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Invariant averagings of locally compact groups
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Djavvat Khadjiev and Abdullah Çavuş

Abstract

A definition of an invariant averaging for a linear representation of
a group in a locally convex space is given. Main results: A group H is
finite if and only if every linear representation of H in a locally convex
space has an invariant averaging. A group H is amenable if and only
if every almost periodic representation of H in a quasi-complete locally
convex space has an invariant averaging. A locally compact group H is
compact if and only if every strongly continuous linear representation of
H in a quasi-complete locally convex space has an invariant averaging.

Introduction

The present paper is devoted to a definition and an investigation of an in-
variant averaging for a linear representation of a group in a locally convex space.
Invariant averagings are closely connected with invariant means, vector-valued
invariant means, amenable groups, almost periodic functions, almost periodic
representations of a group in locally convex spaces and uniformly equicontinu-
ous actions of a group on compacts.

The theory of invariant means for complex-valued bounded functions on
a group was founded by von-Neumann [18], [19]. For an arbitrary complete
locally convex space L, the theory of L-valued almost periodic functions and L-
valued invariant means was developed by von-Neumann and Bochner [20]. The
existence of an invariant mean in the space of weakly almost periodic functions
was investigated by de-Leew and Glicksberg [14], [15]. Vector-valued invariant
means have been used by a number of authors for the study of some vector-
valued function spaces, functional equations , a linear topological classification
of spaces of continuous functions and for solving stability problems [1], [2], [6],
[23]–[25].

It is well known[7], [4], [21]–[23] that the existence of an invariant mean on
a locally compact group G is equivalent to many fundamental properties in the
harmonic analysis of G. Below another such property will be given in terms of
invariant averagings.
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Our paper is organized as follows. In section 1, a definition of an invariant
averaging for a linear representation of a group in a locally convex space is given.
It is obtained that a group H is finite if and only if every linear representation
of H in a locally convex space has an invariant averaging. In section 2, it is
proved that a group H is amenable if and only if every almost periodic linear
representation of H in a quasi-complete locally convex space has an invariant
averaging. In section 3, it is obtained that a locally compact groupH is compact
if and only if every strongly continuous linear representation of H in a quasi-
complete locally convex space has an invariant averaging.

A part of results of section 1 was announced in [11].

1. The concept of an invariant averaging and invariant averagings
of finite groups

Let L be a complex locally convex space and G(L) be the group of all
continuous linear operators A : L→ L such that A−1 exists and is continuous.
Let H be a group.

Definition 1.1 ([16, p. 80]). A homomorphism α : H → G(L) will be
called a linear representation of a group H in a locally convex space L.

Let α be a linear representation of H in a locally convex space L, x ∈ L.
Put Hx = {y ∈ L : y = α(t)x, t ∈ H}. Denote the convex hull of Hx by
Conv (Hx) and the closure of Conv (Hx) in L by V (x).

Definition 1.2. A linear operatorM : L→ L will be called an invariant
averaging for α if:

(i) α(t)M(x) = M(α(t)x) = M(x) for all x ∈ L and all t ∈ H;
(ii) M(x) ∈ V (x) for all x ∈ L.

Put LH = {y ∈ L : α(t)y = y, ∀t ∈ H}. Then LH is a closed linear sub-
space of L. By Definition 1.2, M(x) ∈ LH for all x ∈ L, M(x) = x for all
x ∈ LH and M(M(x)) = M(x) for all x ∈ L. Hence M is a projection operator
onto LH .

Proposition 1.1. Let {Kτ , τ ∈ T} be a family of closed α(H)-invariant
subspaces of a linear representation α of H in a locally convex space L. Assume
that α has an invariant averaging. Then

∑
T

KH
τ = (

∑
T

Kτ )H , where
∑

denotes

the algebraic sum of vector subspaces.

Proof. The inclusion
∑
T

KH
τ ⊂ (

∑
T

Kτ )H is evident. Prove the converse

inclusion. Let x ∈ (
∑
T

Kτ )H . Then there exist elements xi ∈ Kτi
, i = 1, . . . ,m,

such that x =
∑m

i=1 xi. Applying an invariant averaging M to x, we find
x = Mx =

∑m
i=1Mxi. Since Mxi ∈ Kτi

, i = 1, . . . ,m, we have x ∈ ∑
T

KH
τ .
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Remark 1. An analog of Proposition 1.1 has an important role in the
invariant theory ([17, II.3.2], [13, II.3.2, Theorem (d)], [8], [9], [10, p. 44]).

According to Definition 1.2, V (x) contains an α(H)-invariant point for all
x ∈ L. It is very important (in particular, in the ergodic theory) to know when
V (x) has the unique α(H)-invariant point.

Definition 1.3. An invariant averaging M on L will be called continu-
ous if M is continuous on L.

Proposition 1.2. Let α be a linear representation of H in a locally
convex space L. Assume that α has a continuous invariant averaging. Then
V (x) contains the unique α(H)-invariant point for every x ∈ L.

Proof. Let M be a continuous invariant averaging for α and x ∈ L. Then
M(x) ∈ V (x) and M(x) ∈ LH . Let y ∈ V (x) ∩ LH . Then there exists a net
{yν}, yν ∈ Conv(Hx), such that lim yν = y. Every yν has the form

yν = λ
(ν)
1 α(t(ν)

1 )x+ · · · + λ
(ν)
n(ν)α(t(ν)

n(ν))x,

where λ
(ν)
i ∈ R (R is the field of real numbers), λ(ν)

i ≥ 0 and
n(ν)∑
i=1

λi = 1.

Applying the operator M to yν , we find

Myν = λ
(ν)
1 Mα(t(ν)

1 )x+ · · · + λ
(ν)
n(ν)Mα(t(ν)

n(ν))x = Mx

for all ν. Since M is continuous, y = My = M(lim yν) = limMyν = Mx.

In the following theorem we prove that every linear representation of a
finite group in a locally convex space has a continuous invariant averaging.

Theorem 1.1. For a group H the following conditions are equivalent:
(i) H is a finite group;

(ii) every linear representation of H in a locally convex space has an in-
variant averaging.

Proof. (i) → (ii). Let H = {t1, . . . , tn} be a finite group, α is a linear
representation of H in a locally convex space L and x ∈ L. Consider the
operator

M(x) =
1
n

(α(t1) + · · · + α(tn))(x).

It is obviously that M is an invariant averaging for α and it is continuous.
(ii) → (i). Let H be an infinite group. Assume that every linear represen-

tation of H in a locally convex space has an invariant averaging.
Let Q(H) be the linear space of all complex functions on H. Denote by

F (H) the set of all finite subsets of H. Q(H) is a locally convex space with
respect to the topology of the system {pA, A ∈ F (H)} of semi-norms, where

pA(x) = max
t∈A

|x(t)|, x ∈ Q(H), A ∈ F (H).
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Let Q′(H) be the conjugate space of Q(H). Q′(H) is a locally convex
space with respect to the w∗-topology. Define the linear representation α of
H in Q(H) and the linear representation α′ in Q′(H) as follows: (α(h)x)(t) =
x(h−1t), (α′(h)ϕ)(x) = ϕ(α(h−1)x), where h ∈ H,x ∈ Q(H), ϕ ∈ Q′(H). Put

et(s) =
{

1 for t = s,
0 for t �= s

for all t, s ∈ H. Then et ∈ Q(H) for all t ∈ H.

Lemma 1.1.
(a) For ϕ ∈ Q′(H) the set {t ∈ H : ϕ(et) �= 0} is finite;
(b) If {t ∈ H : ϕ(et) �= 0} = ∅ for ϕ ∈ Q′(H) then ϕ = 0.

Proof of the Lemma. (a). On account of ϕ ∈ Q′(H) there exist a semi-norm
pA, A ∈ F (H), and c ∈ R, c > 0, such that |ϕ(x)| ≤ cpA(x). Then ϕ(et) = 0
for all t /∈ A. Hence {t ∈ H : ϕ(et) �= 0} ⊂ A and the set {t ∈ H : ϕ(et) �= 0} is
finite.

(b). Assume that ϕ ∈ Q′(H) and ϕ(et) = 0 for all t ∈ H. On account of
ϕ ∈ Q′(H) we have |ϕ(x)| ≤ cpA(x) for some A ∈ F (H) and some c ∈ R, c > 0.
Let A = {t1, . . . , tm}. Every element x ∈ Q(H) has the form x = x1+x2, where
x1(t) = x(t1)et1 + · · · + x(tm)etm

, x2 = x − x1. Using the inequality |ϕ(x)| ≤
cpA(x), we find ϕ(x2) = 0 and ϕ(x1) = x(t1)ϕ(et1) + · · · + x(tm)ϕ(etm

) = 0.
Hence ϕ(x) = 0 for all x ∈ Q(H). The lemma is proved.

According to supposition (ii) of our theorem there exists an invariant av-
eraging M on Q′(H). Let ϕ ∈ Q′(H) such that ϕ(1H) = 1, where 1H is the
function: 1H(t) = 1 for all t ∈ H. Then Mϕ is an α′(H)-invariant functional
on Q(H) and (Mϕ)(1H) = 1, since Mϕ ∈ V (ϕ). Hence Mϕ �= 0. According
to Lemma 1.1 there exists s ∈ H such that (Mϕ)(es) �= 0. Since Mϕ is α′(H)-
invariant, we have Mϕ(es) = Mϕ(α(t−1)es) = Mϕ(ets) �= 0 for all t ∈ H. But
it is a contradiction to statement (a) of Lemma 1.1. Hence H is finite. The
theorem is completed.

2. Invariant averagings of amenable groups

Let α be a linear representation of a group H in a quasi-complete locally
convex space L.

Definition 2.1. An element x ∈ L will be called almost periodic if the
orbit Hx is precompact in L. A representation α will be called almost periodic
if every element of L is almost periodic.

Remark 2. This is a variant of the definition of an almost periodic
operator semigroup proposed by K. de Leeuw and I. Glicksberg [14].

Let α be an almost periodic representation of H in a quasi-complete locally
convex space L. Then it is known [5, 8.13.4(2)] that V (x) is a compact for all
x ∈ L.
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Theorem 2.1. For a group H the following conditions are equivalent:
(i) H is an amenable group;

(ii) every almost periodic representation of H in a quasi-complete locally
convex space has an invariant averaging.

Proof. (ii) → (i). Let B(H) be the set of all bounded complex functions
on H. B(H) is a Banach space with respect to the norm:

‖x‖ = sup
t∈H

|x(t)|,

where x ∈ B(H). Let B(H)′ be the conjugate space of B(H). According to
Corollary 2 in [3, ch.III, 3.7] B(H)′ is a quasi-complete locally convex space
with respect to the w∗-topology. For ϕ ∈ B(H)′ put (Tsϕ)(x) = ϕ(xs), where
s ∈ H,xs(t) = x(s−1t). Then |(Tsϕ)(x)| = |ϕ(xs)| ≤ ‖ϕ‖‖xs‖ = ‖ϕ‖‖x‖.
Hence ‖Tsϕ‖ ≤ ‖ϕ‖ for all s ∈ H. We have

‖
n∑

i=1

λi(Tsi
ϕ)(x)‖ ≤

n∑
i=1

λi‖(Tsi
ϕ)(x)‖ ≤

n∑
i=1

λi‖ϕ‖‖x‖ = ‖ϕ‖‖x‖

for λi ∈ R such that λi ≥ 0 and
n∑

i=1

λi = 1. Hence V (ϕ) is bounded in

B(H)′ and it is compact with respect to the w∗-topology. Then according
to supposition (ii) of our theorem there exists an invariant averaging M on
B(H)′. Let µ ∈ B(H)′ be a mean that is µ(x) ≥ 0 for all x ∈ B(H), x ≥ 0 and
µ(1H) = 1, where 1H(t) = 1 for all t ∈ H. Then M(µ) is an H-invariant mean.
Therefore H is an amenable group.

(i) → (ii). Let H be an amenable group, m is a two-sided invariant mean
of H and α is an almost periodic representation of H in a quasi-complete locally
convex space L.

Let L′ be the conjugate space of L. For x ∈ L, F ∈ L′ we consider the
function ψx(t) =< F,α(t)x >= F (α(t)x) onH. Since the setHx is precompact
and L is a quasi-complete space, V (x) is compact. Hence ψx ∈ B(H). Put
m̃(F ) = m(ψx) = m(< F,α(t)x >). Then m̃ is a linear functional on L′. We
write m̃ in the form m̃(F ) =< M(x), F >, M(x) ∈ (L′)∗, where (L′)∗ is the
algebraic conjugate space of L′. The mapping M : L → (L′)∗ is linear. Prove
that M(x) ∈ L for all x ∈ L.

Let Σ = {µ ∈ B(H)′ : µ(1H) = 1, µ(x) ≥ 0, ∀x ≥ 0} be the set of all means
on B(H). For f ∈ B(H) and ti ∈ H put δti

(f) = f(ti). Let Σ0 be the set of all

µ ∈ Σ such that: µ =
n∑

i=1

λiδti
, λi ≥ 0,

n∑
i=1

λi = 1 for some ti ∈ H, i = 1, . . . , n.

For µ ∈ Σ0 we consider the operator Mµ(x) =
n∑

i=1

λiα(ti)x, where µ =
n∑

i=1

λiδti
.

There exists a net {µν} , µν ∈ Σ0, such that limµν = m in the w∗-topology
in B(H)′. We have Mµν

(x) ∈ V (x) for all ν. Put xν = Mµν
(x). On account

of compactness of V (x) there exist a subnet {yτ} of {xν} and x0 ∈ V (x) such
that lim yτ = x0. Then limµτ = m, µτ (< F,α(t)x >) =< Mµτ

(x), F >,
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µτ (< F,α(t)x >) → m(< F,α(t)x >) for all F ∈ L′. Using < Mµτ
(x), F >→

< x0, F >, we obtain m(< F,α(t)x >) =< M(x), F >=< x0, F > for all
F ∈ L′. Then M(x) = x0 ∈ L. Thus M(x) ∈ L and M(x) ∈ V (x).

Prove α(s)M(x) = M(α(s)x) = M(x). Since m is H-invariant, we find
< F,α(s)M(x) >= m(< F,α(s)α(t)x >) = m(< F,α(t)x >) =< F,M(x) >.
Similarly < F,M(α(s)x) >= m(< F,α(t)α(s)x >) = m(< F,α(t · s)x >) =
m(< F,α(t)x >) =< F,M(x) >.

3. Invariant averagings of locally compact groups

Definition 3.1. A linear representation α : H → G(L) of a topological
group H in a locally convex space will be called strongly continuous if t→ α(t)x
is a continuous function on H for every x ∈ L.

Our aim in this section is a proof of the following

Theorem 3.1. For a locally compact group H the following conditions
are equivalent:

(i) H is compact;
(ii) every strongly continuous linear representation of H in a quasi-complete

locally convex space has an invariant averaging.

Proof. The implication (i) → (ii) is known [12, p. 149].
A proof of the implication (ii) → (i) consists of some steps. First we give

some needful lemmas.
Let H be a topological group, α is a strongly continuous linear represen-

tation of H in a complex locally convex space L and L′ is the conjugate space
of L. We define a linear representation of H in L′ as follows:(α′(t)ϕ)(x) =
ϕ(α(t−1)x).

Lemma 3.1. α′ is a strongly continuous linear representation with re-
spect to the topology σ(L′, L).

Proof of the Lemma. It is known that L′ is a locally convex space with
respect to the topology σ(L′, L). For x1, . . . , xn ∈ L and ε ∈ R, ε > 0, put
Q(x1, . . . , xn, ε) = {ϕ ∈ L′ : |ϕ(xi)| < ε, i = 1, . . . , n}. The family

{Q(x1, . . . , xn, ε), xi ∈ L, ε ∈ R, ε > 0, n ∈ N}
is a fundamental system of neighborhoods of the zero in L′ for the topol-
ogy σ(L′, L). From α′(t)Q(x1, . . . , xn, ε) = Q(α(t−1)x1, . . . , α(t−1)xn, ε) and
α′(t−1)Q(x1, . . . , xn, ε) = Q(α(t)x1, . . . , α(t)xn, ε), we obtain that operators
α′(t) and α′(t−1) are continuous in the the topology σ(L′, L) for every t ∈ H.

Let ϕ be a fixed element of L′ and Q(x1, . . . , xn, ε) be an arbitrary neigh-
borhood of the zero in L′. For arbitrary ε > 0 there exists a neighborhood
W of the zero in L such that |ϕ(W )| < ε. Since α is strongly continuous, for
x1, . . . , xn ∈ L, the neighborhood W of the zero in L and every t0 ∈ H there
exists a neighborhood U of the unit in H such that α(Ut0)xi−α(t0)xi ⊂W for
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all i = 1, . . . , n. Then |ϕ(α(Ut0)xi − α(t0)xi)| < ε for all i = 1, . . . , n. Hence
|α′(U−1t−1

0 )ϕ(xi)−α′(t−1
0 )ϕ(xi)| < ε for all i = 1, . . . , n. Then α′(U−1t−1

0 )ϕ−
α′(t−1

0 )ϕ ⊂ Q(x1, . . . , xn, ε). This means that the mapping t → α′(t)ϕ is con-
tinuous for every t0 ∈ H and every ϕ. Thus the representation α′ is strongly
continuous. The lemma is proved.

Let H be a locally compact group. Denote by K(H) the vector space of
all complex continuous functions on H with the compact support. Denote the
family of compact subsets of H by T (H). For A ∈ T (H) and x ∈ K(H) put
pA(x) = maxt∈A |x(t)|. According to [5, Theorem 6.31] K(H) is a barrel locally
convex space with respect to the family {pA, A ∈ T (H)}.

Denote the vector space of all complex continuous functions onH by C(H).
C(H) is a locally convex space with respect to the family {pA, A ∈ T (H)} of
semi-norms. We have K(H) ⊂ C(H).

Lemma 3.2. K(H) is dense in C(H).

Proof of the Lemma. According to statement 0.2.18(2)in [5] for every
A ∈ T (H) there exist a function eA ∈ K(H) and a compact neighborhood U
of A such that

eA(t) =
{

1 for t ∈ A,
0 for t /∈ U.

Let x ∈ C(H). Then eAx ∈ K(H) and pA(x− eAx) = 0. Therefore for the
net {eAx,A ∈ T (H)} we obtain limA∈T (H) eAx = x. The lemma is proved.

Using Lemma 3.2 and [5, Theorem 6.2.4(2)], we obtain the following

Lemma 3.3. C(H) is a barrel locally convex space.

We define a linear representation of H in C(H) as follows: (α(s)x)(t) =
x(s−1t), x ∈ C(H).

Lemma 3.4.
(i) The linear representation α in C(H) is strongly continuous;

(ii) The conjugate space (C(H))′ is a quasi-complete locally convex space
with respect to the topology σ(L′, L), where L = C(H);

(iii) The linear representation α′ in (C(H))′ is strongly continuous.

Proof of the Lemma. Put WA,ε = {x ∈ C(H) : pA(x) < ε}. For s ∈ H
we have α(s)WA,ε = WsA,ε. Hence operator α(t) is continuous on L for every
t ∈ H. We prove that α is strongly continuous. Let x ∈ C(H), s0 ∈ H and A ∈
T (H). On account of compactness of A there exists a neighborhood U of the
unit of H such that |x(Us−1

0 t)−x(s−1
0 t)| < ε for all t ∈ A. Then pA(α(Us0)x−

α(s0)x) < ε. This means that the mapping t → α(t)x is continuous on H for
every x. Thus α is strongly continuous.

Using Lemma 3.3 and [3, III.3.7, Corollary 2], we find that the conjugate
space (C(H))′ is a quasi-complete locally convex space with respect to the
σ(L′, L)- topology, where L = C(H). According to Lemma 3.1 the linear
representation α′ in (C(H))′ is strongly continuous with respect to the σ(L′, L)-
topology. The lemma is proved.

For x ∈ C(H) put supp(x) = {t ∈ H : x(t) �= 0}.
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Lemma 3.5. Let H be a locally compact topological group, A ∈ T (H)
and U be an arbitrary closed neighborhood of the unit of H. Then there exist a
family {ek(t) ∈ C(H), k = 0, 1, . . . , n} and elements t1, . . . , tn ∈ H such that:

(i)
n∑

k=0

ek(t) = 1 and 0 ≤ ek(t) ≤ 1 for all t ∈ H, k = 0, 1, . . . , n;

(ii) supp(e0) ∩A = ∅;
(iii) A ⊂ ∪n

k=1tkU and supp(ek) ⊂ tkU for all k = 1, . . . , n.

Proof of the Lemma. We consider the following open covering of the
compact set A: A ⊂ ∪t∈AtU . Then there exist t1, . . . , tn ∈ A such that
A ⊂ ∪n

k=1tkU . Put B = H \ ∪n
k=1tkU . H is a completely regular topologi-

cal space as a separable topological group. Hence for tk and the neighborhood
tkU there exists a continuous real function fk : H → R such that 0 ≤ fk(t) ≤ 1
for all t ∈ H, fk(tk) = 1 and fk(t) = 0 for all t ∈ H \tkU . Put f ′k(t) = 1−fk(t).
We consider the multiplication

(f1(t) + f ′1(t))(f2(t) + f ′2(t)) · · · (fn(t) + f ′n(t)) = 1.

By induction we obtain

f1(t) + f ′1(t)f2(t) + f ′1(t)f
′
2(t)f3(t) + · · · + f ′1(t)f

′
2(t) · · · f ′n−1(t)fn(t)

+ f ′1(t)f
′
2(t) · · · f ′n(t) = 1.

Put e1 = f1(t), ei = f ′1(t)f ′2(t) · · · f ′i−1(t)fi(t), i = 2, . . . , n; e0 =
f ′1(t)f

′
2(t) · · · f ′n(t). Then supp(e0) ⊂ H \ ∪n

k=1tkU and supp(ek) ⊂ tkU for
all k = 1, . . . n. The lemma is proved.

Lemma 3.6. Let H be a locally compact topological group such that
there exists a non-zero H-invariant linear continuous functional ϕ on C(H).
Then H is compact.

Proof of the Lemma. Assume that H is non- compact and ϕ be a non-zero
H-invariant continuous linear functional on C(H). Since ϕ is continuous, there
exist c ∈ R, c > 0, and A ∈ T (H) such that |ϕ(f)| ≤ cpA(f) for all f ∈ C(H).
Then ϕ(f) = 0 for f ∈ L such that supp(f) ∩A = ∅. Since H is non-compact,
there exist y ∈ H and a closed neighborhood U of the unit of H such that
A ∩ yU = ∅.

Since ϕ is non-zero, ϕ(f) �= 0 for some f ∈ C(H). According to Lemma
3.5 there exist elements tk ∈ H and ek ∈ C(H), k = 1, . . . , n, satisfying the
conditions (i), (ii), (iii) of Lemma 3.5. Then ϕ(ejf) �= 0 and supp(ej(t)f(t)) ⊂
tjU for some j. Put z = yt−1

j . We have supp(α(z))(ej(t)f(t)) ⊂ ztjU = yU .
Then supp(α(z)(ej(t)f(t))) ∩ A = ∅. Hence ϕ(α(z)(ejf)) = 0. Since ϕ is H-
invariant, ϕ(ejf) = ϕ(α(z)(ejf)) �= 0. It is a contradiction. The lemma is
proved.

We continue a proof of the implication (ii) → (i) of our theorem. Consider
a linear representation α′ of H in (C(H))′. According to Lemma 3.4 (C(H))′

is a quasi-complete locally convex space and α′ is a strongly continuous linear
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representation of H in (C(H))′. On account of supposition (ii) of our theorem
α′ has an invariant averaging. Let a ∈ H. Put ϕa(x) = x(a) for all x ∈ C(H).
Then ϕa ∈ (C(H))′ and ϕa(1H) = 1, where 1H is the unit function of C(H).
For every s ∈ H we find α′(s)ϕa = ϕsa and ϕsa(1H) = 1. We have ϕ(1H) = 1

for every linear functional ϕ on C(H) of the form ϕ =
n∑

k=1

λkα
′(sk)ϕa, where

λk ≥ 0,
n∑

k=1

λk = 1. Hence ϕ(1H) = 1 for every ϕ ∈ V (ϕa). Let M be an

invariant averaging for α′. Then the element ψ = M(ϕ) is H-invariant and
ψ(1H) = 1. Therefore ψ is a non-zero H-invariant linear functional on C(H).
By Lemma 3.6, H is compact. The theorem is completed.

We note that a left H-invariant Haar’s integral on a locally compact group
H is a H-invariant linear functional on K(H). Hence Lemma 3.6 has also the
following

Corollary 3.1. Haar’s integral is continuous on K(H) with respect to
the topology {pA, A ∈ T (H)} if and only if H is compact.
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