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Abstract

We consider a domain D in C
n such that there is a Stein manifold

E which is a C-fibration over D. Simple examples show that D does not
need to be Stein. However it cannot be arbitrarily and, in fact, we prove
that D is pseudoconvex of order n − 2.

1. Introduction

Let X be a complex space with countable topology. By a (holomorphic)
C-fibration over X we mean a locally analytically trivial fibre bundle E → X
with fiber C (see [At]). Such examples appear naturally in the following way
(see [Gr]): Let ξ ∈ H1(X,OX) be a non-vanishing cohomology class, if it
exists. With respect to a trivializing Stein open covering U = {Ui}i∈I of X,
ξ is reprezented by a 1-cocycle {ξij} ∈ Z1(U ,O). On the disjoint union of
Ui × C we introduce the equivalence relation by identifying the points (x, t)
and (x, t + ξij(x)) for x ∈ Ui ∩ Uj , t ∈ C, and i, j ∈ I. The quotient space
thus obtained E(ξ) is a complex space which is a C-fibration over X. Since ξ
is non-trivial, there is no holomorphic section of E(ξ). Now, it may happen
that, although X is not Stein, E(ξ) is Stein; e.g. X = C

2 \ {0} and ξ given on
C

∗ × C∗ by (z1, z2) �→ 1/z1z2 (see Section 3 for details).
Motivated by this Professor Tetsuo Ueda asked one of the authors (at

the Hayama Conference in Complex Analysis, Japan, in the spring of 1995)
to study convexity properties of open subsets of C

n on which there are Stein
holomorphic C-fibrations. This article stemmed from answering his question,
viz. Corollary 1.

For a complex space Y we define property Hq as follows: Every holomor-
phic map from a q-th Hartogs figure to Y is extended holomorphically to its
envelope. (See Section 2 for details.)

Theorem 1.1. Let E → X be a holomorphic C-fibration over a complex
space X. If E satisfies Hq with q ≥ 2, then so does X.
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Corollary 1.1. Let D be an open subset of C
n. If there exists a Stein

C-fibration E → D, then D is pseudoconvex of order n − 2.

In fact a more general result is true namely:

Theorem 1.2. Let D be an open subset of a Stein manifold M of pure
dimension n. If there exists a C-fibration E → D such that E is weakly q-
complete with q ≥ 2, then D is q-complete with corners.

We note that weak q-completeness here is defined with respect to continu-
ous q-plurisubharmonic functions. It is important to notice that this holds true
if E is q-complete with corners.

2. Preliminaries

To set the stage, for r > 0 and z0 ∈ C, put ∆(z0; r) = {z ∈ C ; |z−z0| < r},
∆(r) = ∆(r; 0) and ∆ = ∆(1). Let q be a positive integer. Let k be a positive
integer. Set n = q + k. Let r1, r2, s1, s2 be positive real numbers such that
r2 < r1 and s2 < s1.

Define the open subset Ωq in Cn = Cq × Ck by setting:

(∗) Ωq :=
(

(∆q(r1) \ ∆
q
(r2)) × ∆k(s1)

)
∪

(
∆q(r1) × ∆k(s2)

)
.

Its envelope of holomorphy Ω̂q is ∆q(r1) × ∆k(s2). The set Ωq is called
a “q-th Hartogs figure” and (Ω̂q, Ωq) is referred to as a “Hartogs pair of order
q”. If one wants to stress the ambient space as is the case in the subsequent
Definition 2.2, one writes Ωq,n instead of Ωq; similarly for Ω̂q,n.

In the standard terminology one considers r1 = s1 = 1, r2 = 1 − ε and
s2 = ε for ε > 0 small enough.

A simple but important observation is that Ωq is contractible. A homotopy
between the identity map of Ωq and the constant self map of Ωq, Ωq � z �→ 0,
is exhibited by

F : Ωq × [0, 2] → Ωq

defined by the following formula:

F (z1, z2; t) =
{

(z1, (1 − t)z2), if 0 ≤ t ≤ 1;
((2 − t)z1, 0), if 1 ≤ t ≤ 2.

Consequently Ωq is simply connected and all cohomology groups Hi(Ωq, Z), i =
1, 2, . . ., vanish.

Definition 2.1. A complex space X has property Hq if any holomor-
phic map from a q-th Hartogs figure into X extends holomorphically to its
envelope.
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For instance, the standard Hartogs extension theorem says that a Stein
space has property Hq for any q. However, the converse statement fails as
shown by complex tori; see Proposition 2.1 from below. (Note also that the
complex projective line P

1 does not enjoy the property H1. For instance, the
holomorphic map f : C

2 \ {(0, 0)} → P
1 defined by

(z1, z2) �→ z1z2

z2
1 − z3

2

does not extend, not even as a continuous function.)
A map π : X̃ → X between complex spaces is said to be a holomorphic

covering map if π is holomorphic and a topological covering map. Note that if
π : X̃ → X is a holomorphic covering map, and f is a continuous map from
a complex manifold M into X̃, then f is holomorphic if and only if π ◦ f is
holomorphic.

Proposition 2.1. Let π : X̃ → X be a holomorphic covering map.
Then X has the property Hq if and only if X̃ has the property Hq.

Proof. Suppose X̃ has property Hq and let f : Ω → X be a holomorphic
map, where (Ω̂, Ω) is a q-Hartogs pair. Since Ω is simply connected, there is a
lifting g : Ω → X̃ of f . Let ĝ : Ω̂ → X̃ be the holomorphic extension map of g.
Thus π ◦ ĝ is the desired holomorphic extension of f . The converse follows by
a similar argument.

Definition 2.2. An open subset D of a complex manifold M of pure
dimension n is said to be “pseudoconvex of order n − q” if, for every injective
holomorphic map F : Ω̂q,n → M the condition F (Ωq,n) ⊂ D implies that
F (Ω̂q,n) ⊂ D.

Remark 1. The ordinary pseudoconvexity in Cn is recovered as “pseu-
doconvex of order n − 1”.

Remark 2. It is easily seen that if D is an open subset of a connected
complex manifold M with n := dim(M), then D is pseudoconvex of order n−q
provided that D has property Hq.

Granting [Fr] we have:

Proposition 2.2. Hi(Ωq,O) = 0 for any positive integer i �= q.

Corollary 2.1. Let q be an integer ≥ 2. Let r ∈ (r2, r1) and s ∈
(s2, s1). Set U = ∆q(r) × ∆k(s) and W = Ωq ∪ U . Then one has:

1. H1(W,O) = 0.
2. H2(W, Z) = 0.

Proof. To show 1) we use Proposition 2.2 and the vanishing of cohomology
for U with coefficients in O. To proceed, from the Mayer–Vietoris sequence we
retain the exact portion

H0(Ωq,O) ⊕ H0(U,O) → H0(Ωq ∩ U,O) → H1(W,O) → 0.
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But H0(U,O) → H0(Ωq ∩ U,O) is surjective, whence the desired result. The
assertion in 2. is done similarly and therefore is omitted.

To conclude this section we recall three convexity notions. Let X be a
complex space. First we have “q-convexity” in the sense of Andreotti and
Grauert [AG]. (The normalization is such that “1-convex function” ≡ “C2-
smooth, strictly plurisubharmonic function”.)

A much weaker notion than this is q-convexity with corners: a continuous
function ϕ : X → R is q-convex with corners if, locally on open sets, ϕ equals
maximum of finitely many q-convex function; see [DF1], [DF2] and [Pe].

A very flexible convexity property (close to q-convexity with corners but
still weaker) is q-subpluriharmonicity which we now recall. (This is due to
several authors, notably [Fu1] and [Fu2]; see also [HM] and [Sl].)

Let ϕ : X → [−∞,∞) be an upper-semicontinuous function. We say that
ϕ is

• subpluriharmonic if, for any compact set K ⊂ X and any pluriharmonic
function h defined near K (i.e. h is locally the imaginary part of a holomorphic
function), the inequality ϕ ≤ h on ∂K implies ϕ ≤ h on K.

• q-plurisubharmonic if, for any holomorphic map F : ∆q → X, the
function ϕ ◦ F : ∆q → [−∞,∞) is subpluriharmonic (possibly ≡ −∞).

A complex space X is said to be weakly q-complete (resp., q-complete with
corners) if there exists a continuous exhaustion function ϕ : X → R which is
q-subpluriharmonic (resp., q-convex with corners).

Granting [Fu1], [Ma] and [Pe] we get:

Theorem 2.1. For an open subset D of C
n the following statements

are equivalent:
1. D has property Hq;
2. D is pseudoconvex of order n − q;
3. − log δ is q-plurisubharmonic;
4. D is q-complete with corners.

Notice that the equivalence between assertions 1), 2) and 4) still hold when
D is an open subset of a Stein manifold of pure dimension n as well as for C

n.

3. Proofs of Theorems 1.1 and 1.2

First we prepare a few general facts on C-fibrations over a complex space
X. It is important to notice that Aut(C) = {fa,b ; a ∈ C∗, b ∈ C}, where
fa,b(t) = at + b, t ∈ C. Therefore, if E → X is a holomorphic C-fibration, then,
with respect to a trivializing Stein open covering U = {Ui}i∈I , E is given by a
1-cocycle {aij} ∈ Z1(U ,O∗) and holomorphic functions bij ∈ O(Uij) such that,
for all indices i, j, k for which the intersection Ui ∩ Uj ∩ Uk is non empty, one
has:

(�) bij + aijbjk = bik.
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Reciprocally, given {aij} and {bij} as above, we get a C-fibration over X
taking the quotient of the disjoint union Ui×C through the equivalence relation
given by identifying the points (x, t) and (x, bij(x) + taij(x)) for x ∈ Ui ∩ Uj

and t ∈ C.

Remark 3. It is easily seen that if E → X is a C-fibration over a
complex space X, then E is trivial if and only if E has a global holomorphic
section.

Proposition 3.1. Let X be a complex space such that H1(X,O∗) = 0.
Then every C-fibration over X is trivial.

Proof. First we claim that H1(X,O) = 0. Indeed, granting Lojasiewicz’s
triangulability theorem [Lo], the topological space X has the homotopy type of
a CW complex with countable many cells (X was supposed to be separable);
hence H1(X, Z) is an abelian group with at most countable many generators.
On the other hand H1(X,O) is a complex vector space and the field C is not
countably generated as a Z-module. The only possible dimension of H1(X,O)
is then zero. Now, let E → X be a C-fibration and consider a Stein open
covering {Ui}i of X such that E is represented by {aij} ∈ Z1({Ui}i,O∗) and
{bij} ∈ C1({Ui},O) satisfying (�). Since H1(X,O∗) = 0, there exists {λi} ∈
C0({Ui},O∗) such that aij = λi/λj . Therefore bijλi + bjkλj = bikλi; hence
{bijλi}ij gives a 1-cocycle which is exact by the above claim. Thus there exists
{µi} ∈ C0({Ui}i,O) such that bij = λi(µi −µj). It is then easy to see that the
holomorphic map from X × C into (Ui × C)/∼ given by

(x, t) �→ (x,−µi + t/λi(x))

defines the desired isomorphism.

Now we are in a position to give the proof of Theorem 1.1.

Proof. Let π : E → X be a C-fibration. Let (Ω̂, Ω) be a Hartogs pair of
order q with q ≥ 2 and f : Ω → X a holomorphic map. There is a canonical
commutative diagram of holomorphic mappings

f�(E) ��

��

E

π

��
Ω

f �� X.

We want a holomorphic map f̂ : Ω̂ → X which extends f . In order to do this,
granting the above discussion and Corollary 2.1, the pull-back f�(E) over Ω is
trivial so that there is a holomorphic section s : Ω → f�(E). This induces via
the above commutative diagram a holomorphic map g : Ω → E with π ◦ g = f .
On the other hand, as E has property Hq, this g extends to a holomorphic map
ĝ : Ω̂ → E. Therefore π ◦ ĝ is the desired holomorphic extension of f from Ω̂
into X.
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Remark 4. It is not difficult to see that, conversely, if X satisfies prop-
erty Hq, then so does E. Note that here we do not have the restriction q ≥ 2.

Here we give the proof of Theorem 1.2

Proof. Let (Ω̂, Ω) be a Hartogs pair of order q. Set k = n − q. There is
no loss in generality to assume that

Ω =
(

(∆q \ ∆
q
(1 − ε)) × ∆k

)
∪

(
∆q × ∆k(ε)

)
,

so that Ω̂ = ∆n. Also we assume that ∆n ⊂ M and Ω ⊂ D. We want ∆n ⊂ D.
This will follow from the following

Claim. Let r ∈ (1 − ε, 1). Then ∆
q
(r) × ∆k ⊂ D.

In order to establish this, we consider the set S of those s ∈ (0, 1) such
that ∆

q
(r)×∆

k
(s) ⊂ D. Now, to show this, by a standard argument we check

that the set S is non-empty, open, and closed in (0, 1). Notice that the first
two conditions are trivially fulfilled so one is left to check that S is closed.

Let s ∈ (0, 1) and {sν} a sequence of points in S increasing to s. Let
ξ ∈ ∂∆k(s). We show that ∆

q
(r)×{ξ} lies in D. For this, select a sequence of

points ξν ∈ ∆k(sν) which converges to ξ. Set Kν := ∆
q
(r) × {ξν} and T their

union, which is a subset of W , where

W := Ω ∪
(

∆q(r) × ∆k(s)
)
.

Let ϕ be a continuous q-plurisubharmonic exhaustion function on E. From
Corollary 2.1 it follows that E is trivial over W ; hence there is a holomorphic
section σ : W → E of the canonical projection π : E → D. Notice that

bT := ∪ν

(
(∂Kν) × {ξν}

)
is a relatively compact set in W . Therefore, by the maximum principle for
q-subpluriharmonic functions one deduces immediately that c := supσ(T ) ϕ is
finite. Thus T is contained in the compact subset π({ϕ ≤ c}) of D. This shows
that S is closed concluding the claim, whence the theorem.

Example 3.1. Let X = C
2 \ {0} and ξ given with respect to the Stein

covering U1 = C∗×C, U2 = C×C∗ by ξ(z1, z2) = 1 + 1/z1z2. Clearly ξ defines
a non zero cohomology class in H1(C2 \ {0},O) and then, as alluded to in the
introduction, it produces a C-fibration E → C

2 \{0}. We show that E is Stein.

In fact, E is obtained glueing E1 = U1×C and E2 = U2×C by identifying
points (z, t) and (z, t + 1/z1z2) where z ∈ U1 ∩ U2 and t ∈ C. There is a
canonical projection π : E → X. Then we define two holomorphic mappings
f, g : E → C as follows: f is given by (z, t) �→ tz1 on E1 and (z, t) �→ tz1 + 1/z2

on E2. Similarly, g is defined by (z, t) �→ −z2t+1/z1 on E1 and (z, t) �→ −tz2 on
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E2. Eventually, by a simple computation we check that the holomorphic map
(π, f, g) : E → C

4 is a holomorphic embedding; its image is the hypersurface
{z1w2 − z2w1 = 1} in C4. In other words, this E(ξ) is nothing else than the
special linear group Sl(2, C). (This example is related to the construction of a
compactification of C

3; see [FuT] and [FN].)

Related to the above example we give:

Proposition 3.2. Let A be a closed subset of an open set D in C
n. If

the Hausdorff (2n − 4)-measure of A is zero, then there does not exist a Stein
C-fibration E → D \ A.

Proof. Assume in order to reach a contradiction that we have a Stein
holomorphic C-fibration E → D \ A. By Corollary 1.1 it follows that D is
pseudoconvex of order n − 2. Since h2n−4(A) = 0, it results from [Va] that A
is analytic of pure dimension n − 2 which contradicts the hypothesis.

Remark 5. This proposition improves Proposition 5 in [Abe] where the
case when A is analytic of codimesion ≥ 3 is considered.
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