coefficient of XY in Q by qXY , etc.

4.2. We look at the condition that Q = 0 passes through the points
q̃±04. By the first row in (1) in 4.1 the line �04 has the homogeneous coordinate
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(X : V ). This line has the intersection points with �12, �23, and �13, which are
easily calculated to be (1 : 0), (−1 : 1), and (0 : 1), respectively. By this one
calculates the Hessian duad q̃±04 to be {(ω : 1), (ω2 : 1)}, that is, the zeros of
X2 + XV + V 2. Hence the condition in question is

qX2 = qXV = qV 2 .

We do the same for all the line listed in (1) in 4.1. Consequently, we get 12
equalities among the coefficients that stand cyclically

qX2 = qXV = qV 2 = · · · = qW 2 = qWX = qX2

with respect to the ordering

X � V � Z � U � Y �W � X.

We get, therefore, precisely 11 linearly independent relations among coefficients.

4.3. Next, we consider the points q̃±ij on the 3 lines in (2) in 4.1. The
line �23, for example, has the homogeneous coordinate (X : Y ), and, in terms
of it, the intersections with �01, �14, and �40 are (−1 : 1), (0 : 1), and (1 : 0),
respectively. Hence the situation is parallel to the previous one. The condition
is

Q(X, Y, 0,−Y,−X, 0) = λ(X2 + XY + Y 2)

for some λ ∈ K. Since the coefficients of X2 and Y 2 in the left-hand side are, as
we say in the previous step, equal to each other, we have precisely one relation
that gives qXY . Similar observation on q̃±24 and q̃±34 gives relations involving qY Z

and qZX , and hence, we have so far 11+3 = 14 linearly independent conditions
on the coefficients.

4.4. Finally, we look at �01 characterized by (3) in 4.1. By an argument
similar to that in the previous steps, we deduce that the condition is

Q(X, Y,−X − Y, X, Y,−X − Y ) = λ(X2 + XY + Y 2)

for some λ ∈ K. Now the coefficients of X2 in the left-hand side is

qX2 + qZ2 − qXZ + qU2 + qW 2 − qUW + qXU − qXW − qZU + qZW = 2qX2 ;

similarly, the coefficient of Y 2 is equal to 2qX2 , while that of XY is

qXY − qXZ + qXV − qXW − qY Z + qY U − qY W + 2qZ2

− qZU − qZV + 2qZW + qUV − qUW − qV W + 2qW 2 = 2qX2 .

Hence the condition in question is already satisfied, and is superfluous. We
conclude, therefore, that the condition of passing through the 20 points q̃±ij is
exactly of rank 14, and hence that dimV = 21 − 14 = 7.
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4.5. Since Π̃ = {G = 0}, we have G ∈ V . Moreover, it is clear that
G �∈ H0(P5, IS(2)), since it cuts out the divisor Π̃ on S. To prove that F ∈ V ,
it is enough to show that F = 0 contains q̃±01, for F is clearly S5-invariant.
This follows from

F |D(01)=0 = F (X, Y,−X − Y, X, Y,−X − Y ) = 4(X2 + XY + Y 2)

due to (3) in 4.1. Since G is not invariant under the S5-action, F is not
proportional to G. Since the quadratics XX∗, Y Y ∗, . . . , WW ∗ do not contain
the monomials X2, Y 2, . . . , W 2, G does not either, while one sees easily that F
contains them. Since

XX∗ − Y Y ∗, Y Y ∗ − ZZ∗, ZZ∗ + UU∗, UU∗ − V V ∗, V V ∗ − WW ∗

give a basis of H0(P5, IS(2)), every element in H0(P5, IS(2)) does not con-
tain the monomials X2, Y 2, . . . , W 2. Hence F �∈ H0(P5, IS(2)). Since G �∈
H0(P5, IS(2)), any linear combination of F and G but 0 does not belong to
H0(P5, IS(2)), and hence, we have V0 ∩ H0(P5, IS(2)) = {0}. Counting the
dimension, we get V = V0 ⊕ H0(P5, IS(2)), as desired.
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